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ARTICLE INFO ABSTRACT
Available online 16 November 2022 This review will focus on how bile acids are being used in clinical trials to treat neurological diseases due to their

central involvement with the gut-liver-brain axis and their physiological and pathophysiological roles in both
normal brain function and multiple neurological diseases. The synthesis of primary and secondary bile acids spe-
cies and how the regulation of the bile acid pool may differ between the gut and brain is discussed. The expres-
Associate editor: SJ. Enna sion of several bile acid receptors in brain and their currently known functions along with the tools available to
manipulate them pharmacologically are examined, together with discussion of the interaction of bile acids with

I];?e,v: zlrgz the gut microbiome and their lesser-known effects upon brain glucose and lipid metabolism. How dysregulation
Parkinson's disease of the gut microbiome, aging and sex differences may lead to disruption of bile acid signalling and possible causal
Neurodegeneration roles in a number of neurological disorders are also considered. Finally, we discuss how pharmacological treat-

Microbiome ments targeting bile acid receptors are currently being tested in an array of clinical trials for several different neu-
rodegenerative diseases.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

The concept of bi-directional communication between the splanch-
nic organs and brain dates back to the Hippocratic era. It is only over
the last century however, that the neuro-endocrine mechanisms that
underpin this connection have been described and more latterly still,
their relevance to the pathophysiology of neurodegeneration been ap-
preciated. This review focuses specifically on the role of bile acid species,
an important and heterogenous family of biological mediators central to
the gut-liver-brain axis and their physiological and pathophysiological
roles in neuronal health.

The central role of bile acids is exemplified by the range of disorders,
such as non-alcoholic fatty liver disease, obesity, inflammatory bowel
disease and diabetes, that arise when their homeostasis is disturbed
(Perino, Demagny, Velazquez-Villegas, & Schoonjans, 2021). Originally,
bile acids were considered to act only as surfactants to aid absorption of
fats, lipid-soluble vitamins and steroids from the intestine into blood for
subsequent metabolism by the liver. However, it is now clear that bile
acids have a complex biology that influences a wide range of physiolog-
ical processes and that they are hormone-like signalling molecules, in
addition to their emulsifying agent actions (Zangerolamo, Vettorazzi,
Rosa, Carneiro, & Barbosa, 2021). However, bile acids can be toxic and
their levels require tight control to prevent damage to the liver and
other tissues. Remarkably, along with their synthesis in the gut, bile
acids can also be synthesized in brain where they regulate cellular
lipid and glucose metabolism. Metabolic dysfunction is a significant
risk factor for Parkinson's disease, Alzheimer's disease and other neuro-
degenerative diseases and understanding the role of bile acids in their
pathophysiology is crucial to develop interventions for their prevention
and treatment (Monteiro-Cardoso, Corliano, & Singaraja, 2021).

Here we review the role played by bile acids (Table 1) in normal
brain function and in neurological disorders. The interaction of bile
acids with the gut microbiome and their effects upon brain glucose
and lipid metabolism will also be examined. Cholesterol catabolism,
the source of bile acids and the bile acid pool will be briefly discussed.
The brain is the most cholesterol rich organ containing approximately
a quarter of the total cholesterol found in the body. Cholesterol and re-
lated lipid molecules are a crucial constituent of the plasma membrane
of neurons and glia, and a major component of myelin (Bjorkhem &
Meaney, 2004) (Dietschy, 2009) (Montesinos, Guardia-Laguarta, &
Area-Gomez, 2020).

2. Bile acid synthesis
2.1. Primary bile acids

The first step of bile acid synthesis is the generation of primary bile
acids, the majority of which occurs in the liver where a sequence of 17
enzymes, including cytochrome p450, modify the steroid ring of choles-
terol to remove its short aliphatic side chain and conjugate with glycine
(75%) and taurine (25%) ultimately to form conjugated primary bile
salts of cholic acid (CA) and chenodeoxycholic acid (CDCA) (Russell,
2009). A detailed description of the synthesis of bile acids can be
found elsewhere (Chiang & Ferrell, 2018, 2019a, 2020; Chiang &
Ferrell, 2019b). Biosynthesis of bile acids can take place through two
major bile acid synthesis pathways termed classic (neutral) and alter-
nate (acidic) (Fig. 1). In the classic pathway the steroid rings of choles-
terol are hydroxylated and reduced in the cytosol and endoplasmic
reticulum before oxidation of the sidechains in mitochondria and oxida-
tive cleavage in peroxisomes of the steroid sidechains. Whereas, in the
alternate pathway the steroid sidechain is first oxidized and then the
steroid rings are modified before the steroid sidechain is cleaved by ox-
idation (Chiang & Ferrell, 2018). In humans the alternative pathway
contributes <10% to overall bile acid composition within the gut
whereas the alternative pathway may account for as much as 50% of
bile acid composition in rodent gut.
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Table 1
Bile acids.
Abbreviation Name Synonym Approved
drug
primary
CA cholic acid cholate Cholbam®
Kolbam®
CDCA chenodeoxycholic acid chenodeoxycholate Chenix®
Chenodiol®
Leadiant®
a-MCA a-muricholic acid (mouse)
B-MCA B-muricholic acid (mouse)
secondary
DCA deoxycholic acid deoxycholate ATX-101
HDCA hyodeoxycholic acid
LCA lithocholic acid lithocholate
UDCA ursodeoxycholic acid Actigall®

taurine-conjugated

TCA taurocholic acid

TCDCA taurochenodeoxycholic acid
TDCA taurodeoxycholic acid

TLCA taurolithocholic acid

cholyltaurine

TUDCA tauroursodeoxycholic acid
To-MCA taurine-oi-muricholic acid
Tp-MCA taurine-p-muricholic acid

glycine-conjugated

GCA glycocholic acid

GCDCA glycochenodeoxycholic acid
GDCA glycodeoxycholic acid

GLCA glycolithocholic acid
GUDCA glycoursodeoxycholic acid

2.2. Secondary bile acids

Secondary bile acids are formed by enzymatic modifications of pri-
mary bile acids by bacteria present in the colon where they serve as sub-
strates for microbial metabolism (de Aguiar Vallim, Tarling, & Edwards,
2013). The gut microbiome influences the components of the bile
acid pool and the bile acids can regulate the gut bacteria composition
through direct and indirect antimicrobial effects. Microbial deconj-
ugation of taurine and glycine conjugated primary bile acids via bile
salt hydrolase is a highly conserved function across bacterial phylae
and archaea and helps diminish the microcidal effect of intraluminal
bile acids. Bacteria with bile salt export pumps have a further selective
advantage in this environment. The conversion back into unconjugated
hydrophobic forms is essential for downstream biotransformation of CA
and CDCA to secondary bile acid species deoxycholic acid (DCA) and
lithocholic acid (LCA) respectively by 7a-dehydroxylation (Jia, Xie, &
Jia, 2018) and is typically a feature of firmicutes such as clostridial
species (Fig. 1).

3. The bile acid pool

The total amount of bile acids distributed throughout the
enterohepatic circulation is termed the bile acid pool and is comprised
of bile acids found in the intestines (85-90%), gallbladder (10-15%)
and liver (<1%). The majority (~95%) of bile acids are reabsorbed from
the ileum and recycled via the gall bladder with those lost in faeces or
converted to secondary bile acids in the colon replenished by newly
synthesized bile acids (Chiang & Ferrell, 2018). Though renal excretion
of hydrophilic bile acids also occurs (Barnes, Gollan, & Billing, 1977).
The bile acid pool consists of approximately 40% CA, 40% CDCA and
20% DCA in humans and is overall hydrophobic with a ratio of glycine
to taurine conjugated bile acids of approximately 3:1. In mice the bile
acid pool is predominantly hydrophilic due to the majority (~95%) of
bile acids being conjugated to taurine and the presence of hydrophilic
muricholic acids such that the bile acid pool composition is
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classic (neutral) pathway
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Fig. 1. Bile acid synthesis pathways Schematic representation of major substrates (black) and enzymes (blue) involved in the formation of primary and secondary bile acids (Chiang &
Ferrell, 2018, 2020). Dashed arrows indicate multiple steps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

approximately 60% taurocholic acid (TCA) and 40% taurine-c-
muricholic acid (Ta-MCA) and taurine-p-muricholic acid (TR-MCA)
(Chiang & Ferrell, 2018). Furthermore, in mice the majority of
CDCA is immediately converted to a-muricholic acid («-MCA) and
3-muricholic acid (p-MCA) by the enzyme sterol-63-hydroxylase
(CYP2C70) (Y. Yang & Zhang, 2020). The differences in the composition
of the bile acid pool and the enzymes that form and regulate them be-
tween humans and rodents may be of importance when using data
from experimental treatments of rodent with bile acids as a basis for
clinical trials to treat human disease, or to understand human bile acid
related pathophysiology (de Aguiar Vallim et al., 2013),(Y. Yang &
Zhang, 2020).

4. Brain bile acids

The brain contains numerous conjugated and unconjugated bile acids
that enter the brain by either diffusion or active transport through bile
acid transporters from the systemic circulation, or by local synthesis in as-
trocytes and neurons since the brain contains the cytochrome P450 en-
zymes necessary (CYP8B1, CYP27A1 and CYP7B1) for synthesis of
primary bile acids by the alternate pathway (Loera-Valencia et al., 2021)
(Nishimura, Yaguti, Yoshitsugu, Naito, & Satoh, 2003). However, the levels
of bile acids in brain mirror those found in the circulation suggesting that
local synthesis is less important for regulating the level of brain bile acids
than entry from systemic circulation (Higashi et al., 2017),(Mano et al.,
2004),(Reddy et al., 2018) under normal conditions. Whether this changes
in neurological disease is unknown. Secondary bile acids in brain can only
be derived from the intestine since enzymes found just in gut bacteria are
required for their formation (de Aguiar Vallim et al,, 2013).

The mechanisms that underlie bile acid clearance in the brain, in con-
trast to oxysterol intermediates, are poorly understood. With regards to
passive diffusion, the propensity of bile acids to diffuse across the blood
brain barrier is influenced by their differential hydrophobicity indices.

Furthermore, the hydrophobic unconjugated bile acids have been
shown to compromise the integrity of the blood brain barrier. In vivo
models of high circulating bile acids including surgical cholestasis and
venous administration of unconjugated bile acids have demonstrated
increases in blood brain barrier permeability (Quinn et al., 2014).
Virtually all brain cholesterol is formed locally by de novo synthesis
with circulating lipoprotein cholesterol effectively excluded from the
brain by the blood brain barrier. However, in adult brain synthesis of
cholesterol is low because of efficient recycling and the half-life of
brain cholesterol is estimated to be at least 5 years (Bjorkhem &
Meaney, 2004). The brain specific cytochrome P450 enzyme CYP46A1
forms 24S-hydroxycholesterol from cholesterol in neurons which is
then transformed via intermediate compounds to CDCA (Fig. 1). Be-
cause 24S-hydroxycholesterol can cross the blood brain barrier via the
lipoprotein transport ATP-binding cassette transporter 1 (ABCA1), its
egress into the circulation enables steady levels of cholesterol to be
maintained in brain (Bjorkhem & Meaney, 2004), (Dietschy, 2009).
The ratio of primary to secondary bile acids is determined by
the gut microbiome which is exclusively responsible for the 7o-
dehydroxylation of unconjugated primary to secondary bile acids.
Since CYP7AT1 is not found in brain, the 7a-hydroxycholesterol formed
in brain and can only be derived from CA in the circulation or through
non-enzymatic oxidation of cholesterol and as the blood-brain barrier
is more permeable in patients with neurodegenerative disorders this
could result in altered brain levels of bile acids (Griffiths et al., 2021).
Conjugated bile acid species which are more hydrophilic are likely to
require active transport across the blood brain barrier although the
underlying mechanisms are incompletely understood. Organic anion-
transporting polypeptide 1a4 (OATP1a4) deficient mice have been
shown to have reduced bi-directional transport of TCA across the
blood brain barrier suggestive of a role in active transport (Ose et al.,
2010). Elimination of [*H]-TCA after cortical microinjection was found
to be markedly reduced in the presence of the unconjugated CA species
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(Kitazawa, Terasaki, Suzuki, Kakee, & Sugiyama, 1998) suggestive of
complex regulation of bile acid clearance.

A recent metabolomic study on Alzheimer's disease patients found
detectable levels of CA in several brain regions, suggesting entry into
the brain from the periphery (Baloni, et al., 2020). In the liver newly
synthesized primary bile acids, CA and CDCA are conjugated with
glycine or taurine by an enzyme bile acid-CoA: amino acid N-
acetyltransferase (BAAT) before being secreted into the bile. The pres-
ence of this enzyme in the brain has so far not been detected, which
would make it very unlikely that the locally generated CDCA would be
conjugated within the brain tissue.

Baloni (2020) and colleagues found measurable levels of multiple dif-
ferent secondary bile acids throughout the brain (Baloni, et al.,, 2020).
Given that secondary bile acids result from bacterial actions in the
colon it seems most probable they have entered the brain after being
generated in the gut. Although extremely controversial, some groups
have proposed that the brain may have its own microbiome mostly
consisting of a-proteobacteria (Branton et al., 2013) or of novel brain mi-
crobes (Link, 2021). This certainly raises a very interesting notion that a
local bacterium could modify bile acids in brain, but these studies have to
be approached with caution as they are largely from immunocompro-
mised cases and it is hard to ensure the bacteria were not due to contam-
ination from blood vessels or experimental procedures.

The reported increases in the levels of the secondary bile acids
within the brain during neurodegeneration most likely are a result of
an altered gut microbiome producing higher levels which subsequently
enter the brain. Circulating bile acids can directly induce permeability in
the blood brain barrier through a mechanism involving the Rac1-
dependant phosphorylation of the tight junction-associated protein
Occludin1 (Quinn et al., 2014). Their rate of entry may also be impacted
by changes in the expression of several bile acid transporters or direct
damage to be blood brain barrier by the bile acids themselves. In liver
disease models where serum bile acids levels are increased there is
also a detectable increase in brain bile acid levels that have most likely
entered by the apical sodium-dependent bile acid transporter (ASBT)
transporter whose expression increased in the frontal cortex
(McMillin et al., 2016). Several other transporters are expressed in
ependyma of the choroid plexus such as ABST, multidrug resistance-
associated proteins 2/4 (MRP2/4), bile salt export pump (BSEP),
OATP1a2 and sodium-taurocholate co-transporting polypeptide
(NTCP). Very little is currently known about the normal physiological
function of these transporters or in disease or if bile acid penetration
into the brain is a passive or active process. Better understanding of
the apical or basolateral expression of these transporters could allow
the development of drugs to block or target these transporters and reg-
ulate the bilateral flow of bile acids into and out of the brain.

Bile acid synthesis in the liver is chiefly regulated by splanchnic cho-
lesterol status. Biosynthesis of CDCA via the alternative pathway is how-
ever influenced by 24-hydroxycholesterol status, an indirect measure of
cholesterol status in the brain.

Homeostasis of bile acid levels is crucial to maintain the balance be-
tween adequate lipid absorption from the intestine and prevention of
accumulation to toxic levels and is governed by Farnesoid X receptor
(FXR) and G-protein-linked bile acid receptor 1 (GPBA) receptors in
the liver and intestine via a negative feedback mechanism (Makishima
et al., 1999),(Maruyama et al., 2002),(Stanimirov, Stankov, & Mikov,
2015). Liver X receptors (LXR) control brain cholesterol homeostasis
by regulating transcription of the lipidating transporters ABCA1 and
ATP Binding Cassette Subfamily G Member 1 (ABCG1) and hence trans-
port of apolipoprotein E between astrocytes and neurons or oligoden-
drocytes (Courtney & Landreth, 2016).

5. Bile acid receptor expression

While bile acid receptor expression in the periphery is well docu-
mented, there are few studies examining their expression in brain.
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5.1. GPBA (G-protein-linked bile acid receptor 1)

The most studied brain bile acid receptor is G-protein-linked bile
acid receptor 1 (GPBA, also known as TGR5, GPR131, M-BAR, BG37)
(Bonner, Hills, Maguire, & Rosser, 2019). GPBA is a membrane bound re-
ceptor that has a widespread distribution in human tissue (kidney, liver,
small intestine) but was not detected in brain, colon (without the mu-
cosa) by northern blot analysis (Maruyama et al., 2002). When small in-
testine and colon were examined with mucosa intact, GPBA was
detected in stomach, duodenum, ileocecum, ileum, jejunum, ascending
colon, transverse colon, descending colon, cecum, and liver, but not in
the oesophagus and rectum (Maruyama et al., 2002). Analysis of differ-
ent intestinal cell lines for GPBA expression revealed expression in cells
of enteroendocrine origin, but not epithelial cells (Maruyama et al.,
2002). Whereas, in contrast to this finding, Ward and colleagues
(Ward, Mroz, & Keely, 2013) detected GPBA mRNA and protein in rat
colonic crypt (enterocyte) preparations.

Kawamata and colleagues (Kawamata et al., 2003) used qPCR to ex-
amine the tissue distribution of GPBA mRNA in human and rabbit tissue.
High levels of GPBA mRNA were detected in lung, spleen and mono-
cytes/macrophages, with moderate amounts found in liver, stomach,
small intestine. Low levels were seen in spinal cord, pituitary and thy-
roid glands, whereas whole brain and some brain regions (hippocam-
pus, cerebellum, hypothalamus) contained only very low levels of
GPBA mRNA (Kawamata et al., 2003). Another study also using qPCR
confirmed the low expression of GPBA mRNA in mouse brain
(Vassileva et al., 2006).

More recently, Keitel and colleagues (Keitel et al., 2010) used immu-
nofluorescence to show that GPBA was expressed by neurons and astro-
cytes throughout rat brain but with no enrichment in any brain region
and they also reported that it was expressed by human neural tissue
grown in vitro. However, the expression of GPBA throughout human
brain has not been studied in detail. Endogenous neurosteroids
(e.g., pregnanolone) can activate the GPBA receptor leading to an in-
crease in intracellular cAMP and calcium levels, which could lead to ox-
idative stress in neurons through activation of voltage-gated calcium
channels (Thomas et al., 2009). Another study similarly demonstrated
the presence of GPBA in neurons and microglia in mouse cerebral cortex
and found that stimulation of GPBA with betulinic acid suppressed mi-
croglia activation in an in vitro mouse model of hepatic encephalopathy
(McMillin et al., 2015). Together these studies indicate that GPBA could
be a target to control neuroinflammation in brain. This is supported by a
recent study that detected increased GPBA immunoreactivity and
mRNA in astrocytes and blood vessels in white matter lesions of patients
with multiple sclerosis compared to tissue from control brains
(Bhargava et al., 2020). Using a mouse reporter model with GPBA and
green fluorescent protein under control of the Gpbar1 regulatory gene
locus, Perino and colleagues (Perino et al., 2021) demonstrated high
levels of GPBA in hypothalamic neurons and glial cells.

5.2. Farnesoid X receptor

Farnesoid X receptor (FXR, also known as NR1H4 (McDonnell, 2019),
mRNA was undetectable in mouse (Huang et al., 2015),(Y. Zhang,
Kast-Woelbern, & Edwards, 2003) and rat (Akanuma, Hori, Ohtsuki,
Fujiyoshi, & Terasaki, 2008) brain. Yet FXR knockout mice show impaired
memory and reduced motor coordination and altered glutamatergic,
GABAergic, serotoninergic, and norepinephrinergic neurotransmission
in either hippocampus or cerebellum suggesting that FXR contributes to
homeostasis of multiple neurotransmitter systems in brain, most likely
by increasing circulating systemic bile acid levels leading to raised relative
concentrations of bile acids in brain (Huang et al., 2015). In addition, bile
acids have been previously shown to modulate muscarinic acetylcholine
and sphingosine-1-phosphate receptor 2 (S1P2) receptors and GABA,
and NMDA ion channels (Raufman et al., 2002),(Schubring, Fleischer,
Lin, Haas, & Sergeeva, 2012),(Seyedsadr et al., 2019) which could explain
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the link between bile acids and neurological function as discussed later in
the review. In contrast another more recent study detected FXR mRNA
and protein in rat hippocampus and medial prefrontal cortex by qPCR
and western blot (W. G. Chen, Zheng, Xu, Hu, & Ma, 2018). McMillin
and colleagues (McMillin et al., 2016) detected FXR mRNA in mouse fron-
tal cortex by qPCR and also found that FXR protein immunoreactivity co-
localized with a neuronal marker (neuN) suggesting FXR expression in
brain was neuronal. Furthermore, FXR immunoreactivity has been de-
tected in white matter lesions of patients with multiple sclerosis in nuclei
of CD68™ macrophages (Bhargava et al., 2020),(Hucke et al., 2016). What
proportion of these cells were infiltrating macrophages as opposed to res-
ident microglia is unknown.

5.3. Pregnane X receptor

Initial studies showed that the pregnane X receptor (PXR, also known
as NR112) (Christakos, 2019) has high expression in human liver, colon
and small intestines but was not detectable in brain or other tissue by
northern blot (Bertilsson et al., 1998),(Blumberg et al., 1998),(Jones
et al.,, 2000),(Kliewer et al., 1998). Similar results were obtained from
studies of rodent tissue, except low levels of PXR mRNA were also
found in mouse (Lehmann et al., 1998) and rat (H. Zhang et al., 1999)
kidney and stomach. However, another study did not detect PXR
mRNA in rat or rabbit kidney and stomach (Jones et al., 2000). Using
qPCR Nishimura and colleagues (Nishimura, Naito, & Yokoi, 2004) con-
firmed the northern analysis tissue expression data and showed that
PXR mRNA was present in human brain, albeit at levels 10,000-fold
lower than those occurring in liver. In contrast other studies have failed
to detect PXR in brain by qPCR (Miki, Suzuki, Tazawa, Blumberg, &
Sasano, 2005). Marini and colleagues (Marini et al., 2007) examined
the regional distribution of PXR in rabbit brain by semi-quantitative re-
verse transcription PCR and found high levels in cortex, a faint signal in
midbrain and cerebellum and no signal in striatum, hypothalamus or
hippocampus. PXR mRNA and protein have been detected in porcine
brain endothelial cells and primary hippocampal neuron cell cultures
(Lemmen, Tozakidis, & Galla, 2013),(Litwa et al., 2016).

5.4. Liver X receptor

Liver X receptor o and 3 (LXRa, also known as NR1H3; LXRp, also
known as NR1H2) (McDonnell, 2019) are both expressed in liver and
gut tissue, but each has a distinct pattern of expression in other tissues
with LXRp having ubiquitous expression including being detectable in
mouse brain by northern blot whereas LXRa was not found in mouse
brain (Lu, Repa, & Mangelsdorf, 2001),(Song, Kokontis, Hiipakka, &
Liao, 1994),(Willy et al., 1995). However, LXRa is expressed by macro-
phages and therefore could be in brain since microglia are macrophages
(Ricote, Valledor, & Glass, 2004). This is supported by a study that
showed that the LXR agonist TO901317 reduced microglial activation
in an animal model of Parkinson's disease (Paterniti et al., 2017). In
mice during early development (embryonic day 13-16) LXR mRNA
was observed widely distributed throughout the brain, but the distribu-
tion became more limited to specific neuronal populations (reduced in
the brainstem) during later ontogeny (embryonic day 17-21) before
reverting to a ubiquitous distribution in adult brain that was predomi-
nantly neuronal, although astrocytes were also found to express LXR
mRNA (Kainu, Kononen, Enmark, Gustafsson, & Pelto-Huikko, 1996). A
widespread expression of functional LXR in brain is confirmed by a
study in LXR knockout mice that found altered brain cholesterol homeo-
stasis and neurodegeneration in the substantia nigra and globus pallidus
of knockout mice compared to wildtype animals. (Wang et al., 2002).

5.5. Sphingosine-1-phosphate receptor 2

Sphingosine-1-phosphate receptor 2 (S1P2) is expressed in hippo-
campus, cerebellum and motor cortex of adult brain (Kempf et al.,
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2014). Conjugated bile acids have been shown to activate the receptor
to regulate barrier function of endothelial cells in hepatobiliary and in-
testinal systems (Studer et al., 2012). Similarly, in brain S1P2 activation
can cause disruption of the blood brain barrier leading to neutrophil in-
filtration and promote activation of microglia resulting in neuroinflam-
mation (Xiang et al.,, 2021). Disruption of the blood brain barrier could
potentially allow more bile acids to enter the brain. As such, S1P2 antag-
onists might be of use in the treatment of neurodegenerative diseases
where the integrity of the blood brain barrier is compromised. S1P2 ac-
tivation also affects synaptic plasticity in brain through interaction with
NOGOA to decrease long-term potentiation (Kempf et al., 2014).

5.6. Vitamin D receptor

Nuclear expression of vitamin D receptor (VDR) in human brain has
been demonstrated by proteomics, western blot and immunohisto-
chemistry (Eyles, Liu, Josh, & Cui, 2014; Eyles, Smith, Kinobe, Hewison,
& McGrath, 2005). VDR was expressed by neurons and astrocytes
throughout the brain with highest levels in the hypothalamus and
large neurons (presumed to be dopaminergic due to their morphology)
within the substantia nigra (Eyles et al., 2005).

It is evident that there is a lack of detailed knowledge about regional
and cellular expression of bile acid receptors in the normal human cen-
tral nervous system (Table 2) and even less is known about their status
under pathological conditions during disease. The application of current
mRNA detection techniques and immunohistochemistry utilizing the
specific antibodies to bile acid receptors that are now available should
help resolve this problem and may point towards novel drug targets
for the treatment of neurological disorders.

6. Bile acid receptor pharmacology

A detailed account of the pharmacology of bile acids and their recep-
tors and their use in the treatment of liver and systemic diseases is out-
side the scope of this review but can be found elsewhere (e.g., (De
Marino, Festa, Sepe, & Zampella, 2019),(Fiorucci & Distrutti, 2019),
(Fiorucci, Distrutti, Carino, Zampella, & Biagioli, 2021). A summary of
key bile acid receptor pharmacologically active ligands relevant to
brain function is presented in Table 3. Compounds that have been tested
in animal models of neurological disorders or that are being used in clin-
ical trials or are discussed in the next section. Details of the numerous
other ligands that act on bile acid receptors can be found in the
IUPHAR/BPS Guide to Pharmacology database (Home | [UPHAR/BPS
Guide to PHARMACOLOGY). Though some formulations of endogenous
bile acids and synthetic bile acid receptor ligands are licensed for treat-
ment of systemic metabolic disease (Table 1) there are currently no
drugs acting on bile acid receptors that are specifically licensed for treat-
ment of neurological disorders.

7. Neurological disorders

Despite the characteristics making them distinct disorders, many
neurological diseases share common pathological features such as de-
posits of misfolded proteins and neuroinflammation in addition to neu-
ronal loss and disturbed cellular function such as mitochondrial
dysfunction and oxidative stress. Recently, bile acids and their receptors
have been associated with pathological processes in many neurological
diseases and bile acids have shown promise as putative treatments for a
number of these disorders. Aging, which is the greatest risk for neurode-
generative disorders, can also cause several changes in the gut that can
impact on the gut microbiome-brain axis including reduced stability
and diversity of microbial communities, increased levels of inflamma-
tion and thinning of the mucosal lining and reduced bioavailability of
microbial metabolites with immunoregulatory actions such as second-
ary bile acids and short-chain fatty acids (Conway & N, 2021).



M.J. Hurley, R. Bates, ]. Macnaughtan et al.

Table 2
Brain bile acid receptor expression.
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Cellular brain bile acid receptor expression

Nomenclature gene neurons astrocytes microglia endothelial oligodendrocytes

GPBA GPBAR1 +3 446 +3° 46 +46 +° nd

FXR NR1H4 +7 nd +°8 nd nd

PXR NR112 + nd nd +12 nd

LXR NR1H3 +21 +21 nd nd nd

S1P2 S1PR2 +17 nd +17 nd nd

VDR VDR +1920 +1920 nd nd nd

Regional brain bile acid receptor expression

GPBA FXR PXR LXR S1P2 VDR

Whole brain mRNA 1'12 nd 1°,0'° 321 14-16 nd nd
protein nd nd nd nd nd 21920

Cerebral cortex mRNA nd 17 41 121 nd nd
protein 3334 27 nd nd 1'8 nd

Striatum mRNA nd nd o' nd nd nd
protein nd nd nd nd nd nd

Hippocampus mRNA 1! 27 o't 213 42! 118 nd
protein nd 37 nd nd nd nd

Hypothalamus mRNA 2! 48 nd o nd nd nd
protein 45 nd nd nd nd 31920

Midbrain mRNA nd nd 1" 22! nd nd
protein nd nd nd nd nd 31920

Cerebellum mRNA 1! nd 1 321 118 nd
protein nd nd nd nd nd nd

+ = present, 0 = no signal, 1 = very low, 2 = low, 3 = moderate, 4 = high, nd = not determined.

Bold indicates detected in human tissue.

7.1. Parkinson's disease

Parkinson's disease is a neurodegenerative disorder characterised by
progressive loss of catecholamine and cholinergic neurons in the
brainstem and midbrain together with a caudal to rostral spread of ag-
gregated a-synuclein deposits that form Lewy bodies and neurites
(Braak et al., 2003),(Jellinger, 1991). The consequent reduction in
striatal dopamine levels results in the classic motor symptoms ( bradyki-
nesia, rigidity, tremor, posture and gait impairment), while changes in
the levels of other neurotransmitters in brain, together with pathologi-
cal changes outside of the CNS, may explain the non-motor symptoms
of the disorder (Hornykiewicz, 1966),(Jellinger, 2017).

Table 3
Bile acid receptor pharmacology.

GPBA FXR PXR LXR S1P2 VDR

Endogenous ligands

CA 5.0
CDCA 54 5.3 - - - -
DCA 6.2 4.0 - - -
LCA 7.5 53 51 - -
TLCA 7.3 - - - - -
TCA - 3.2 - - - -
TCDCA - 4.8 - - - -
22R- hydroxycholesterol - - - 53 - -
24(S)- hydroxycholesterol - - - 54 - -
27- hydroxycholesterol - - - 71 - -
sphingosine 1-phosphate - - - -

Agonists

INT-577 6.1 - - - - -
INT-767 6.2 7.5 - - - -
INT-747 - 7.0 - - - -
GW4064 - 7.8 - - - -

Antagonists

Guggulsterone
Trabectedin - - 85 - - -
GSK2033 - - - 70 - -

A number of preclinical studies in rodents have provided evidence
that bile acids might be involved in the pathogenesis of Parkinson's dis-
ease. A metabolome analysis of brain from mice receiving intracerebral
injections of preformed a-synuclein fibrils into the olfactory bulb
showed alterations in pathways for taurine metabolism which could af-
fect taurine conjugation of tauroursodeoxycholic acid (TUDCA) and
ursodeoxycholic acid (UDCA) (Graham et al., 2018; Graham et al,,
2018). The primary bile acids (CA, total MCA and 3-MCA) and secondary
bile acids (TUDCA, taurohyodeoxycholic acid (THCDA) and DCA) were
increased in faecal samples analysed by ultraperformance liquid chro-
matography mass spectrometry and the 16S rRNA faecal microbiome
was altered in rats receiving a bilateral injection of ac-synuclein into
the substantia nigra (O'Donovan et al., 2020). Treatment of rotenone
treated rats with UDCA restored striatal dopamine levels and normal-
ised markers of inflammation and apoptosis (Abdelkader, Safar, &
Salem, 2016) and TUDAC treatment reduced 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) -induced motor deficits and pro-
inflammatory effects in mice (Rosa et al., 2018). Two clinical trials are
currently underway (NCT02967250 and NCT03840005) to assess the
efficacy of UDCA as a treatment for patients with Parkinson's disease
(see below).

A recent study found elevated levels of alternative pathway choles-
terol metabolites (oxysterols) in CSF from Parkinson's disease patients
compared to controls that correlated with symptoms of depression in
Parkinson's disease but not other clinical measures of the disorder
(Griffiths et al., 2021). Oxysterols can contribute to inflammation and
depression in Parkinson's disease and has been linked to markers of sys-
temic inflammation (Duc, Vigne, & Pot, 2019) (Lindqvist et al., 2013). In-
terestingly, pro-inflammatory oxidative cholesterol metabolites have
been shown to accelerate a-synuclein aggregation in vitro suggesting
that abnormal cholesterol metabolism in combination with inflamma-
tion and oxidative stress may contribute to the pathogenesis of a-
synucleinopathies (Bosco et al., 2006). However, the role of cholesterol
levels in the pathogenesis of Parkinson's disease is far from clear.
Most published studies found that high cholesterol was associated
with a reduced prevalence of Parkinson's disease and that treatment
with statins to reduce cholesterol increases the risk of Parkinson's dis-
ease (Liu et al., 2017). This counters the prevailing view that statins
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are neuroprotective agents and recent studies in patients with
Parkinson's disease have produced conflicting results. Jeong and col-
leagues found that patients with Parkinson's disease who were being
treated with statins have lower striatal dopamine transporter levels (in-
dicating more nigrostriatal degeneration) and an increased likelihood of
dementia (Jeong et al.,, 2021). Whereas Palermo and co-workers found
statin treatment slowed motor deterioration in patients with early
Parkinson's disease (Palermo et al., 2021). The reason for the differing
outcomes remains unknown but could relate to different hydrophobic-
ity of the statins, with hydrophilic but not lipophilic statins being asso-
ciated with faster Parkinson's disease progression (Lewis et al,, 2022). A
recent trial (NCT02787590) of simvastatin to slow progression in
Parkinson's disease showed no benefit (https://cureparkinsons.org.uk/
2020/09/simvastatin-results/). In summary, the relationship of periph-
eral cholesterol levels and the use of statins to Parkinson's disease is
uncertain.

The greatest risk factor for Parkinson's disease is increasing age. Liver
function deteriorates with age and hence bile acid homeostasis changes,
with reduced bile acid synthesis and increased peripheral cholesterol
accumulation (Bertolotti et al., 2007). However, brain cholesterol de-
creases with age in rats which indicates that cholesterol metabolism is
different in brain compared to peripheral organs (Smiljanic et al.,
2013). The influence and ramifications of aging on cholesterol metabo-
lism and bile acid levels are outside the scope of this review, but excel-
lent discussion of this topic can be found elsewhere (V. S. Nunes, da Silva
Ferreira, & Quintao, 2022) (Perino, Demagny, et al., 2021).

Another way that bile acids may impact on Parkinson's disease is
through the expression of gut hormones by stimulation of receptors in
specific brain regions, such as cholecystokinin (CCK) a gastrin-like pep-
tide released in the gastrointestinal tract and brain and in particular a C-
terminal sulphated octapeptide fragment of CCK called CCK-8. The
maintenance of adequate levels of dopamine neurotransmission in the
brain depends on signalling of CCK through its G-protein coupled recep-
tors CCKR-1 and CCKR-2 that enhance cAMP levels and activate the PLC-
PKC cell signalling pathway to modulate neurotransmitter expression.
CCK receptors are expressed at high densities in the main dopamine
neuron clusters in the brain: the ventral tegmental area which is the or-
igin of the mescocorticolimbic dopamine pathways and the substantia
nigra pars compacta which communicates with the striatum via the
nigrostriatal dopamine neuron pathway (Fallon, 1988). A recent study
found that a CCK analogue demonstrated neuroprotective effects in
the MPTP mouse model of Parkinson's disease by decreasing glial activa-
tion and inflammation and reducing MPTP-induced autophagy dysfunc-
tion, mitochondrial damage and ER stress (Z. Zhang et al., 2022). In
addition, through activation of the cAMP/PKA/CREB pathway the CCK
analogue promoted the survival of dopaminergic neurons by inhibiting
apoptosis. One primary target of circulating CCK are CCK type A recep-
tors on vagal afferents and nodose ganglia neurons. GPBA receptors
colocalise with CCK type A receptors where DCA and CCK-8 increase
neuronal firing rates synergistically (Wu et al., 2020). Whilst this syn-
ergy has not yet been identified in the brain this suggests that bile
acids may have a physiological role in regulating neurotransmitter
levels in combination with CCK peptides.

7.2. Alzheimer's disease

Alzheimer's disease is a progressive form of dementia characterised
pathologically by the presence of amyloid plaques and neurofibrillary
tangles of hyperphosphorylated tau, together with neuronal loss of choliner-
gic neurons in the forebrain (DeTure & Dickson, 2019),(Hampel et al., 2018).
Altered ratios of 23 serum bile acids have been associated with cerebrospinal
fluid biomarkers of Alzheimer's disease (Nho, et al., 2019). In addition, levels
of plasma LCA (lithocholic acid) increased in Alzheimer's disease patients
versus controls and plasma levels of glycochenodeoxycholic acid (GCDCA),
glycodeoxycholic acid (GDCA) and glycolithocholic acid (GLCA) were signif-
icantly elevated in Alzheimer's disease patients compared to mild cognitive
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impairment patients. Baloni and colleagues (Baloni, et al., 2020) reported
similar increases of bile acids in Alzheimer's disease post-mortem brain sam-
ples along with an increased ratio of GCDCA:CA and increased secondary bile
acids DCA, LCA, TDCA and GDCA in Alzheimer's disease samples. This was ac-
companied by higher serum taurine levels. As secondary bile acids synthesis
does not occur in brain, this suggests the serum and brain tissue changes
may reflect alterations in the gut microbiome of Alzheimer's disease patients.
A longitudinal analysis of MRI images from Alzheimer's disease patients
showed that lower serum concentrations of CA and CDCA were associated
with a more rapid accumulation of white matter lesions, more rapid brain at-
rophy and higher deposition of brain amyloid (Varma et al,, 2021). CDCA is
derived from oxysterols produced via a non-specific 7 a-hydroxylase
(CYP7B1). Several studies have shown decreased levels of CYP7B1 in dentate
neurons (Yau et al., 2003),(Shafaati et al., 2011), which may reduce hippo-
campal CDCA production.

Changes in bile acid synthesis and cholesterol catabolism were
greater in males than females (Varma et al., 2021) suggesting that dur-
ing dementia there may be sex-specific effects on bile acid signalling in
the brain. Several possible mechanisms for this have been proposed in-
cluding T3 thyroid hormone levels (Drover & Agellon, 2004), sex spe-
cific expression of retinoid X receptor alpha (RXRa) and liver X
receptor (LXR) receptors driven through oestrogen induced changes
in transcription (Cai et al.,, 2003) and a sexual dimorphism of the bile
acid pool. One study has demonstrated that faecal microbiome com-
plexity and richness can be strongly associated with oestrogens levels
(Flores et al., 2012) where the gut microbiota regulates oestrogens
through secretion of B-glucuronidase. Changes in androgen metabolism
have been reported in germ free mice compared to mice with a normal
gut microbiome where a healthy gut maintains high levels of dihydro-
testosterone (Collden et al., 2019). Decreased levels of dihydrotestoster-
one are reported as a risk factor for Alzheimer's disease (Rosario & Pike,
2008) and may regulate the accumulation of 3-amyloid. This raises the
possibility that dysbiosis of gut-microbiome leads to changes in sex-
hormones that can alter bile acid regulation in the brain in sex specific
ways. Much more research is needed to understand the complex inter-
play between the gut microbiome, sex hormones levels and the effects
of changes of these on bile acid synthesis but does raise the question
of whether this will impact the way men and woman respond to
drugs that alter bile acid levels.

Intraventricular administration of the GPBA agonist INT-777 (6a-
ethyl-23(S)-methylcholic acid) improved cognitive impairment and re-
duced markers of neuroinflammation and apoptosis in hippocampus and
frontal cortex of mice that had received an intraventricular injection of ag-
gregated AP_4p suggesting that activation of GPBA receptors might be a
promising strategy for the treatment of Alzheimer's disease (Wu et al.,
2018). In contrast, the FXR agonist INT-747 (6o-ethyl-chenodeoxycholic
acid) potentiated AB;_4p-induced apoptosis in SH-SY5Y cells via activation
of the cAMP-response element-binding protein/brain-derived neuro-
trophic factor pathway (Q. Chen et al., 2019). Another study found that
AlCl;-induced cognitive and spatial deficits in rats were reduced by treat-
ment with the potent FXR agonist CDCA (Bazzari, Abdallah, & El-Abhar,
2019). Furthermore, feeding mice with 0.4% (wt/wt) TUDCA reduced
amyloid oligomer accumulation and improved cognition in the APP/PS1
mouse model of Alzheimer's disease (A. F. Nunes et al, 2012),
(Zangerolamo et al., 2021). Also, treatment with UDCA exerted a neuro-
protective effect on mitochondrial membrane potential and morphology
in primary fibroblasts through Drp1 actions on fission and fusion (Bell
et al,, 2018). Together these studies suggest dysregulated bile acid homeo-
stasis may have a role in the pathogenesis of Alzheimer's disease and that
treatment with bile acid or synthetic molecules acting on bile acid
receptors may be useful as Alzheimer's disease therapies.

7.3. Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (also known as motor neuron disease)
is characterised by degeneration of upper motor neurons that project
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from the motor cortex to the brainstem and spinal cord and lower
motor neurons that project from the brainstem and spinal cord to mus-
cles that leads to muscle weakness and paralysis (Hardiman et al.,
2017). Cholesterol was elevated in cerebrospinal fluid from amyotro-
phic lateral sclerosis patients and (25R)26-hydroxycholesterol (also
known as 27-hydroxycholesterol) from the acidic branch of bile acid
biosynthesis was reduced leading to failure in the brain to clear excess
cholesterol (Abdel-Khalik et al., 2017). In the main mouse model of
amyotrophic lateral sclerosis in which SOD1%*# mice exhibit a pheno-
type similar to amyotrophic lateral sclerosis patients, significant eleva-
tions of CDCA, UDCA, p-MCA, TCA, TCDCA (taurochenodeoxycholic
acid), TDCA, TUDCA, glycocholic acid (GCA) and GDCA were identified
in the spinal cord of end-stage SOD1%3** mice compared to wild type
along with increased expression of CYP7B1 (Dodge, Yu, Sardi, &
Shihabuddin, 2021). These authors proposed this could indicate an at-
tempt by the body to mitigate toxicity from excess cholesterol by its
conversion into bile acids. However, at higher concentrations bile
acids function as membrane solubilisers and can induce cell death
through mitochondrial dysfunction (Palmeira & Rolo, 2004). SOD1 mu-
tant mice also display dysbiosis of the gut microbiota in the pre-
symptomatic stage (Figueroa-Romero et al., 2019). Similarly, the largest
study so far on amyotrophic lateral sclerosis human patients found that
progression of the disease correlated with a reduction in microbial di-
versity (Di Gioia et al., 2020). Dodge and colleagues (Dodge et al.,
2021) reported that CDCA, LCA, TDCA and TLCA (taurolithocholic acid)
were elevated in the faeces of end stage SOD1 mice compared to wild
types. In amyotrophic lateral sclerosis patients several genera of micro-
biota were reported to be lower, including from Lachnospiraceae and
Ruminococcaceae families (Martin, Battistini, & Sun, 2022).

Altered cholesterol metabolism in amyotrophic lateral sclerosis may
have effects on both the bile acid pathways in the brain and the gut, al-
though it is not yet known which may occur first. To counteract mito-
chondrial and oxidative stress that is implicated in the cause of
amyotrophic lateral sclerosis, a Phase Il clinical trial using TUDAC treat-
ment along with the glutamate receptor blocker riluzole for 1 year was
conducted to assess the efficacy of targeting bile acid signalling as a
therapeutic strategy for the treatment of amyotrophic lateral sclerosis
and found the treatment slowed deterioration of function and improved
functional assessment by 15% in patients with the disorder (Elia et al.,
2016). Studies examining TUDCA and other bile acids effects upon cell
survival and reversal of deficits in animal models of amyotrophic lateral
sclerosis have also shown encouraging results (Thams et al., 2019),(Vaz
etal, 2015).

7.4. Cerebrotendinous xanthomatosis

Cerebrotendinous xanthomatosis is a rare inherited lipid-storage
disease caused by homozygous or compound heterozygous mutations
in the CYP27A1 gene that is characterised clinically by progressive neu-
rologic dysfunction (ataxia, dystonia, dementia, epilepsy, psychiatric
disorders, peripheral neuropathy and myopathy), premature athero-
sclerosis, juvenile cataracts, osteoporosis, respiratory insufficiency and
infant-onset diarrhoea (Nie, Chen, Cao, & Zhang, 2014). Most cases can
be successfully treated with CDCA, but CA can also be effective
(Mandia et al., 2019). Gene supplementation using adeno-associated
virus (AAV) vectors expressing CYP27A1 in a cerebrotendinous
xanthomatosis mouse model restored bile acid metabolism and normal-
ised the concentration of most bile acids in plasma unlike treatment
with CDCA alone (Lumbreras et al., 2021), which might lead to the de-
velopment of treatments for those patients who are refractory to the
benefits of conventional bile acid therapy (Mignarri et al., 2016).

7.5. Huntington's disease

Huntington's disease is a neurodegenerative disease caused by
expanded CAG trinucleotide repeats in the HTT gene that encodes
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huntingtin and causes degeneration of striatal medium spiny neurons
and some loss of cortical neurons (Jimenez-Sanchez, Licitra,
Underwood, & Rubinsztein, 2017). Reduced levels of the neural tissue
cholesterol clearing enzyme CYP46A1 were found in putamen from pa-
tients dying with Huntington's disease, a rodent model of Huntington's
disease (R6/2 mice) and a striatal cell line (SThdhQ111) expressing the
HTT gene. Adenovirus-mediated restoration of CYP46A1 and hence
lanosterol and desmosterol levels, protected striatal neurons from cell
death in R6/2 mice and SThdhQ111 cells (Boussicault et al., 2016).
While systemically administered TUDCA was shown to improve loco-
motor and sensorimotor deficits in toxin (3-nitropropionic acid) and
genetic (R6/2 mice) models of Huntington's disease (Keene et al.,
2001; Keene et al., 2002). These data suggest that bile acids may be use-
ful in slowing progression of Huntington's disease.

Recent evidence has suggested that gut dysbiosis may occur in
Huntington's patients and some genera of microbiota have been corre-
lated with specific clinical scores, namely Intestinimonas with total
functional capacity scores and Lactobacillus negatively correlated with
mini-mental state examination scores (Wasser et al., 2020). Clostridium
XVIII was significantly decreased in Huntington's disease patients. Gut
dysbiosis has been reported in both R6/1 (Kong et al., 2020) and R6/2
(Stan et al,, 2020) Huntington's disease mouse models with differential
a-diversity. It is proposed that increased diversity may be associated
with heightened gut microglial volatility and perturbed gut microbiome
function (Kong et al., 2021). Indeed, the levels of Intestinimonas also
correlated with plasma IL-4 levels. No studies have yet examined
changes in bile acids in Huntington's disease patients, but given the dys-
functions reported in cholesterol signalling in the brain and gut
dysbiosis it seems probable that they occur and changes in the bile
acid pool could alter this regulation. A phase I clinical trial with UDCA
(NCT00514774) in patients with Huntington's disease was started in
2007, but the results of the trial were never published.

7.6. Prion diseases

In contrast to other neurodegenerative diseases, studies investigat-
ing whether bile acids could ameliorate toxicity or slow protein aggre-
gation caused by prion protein strains in vitro have had differing
outcomes. Cortez and colleagues (Cortez et al., 2015) found that
TUDCA and UDCA can interfere with the seeding efficiency of prions
and provide neuroprotection in prion-infected brain slice cultures. But
Ladner-Keay and colleagues (Ladner-Keay et al., 2018) found that
TUDAC had no anti-prion effects in an in vitro aggregation study and
Norman and co-workers (Norman, Campeau, & Sim, 2018) found that
TUDCA provided no therapeutic benefit in RML-strain infected mice
and that high doses of UDCA were also ineffective and actually hastened
the onset of neurotoxicity. Yang and colleagues (D. Yang et al., 2020)
showed increased DCA, CA and TCA, reduced short-chain fatty acids
(acetate, propionate and butyrate) and increased amino acids in the fae-
cal metabolome and microbiome of prion infected mice compared to
control animals. Thereby showing that bile acid, short-chain fatty acid
and amino acid metabolism are dysregulated in prion disease and pro-
viding possible therapeutic targets for a fatal disorder for which no ef-
fective treatments are currently available.

7.7. Degenerative retinal diseases

The eye is a part of the central nervous system and subject to a num-
ber of neurodegenerative diseases (retinitis pigmentosa, diabetic reti-
nopathy, age-related macular degeneration, glaucoma) that can
ultimately lead to blindness. Bile acids have been shown to reduce ret-
ina damage in animal models of these diseases which indicates that de-
spite differing causes these diseases appear to share a common
mechanism (e.g., oxidative stress) of cell death.

TUDCA treatment preserved rod and cone structure and function
and synaptic connections in the P23H rat model of retinitis pigmentosa
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(Fernandez-Sanchez, Lax, Pinilla, Martin-Nieto, & Cuenca, 2011). While
treatment with TUDCA of two strains of mice with rapid retinal degen-
eration from the 3-Pde6 (rd1) mouse model found the treatment par-
tially preserved function and structure in B6-C3-Pde6b (rd1) Hps4
(le)/] mice but only partially preserved structure in C57BL/6 J-Pde6b
(rd1-2)/J mice (Lawson et al., 2016). Tao and colleagues (Tao et al.,
2019) found that TUDCA treatment modulated apoptosis and reduced
oxidative stress to reduce retinal damage induced by systemic adminis-
tration of the toxin N-methyl-N-nitrosourea and Zhang and co-workers
(X. Zhang, Shahani, Reilly, & Shu, 2019) showed that TUDCA treatment
reduced microglia activation and prevented photoreceptor damage in
retinitis pigmentosa GTPase regulator knockout mice. Together these
data indicate that TUDCA may be of use in patients with neurodegener-
ative eye diseases. A clue to the mechanism comes from work by
Lobysheva and colleagues (Lobysheva, Taylor, Marshall, & Kisselev,
2018) who showed that TUDCA interacts specifically with rhodopsin,
which may contribute to its wide-ranging effects on retinal physiology
and explains its potential therapeutic effect on retinal degenerative dis-
eases. Furthermore, treatment of HRPEpiC primary retinal pigment epi-
thelial cells with TCA reduced paraquat toxicity and vascular endothelial
growth factor induced angiogenesis, suggesting that TCA may have pro-
tective effects against both degenerative and neovascular forms of age-
related macular degeneration (Warden, Barnett, & Brantley Jr., 2020).
Similarly, the glycine conjugated bile acids GCA, GDCA and
glycoursodeoxycholic acid (GUDCA) reduced paraquat toxicity in
HRPEpiC primary retinal pigment epithelial cells. GCA and GUDCA also
reduced angiogenesis in vascular endothelial growth factor treated RF/
6A macaque choroidal endothelial cells, whereas GDCA had no effect
(Warden & Brantley Jr., 2021).

7.8. Multiple sclerosis

Multiple sclerosis is an autoimmune demyelinating inflammatory
disorder of the central nervous system resulting in motor, sensory and
cognitive dysfunction that presents in three main forms: relapsing-
remitting multiple sclerosis, primary progressive multiple sclerosis,
and secondary progressive multiple sclerosis (Grzegorski & Losy,
2019). Bhargava and colleagues (Bhargava et al., 2020) conducted a
metabolomic analysis of patients with different types of multiple sclero-
sis and found lower levels of primary bile acid metabolites in primary
progressive multiple sclerosis patients compared to healthy controls
and lower levels of secondary bile acid metabolites in primary progres-
sive multiple sclerosis and relapsing-remitting multiple sclerosis
groups, indicating alterations in bile acid metabolism in multiple sclero-
sis that was greatest in patients with primary progressive multiple scle-
rosis. The primary progressive multiple sclerosis patients were older
than the relapsing-remitting multiple sclerosis and healthy controls.
However, similar findings were measured in patients with paediatric-
onset multiple sclerosis compared to age-matched controls, which
suggests that age was not a factor in the altered bile acid metabolism
occurring in multiple sclerosis (Bhargava et al., 2020). Experimentally,
the same authors found that treatment with TUDCA and the GPBA ago-
nist INT-577 prevented neuroinflammation (reactive astrocytes and
proinflammatory polarization of microglia) in a dose-dependent man-
ner in cultured astrocytes and microglia. Furthermore, TUDCA reduced
behavioural deficits and neuropathological changes in mice with exper-
imental autoimmune encephalomyelitis through its effects on GPBA.
Together these data identify dysregulated bile acid metabolism as a po-
tential therapeutic target in multiple sclerosis (Bhargava et al., 2020).
Another study found reduced plasma and elevated cerebrospinal fluid
levels of 25-hydroxycholesterol in patients with relapsing-remitting
multiple sclerosis (Crick et al., 2017). The elevated cerebrospinal fluid
level may reflect metabolism of cholesterol released from dying
neurons via the alternate pathway and similar increases have been
observed in cerebrospinal fluid from patients with Parkinson's disease
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and Alzheimer's disease who also show reduced plasma levels of 25-
hydroxycholesterol (Crick et al., 2017).

Hucke and colleagues (Hucke et al., 2016) found decreased levels of
EXR in peripheral immune cells from relapsing-remitting multiple scle-
rosis and primary progressive multiple sclerosis patients and showed
that treatment of experimental autoimmune encephalomyelitis
mice with the FXR agonist GW4064 promoted generation of anti-
inflammatory cytokines and reduced the behavioural phenotype.
Furthermore, they showed that activation of FXR in monocytes from
healthy controls and multiple sclerosis patients resulted in an anti-
inflammatory phenotype that was interpreted as showing FXR was
important in control of T cell-mediated autoimmunity by promoting
anti-inflammatory macrophage responses (Hucke et al., 2016). Another
study found that FXR knockout mice had more severe experimental au-
toimmune encephalomyelitis-induced deficits than wildtype animals
and that treatment with the synthetic FXR agonist INT-747 or the FXR
ligand CDCA ameliorated symptoms in mice with established experi-
mental autoimmune encephalomyelitis (Ho & Steinman, 2016).

7.9. Hepatic encephalopathy

Brain dysfunction ranging from subclinical neurological alterations
to coma resulting from liver disease (irrespective of the cause) is termed
hepatic encephalopathy and while it is considered a metabolic disorder
that is curable if the cause of the liver problems is successfully treated,
the neurological damage resulting from neuroinflammation and neuro-
nal cell death persists (Rose et al., 2020).

While elevated neurotoxic levels of ammonia in brain due to the im-
paired urea cycle found in an inflamed liver are thought to cause much
of the neuroinflammation in brain, bile acids are also elevated in pa-
tients with severe liver disease. This is likely in part due to high circulat-
ing concentrations of toxic primary bile acids in the context of
cholestasis which, together with systemic inflammation compromises
the integrity of the blood brain barrier with resultant high bile acid con-
centrations (Rose et al., 2020). This is supported by studies in patients
with hepatic encephalopathy and animal models of the disorder. A
metabolomic analysis of cerebrospinal fluid from patients with hepatic
encephalopathy found elevated levels of bile acids, amino acids, acylcar-
nitines and xenobiotics compared to control individuals (Weiss et al.,
2016). Experimentally, Quinn and colleagues (Quinn et al., 2014)
showed that elevated bile acids occurring after bile duct ligature in
rats resulted in increased blood brain barrier permeability. In other
studies, lowering serum bile acid levels by chemical or genetic means
reduced behavioural deficits in models of hepatic encephalopathy
(McMiillin et al., 2016),(Xie et al., 2018). A role for microglia-mediated
neuroinflammation in these effects is suggested by the findings of
McMillin and colleagues (McMillin et al,, 2017) who reported that ele-
vated bile acids (predominantly TCA) activate S1P2 in brain leading to
microglia activation via induction of chemokine ligand 2. Furthermore,
in an animal model of hepatic encephalopathy, inhibition of FXR signal-
ling in azoxymethane-treated mice attenuated accumulation of choles-
terol in brain and reduced cognitive and neuromuscular deficits
(McMillin et al., 2018).

7.10. X-linked adrenoleukodystrophy

X-linked adrenoleukodystophy arises from mutations in the ABCD1
gene that encodes the adrenoleukodystrophy-protein that transports
unbranched very long chain fatty acids (> 22 carbon atoms) into perox-
isomes for enzymatic [3-oxidation degradation. It comprises two main
phenotypes: adrenomyeloneuropathy and a cerebral demyelinating
form (Kemp, Berger, & Aubourg, 2012). Adrenomyeloneuropathy is
characterised by a noninflammatory, slowly progressive neuropathy
within the spinal cord and peripheral nerves whereas, the cerebral
form has inflammatory involvement and is more severe (Kemp et al.,
2012). Platek and co-workers (Platek et al., 2018) found dysregulation
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of the primary bile acid synthesis pathway in a Polish family affected by
the disease that led to a significant reduction in total plasma bile acids
with unconjugated CA and CDCA the most affected. The level of plasma
lathosterol was also reduced compared to controls. In a preclinical
mouse model of X-linked adrenoleukodystophy (Abcd '~ mice), feed-
ing mice TUDCA (0.4% wt/wt) in their diet for three months normalised
the markers of the unfolded protein response that are chronically acti-
vated in these animals, reversed behavioural motor deficits and reduced
the amount of activated microglia and reactive astrocytes in spinal cord
(Launay et al., 2017).

8. Clinical trials using bile acids

Based on the success of treatment with TUDCA or UDCA in animal
models of neurodegenerative disease, a number of clinical trials are in
progress (Table 4) to evaluate the efficacy and/or safety of these bile
acid receptor agonists as treatments for Parkinson's disease, Alzheimer's
disease, amyotrophic lateral sclerosis and multiple sclerosis (Khalaf,
Tornese, Cocco, & Albanese, 2022).

8.1. Parkinson's disease

Two clinical trials are currently ongoing to study the effects of UDCA
in Parkinson's disease. The first is a phase 1 study (NCT02967250) that
seeks to understand the bioenergetic impairments that underlie
Parkinson's disease by investigating the UDCA levels in patients at base-
line and following four weeks of repeated high oral doses of UDCA (50
mg/kg/day) and to simultaneously measure the cortical bioenergetic
profile and ATPase in patients at baseline and after four weeks of treat-
ment. Secondary aims are to characterize oral UDCA pharmacokinetics
model the pharmacokinetic/pharmacodynamic relationship between
peripheral measurements of UDCA (and associated conjugates) and pe-
ripheral measures and/or central (brain) bioenergetic measurements
measured by magnetic resonance spectroscopy. To date no results
have been posted.

The other trial (NCT03840005) aims to explore the potential of
UDCA to slow Parkinson's disease progression in a randomized,
double-blind, placebo-controlled, proof of concept study. The primary
objective is to ascertain safety and tolerability of UDCA in patients.
Study participants consist of individuals diagnosed with Parkinson's

Table 4
Current clinical trials of bile acids for neurodegenerative disease.
Drug Dose per  Duration Phase Trial Status
day

Parkinson's disease

UDCA 50 mg/kg 1.5 months 1 NCT02967250 Recruitment
completed

UDCA 30 mg/kg 12 months 2 NCT03840005 Recruitment
completed

Alzheimer's disease

AMX0035" 6g+2g 6months 2 NCT03533257 Recruitment
completed

Amyotrophic Lateral Sclerosis

TUDCA 2g+ 18 months 3 NCT03800524 Recruiting

+riluzole 100 mg

AMX0035" 6g+2g <30months 2 NCT03488524 Recruitment
completed

AMX0035" 6g+2g 6months 2/3 NCT04516096 Enrolling by
invitation

AMX0035° 6g-+2g 12months 3 NCT05021536 Recruiting

Multiple sclerosis

TUDCA 1g 4 months 1/2 NCT03423121 Active, not
recruiting

* AMXO0035 is a combination therapeutic consisting of 3 g of phenylbutyrate and 1 g
TUDCA.
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disease within three years of the start date. Treatment consists of 30
mg/kg/day for 48 weeks. The primary outcome is based on reporting
of adverse effects and completion of the study. The secondary outcomes
are: 1) measurement of the change from baseline to week 48 of scores
on the Movement Disorders Society Unified Parkinson's Disease Rating
Scale (MDS-UPDRS) part 3 motor subsection in the OFF-medication
state. 2) Estimates of ATP, phosphocreatine and inorganic phosphate
levels by 3'P-Magnetic Resonance Spectroscopy of the basal ganglia
and related motor regions and 3) quantification of motor impairment
using motion sensors. To date no results have been posted.

8.2. Alzheimer's disease

The phase 2 trial of AMX0035 (NCT03533257) which is a combina-
tion therapeutic consisting of 3 g of phenylbutyrate and 1 g TUDCA in
patients with late mild cognitive impairment or early Alzheimer's dis-
ease dementia sought to evaluate the safety, tolerability, drug target en-
gagement and neurobiological effects of AMX0035 (6 g + 2 g/day)
treatment over 24 weeks. AMX0035 is a combination therapy designed
to reduce neuronal death through blockade of key cellular death path-
ways originating in the mitochondria and endoplasmic reticulum. The
primary outcome was to quantify adverse effects compared to placebo
treated patients. Secondary outcomes consisted of MRI measurements
of whole brain and hippocampal atrophy, clinical assessment of cogni-
tion and neuropsychiatric measures and functional MRI imaging. CSF
and plasma biomarkers were also measured. The study met its primary
endpoint of safety and tolerability and there was a significant reduction
of Alzheimer's biomarkers (tau protein, phosphorylated tau protein,
modulation of the amyloid beta 42/40 ratio and an increase of 8-
hydroxy-2’ -deoxyguanosine). However, no differences between
groups were seen in cognitive or imaging measures, but the study did
not have sufficient power to evaluate such differences (https://www.
amylyx.com/2021/11/09/amylyx-pharmaceuticals-announces-results-
from-pegasus-trial-of-amx0035-in-alzheimers-disease-at-the-clinical-
trials-on-alzheimers-disease-ctad-conference/).

8.3. Amyotrophic lateral sclerosis

Early trials in patients with amyotrophic lateral sclerosis that
showed that TUDAC was well tolerated in patients, though without sig-
nificant clinical benefit (Min et al., 2012),(Parry et al., 2010). But, as
mentioned above, when combined with riluzole, TUDCA did slow pro-
gression of symptoms (Elia et al., 2016). A recent trial (CENTAUR,
NCT03127514) found that AMX0035 slowed functional decline com-
pared to the placebo by a mechanism thought to involve a reduction
in endoplasmic reticulum stress and mitochondrial dysfunction
(Paganoni et al., 2020). A subsequent follow up analysis of the long-
term (3 year) survival of the participants in the CENTAUR trial found
those receiving the drugs had a 44% lower risk of death that translated
into 6.5 months longer survival time (Paganoni et al., 2021).

Four trials are currently ongoing investigating the effects of bile acids
in the treatment of amyotrophic lateral sclerosis. The first trial
(NCT03800524) is a Phase 3, multi-centre, randomized, double-blind,
placebo-controlled, parallel-group study to evaluate safety and efficacy
of TUDCA as an add-on treatment in patients with amyotrophic lateral
sclerosis. Patients will receive TUDCA 1 g twice a day for 18 months in
combination with riluzole 50 mg twice a day. The primary outcome
was the number of patients who improved by at least 20% on the
ALSFRS-R slope. Secondary measures were survival time, amyotrophic
lateral sclerosis disease functional and assessment scale rating, forced
vital capacity, EuroQol 5-Dimension-5 Levels (EQ-5D-5L) scale, Medical
Research Council Scale, neurofilament levels and MMP-9 levels. To date
no results have been posted.

The other three trials are all testing AMX0035. The Centaur Open
Label Extension Study (CENTAUR-OLE) (NCT03488524) is designed to
provide longer term access to AMX0035 for patients with amyotrophic
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lateral sclerosis who participated in the CENTAUR study. The study will
assess longer term safety and therapeutic potential of AMX0035. The
primary outcome is the quantity of adverse events and serious adverse
events observed in the study. Secondary outcomes are hospitalizations,
rate of progression on the amyotrophic lateral sclerosis rating scale, rate
of progression in strength measurements, rate of change in breathing
capabilities by slow vital capacity, gastric tube frequency and number
of patients needing permanent invasive ventilation.

The Phoenix Trial (NCT05021536) is a randomized double-blind pla-
cebo controlled Phase III trial to evaluate the safety and efficacy of
AMXO0035 for treatment of amyotrophic lateral sclerosis. Primary out-
come measures are change in slope of Amyotrophic Lateral Sclerosis
Functional Rating Scale-Revised (ALSFRS-R) over treatment duration,
number of participants with adverse events and a comparison of the
number of participants in each group able to remain on study drug
until planned discontinuation between groups. Secondary outcome
measures are rate of decline in slow vital capacity, participant quality
of life, decline in King's and MiToS Stages and ventilation free survival
time. The composite outcome is defined as death, a death-equivalent
event (tracheostomy), or hospitalization, whichever occurs first. Partic-
ipant health status will be measured using the EQ-5D descriptive sys-
tem and the EQ visual analogue scale patient reported outcomes
questionnaire. Long-Term Survival will be obtained by monitoring of
all-cause mortality.

Trial NCT04516096 is an open-label, compassionate extended use
study for patients who have completed The Phoenix Trial. The primary
outcome being treatment of emergent adverse effects.

To date no results have been posted for any of the ongoing amyotro-
phic lateral sclerosis trials. But should they achieve any the primary or
secondary outcomes they are likely to be of benefit to the patients.

8.4. Multiple sclerosis

There is currently one trial (NCT03423121) investigating the safety
and tolerability of supplementation with 1 g TUDCA per day for 16
weeks in patients with progressive multiple sclerosis. The primary out-
come is the incidence of treatment-related adverse effects. Secondary
outcomes include metabolomics of fasting plasma bile acid levels, shot-
gun metagenomic sequencing of gut microbiota in first morning stool
specimens, immunophenotyping of peripheral blood mononuclear
cells and quality of life assessments. To date no results have been posted
for this trial.

9. Looking forward

It is increasingly evident that bile acid signalling is bidirectional in
the gut-brain axis, signalling metabolic status and contributing to cho-
lesterol homeostasis in the brain. Disturbances in these pathways have
been implicated in several neurodegenerative diseases suggestive that
they may represent an important therapeutic target. Translational prog-
ress has been made with UDCA and TUDCA based on the premise of an
improvement in mitochondrial function, however pathways such as
FXR and GPBA which do not classically mediate the functions of UDCA
and TUDCA are becoming increasingly implicated in neuronal homeo-
stasis suggestive that the picture is far more complex. Bile acid signal-
ling pathways provide a potential mechanism by which co-
morbidities such as metabolic syndrome, which has been identified as
an independent risk factor in epidemiological studies, contribute to neu-
rodegeneration. Multiple pharmacological targets have already been
developed for application in liver disease which may potentially be
repurposed for application to neurodegeneration. These may act cen-
trally within the CNS or harness peripheral bile acid pathways to affect
a change indirectly. Further work is therefore required to ascertain the
relative contribution of all bile acid and the oxysterol species in neuro-
nal health and disease to inform interventional studies and develop a
new category of drugs for treatment of neurodegeneration.
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