
Counterexamples expose gaps in the proof of time complexity for cover
trees introduced in 2006

Yury Elkin*

Department of Computer Science, University of Liverpool
Vitaliy Kurlin†

Department of Computer Science, University of Liverpool.

l = ∞

l = 5

l = 4

l = 3

l = 2

l = 1

l =−∞

r

r

r

r

r

r

r

p4

p4

p4

p4

p4

p3

p3

p3

p3

p2

p2

p2

p1

p1

r

r

r

p4

p4 p3

p2

p2p1

r

p4

p2

p1

p3

Figure 1: A comparison of different cover trees built on datasets from Example 2.4. Left: an implicit cover tree introduced in 2006
contains infinite repetitions of given points, see Definition 2.1. Middle: an explicit cover tree still includes repeated points, see
Definition 2.2. Right: a new compressed cover tree is much smaller and includes each point only once, see [18, Definition 3.5].

ABSTRACT

This paper is motivated by the k-nearest neighbors search: given
an arbitrary metric space, and its finite subsets (a reference set R
and a query set Q), design a fast algorithm to find all k-nearest
neighbors in R for every point q ∈Q. In 2006, Beygelzimer, Kakade,
and Langford introduced cover trees to justify a near-linear time
complexity for the neighbor search in the sizes of Q,R.

Section 5.3 of Curtin’s PhD (2015) pointed out that the proof of this
result was wrong. The key step in the original proof attempted to
show that the number of iterations can be estimated by multiplying
the length of the longest root-to-leaf path in a cover tree by a constant
factor. However, this estimate can miss many potential nodes in
several branches of a cover tree, that should be considered during
the neighbor search. The same argument was unfortunately repeated
in several subsequent papers using cover trees from 2006.

This paper explicitly constructs challenging datasets that provide
counterexamples to the past proofs of time complexity for the cover
tree construction, the k-nearest neighbor search presented at ICML
2006, and the dual-tree search algorithm published in NIPS 2009.

The corrected near-linear time complexities with extra parameters
are proved in another forthcoming paper by using a new compressed
cover tree simplifying the original tree structure.

*e-mail: yura.elkin@gmail.com
†e-mail: vitaliy.kurlin@gmail.com

1 INTRODUCTION: NEIGHBOR PROBLEM AND PAST WORK

The search for nearest neighbors was one of the first data-driven
problems and led to the neighbor rule for classification [13].

In a modern formulation, the problem is to find all nearest neighbors
in a reference set R for all points from a query set Q. Both sets live
in an ambient space X with a distance d satisfying all metric axioms.
The simplest example is X = Rn with the Euclidean metric, where a
query set Q can be a single point or a subset of a larger set R.

Definition 1.1 (k nearest neighbors). For any fixed point q ∈ Q, let
d1 ≤ ·· · ≤ d|R| be ordered distances from q to all points of R, where
|R| is the number of points in R. For any k≥ 1, the k-nearest neighbor
sets NNk(q;R) consists of all points u ∈ R with d(q,u)≤ dk. �

For Q = R = {0,1,2,3}, the point q = 1 has ordered distances
d1 = 0 < d2 = 1 = d3 < d4 = 2. The nearest neighbor sets are
NN1(1;R) = {1}, NN2(1;R) = {0,1,2}=NN3(1;R), NN4(1;R) =
R. So 0 can be a 2nd neighbor of 1, then 2 becomes a 3rd neighbor
of 1, or these neighbors of 0 can be found in a different order.

Problem 1.2 (all nearest neighbors search). Let Q,R be finite sub-
sets of query and reference points in a metric space (X ,d). For any
fixed k≥ 1, design an algorithm to exactly find k distinct points from
NNk(q;R) for all q ∈ Q so that the parametrized worst-case time
complexity is near-linear in max{|Q|, |R|}, where hidden constants
may depend on structures of Q,R but not on their sizes |Q|, |R|. �

Spacial data structures. It is well known that the time complexity
of a brute-force approach of finding all 1st nearest neighbors of
points from Q within R is proportional to the product |Q| · |R| of the
sizes of Q,R. Already by the mid of 1970s real data was big enough
to motivate faster algorithms and sophisticated data structures.

Table 1: Results for building structures in terms of the expansion constant c(R) in Definition 1.3 or KR-type constant 2dimKR in [24, Section 2.1]

Data structure, reference time complexity space proofs
Navigating nets [24] O

(
2O(dimKR) · |R| log(|R|) log(log |R|)

)
,

[24, Theorem 2.6]
O(2O(dim)|R|) Not available

Cover tree [9] O(c(R)O(1) · |R| · log |R|), [9, Theorem 6] O(|R|) Counterexample 4.2 shows that
the past proof is incorrect

Compressed cover tree [18] O
(
c(R)O(1) · |R| · log |R|

)
O(|R|) [18, Theorem 3.52].

Table 2: Results for finding exact all k-nearest neighbors of one query point q ∈ Q in terms of the expansion constant c(R) in Definition 1.3 or
KR-type constant 2dimKR in [24, Section 2.1], assuming that all data structures are already built.

Data structure, reference time complexity space proofs
Navigating nets [24] O

(
2O(dimKR)(k+ log |R|)

)
for

k ≥ 1 [24, Theorem 2.7]
O(2O(dim) · |R|) Not available

Cover tree [9] O
(
c(R)O(1) log |R|

)
for k = 1,

[9, Theorem 5]
O(|R|) Counterexample 5.2 shows that

the past proof is incorrect
Compressed cover tree [18] O

(
c(R)O(1) · log(k) · (k+ log |R|)

)
O(|R|) [18, Theorem 3.84]

Dual cover tree [38] O
(
c(R)O(1) · c(Q)O(1) ·max{|R|, |Q|}

)
for k = 1 and large set
Q, [38, Theorem 3.1]

O(|R|) Counterexample 6.5 shows that
the past proof is incorrect

One of the first spacial data structure, a quadtree [19], hierarchi-
cally indexes a reference set R ⊂ R2 by subdividing its bounding
box (a root) into four smaller boxes (children), which are recursively
subdivided until final boxes (leaf nodes) contain only a small number
of reference points. A generalization of the quadtree to Rn exposes
an exponential dependence of its computational complexity on n,
because the n-dimensional box is subdivided into 2n smaller boxes.

The first attempt to overcome this dimensionality curse was the
kd-tree [7] that subdivides a subset of the reference set R at every
recursion step into two subsets instead of 2n subsets.

Then more advanced algorithms utilizing spatial data structures
have positively impacted various related research areas such as a
minimum spanning tree [6], range search [35], k-means clustering
[35], and ray tracing [21]. The spacial data structures for finding
nearest neighbors in the chronological order are k-means tree [20],
R tree [5], ball tree [34], R∗ tree [5], vantage-point tree [43], TV
trees [29], X trees [8], principal axis tree [32], spill tree [30], cover
tree [9], cosine tree [22], max-margin tree [37], cone tree [36].

Expansion constant. The past work starting from [23] expressed
the time complexities of neighbor search in terms of a dimensionality
constant for a finite metric space X . This constant was denoted by
2dimKR in [24, Section 2.1] and by c in [9, Section 1]. In any metric
space X , let B̄(p, t) ⊆ X be the closed ball with a center p and a
radius t. Let |B̄(p, t)| be the number (if finite) of points in B̄(p, t).

Definition 1.3 (expansion constant c(R), [18, Definition 3.4]). Let
R be a finite set in a metric space X . The expansion constant c(R) is
the smallest c(R) ≥ 2 such that |B̄(p,2t)| ≤ c(R) · |B̄(p, t)| for any
point p ∈ R and radius t ≥ 0.

Typically, uniformly distributed datasets have small expansion con-
stants. Using arguments of [18, Section 4.3] it can be shown
that if R is a uniformly distributed point cloud of Rm we have
c(R) = 2m. However, if a dataset contains even a single outlier,
say R = {1,2,3, . . . ,m,2m}, then c(R) = |R|.

The data structures described below were designed to justify a near-
linear time complexity for finding k-nearest neighbors.

Navigating nets. In 2004 a new data structure was introduced
that was a sequence of progressively finer ε-nets on the dataset

R. In [24, Theorem 2.7] it was claimed that all k-nearest neigh-
bors of a query point q are found by navigating nets in time
2O(dimKR(R∪{q})(k+ log |R|), where dimKR(R∪{q}) is an expansion
rate of [24, Section 1.2]. All proofs and pseudocodes were omitted.
The authors did not reply to our request for details.

Modified navigating nets [12] were used in 2006 to claim the worst-
case time complexity O(log(|R|)+ (1/ε)O(1)) for finding the first
(1+ ε)-approximate neighbor parameterized by a constant that de-
pends on a doubling dimension of the ambient space. However, only
sketch of proof of this result was given.

Cover trees. In 2006, [9] introduced a cover tree inspired by the
navigating nets [24]. This cover tree was designed to prove a worst-
case time complexity in the size |R| and the expansion constant
c from Definition 1.3. In particular, [9, Theorem 5] claimed that
cover trees help solve Problem 1.2 for k = 1 could be solved in
O(c12 log |R|) time.

Past challenges. In 2015, Curtin’s PhD [14, section 5.3] pointed
out that the proof of [9, Theorem 5] had a mistake. It was incor-
rectly claimed that the number of performed iterations of the nearest
neighbors algorithm [9, Algorithm 1] can be bounded by multiplying
the depth of cover tree by some constant factor. This claim is false
because many potential branches at different levels of a cover tree
can be missed. The similar mistake was repeated in proof of time
complexity method of Insert() method [9, Theorem 6], as well as in
several subsequent papers: for a dual-tree based all-nearest neighbor
search [38, Theorem 3.1], for a Minimum Spanning Tree [31, Theo-
rem 5.1], for a fast exact max-kernel search [16, Lemma 5.2].

Counterexamples. To confirm the discovery of Ryan Curtin [14,
section 5.3], Example 3.1 will describe a finite metric space (R,d)
and its cover tree E (R), for which the maximal root-to-node path is
bounded by O(

√
|R|), but that forces both Algorithm 1 and Algo-

rithm 2 of [9] iterate over all |R| levels of the cover tree E (R). The
contradiction will follow by noting that the number of iterations in
one particular example has a lower bound |R| despite the claimed
upper bound O(

√
|R|) for all datasets.

Here is the summary of the found counterexamples:

• Counterexample 4.2 to the proof of [9, Theorem 2],

• Counterexample 5.2 to the proof of [9, Theorem 1],

• Counterexample 6.5 to the proof of [38, Theorem 3.1].

Counterexamples for the time complexity of a minimum spanning
tree [31, Theorem 5.1] can be found in [18, Section 4.2].

New results and compressed cover trees. All issues of past ap-
proaches are resolved in [18, Chapter 3] by defining a new data struc-
ture, a compressed cover tree [18, Definition 3.5], which combines
the explicit and implicit cover tree into a single simpler structure.
New near-linear time algorithms for building a compressed cover
tree and for finding k-nearest neighbors are described in [18, Algo-
rithm 3.5.3] and [18, Algorithm 3.7.2].

To overcome the past issues, we estimate the number of iterations in
[18, Algorithm 3.5.4] and [18, Algorithm 3.7.2] in [18, Lemma 3.5.9]
and [18, Lemma 3.7.13] , respectively. In [18, Corollary 3.5.11] it
is shown that a compressed cover tree can be constructed in time
O(c(R)10 log(|R|)|R|) and [18, Theorem 3.7.14] shows that k nearest
neighbors of any point q can be found in time

O(c(R∪{q})3 · log2(k) · (c(R∪{q})9 · log2(|R|)+ k)).

Tables 1 and 2 summarize all known cover tree methods and their
contributions for k-nearest neighborhood search into two tables.

2 ORIGINAL COVER TREES INTRODUCED IN 2006
To resolve Problem 1.2 effectively [9] introduced a new data struc-
ture, cover tree, the idea of which was to encode data of the reference
set R into a leveled tree. Using this tree, a new algorithm [9, Algo-
rithm 1] was introduced, which was used to find the nearest neighbor
of a given query point q. The idea was to travel from the root node
of the tree, located on the highest level towards the leaf nodes on
the lowest level, memorizing the current best candidate for the near-
est neighbor and eliminating the branches, which were clearly too
far from the query point. Compared to the brute-force search, the
benefit of this procedure is that we avoid computing the distance of
a query point to a large number of points which are eliminated in
large batches during the search.

Implicit and explicit cover trees are visualizations of finite metric
spaces, that were discovered in [9, Section 2]. However, only the
definition of the implicit cover tree was formally stated.

Definition 2.1 (Implicit cover tree I (R), [9, Section 2]). Let R be
a finite set in a metric space (X ,d). An implicit cover tree I (R) is a
tree on a subset of R×Z∪{−∞,+∞} with a root r ∈ R and a level
function l : R→ Z satisfying the conditions below.

(2.1a) Root condition : The level of the root node r is l(r) = ∞.

(2.1b) Node condition : For all points p ∈ R and for all indices
i ∈ (−∞, l(p)+1) there exists a node (p, i) in the tree I (R).

(2.1c) Covering condition : for every node (q, i) ∈I (R) there exists
a parent (p, i+1)∈I (R) such that d(q, p)≤ 2i+1, this parent node
p has a single link to its child node q in the tree I (R).

(2.1d) Separation condition : for i ∈ Z and the cover set Ci =
{p ∈ R | l(p) ≥ i}, the minimum inter-point distance dmin(Ci) =
min
p∈Ci

min
q∈Ci\{p}

d(p,q) is larger than 2i.

For any node p ∈I (R), Children(p, i) denotes the set consisting of
all children of the node (p, i), including the node (p, i−1) on the
level below. For any node p ∈I (R), define the node-to-root path
as a unique sequence of nodes w0, . . . ,wm such that w0 = p, wm is
the root and w j+1 is the parent of w j for j = 0, ...,m− 1. A node
q ∈I (R) is a descendant of a node p if p is in the node-to-root path
of q. A node p is an ancestor of q if q is in the node-to-root path of
p. Let Descendants(p, i) be the set of all descendants of node (p, i),
including (p, i−1). �

The explicit cover tree is obtained from an implicit cover tree by col-
lapsing into a single node all nodes from any infinite non-branched
path (p, i)→ (p, i− 1)→ ··· → (p,−∞), see the left and middle
pictures of Fig. 1, as formalized below.

Definition 2.2 (Explicit cover tree E (R), [9, Section 2]). Let R be
a finite set in a metric space (X ,d). Let I (R) be implicit cover
tree of Definition 2.1. An explicit cover tree E (R) is a quotient tree
I (R)/v, where (p, i)v (q, j), if p = q and Children(p, t) consist
of the nodes (p, t−1) for all t ∈ [min(i, j)+1,max(i, j)].

Since nodes containing different points are never glued together,
we denote an arbitrary node of explicit cover tree E (R) by (p, [i]),
where p ∈ R is the point stored in the node and [i] is equivalence
class of (p, i) in [v].

Example 2.3 (Three point example). Let R = {0,1,2i} for some
large i ∈ Z+ and let d(x,y) = |x− y| be the Euclidean metric on R.
There are multiple ways to construct an implicit cover tree I (R).
Assume that 2i is chosen to be the root node. Then I (R) will
contain an infinite chain {(2i, j) | j ∈ Z}, in such a way that for all
j node (2i, j) is parent of (2i, j−1).

Let us now insert points {0,1}. Since d(2i,1)= 2i−1 and d(2i,0)=
2i, by conditions (2.1b) and (2.1c) either l(0) = i− 1 or l(1) =
i− 1. Let us choose l(0) = i− 1, then I (R) will contain chain
{(0, j) | j ∈ (−∞, i− 1]∩Z} in its vertex set, where (0, j) will be
parent of (0, j−1) for all j ∈ (−∞, i−1] and (2i, i) will be parent
of (0, i−1). Since d(0,1) = 1 and point 0 minimizes the distance
d(1,{0,2i}) we have l(1) =−1. Therefore I (R) will contain chain
{(1, j) | j ∈ (−∞,−1]∩Z} and (1,−1) will be child of (0,0).

The compressed representation of I (R) is illustrated in Figure 2
(middle). Explicit cover tree E (R) consists of nodes: (2i, [i]),
(2i, [i−1]), (0, [i−1]), (0, [−1]), (1, [−1]), where

• (2i, [i]) has two children (2i, [i−1]), (0, [i−1]) on level i−1.

• (0, [i−1]) has two children (0, [−1]), (1, [−1]) on level −1.

• No other children are present.

Example 2.4 (a short train line tree). Let G be the unoriented metric
graph consisting of two vertices r,q connected by three different
edges e,h,g of lengths |e| = 26 , |h| = 23 , |g| = 1. Let p4 be
the middle point of the edge e. Let p3 be the middle point of the
subedge (p4,q). Let p2 be the middle point of the edge h. Let p1 be
the middle point of the subedge (p2,q). Let R = {p1, p2, p3, p4,r}.
We construct an implicit cover tree I (R) by choosing the level
l(pi) = i and by setting the root to be r. Then I (R) satisfies all the
conditions of Definition 2.1, see a comparison of the three cover
trees in Fig. 1. �

3 CHALLENGING DATASETS FOR ORIGINAL COVER TREES

In this section Example 3.1 introduces a dataset R and its cover tree
I (R), which will be used to show that key steps in proofs of time
complexity estimates of cover tree construction algorithm [9, The-
orem 5] and the nearest neighbor search algorithm [9, Theorem 6]
are incorrect. Since the same false arguments were later repeated
in the papers [31] and [38], we provide a detailed counterexamples
in Sections 4 and 5 that expose the contradiction within each of the
proof of the theorems.

Example 3.1 (tall imbalanced tree). For any integer m > 10, let G
be a metric graph pictured in Figure 3 that has two vertices r,q and
m+1 edges (ei) for i ∈ {0, ...,m}, and the length of each edge ei is
|ei|= 2m·i+2 for i≥ 1. Finally, set |e0|= 1. For every i∈ {1, ...,m2}
if i is divisible by m we set pi be the middle point of ei/m and for

Level i

Level i−1

Level -1

2i

1

0

Level i

Level i−1

Level -1

2i

0

1

Level i

Level i−1

Level -1

0

2i

1

Figure 2: Compressed representations of three different implicit cover trees I (R) built on same set R = {0,1,2i}. See Definition 2.1.

r q

pm2

pm2−m

pm

pm2−1

pm2−m−1

pm−1

|e0|= 1

|e1|= 2m+2

|em−2|=
2m2−m+2

|em−1|= 2m2+2

Figure 3: The graph G and the dataset R defined in Example 3.1

every other i we define pi to be the middle point of segment (pi+1,q).
Let d be the induced shortest path metric on the continuous graph
G. Then d(q,r) = 1, d(r, pi) = 2i+1 +1, d(q, pi) = 2i. If i > j and
d i

me= d
j

me, then

d(p j, pi) =
i

∑
t= j+1

2t .

We consider the reference set R = {r}∪{pi | i = 1,2,3, ...,m2} with
the metric d.

Let us define an implicit cover tree I (R) by setting r to be the root
node and l(pi) = i for all i. For all i ∈ 1, ...,m2: If i is divisible by m,
we set (r, i+1) to be the parent of (pi, i). If i is not divisible by m, we
set (pi+1, i+1) to be the parent of (pi, i). For every i divisible by m,
the point pi is in the middle of edge ei/m, hence d(pi,r)≤ 2i+1. For
every i not divisible by m, by definition, pi is the middle point
of (pi+1,q). Therefore, we have d(pi, pi+1) ≤ 2i+1. Since for
any point pi distance to its parent is at most 2i+1, the tree I (R)
satisfies covering condition (2.1b). For any integer t, the cover set
is Ct = {r}∪{pi | i≥ t}. We will prove that Ct satisfies (2.1c). Let
pi ∈Ct . If i is divisible by m, then d(r, pi) = 2i+1 ≥ 2t+1 > 2t . If i is
not divisible by m, then d(r, pi) = d(r,q)+d(q, pi) = 1+2i+1 > 2t .
Then the root r is separated from the other points by the distance

2t . Consider arbitrary points pi and p j with indices i > j ≥ t and
d i

me= d
j

me. Then

d(pi, p j) =
i

∑
s= j+1

2s ≥ 2 j+1 ≥ 2t+1 > 2t .

On the other hand, if i > j ≥ t and d i
m e 6= d

j
m e, then

d(pi, p j) = d(pi,q)+d(p j,q)≥ 2i +2 j ≥ 2 j+1 ≥ 2t+1 > 2t .

For any t, we have shown that all pairwise combinations of points of
Ct satisfy condition (2.1c). Hence this condition holds for the whole
tree I (R). �

Let us now define the explicit depth, that corresponds to maximal
root-to-node path of any cover tree. By Definition 2.2 an explicit
cover tree E (R) is a quotient of I (R)/v, where we collapse all the
chains having only a single self-child into a single node. Nodes of
I (R)/v are denoted by (p, [i]), where [i] is the equivalence class
of integer i in v. By [9, Lemma 4.3] the depth of any node (p, [i]) is
”defined as the number of explicit grandparent nodes on the path from
the root to p in the lowest level in which p is explicit”. The explicit
depth of a node (p, [i]) in any explicit cover tree E is introduced
in Definition 3.2 below using the most natural interpretation of the
aforementioned quotes.

Definition 3.2 (Explicit depth for explicit cover tree). Let R be a
finite subset of a metric space with a metric d. Let E (R) be an
explicit cover tree on R. For any (p, [j]) ∈ E (R), let s = (w0, ...,wm)
be a node-to-root path of (p, [j]), where w0 = (r, [+∞]) and wm =
(p, [j]). We define D(p, [j]) to be the number of nodes |s| in the path
s. The explicit depth of a cover tree is defined as the size of maximal
node-to-root path

D(E (R)) = max
(p,[j])∈E (R)

D(p, [j]).

�

Lemma 3.3 shows that the cover tree of Example 3.1 the maximal
node-to-root has 2 ·

√
|R| size, where |R| is the size of dataset.

Lemma 3.3. Let E (R) be a compressed cover tree on the set R
from Example 3.1 for some m ∈ Z. The explicit depth D(E (R)) of
Definition 3.2 has the upper bound 2m+1. �

Proof. Note first that root node r contains exactly m non-trivial
children. Consider arbitrary node pi. If i is divisible by m, then r is
the parent of pi. It follows that we can reach root node (r, [+∞]) in
at most m+1 steps from pi.

Let us now consider an index i that is not divisible by m. Note that
(p j+1, [j + 1]) is the parent of (p j, [j]) for all j ∈ [i,m · di/me −

Level m2 +1

Level m2

Level m2−1

Level m · (m−1)+1

Level i ·m+1

Level i ·m

Level i ·m−1

Level m · (i−1)+1

r

pm2

pm2−1

pm2−m+1

pi·m

r

pi·m−1

pi·m−m+1

Level m+1

Level m

r

Level m−1

Level 1

pm

pm−1

p1

Figure 4: An explicit cover tree built on the dataset R in Example 3.1.
The node r at the level i ·m+1 corresponds to the node (r, [i ·m+1])
in the explicit cover tree E (R).

1]. Then the path s consisting of all ancestors of pi from pi
to pm·di/me has the form ((pi, [i]),(pi+1, [i + 1]), ...,(pm·di/me, [m ·
di/me])). Note that |s| ≤m. Since m · di/me is divisible by m, by the
first paragraph the node to root path l from (pm·di/me, [m · di/me]) to
(r, [+∞]) takes at most m+1 steps. Therefore

D(pi, [i])≤ |s∪ l| ≤ |s|+ |l| ≤ (m+1)+m≤ 2m+1,

which proves the claim.

4 COVER TREE CONSTRUCTION

Counterexample 4.2 shows that the proof of worst-case time com-
plexity of the Insert() operation for an implicit cover tree [9, Theo-
rem 6] is incorrect. A correct time complexity for a new compressed
cover tree is given in [18, Corollary 3.53].

Counterexample 4.2 (for a step in the proof of [9, Theorem 6]).
The idea is based on adding a new point q of Figure 3 to the tree E (R)
of Example 3.1 that lures the Algorithm 4.1 into using all branches
of E (R). It follows that the Algorithm 4.1 is launched O(|R|) times.
However, in the proof of [9, Theorem 6] it was claimed that Algo-
rithm 4.1 is launched at most 4 ·D(E (R)), where D(E (R)) is the
explicit depth of explicit cover tree E (R). This is a contradiction,
since D(E (R))≤ 2

√
|R|+1 but Algorithm 4.1 runs O(|R|) times.

1: Insert(point p, cover set Qi, level i)
2: Set Q = {Children(q) | q ∈ Qi}
3: if d(p,Q)> 2i then
4: return ”no parent found”
5: else
6: Set Qi−1 = {q ∈ Q | d(p,q)≤ 2i}
7: if Insert(p,Qi−1, i−1) = ”no parent found” and

d(p,Qi)≤ 2i then
8: Pick q ∈ Qi satisfying d(p,q)≤ 2i and insert p into

Children(q), return ”parent found”
9: else

10: return ”no parent found”
11: end if
12: end if

Algorithm 4.1: Copy-pasted Insert() algorithm for inserting a
point p into an implicit cover tree T [9, Algorithm 2]. This
algorithm is launched with i = lmax and Qi = {r}, where r is the
root node of T .

For more details, we cite a part of the proof of [9, Theorem 6]:

”Theorem 6 Any insertion or removal takes time at most
O(c6 log(n))” [In other words the run time of Algorithm 4.1 is
O(c6 log(n)), where n is the number points of original dataset S
on which tree T was constructed.]

[Partial proof:]: ” Let k = c2 log(|S|) be the maximum explicit
depth of any point, given by Lemma 4.3. Then the total number of
cover sets with explicit nodes is at most 3k+ k = 4k, where the first
term follows from the fact that any node that is not removed must
be explicit at least once every three iterations, and the additional k
accounts for a single point that may be implicit for many iterations.
Thus the total amount of work in Steps 1 [Our line 2] and 2 [Our
lines 3-5] is proportional to O(k ·maxi |Qi|). Step 3 [Our lines 5-11]
requires work no greater than step 1 [Our line 2].”

In our interpretation the above arguments says that the total
number of times line 1 [our line 2] was called during the algo-
rithm has the upper bound 4 ·D(E (R)) , where D(E (R)) is the
explicit depth of E (R), see Definition 3.2. In this Counterexam-
ple we will show that E (R) from Example 3.1 does not satisfy
the claimed inequality.

Take the reference set R, the compressed cover tree E (R) and the
point q from Example 3.1 for any parameter m > 200. Assume that
we have already constructed tree E (R). Let us show that E (R∪q)
constructed by Algorithm 4.1 from the input q, i = m2 + 1,Qi =
{(r, [+∞])} runs at least m2−2 self-recursions. This will lead to a
contradiction since by Lemma 3.3 we have D(E (R))≤ 2m+1.

We show by induction on m going down that, for every step i ∈
[1,m2], we have Qi = {(r, [i]),(pi, [i])}. The proof for the base case
i = m2 is similar to the induction step and thus will be omitted.
Assume that Qi has the desired form for some i. Let us show that
the claim holds for i− 1. For all levels i− 1 divisible by m, the
node (pi−1, [i−1] is a child of node (r, [i]). For all levels i−1 not
divisible by m, the node (pi−1, [i−1]) is a child of pi. Since E (R)
contains exactly one node at each level, in both cases we have Q =
{(r, [i]),(pi, [i]),(pi−1, [i− 1])}. Since d(q,r) = 1, d(q, pi) = 2i+1

and d(q, pi−1) = 2i we have

Qi−1 = {p ∈ Qi | d(p,q)≤ 2i}= {(r, [i−1]),(pi−1, [i−1])}.

The actual implementation of algorithm 4.1 iterates over all levels

i for which there exists a node in Qi that contains at least one non-
trivial child on level i− 1 and for which the condition in line 7
is satisfied. Since for every index i ∈ [2,m2 + 1] we have Qi =

{(r, [i]),(pi, [i])} and since either r or pi has a child at level i− 1
and the condition in line 7 is always satisfied, it follows that m2−2
is a low bound for the number ξ of self-recursions. Therefore the
contradiction follows from the inequality:

m2−2≤ ξ ≤ 4 ·D(E (R))≤ 8 · (2m+1)≤ 16 ·m+8

where m > 20. �

5 NEAREST NEIGHBOR SEARCH

Counterexample 5.2 shows that the proof of [9, Theorem 5], which
gives an upper bound for the complexity of Algorithm 5.1 is incor-
rect. A correct time complexity estimate for a new k-nn algorithm
using compressed cover tree is given in [18, Corollary 3.84].

1: Input : implicit cover tree T , a query point p
2: Set Q∞ =C∞ where C∞ is the root level of T
3: for i from ∞ down to −∞ do
4: Set Q = {Children(q) | q ∈ Qi}.
5: Form cover set Qi−1 = {q ∈ Q | d(p,q)≤ d(p,Q)+2i}
6: end for
7: return argminq∈Q−∞

d(p,q)
Algorithm 5.1: Copy-pasted [9, Algorithm 1] based on an im-
plicit cover tree T [9, Section 2] for nearest neighbor search,
which is used in Counterexample 5.2. The children of a node
q of an implicit cover tree are defined as the nodes at one level
below q that have q as their parent. In the actual implementation
the loop in lines 3-6 runs only for the levels containing nodes
with non-trivial children (not coinciding with their parents).

Counterexample 5.2 (for a step in the proof of [9, Theorem 5]).
Counterexample 5.2 shows that there is a gap in proof of [9, Theo-
rem 6]. The counterexample is obtained by running Algorithm 5.1
for node q of Figure 3 and tree E (R) of Example 3.1. It it shown
that Algorithm 5.1 iterates over all branches of E (R), therefore lines
3-6 are considered exactly |R| times. However, the proof of [9, The-
orem 6] claimed that the number of times lines 3-6 are considered is
bounded by multiplication maxi |Ri| ·D(E (R)), where D(E (R)) is
the maximal path-to-root path that has an upper bound 2

√
|R|. In

this counterexample it will be also shown that maxi |Ri| ≤ 3 during
the whole iteration of the algorithm, which will lead to contradiction
|R| ≤ 3 ·2

√
|R|, when |R| is sufficiently big.

For more detailed exhibition let us first cite a part of the proof
of [9, Theorem 5].

”Theorem 5 If the dataset S∪{p} has expansion constant c, the
nearest neighbor of p can be found in time O(c12 log(n)).”

[Partial proof:] ”Let Q∗ be the last Q considered by the Algorithm
5.1 (so Q∗ consists only of lead nodes with scale −∞). Lemma 4.3
bounds the explicit depth of any node in the tree (and in particular
any node in Q∗) by k = O(c2 log(N)). Consequently the number of
iterations is at most k|Q∗| ≤ k maxi |Qi|.”

By our interpretation the above argument claims that the total
number ξ of times when Algorithm 5.1 runs lines 3-6 has an
upper bound ξ ≤ D(E (R)) ·maxi |Qi|. Contradiction will be ob-
tained by showing that E (R) from Example 3.1 does not satisfy
this inequality.

Take R,E (R) and q from Example 3.1. We will apply Algorithm
5.1 to the tree E (R) and query point q. By Lemma 3.3 the cover
tree E (R) having parameter m has D(p)≤ 2m+1 for all p ∈ R. A
contradiction to the original argument will follow after showing that
max |Qi| ≤ 2 and ξ ≥ m2−2.

Let us first estimate maxi |Qi|. Similarly to Counterexample 4.2
we will show that, for every iteration i ∈ [1,m2] of lines 3-5 of
Algorithm 5.1, we have Qi = {(r, [i]),(pi, [i])}. The proof for the
basecase i = m2 is similar to the induction step and thus will be
omitted. Assume that Qi has the desired form for some i. Let us
show that the claim holds for i−1. For all levels i−1 divisible by
m, the node (pi−1, [i−1] is a child of the root (r, [i]). For all levels
i−1 not divisible by m, the node (pi−1, [i−1]) is a child of (pi, [i]).
Since E (R) contains exactly one node at each level, in both cases we
have Q = {(r, [i−1]),(pi, [i−1]).(pi−1, [i−1])}. Since d(q,r) = 1,
d(q, pi) = 2i+1 and d(q, pi−1) = 2i, we have

Qi−1 = {p ∈ Qt | d(p,q)≤ 2i +1}= {(r, [i−1]),(pi−1, [i−1])}

Therefore it follows that |Qi| ≤ 2 for all i ∈ [1,m2].

The actual implementation of algorithm 5.1iterates over all levels
i for which there exists a node in Qi containing at least one non-
trivial child at level i− 1. Since Qi = {r, pi} and for every index
i ∈ [2,m2 +1], either (r, [i]) or (pi, [i]) has a child on level i−1, it
follows that m2−2 is a low bound for the number ξ of iterations. A
contradiction follows from

m2−2≤ ξ ≤ D(E (R)) ·max
i
|Qi| ≤ (2m+1) ·2≤ 4m+2,

for any m > 20.
�

6 CHALLENGES OF THE NEAREST NEIGHBOR SEARCH
BASED ON PAIRED TREES

In 2009 [38, Theorem 3.1] revisited the time complexity
for all 1st nearest neighbors and claimed the upper bound
O(c(R)12c(Q)4κ max{|Q|, |R|}), where c(Q),c(R) are expansion
constants of the query set Q and reference set R. The degree of
bichromaticity κ is a parameter of both sets Q,R, see [38, Defini-
tion 3.1]. We have found the following issues.

First, Counterexample 6.2 shows that [38, Algorithm 1] for Q = R
returns for any query point q∈Q the same point q as its first neighbor.
Second, Remark 6.4 explains several possible interpretations of
[38, Definition 3.1] for the parameter κ . Third, [38, Theorem 3.1]
similarly to [9, Theorem 5] relied on the same estimate of recursions
in the proof of [9, Lemma 4.3]. Counterexample 6.5 explains step-by-
step why the proof of the time complexity result of [38, Algorithm 1]
is incorrect and requires a clearer definition of κ .

In 2015 Curtin with the authors above [15] introduced other parame-
ters: the imbalance It in [15, Definition 3] and θ in [15, Definition 4].
These parameters measured extra recursions that occurred due to
possible imbalances in trees built on Q,R, which was missed in the
past. [15, Theorem 2] shows that, for constructed cover trees on a
query set Q and a reference set R, Problem 1.2 for k = 1 (only 1st
nearest neighbors) can be solved in time

O
(

cO(1)(|R|+ |Q|+ It +θ
))

. (∗),

where c is expansion constant that depends on Q and R. The
problem with this approach is that in worst case It is quadratic
O(|R|2). To make the time complexity linear, we would have to
show It = O(cO(1) ·max{|R|, |Q|}). However, no such result exist at
the moment.

The step-by-step execution of Algorithm 6.1 will show that the num-
ber of reference expansions has a lower bound O(max{|Q|, |R|}2).
Recall that [38, End of Section 1] defined the all-nearest-neighbor
problem as follows. ”All Nearest-neighbors: For all queries q ∈ Q

1: Function FindAllNN(a node q j ∈ T (Q), a subset Ri of a cover
set Ci of T (R)).

2: if i =−∞ then
3: for each q j ∈ L(q j) return argminr∈R−∞

d(q,r)
4: {here L(q j) is the set of all descendants of the node q j}
5: else if j < i then
6: C (Ri) = {Children(r) | r ∈ Ri}
7: Ri−1 = {r ∈ R | d(q j,r)≤ d(q j,R)+2i +2 j+2}
8: FindAllNN(q j−1,Ri) { q j−1 is the same point as q j on one

level below}
9: else

10: for each p j−1 ∈ Children(q j) FindAllNN(p j−1,Ri)
11: end if

Algorithm 6.1: Copy-pasted [38, Algorithm 1] is analyzed in
Counterexamples 6.2 and 6.5.

find r∗(q) ∈ R such that r∗(q) = argminr∈Rd(q,r)”. For Q = R, the
last formula produces trivial self-neighbors.

In original Algorithm 6.1, the node q j has a level j, a reference
subset Ri ⊂ R is a subset of Ci for an explicit cover tree E (R). The
algorithm is called for a pair q j,Ri = {(r, [+∞])}, where q j is the
root of the query tree at the maximal level j =+∞, and r is the root
of the reference tree at the maximal level i =+∞.

Split Algorithm 6.1 into these blocks: lines 2-4 : FinalCandidates,
lines 5-9 : reference expansion, lines 9-11 : query expansion.

Counterexample 6.2. In the notations of Example 3.1, m is a pa-
rameter of R. Build a compressed cover tree E (R) as in Figure
4. Set Q = R. First we show that Algorithm 6.1 returns the triv-
ial neighbor when E (Q) = E (R). We start the simulation with the

query node r on the level m2 + 1, which has the reference subset
Rm2+1 = {(r, [m2 +1])}. The query node and the reference set are
at the same levels, so we run the query expansions (lines 9-11). The
node r has pm2 and r as its children. Hence the algorithm goes into
the branches that have pm2 as the query node and into the branches
that have r as the query node. Let us focus on all recursions having

pm2 as the query node. In the first recursion involving the node pm2 ,
we have i = m2 +1, j = m2. Thus j < i and we run reference expan-
sions (lines 5-9). The node (r, [m2 +1]) has two children at the level
m2, so C (Ri) = {(pm2 , [m2]),(r, [m2])} . Since d(pm2 , pm2) = 0 and
d(pm2 ,r) = 2m2+1 on line 7, we have:

Rm2 = {r ∈ C (Ri) | d(q j,r)≤ 2m2+1 +2m2+2}

= {(pm2 , [m2]),(r, [m2])}

Similarly, for i = m2, j = m2−1,q j = pm2 , we have

C (Ri) = {(pm2 , [m2]),(pm2−1, [m
2−1]),(r, [m2 +1])}

and since d(pm2−1, pm2) = 2m2
and d(r, pm2) = 2m2+1 we have:

Rm2−1 = {r ∈ C (Ri) | d(q j,r)≤ 2m2
+2m2+1}

= {(pm2 , [m2−1]),(pm2−1, [m
2−1])}.

For i = m2−1, j = m2−2,q j = pm2 , we have

C (Ri) = {(pm2 , [m2−2]),(pm2−1, [m
2−2]),(pm2−2, [m

2−2])}.

Since d(pm2−1, pm2) = 2m2
and d(pm2−2, pm2) = 2m2

+2m2−1, we
have:

Rm2−2 = {r ∈ C (Ri) | d(q j,r)≤ 2m2−1 +2m2
}

= {(pm2 , [m2]),(pm2−1, [m
2−1]),(pm2−2, [m

2−2])}.

Finally, for i = m2−2, j = m2−3,q j = pm2 , we have

C (Ri) = {(pm2 , [m2−3]), ...,(pm3−3, [m
2−3])}

and d(pm2 , pm3−3) = 2m2
+2m2−1 +2m2−2. The previous inequali-

ties imply that

Rm2−3 = {r∈C (Ri) | d(q j,r)≤ 2m2−2+2m2−1}= {(pm2 , [m2−3])}.

Since Rm2−3 = {pm2}, the nearest neighbor of pm2 will be chosen
to be pm2 . The same argument can be repeated for all pt ∈ R. It
follows that Algorithm 6.1 finds trivial nearest neighbor for every
point pt ∈ R. �

Example 6.3. To avoid the issue of finding trivial nearest neighbors
as in Counterexample 6.2, we will modify Example 3.1. For any
integer m > 100, let G be a metric graph that has 2 vertices r and
q and 2m− 1 edges {e0}∪ {e1, ...,em−1,h1, ...,hm−1}. The edge-
lengths are |ei| = 2i·m+2 and |hi| = 2i·m+2 for all i ∈ [1,m], finally
|e0|= 1.

For every i ∈ {1, ...,m2}, if i is divisible by m, we set qi to be the
middle point of ei/m and ri to be the middle point of hi/m. For every
other i not divisible by m, we define qi to be the middle point of
segment (qi+1,q) and ri to be the middle point of segment (ri+1,q).

Let d be the shortest path metric on the graph G. Then d(qi,r) =
d(qi,q)+1 = 2i+1+1 , d(qi,r j) = 2i+1+2 j+1 and d(q,r) = 1. Let
R = {r,rm2 ,rm2−1, ...,r1} and let Q = {r,qm2 ,qm2−1, ...,q1}. Let
compressed cover trees E (Q),E (R) have the same structure as the
compressed cover tree E (R) in Example 3.1. �

Remark 6.4. [38, Definition 3.1] introduced the degree of bichro-
maticity κ as follows. ”Definition 3.1 Let S and T be cover trees

built on query set Q and reference set R respectively. Consider a
dual-tree algorithm with the property that the scales of S and T
are kept as close as possible – i.e. the tree with the larger scale
is always descended. Then, the degree of bichromaticity κ of the
query-reference pair (Q,R) is the maximum number of descends in
S between any two descends in T ”. There are at least two different

interpretations of this definition. Our best interpretation is that κ

is the maximal number of levels in T containing at least one node
between any two consecutive levels of S. However, if q is a leaf
node of S, but there are still many levels between level of q and
lmin(T), it is not clear from the definition if κ includes these levels.
[15, page 3284] pointed out that ” Our results are similar to that of

Ram et al. (2009a), but those results depend on a quantity called the
constant of bichromaticity, denoted κ , which has unclear relation to
cover tree imbalance. The dependence on κ is given as c4κ

q , which
is not a good bound, especially because κ may be much greater than
1 in the bichromatic case (where Sq = Sr)”.

To keep track of the indices i, j the function call FindAllNN(q j , Ri)
will be expressed as FindAllNN(i, j,q j,Ri) in Counterexample 6.2.

Counterexample 6.5 (for a step in the proof of [38, Theorem 3.1]).
We will now show that in addition to the problems in the pseudocode
the proof of [38, Theorem 3.1] is incorrect. Let us consider the
following quote from its proof.

”Theorem 3.1 Given a reference set R of size N and expansion con-
stant cR, a query set Q of size O(N) and expansion constant cQ, and
bounded degree of bichromaticity κ of the (Q,R) pair, the FindAllNN
subroutine of Algorithm 1 computes the nearest neighbor in R of
each point in Q in O(c12

R c4κ
Q N) time.

[Partial proof:] Since at any level of recursion, the size of R [Cor-
responding to C (Ri) in Algorithm 6.1] is bounded by c4

R maxi Ri

(width bound), and the maximum depth of any point in the explicit
tree is O(c2

R log(N)) (depth bound), the number of nodes encoun-
tered in Line 6 is O(c6

R maxi |Ri| log(N)). Since the traversal down
the query tree causes duplication, and the duplication of any refer-
ence node is upper bounded by c4κ

Q , Line 6 [corresponds to line 8
in Algorithm 6.1] takes at most c4κ

Q c6
R maxi |Ri| log(N) in the whole

algorithm. ”

The above arguments claimed the algorithm runs Line 8 at most
this number of times:

#(Line 8)≤ D(E (R)) ·max
i

C (Ri) · (number of duplications). (1)

It will be shown that cover tree E (R) from Example 6.3 does not
satisfy the inequality above.

Let X ,E (R),E (Q),R,Q be as in Example 6.3 for some parame-
ter m. We will consider the simulation of Algorithm 6.1 on pair
(E (Q),E (R)). We note first Lemma 3.3 applied on E (R) provides
maxp∈R D(p)≤ 2m+1 As in Counterexample 5.2, a contradiction
will be achieved by showing that Ri and a set of its children C (Ri)
have a constant size bound on any recursion (i, j) of Algorithm 6.1.

Since E (R) contains at most one children on every level i we have
|C (Ri)| ≤ |Ri|+1 for any recursion of FindAllNN algorithm. For
any i > m2 denote ri and qi to be r. Note first that since l(qt) = t for
any t ∈ [1,m2], then qt is recursed into from FindAllNN(t + 1, t +
1, p,Ri), where p is parent node of qt . Therefore it follows that
t ≥ i+ 1 in any stage of the recursion. Let us prove that for any
i ∈ [1,m2 +1] following two claims hold: (1) Function FindAllNN(i
, j = i− 1, qt , Ri) is called for all t ≥ i+ 1 and (2) We have Ri =
{ri+1,ri,r} in this stage of the algorithm. The claim will be proved
by induction on i. Let us first prove case i = 2m+ 1. Note that
Algorithm 6.1 is originally launched from FindAllNN(2m+1,2m+
1,r,{r}), therefore the first claim holds. Second claim holds trivially
since r2m+2 = r and r2m+1 = r.

Let the claim hold for some i, let us show that the claim will always
hold for i−1. Assume that FindAllNN(i, j = i−1,qt ,Ri) was called
for some t ≥ i+1. Since j = i−1, we perform a reference expansion
(lines 5-9). By line 6 and induction assumption we have

C (Ri) = {(r, [i−1]),(ri+1, [i−1]),(ri, [i−1]),(ri−1, [i−1])}.

Assume first that qt = r. Recall that for any u ∈ [1,m2] we have
d(r,ru)≥ 2u+1. It follows that

Ri−1 = {r′ ∈ C (Ri) | d(r,r′)≤ 2i +2i+1}
= {(r, [i−1]),(ri, [i−1]),(ri−1, [i−1])}

Let us now consider case qt 6= r. We have d(r,qt) = 2t+1 and
d(qt ,ru+1) = 2t+1 +2u+2 for any u ∈ [1,m2 +1]. Therefore

Ri−1 = {r′ ∈Ci−1 | d(qt ,r′)≤ d(qt ,r)+2i+2i+1≤ 2t+1+2i+2i+1}.

It follows that Ri−1 = {(r, [i−1]),(ri, [i−1]),(ri−1, [i−1])}. In both
cases we proceed to line 8 where we launch FindAllNN(i−1, i−
1,qt ,Ri−1). After proceeding into the recursion we have j = i and
therefore query-expansion (lines 9-11) will be performed. Note that
qt was chosen so that t ≥ i+1. Since every qt−1 is either a child of
r or qt it follows that FindAllNN(i−1, i−2,qt ′ ,Ri−1) will be called
for all t ′ ≥ t−1≥ i. Then condition (2) of the induction claim holds
as well.

It remains to show that Algorithm 6.1 (q,Ri = {r}) has O(m4) low
bound on the number of times reference expansions (lines 5-9) are
performed. Let ξ be the number of times Algorithm 6.1 performs

reference expansions. For every q′ ∈ Q denote ξ (q′) to be the total
number of reference expansions performed for q′. Recall that any
query node q′ is introduced in the query expansion (lines 9-11) for
parameters (i = u+1, j = u+1, p,Ri), where p is the parent node of
q′. Since Ri is non empty for all levels [1,u] we have ξ (qu)≥ u−1
for all u. Thus

ξ = ∑
q′∈Q

ξ (q′)≥
m2+1

∑
u=2

u−2 = O(m4).

There are different interpretations for the number of duplications.
Note that the query tree E (Q) has exactly one new child on every
level and that trees E (Q) and E (R) contain exactly the same levels.
By using the definitions the number of duplications should be 2.
However, since there can be other interpretations for the number of
duplications, we make a rough estimate that the number of duplica-
tions is upper bounded by the number of nodes in query tree O(m2).
By using Inequality (1), we obtain the following contradiction:

O(m4) = ξ ≤max
p∈R

D(p) · (max
i

C (Ri)) · (number of duplications)

≤ (2m+1) ·4 ·m2 ≤ O(m3)

7 CONCLUSIONS AND FURTHER WORK

The motivations for this paper were the past gaps in the proofs of
time complexities in [9, Theorem 5], [9, Theorem 6], [38, Theo-
rem 3.1], [31, Theorem 5.1]. In this paper, Example 3.1 introduced
a dataset R and its cover tree E (R), where each node appears in a
separate level, so the tree is split into

√
|R| different branches and

its maximal depth D(E (R)) is 2
√
|R|.

Counterexample 4.2 shows that the proof of the time complexity [9,
Theorem 6] for the Insert() operation [9, Algorithm 2] is incorrect
for the explicit cover tree E (R) in Example 3.1. Similarly, [9, The-
orem 5] giving time complexity bound for the nearest neighbors
search algorithm [9, Algorithm 1] has a similar gap in the proof
when used on E (R). Counterexample 6.5 shows that the same mis-
take was later repeated in the dual-tree approach for all nearest
neighbor search [38, Theorem 3.1].

Another forthcoming paper based on the PhD thesis [18] studies
a new compressed cover tree that overcomes the past obstacles
in [9, Theorem 5], [9, Theorem 6] and proves the parameterized
near-linear time complexities for the compressed cover tree con-
struction and the k-nearest neighbor search for any k ≥ 1. In [18,
Corollary 3.5.11] it is shown that a compressed cover tree can be
constructed in O(c(R)10 · log2(|R|) · |R|) and [18, Theorem 3.7.14]
shows that using compressed cover tree k-nearest neighbors of any
point q can be found in time

O(c(R∪{q})3 · log2(k) · (c(R∪{q})9 · log2(|R|)+ k)).

The near-linear complexities above have helped justify the fast
neighbor-based algorithms for computing generically complete isom-
etry invariants of periodic point sets [41, 42]. The resulting ultra-
fast distinguished all periodic crystals in the Cambridge Structural
Database (the world’s largest collection of real materials) through
more than 200 billion comparisons only over two days on a modest
desktop. The newly established Crystal Isometry Principle says that
all real periodic crystals have unique locations in a common Crystal
Isometry Space (CRISP) parameterized by complete invariants.

The first maps of CRISP are visualized for millions of 2-dimensional
[10, 28] and 3-dimensional [11, 25] lattices extracted from real crys-
tals. Though the data ambiguity of traditional crystal representations

was a long-standing challenge in crystallography [1, 27, 33] and
despite the substantial progress in developing continuous invariants
such as density functions [4, 17, 40],The the recent complete invari-
ant isosets [2,3] allowed only approximate algorithms. For finite sets
of unlabeled points representing bounded rigid structures, complete
isometry invariants were recently introduced with computable and
continuous metrics in [26] motivated by generic families of point
sets [39] with identical 1-dimensional persistence.

This research opened a new wider area of Geometric Data Science
supported by the £3.5M EPSRC grant ‘Application-driven Topo-
logical Data Analysis’ with Oxford (2018-2023, EP/R018472/1),
the Royal Academy of Engineering Industrial Fellowship ‘Data
Science for Next Generation Engineering of Solid Crystalline Mate-
rials’ (2021-2023, IF2122/186), and the EPSRC New Horizons grant
‘Inverse design of periodic crystals’ (2022-2024, EP/X018474/1).

We thank all reviewers for their valuable time and suggestions.

REFERENCES

[1] O. Anosova and V. Kurlin. Introduction to periodic geometry and
topology. arXiv:2103.02749, 2021.

[2] O. Anosova and V. Kurlin. An isometry classification of periodic point
sets. In LNCS Proceedings of Discrete Geometry and Mathematical
Morphology, pp. 229–241, 2021.

[3] O. Anosova and V. Kurlin. Algorithms for continuous metrics on
periodic crystals. arXiv:2205.15298, 2022.

[4] O. Anosova and V. Kurlin. Density functions of periodic sequences. In
Discrete Geometry and Mathematical Morphology, 2022.

[5] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-
tree: An efficient and robust access method for points and rectangles.
In Proceedings of the ACM SIGMOD International Vonference on
Management of Data, pp. 322–331, 1990.

[6] J. Bentley and J. Friedman. Fast algorithms for constructing minimal
spanning trees in coordinate spaces. IEEE Transactions on Computers,
27(02):97–105, 1978.

[7] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[8] S. Berchtold, D. Keim, and H. Kriegel. The x-tree: An index structure
for high-dimensional data. In Very Large Data-Bases, pp. 28–39, 1996.

[9] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest
neighbor. In Proceedings of ICML, pp. 97–104, 2006.

[10] M. Bright, A. Cooper, and V. Kurlin. Geographic-style maps for 2-
dimensional lattices. arxiv:2109.10885, 2021.

[11] M. Bright, A. Cooper, and V. Kurlin. Welcome to a continuous world
of 3-dimensional lattices. arxiv:2109.11538, 2021.

[12] R. Cole and L.-A. Gottlieb. Searching dynamic point sets in spaces
with bounded doubling dimension. In Proceedings of ACM STOC, pp.
574–583, 2006.

[13] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Transactions on information theory, 13(1):21–27, 1967.

[14] R. R. Curtin. Improving dual-tree algorithms. PhD at Georgia Institute
of Technology, http://ratml.org/pub/pdf/2015improving.pdf, 2015.

[15] R. R. Curtin, D. Lee, W. B. March, and P. Ram. Plug-and-play dual-tree
algorithm runtime analysis. J. Mach. Learn. Res., 16:3269–3297, 2015.

[16] R. R. Curtin, P. Ram, and A. G. Gray. Fast exact max-kernel search. In
Proceedings of SIAM ICDM, pp. 1–9, 2013.

[17] H. Edelsbrunner, T. Heiss, V. Kurlin, P. Smith, and M. Wintraecken.
The density fingerprint of a periodic point set. In Symp. Comp. Geom.,
pp. 32:1–32:16, 2021.

[18] Y. Elkin. New compressed cover tree for k-nearest neighbor search.
arXiv:2205.10194, 2022.

[19] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval
on composite keys. Acta informatica, 4(1):1–9, 1974.

[20] K. Fukunaga and P. M. Narendra. A branch and bound algorithm
for computing k-nearest neighbors. IEEE Transactions on computers,
100(7):750–753, 1975.

[21] D. Fussell and K. R. Subramanian. Fast ray tracing using kd trees.
University of Texas at Austin, Department of Computer Sciences, 1988.

[22] M. P. Holmes, A. G. Gray, and C. L. Isbell Jr. QUIC-SVD: Fast SVD
using cosine trees. In Proceedings of NIPS, pp. 673–680, 2008.

[23] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-
restricted metrics. In Proceedings of ACM STOC, pp. 741–750, 2002.

[24] R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms
for proximity search. In Proceedings of SODA, pp. 798–807. Citeseer,
2004.

[25] V. Kurlin. A complete isometry classification of 3-dimensional lattices.
arxiv:2201.10543, 2022.

[26] V. Kurlin. Computable complete invariants for finite clouds of unla-
beled points. arxiv:2207.08502, 2022.

[27] V. Kurlin. Exactly computable and continuous metrics on isometry
classes of finite and 1-periodic sequences. arXiv:2205.04388, 2022.

[28] V. Kurlin. Mathematics of 2-dimensional lattices. arxiv:2201.05150,
2022.

[29] K. Lin, H. Jagadish, and C. Faloutsos. The tv-tree: An index structure
for high-dimensional data. The VLDB Journal, 3(4):517–542, 1994.

[30] T. Liu, A. W. Moore, A. G. Gray, and K. Yang. An investigation of
practical approximate nearest neighbor algorithms. In Proceedings of
NIPS, vol. 12, 2004.

[31] W. B. March, P. Ram, and A. G. Gray. Fast euclidean minimum
spanning tree: algorithm, analysis, and applications. In Proceedings of
SIGKDD, pp. 603–612, 2010.

[32] J. McNames. A fast nearest-neighbor algorithm based on a principal
axis search tree. IEEE Transactions on pattern analysis and machine
intelligence, 23(9):964–976, 2001.

[33] M. Mosca and V. Kurlin. Voronoi-based similarity distances be-
tween arbitrary crystal lattices. Crystal Research and Technology,
55(5):1900197, 2020.

[34] S. M. Omohundro. Five balltree construction algorithms. International
Computer Science Institute Berkeley, 1989.

[35] D. Pelleg and A. Moore. Accelerating exact k-means algorithms with
geometric reasoning. In Proceedings of ACM SIGKDD, pp. 277–281,
1999.

[36] P. Ram and A. G. Gray. Maximum inner-product search using cone
trees. In Proceedings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pp. 931–939, 2012.

[37] P. Ram, D. Lee, and A. G. Gray. Nearest-neighbor search on a time
budget via max-margin trees. In Proceedings of the 2012 SIAM Inter-
national Conference on Data Mining, pp. 1011–1022. SIAM, 2012.

[38] P. Ram, D. Lee, W. March, and A. Gray. Linear-time algorithms
for pairwise statistical problems. Advances in Neural Information
Processing Systems, 22:1527–1535, 2009.

[39] P. Smith and V. Kurlin. Families of point sets with identical 1d persis-
tence. arxiv:2202.00577, 2022.

[40] P. Smith and V. Kurlin. A practical algorithm for degree-k voronoi
domains of three-dimensional periodic point sets. In Proceedings of
ISVC, 2022.

[41] D. Widdowson and V. Kurlin. Resolving the data ambiguity for periodic
crystals. In Proceedings of NeurIPS: Neural Information Processing
Systems (arXiv:2108.04798), 2022.

[42] D. Widdowson, M. Mosca, A. Pulido, V. Kurlin, and A. Cooper. Aver-
age minimum distances of periodic point sets - fundamental invariants
for mapping all periodic crystals. MATCH Comm. in Mathematical
and in Computer Chemistry, 87:529–559, 2022.

[43] P. N. Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In Proceedings of SODA, vol. 93, pp.
311–21, 1993.

	Introduction: neighbor problem and past work
	Original cover trees introduced in 2006
	Challenging datasets for original cover trees
	Cover tree construction
	Nearest neighbor search
	Challenges of the nearest neighbor search based on paired trees
	Conclusions and further work

