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ABSTRACT 

The primary sequences of DNA, RNA and protein have been used as the dominant 

information source of existing machine learning tools, especially for contexts not fully 

explored by wet-experimental approaches. Since molecular markers are profoundly 

orchestrated in the living organisms, those markers that cannot be unambiguously 

recovered from the primary sequence often help to predict other biological events. To 

the best of our knowledge, there is no current tool to build and deploy machine learning 

models that consider genomic evidence. We therefore developed the WHISTLE server, 

the first machine learning platform based on genomic coordinates. It features 

convenient covariate extraction and model web deployment with 46 distinct genomic 

features integrated along with the conventional sequence features. We showed that, 

when predicting m6A sites from SRAMP project, the model integrating genomic 

features substantially outperformed those based on only sequence features. The 

WHISTLE server should be a useful tool for studying biological attributes specifically 

associated with genomic coordinates, and is freely accessible at: 

www.xjtlu.edu.cn/biologicalsciences/whi2. 
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1. Introduction 

The primary sequences of DNA, RNA and protein convey the most fundamental 

information of the biomolecules, and have been used as the primary information source 

for machine learning tools in biosciences. To date, a large number of sequence-based 



methods have been developed to address various life science challenges such as the 

prediction of biological functions [1] and structures [2-4]. Meanwhile, many tools have 

been developed, such as bioSeq-Analysis [5], PyFeat [6] and PseKRAAC [7], to facilitate 

sequence-based feature extraction and machine learning modelling. Together these 

efforts have achieved great success, especially in obtaining insights into biological 

contexts that could not be adequately explored through wet-experimental approaches. 

RNA modifications increase the structural and functional diversity of RNA molecules 
[8] and regulate every stage of RNA life [9-12]. Important roles of RNA modifications 

have been revealed in various diseases [13], cancers [14] and during viral infection [15]. 

Precise identification of RNA modification sites is thus of crucial importance for 

understanding the regulatory mechanisms and functionality of various RNAs. To date, 

a large number of computational approaches have been developed for in silico 

prediction of RNA modification sites from the primary RNA sequences, including: the 

iRNA series [16-24], SRAMP [25], DeepPromise [26], WHISTLE [27], RNAm5CPred [28], 

Gene2vec [29], PEA [30], BERMP [31] and PPUS [32]. As reviewed recently [26, 33-35] , these 

works have greatly advanced our understanding of the localization of multiple RNA 

modifications under various biological contexts in different organisms. 

Due to limitations in available computational resources and in the learning capability 

of the machine learning models themselves, the primary sequence itself cannot provide 

all the information needed for machine learning prediction. In many cases only a 

fraction of the primary sequence rather than its entirety is used for prediction tasks. 

Substantial amounts of information are therefore lost during the model selection 

process, in which the optimal input sequence length is determined. Although the 

sequences discarded from the analysis could in theory contain useful information as 

well, that information could not be explicitly extracted with the implemented machine 

learning models and thus cannot be effectively used. For example, in the problem of 

modification site prediction [36], many machine learning algorithms consider only 

20~50bp of DNA (or RNA) sequences, with the distant sequences discarded.  

Importantly, distinct biological events are profoundly orchestrated in the living 

organisms, making them powerful predictors of each other. Although it is often 

expected that biological events should ultimately be encoded in the primary sequences, 

in practice, many of them could not be explicitly recovered from sequence-based 



analysis alone, and incorporating additional biological evidence can often boost the 

accuracy of prediction tools. However, as biological evidence (such as transcriptome 

annotation) is usually indexed with genomic coordinates, associating biological 

evidence (such as whether a given sequence lies within a 5’UTR or a CDS) to arbitrary 

biological sequences is often non-trivial and time consuming due to the involvement of 

genome aligners, and can be complicated by ambiguous multi-mapping scenarios.  

We previously developed WHISTLE, a high-accuracy prediction framework for N6-

methyladenosine (m6A) RNA methylation site prediction [27]. Although WHISTLE 

considers only 41bp of RNA sequence, by incorporating 35 additional genomic features 

its performance is among the best of m6A predictors, and is comparable to the most 

recent deep learning methods that require thousands of nucleotide of sequences as the 

input and were equipped with advanced encoding schemes [26]. Furthermore, we have 

shown that the WHISTLE framework can be successfully migrated to other prediction 

problems, including other RNA modifications (7-MethylGuanine, Pseudouridylation 

and N1-methyladenosine) [37-39], in non-human organism (mouse) [40], and for predicting 

marks located on lncRNAs and introns [41, 42]. In all these studies, we demonstrated that 

the prediction performance achieved from genomic features alone is already 

comparable to sequence-based models; and that models combining both sequence and 

genomic features consistently yielded high-accuracy prediction results that are 

substantially better than those based on sequence information only. It is evident that 

additional biological evidence can be a valuable complement to sequence information 

in various prediction tasks; however, to the best of our knowledge, none of the existing 

sequence-based feature extraction tools try to recover higher-level biological evidences 

(such as transcriptome annotation, miRNA binding) from the input of primary 

sequences. Bioinformatics tools that enable extraction of biological evidence should 

greatly facilitate machine learning projects in biosciences.  

By extending our previous work, we present here WHISTLE Server, a high-accuracy 

genomic coordinate-based machine learning platform for unleashing predictive power 

beyond the primary nucleic acid sequences. The inputs of WHISTLE server are 

genomic coordinates rather than the primary sequences so as to facilitate downstream 

genomic evidence extraction. It features convenient online (or offline) extraction of 46 

distinct genomic features along with the conventional sequence features for both human 

and mouse. Importantly, the platform supports straightforward prediction model 

construction and online deployment for private or public usage. As case studies, we 



showed additionally that, when predicting m6A sites from SRAMP, the model 

integrating additional genomic features substantially outperformed those based on only 

sequence features. When only using genomic features, its performance is far better than 

using sequence features. Furthermore, it is possible to build and deploy a prediction 

model as a web app with just a few clicks with our server. Please refer to Figure 1 for 

the overall design of the WHISTLE Server. 



 
Figure 1. The overall design of WHISTLE Server. WHISTLE Server supports convenient genomic feature extraction and prediction model development from the input of 

genomic coordinates of interests. A total of 46 genomic features can be extracted for human and mouse, concerning transcriptome annotation, genome conservation, post-

transcriptional regulation, motif, gene class as well as the conventional sequence features. User can develop prediction models and conveniently deploy them online as web app 



for private or public usage. 



2. Material and methods 

Rather than analyzing the biological entities in the sequence space only, we also 

consider the genome space along with various biological annotations and datasets 

mapped to it for additional information. Compared with the widely adopted sequence-

based systems, our framework has clear advantages when dealing with entities whose 

sequences can be mapped to one or multiple genomic coordinates by providing 

additional genomic features extracted from the biological space; however, this approach 

will fail for entities that cannot be mapped to the genome, e.g., a piece of virus DNA, 

or when the biological space has not been annotated, e.g., for a less studied non-model 

organism. Luckily, as more and more experimental datasets and biological knowledge 

are accumulated, genomic features in general are likely to be more and more complete 

and effective. The WHISTLE Server supports two core functions: (1) batch genomic 

feature extraction for a set of genomic coordinates and (2) convenient high-accuracy 

prediction model construction and web deployment (as web app) for private or public 

usage.  

We previously developed WHISTLE [27], a high-accuracy predictor of m6A RNA 

methylation sties. Although the WHISTLE framework is based on rather short input 

sequences (around 41bp) and classic machine learning algorithm (random forest), by 

taking advantage of the additional genomic features extracted with respect to genomic 

coordinates, it achieved a state-of-the-art performance comparable to the most 

advanced deep-learning algorithms [26], which usually require long input sequence 

(typically 1kb of nucleotides) and carefully tuning of the hyper-parameters. The 

parameter tuning of deep learning models often make them less convenient to migrate 

to address new problems. In contrast, migration of the WHISTLE framework is 

extremely convenient and straightforward, as shown in our previous work for 7-

methylguanine [37], Pseudouridylation [38] and N1-methyladenosine [39]. To demonstrate 

the effectiveness of our approach, we showed with the following case study that the 

predictors constructed by the WHISTLE Server (leveraging genomic features) achieved 

high-accuracy prediction performance on m6A modification sites from SRAMP project.  

2.1 Datasets and model 

The development of an RNA modification site prediction model requires transcriptome-

wide profiling data at base-resolution for training and testing purposes. The same 

number of negative sites as positive sites were randomly selected, either from the same 



nucleotide on the same transcript (full transcript mode) or the same nucleotide on the 

same mature RNA (mature mRNA mode). The mature RNA mode was considered here 

to eliminate potential bias towards mature transcripts, which can be induced by the 

poly-A selection step performed when preparing the RNA library in most high-

throughput profiling approaches. Note that the negative data generation and motif-

based site selection can be performed automatically by the WHISTLE Server with 

options specified from the user. 

2.2 Genomic feature extraction  

The WHISTLE Server supports the online extraction of 46 genomic features in batch 

for genomic coordinates of human and mouse. These genomic features cover various 

biological evidence, including transcriptome annotation, genome conservation, post-

transcriptional regulation, association to gene class, association to sequence motif and 

the conventional primary sequences.  The genomic features can be broadly grouped into 

3 categories: 1) Topological features related to transcript landmarkers. 2) Range based 

RNA annotations that are RBP and microRNA binding sites which are previously 

reported to relate to m6A turn-over. 3) The sequence derived features such as sequence 

contents, sequence conservation, and sequence motifs. The topological features are 

derived from Bioconductor package GenomicFeatures. The range based RNA 

annotations are generated by overlapping the modification sites with the binding 

regions. The sequence features are calculated using the Bioconductor package 

BSgenome. The additional genomic features can be derived from a more flexible 

combination of existing topological features, such as the overlapping between the exons 

containing RBP regions. Additionally, more transcript annotations can be added from 

other databases, such as the transcript expression patterns & functional annotations. 

Many of those cannot be easily retrieved from the immediate primary sequences (see 

Supplementary Table S1 for details). Besides, we also provided the WHISTLE R 

package, which can be installed on a local computer for large-scale automated genomic 

feature extraction under the R environment. To the best our knowledge, there are no 

existing tools that support batch genomic coordinate-based feature extraction. As these 

genomic features can carry predictive power beyond the primary sequences, it is 

expected that they may be used to construct more advanced and more accurate 

prediction models offsite which would out-perform conventional sequence-based 

prediction models.  

2.3 Prediction model construction and web deployment 



In addition to genomic feature extraction, the WHISTLE Server also supports 

convenient construction and web deployment of high-accuracy predictors from a set of 

genomic coordinates that are associated with the attribute of interests, e.g., genomic 

coordinates of RNA modifications (RNA methylation sites). To do so, a few options 

need to be specified by the user to customize the related procedures, i.e., negative data 

generation, genomic features extraction, classification algorithm selection and the 

options related to web app deployment. When it is known that the attribute of interests 

is restricted to a specific sequence pattern, e.g., the DRACH motif of N6-

methyladenosine RNA methylation, coordinates that do not comply with the sequence 

motif can optionally be discarded from the analysis.  WHISTLE supported five 

classification algorithms for model training, random forest (RF), support vector 

machine (SVM), K-nearest neighbor (KNN), logistic regression (LR) and eXtreme 

Gradient Boosting (XGBoost). RF is a popular machine learning algorithm used to 

predict m6A RNA methylation, which was applied in SRAMP to predict mammalian 

m6A sites. SVM is another algorithm applied in computational biology, based on which 

the methods of MethyRNA[43] and RAM-ESVM [44] were developed to predict RNA 

methylation sites. KNN is one of the most powerful methods in the data mining 

classification technology, and LR is a method with a simple algorithm and a high 

performance. XGBoost is frequently used in competitions and industry, and can be 

effectively applied to the tasks of classification, regression and ranking, it was used in 

M6AMRFS [45] to predict m6A sites in multiple species based on the sequence features. 

Finally, a predictor based on both genomic and sequence features will be generated and 

deployed online, which can predict the attribute associated with the input genomic 

coordinates. To the best our knowledge, there are no other such tools available for 

constructing predictors directly from genomic coordinates. The prediction performance 

of the web app is provided along with the web app page, including the sensitivity (Sn), 

specificity (Sp), accuracy (ACC), Matthews correlation coefficient (MCC) and the area 

under the receiver operating characteristic curve (AUC), all obtained from a 5-fold 

cross validation using the complete training data. In the process of constructing the 

model, WHISTLE used sequence features, genomic features and combined features to 



train the model respectively, and then takes the model with the best results of 5-fold 

cross validation as the final training model. Additionally, the users can specify whether 

the deployed web app should be publicly available or for private usage only. For a 

private web app, a link will be sent to only the designated email address; while all the 

public web apps will be displayed on the WHISTLE Server website, available for all to 

use.  
2.4 Web interface implementation and programming environment 

Hyper Text Markup Language (HTML), Cascading Style Sheets (CSS) and Hypertext 

Preprocessor (PHP) were applied in the construction of web interfaces. Genomic 

features for human and mouse were extracted with our newly developed WHISTLE 

package using the input genomic coordinates. Model construction and performance 

analysis were performed under R environment with customized scripts. 

3. Results 

To show the advantages brought by the additional genomic features, we used the default 

setting of the WHISTLE server (46 genomic features, 21bp of sequences with chemical 

property and nucleotide frequency encoding, random forest classifier), and constructed 

a prediction model for the datasets from SRAMP.  Because our previous work, such as 

intronic m6A sites prediction, lncRNA methylation sites prediction and m1A prediction, 

all used RF classifier for prediction, so the default classifier here is RF. We then 

compared the performance of the predictors based on different feature sets (sequence 

features alone, genomic features alone, or both sequence and genomic features) in a 5-

fold cross validation. In order to measure the prediction effect of the model, we used 

the measurements of sensitivity (Sn), specificity (Sp), accuracy (ACC), and Matthews 

correlation coefficient (MCC) to show the results of the model. In addition, we 

calculated the areas under the curves (as called “AUC”) to evaluate the prediction 

performance. AUC was used as the main metrics for its non-parametric nature. The 

performance was obtained with 5-fold cross validation using the complete datasets, 

which were provided at WHISTLE Server website. 
As shown in Table 1, under the mature RNA mode, genomic features alone are more 

powerful than sequence features (AUC = 0.802), which is superior to the prediction 

performance of SRAMP (AUC = 0.797). Importantly, the prediction performance by 



genomic features was better than combining both sequence and genomic features (AUC 

= 0.7865), demonstrating that the genomic features provided additional information 

given the sequence-based variables and played a more important role in the prediction.  

Table 1. Performance based on different feature sets under mature RNA mode 

Method Features Sn  Sp  ACC  MCC AUC 

WHISTLE 

Combined 0.7722 0.6971 0.7347 0.4707 0.7865 

Sequence 0.7668 0.7028 0.7348 0.4706 0.6632 

Genomic 0.6481 0.6536 0.6508 0.3017 0.802 

 

The genomic features are even more evident under the full transcript mode. As shown 

in Table 2, the model based on genomic features (AUC = 0.9908) are substantially more 

accurate than sequence features (AUC = 0.8034).  

Table 2 Performance based on different feature sets under full transcript mode 

Method Features Sn Sp ACC MCC AUC 

WHISTLE 

Combined 0.9763 0.9303 0.9533 0.9076 0.989 

Sequence 0.974 0.9439 0.959 0.9184 0.8034 

Genomic 0.7283 0.7296 0.7289 0.4579 0.9908 

4. Discussion 

We present here WHISTLE Server, the first genomic coordinate-based machine 

learning platform to enhance prediction accuracy by integrating sequence-based 

features and higher-level annotations. Different from sequence-based platform such as 

bioSeq-Analysis [5], the WHISTLE server integrates additional biological evidence 

(such as transcriptome annotation, microRNA binding) with respect to genomic 

intervals, enabling higher prediction accuracy compared to purely sequence-based 

approaches. Importantly, it supports convenient prediction model construction and web 

deployment for private or public usage with just a few clicks. Together, it should make 

a useful resource to study biological attributes associated with specific genomic 

coordinates.   

Future pathways to improve the WHISTLE Server could include: (1) Support for more 

species and more genome assemblies. Even though our computational framework is 

likely to be effective on most well annotated organisms, it currently supports only 

human (assembly hg19) and mouse (mm10). (2) Support for more feature encoding 

schemes and more machine learning algorithms. WHISTLE Server currently supports 



5 classification algorithms:  random forest (RF), support vector machine (SVM), K-

nearest neighbor (KNN), logistic regression (LR) and eXtreme Gradient Boosting 

(XGBoost). (3) Coverage of more genomic features that may contribute to the 

prediction tasks. (4) Support for more intelligent ways of combining the sequence and 

genomic information for various prediction tasks, such as with multimodal techniques 

as used in Bichrom [46] and DeepRiPe [47]. 
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