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ABSTRACT 

Air pollution is a growing concern for human health, biodiversity and natural environment in large 

urban areas. It is, therefore, vital to monitor and model air quality (AQ) in urban areas to understand its 

spatiotemporal variabilities and its main drivers. Traditionally it was not possible to develop high-

resolution AQ maps in urban areas due to sparse reference network. However, since  the emergence of 

low-cost sensors (LCS), it has become possible to structure a dense network of sensors and develop 

high-resolution AQ maps. This is what this PhD project intends to achieve by: (a) analysing the 

suitability of LCS for urban AQ monitoring and how their measurements can be further improvement 

using advance calibration techniques, (b) deploying a dense network of AQ sensors based on multiple 

criteria and using sensors of different grades, (c) employing various AQ modelling and mapping 

techniques including geostatistical interpolations, land-use regression (LUR) and dispersion modelling, 

and (d) using data fusion approaches to fuse measured and estimated pollutant concentrations. A multi-

criteria Air Quality Monitoring Network (AQMN) was structured based on economic, social and 

environmental indicators. The network was made of several layers of sensors including reference 

sensors, LCS (e.g., AQMesh pods and Envirowatch E-MOTEs) and IoT (internet of things) sensors. 

The data from the designed AQMN was used in AQ mapping, models validations, analysing 

spatiotemporal variability of pollutants and sensor calibration. Reference sensors were used as standard 

to calibrate measurements of the LCS employing multiple linear regression and generalised additive 

model. LUR models were developed for the first time in Sheffield using several land-use and emission 

related variables. In contrast to previous studies that mostly used linear techniques, here nonlinear 

regression approaches were also used for developing LUR models, which outperformed the linear 

counterparts. LUR models were trained and validated using annual average NO2 concentrations  from 

diffusion tubes as well as from LCS. The models were cross-validated by comparing estimated and 

measured concentrations. LUR model demonstrated that among predictor variables altitude had 

negative significant effect, whereas major roads, minor roads and commercial areas had positive 

significant effect on NO2 concentrations.  Furthermore, an Airviro dispersion model was developed and 

several emission scenarios were tested, which showed that NOx concentrations were mainly controlled 

by road traffic, whereas PM10 concentrations were controlled by point sources. To further improve the 

AQ maps, modelled and measured concentrations were fused (integrated) to produce high-resolution 

maps in Sheffield using data fusion technique known as Universal Kriging, which estimated realistic 

(based on priori expectations) NO2 concentration maps that inherited spatial patterns of the pollutant 

from the model estimations and adjusted the modelled values against the measured concentrations. The 

methodology was successful in demonstrating the spatial variability and highlighting the hotspots of 

NO2 concentrations in Sheffield. The main findings of the project are: (a) The project proposed a 

nonlinear generalised additive model for low-cost sensors calibrations in outdoor environment. Low-

cost sensors are a cheaper source of AQ data, however, they require robust outfield calibrations. (b) A 

formal approach was proposed for structuring an AQMN in urban areas, which was based on multi-

criteria. (c) It was shown that LUR model based on nonlinear machine learning approach outperformed 

the dispersion modelling approach.  (d) Data fusion techniques (such as Universal krigging) were 

employed to integrate model estimations with measured concentrations. Such data fusion approaches 

are useful tools for improving data quality and producing high-resolution AQ maps. (e) Time series 

modelling ARIMA with exogenous variables (ARIMAX) outperformed other linear and nonlinear time 

series models, and is proposed as an early warning tool for predicting potential pollution episodes in 

order to be proactive in adopting precautionary measures. Limited data was available on particulate 

matter, especially on fine and ultrafine particulates, therefore, further work is required on particulate 

matter monitoring, modelling and management in urban areas.   

Keywords: air quality modelling, air quality mapping, air quality monitoring network, land-use 

regression, sensors calibration, Airviro dispersion model, low-cost sensor, data fusion, urban air 

pollution.     
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CHAPTER 1: INTRODUCTION  
      

1.1. Motivation of the project  

Air pollution has become a growing issue for public health especially in urban areas. Air 

pollution is causing numerous human health and environmental problems. Polluted air, 

especially with the high levels of NO2 and particulate matter (PM10 and PM2.5), is considered 

the most serious environmental risk to public health in urban areas in the UK (Manisalidis et 

al., 2020; DEFRA, 2015). Air pollutants penetrate the respiratory system via inhalation and 

cause respiratory diseases, cardiovascular diseases, reproductive and central nervous system 

dysfunctions, and cancer (Manisalidis et al., 2020). It is reported that atmospheric pollution 

remains responsible for approximately 9 million deaths per year, corresponding to one in six 

deaths worldwide (Fuller et al., 2022),  showing the seriousness of the air pollution issue. Air 

pollution mainly affects those living in large urban areas, where road emissions contribute the 

most to the degradation of air quality (Manisalidis et al., 2020). Therefore, it is important to 

understand emission sources, spatiotemporal variability and main drivers of air pollution 

employing various monitoring and modelling tools. Air pollution is mainly considered a serious 

issue in urban environments due to the following reasons: 

- urban environments experience higher volumes of road traffic, 

- Urban environments have more point sources including residential, commercial and 

industrial emissions, 

- In urban areas narrow roads are surrounded by tall buildings which hinder the 

dispersion of locally emitted air pollutants, and 

- Urban areas are densely populated, which expose more people to air pollution.  

 

Air pollutant levels demonstrate spatial heterogeneity everywhere, but especially more so in 

urban areas because of spatial variability in emission sources and dense and tall buildings, 

which hinder locally emitted pollutants. Therefore pollution levels vary from street to street 

due to differences in emission strength and factors influencing dispersion of air pollutants.  It 

is challenging to capture microlevel (from house to house and street to street) spatial 

heterogeneity in air pollution levels in urban areas using the traditional AQ monitoring 

network. Although sufficient for current regulatory need, the AQ monitoring network (AQMN) 

operated by DEFRA and Sheffield city council is not dense enough to account for microlevel 

spatial variations in air pollutant concentrations. In Sheffield there are three AQMS operated 

by DEFRA and five operated by Sheffield city council.  This suggests a need for further 

improvement in AQMN in Sheffield. One of the motivation of this project is to structure a 

dense network of AQ sensors in Sheffield, made of several layers of sensors including reference 

sensors, LCS (e.g., AQMesh and Envirowatch E-MOTEs) and IoT (internet of things) sensors. 

These sensors are deployed in different parts of the city (static network), mounted on vehicles 

and carried by people (mobile network) (Figure 1.1). In addition, there is a network of over 

180 NO2 diffusion tubes in Sheffield. It should be noted here that NO2 diffusion tubes and 

continuous air quality monitoring sensors have totally different temporal resolution, and 

therefore, for comparison in this study we will use annual average NO2 concentrations for both 

diffusion tubes and other sensors. The proposed dense AQMN will produce AQ data, which 
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will help develop high-resolution spatial maps in Sheffield. Historically AQMN are based on 

a single criterion, whereas the proposed AQMN will be based on multiple criteria using social, 

economic and environmental indicators. In this project data from static network is used only.  

Furthermore, using data from the designed network the project intends to investigate how LCS 

can be used to render high quality data. For this purpose, air pollution measurements of LCS 

and reference sensors will be compared using both linear and nonlinear modelling techniques. 

Measurements of the LCS will be adjusted using the developed calibration methods.     

AQ data collected by various sensor types will be used to produce high-resolution maps 

employing advanced modelling and mapping approaches including geostatistical interpolation, 

land-use regression and dispersion modelling techniques. Furthermore, measured and 

estimated concentrations will be fused using data fusion techniques, e.g. Universal Kriging. 

This will further support the monitoring network in improving spatial and temporal coverage 

in the city. The final goal is to provide a cheaper AQ monitoring network to produce data of 

acceptable quality, which will be achieved with the help of (a) structuring a purpose designed 

AQ network, (b) sensors calibrations, (c) data analysis and modelling, and (d) data fusion 

techniques.   

 

Figure  1.1. Showing different layers (each type of sensors is making a layer) of the proposed 

AQMN in Sheffield.    

1.2. Main drivers of air pollution 

Air pollution levels in urban areas are driven by two main factors: 

(i) Emission sources 

(ii) Influencing factors  

 

Types and strength of emission sources are the main drivers of air pollutants in urban areas. 

Air pollutant emissions include line sources like road traffic, point sources like incinerators 

and area sources like residential emissions. Road traffic is considered the main emission source 
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in large urban areas. In this project the main sources of NO2 and PM10 will be determined using 

monitoring and modelling techniques.  

 

Influencing factors are responsible for the dispersion of air pollutants both horizontally and 

vertically and include meteorological parameters, e.g., wind speed, wind direction and 

temperature, topographical and land-use characteristics, e.g., green spaces, large water bodies, 

commercial areas, altitude and hilly areas, and building density and height, e.g., tall buildings 

on both sides of a road in urban areas can act as a street canyon, which traps pollutants and 

hinders their dispersion. In addition, pollutant transformation (e.g., NO transformation to NO2 

and O3, secondary particulates formation, and sinks also affect pollutant levels. LUR models 

will be used to determine the main influencing factors in Sheffield.  

1.3. Aims and objectives 

The core aims of this PhD project are: (a) to understand spatiotemporal variability of AQ; and 

(b) to determine the main drivers of air pollution in urban areas using Sheffield as a case study. 

The aims will be achieved by deploying a dense AQMN based on multiple criteria and 

employing various modelling and mapping techniques for AQ analysis and developing high-

resolution maps. The aims of the project can be subdivided into the following specific 

objectives:  

I To define criteria for structuring a multipurpose AQMN and to structure  a dense 

network  made of several layers of AQ sensors including reference, LCS and IoT 

sensors in Sheffield.  

II To  deploy LCS for  rendering high quality measurements of NO2 concentrations. This 

objective assesses and improves the quality of LCS data using calibrations models.  

III To model the spatial variability of AQ in urban areas using various modelling 

approaches including dispersion and land-use regression models.  

IV To explore the use of novel data fusion techniques to improve both model estimation 

and LCS measurements and further improve the quality of AQ maps.  

V To analyse temporal variability of AQ using  both graphical and time series analysis.     

1.4. How different chapters (papers) address the objectives?  

This PhD thesis is composed in the alternative format ‘publication format thesis’ incorporating 

a collection of papers that are already published. This section discusses how different 

papers/chapters are linked with the objectives of this PhD project and what each chapter intends 

to achieve. Main aim of each chapter is briefly described below (section 1.4.1 to 1.4.9).  . Table 

1.1 present the structure of the thesis and how different chapters are linked with the objectives 

of the project.     
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Table 1.1. Thesis structure and linking objectives with chapters 

Chapter number Brief description 

Chapter 1 Introduction 

Chapter 2 Literature review 

Chapter 3 Objective 2 (LCS calibration) 

Chapter 4 Objective 1 (Structuring an AQMN) 

Chapter 5 Objective 3 (Spatial variability - dispersion modelling) 

Chapter 6 Objective 3 (Spatial variability - land-use regression) 

Chapter 7 Objective 4 (Data fusion) 

Chapter 8 Objective 5 (Temporal variability) 

Chapter 9 Conclusions 

 

Below a brief description of each chapter is provided. 

Chapter 1: Introduction 

Chapter 1 briefly outlines the main aims, objectives and motivations of the project. ‘How 

different chapters (papers) address the objectives’ are also discussed in this chapter. This 

chapter introduces the project, outlines the main purpose of the project and briefly discusses 

how the project was carried out.   

Chapter 2: What is the state of the art for air quality monitoring and modelling? 

Chapter 2 presents background materials and resources of air quality in the UK, especially in 

Sheffield. In chapter 2 a detailed literature review is carried out covering various air quality 

modelling approaches, low-cost sensors and data fusion techniques.   

Chapter 3: Analysing the performance of low-cost air quality sensors, their drivers, relative 

benefits and calibration in cities - a case study in Sheffield 

This chapter is based on the published paper: Munir, S., Mayfield, M., Coca, D., Jubb, S.A., 

Osammor, O., 2018. Analysing the performance of low-cost air quality sensors, their drivers, 

relative benefits and calibration in cities - a case study in Sheffield. Environmental Monitoring 

and Assessment, 191(2):94. The paper addresses objective # 2 of the project: “To deploy LCS 

for rendering high quality measurements of NO2 concentrations”.The paper analyses and 

compares NO2, NO and CO concentrations measured by Envirowatch E-MOTEs and reference 

sensors for a year to determine how good the LCS are for measuring these pollutants. A 

calibration approach is recommended for improving the quality of LCS measurements. Chapter 

4: Structuring an integrated air quality monitoring network in large urban areas – Discussing 

the purpose, criteria and deployment strategy 
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This chapter is based on the published paper: Munir, S., Mayfield, M., Coca, D., Jubb, S.A., 

2019. Structuring an Integrated Air Quality Monitoring Network in Large Urban Areas – 

Discussing the Purpose, Criteria and deployment Strategy. Atmospheric Environment: X 2 

(2019): 100027. The paper addresses objective # 1 of the project: ‘To define criteria for 

structuring a multipurpose AQMN  and to structure  a dense network  made of several layers 

of AQ sensors including reference, LCS and IoT sensors in Sheffield’. In this paper,  a 

methodology is proposed which is supported by numerical, conceptual and GIS frameworks 

for structuring an air quality monitoring network using social, environmental and economic 

indicators as a case study in Sheffield, UK. The main factors used for air quality monitoring 

station selection are population-weighted pollution concentration (PWPC) and weighted spatial 

variability (WSV) incorporating population density (social indicator), pollution levels and 

spatial variability of air pollutant concentrations (environmental indicator). The total number 

of sensors is decided on the basis of budget (economic indicator), whereas the number of 

sensors deployed in each output area is proportional to WSV. The purpose of AQ monitoring 

and its role in determining the location of air quality monitoring stations is analysed. 

Chapter 5: Analysis of air pollution in urban areas with Airviro dispersion model - A case study 

in the City of Sheffield, United Kingdom 

This chapter is based on the published paper: Munir, S., Mayfield, M., Coca, D., Mihaylova, 

L.S., Osammor, O., 2020. Analysis of air pollution in urban areas with Airviro dispersion 

model - A case study in the City of Sheffield, United Kingdom. Atmosphere, 11(3), 285. The 

paper addresses objective # 3 of the project: ‘To model the spatial variability of AQ in urban 

areas using various modelling approaches including dispersion and land-use regression models 

’. In this paper two air pollutants, oxides of nitrogen (NOx) and particulate matter (PM10) are 

monitored and modelled employing Airviro air quality dispersion modelling system in 

Sheffield. The aim is to determine the most significant emission sources and analyse the spatial 

variability of these two pollutants. 

Chapter 6: A nonlinear land-use regression approach for modelling NO2 concentrations in 

urban areas – using data from low-cost sensors and diffusion tubes 

This chapter is based on the published paper: Munir, S., Mayfield, M., Coca, D., Mihaylova, 

L.S., 2020. A nonlinear land-use regression approach for modelling NO2 concentrations in 

urban areas – using data from low-cost sensors and diffusion tubes. Atmosphere, 2020, 11(7), 

736. This paper addresses objective # 3 of the project: ‘To model the spatial variability of AQ 

in urban areas using various modelling approaches including dispersion and land-use 

regression models’. In this paper, a nonlinear generalised additive model was proposed for 

LUR and its performance was compared to a linear LUR model in Sheffield, UK for the year 

2019. Pollution models were estimated using NO2 measurements obtained from 188 diffusion 

tubes and 40 low-cost sensors. Performance of the models was assessed by calculating several 

statistical metrics including correlation coefficient (R) and root mean square error (RMSE). 

High-resolution (100 m x100 m) maps were created for NO2 concentrations. Chapter 7: 

Understanding spatial variability of NO2 in urban areas using spatial modelling and data fusion 

approaches  

This chapter is based on the published paper: Munir, S., Mayfield, M., Coca, D., 2021. 

Understanding spatial variability of NO2 in urban areas using spatial modelling and data 

fusion Approaches. Atmosphere, 2021, 12(2), 179. This paper addresses objective # 4: ‘To 
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explore the use of novel data fusion techniques for improving both model estimations and LCS 

measurements and further improving the quality of AQ maps’. The aim in this chapter was to 

analyse small-scale spatial variability in NO2 concentrations with the help of pollution maps. 

Maps of NO2 were produced using geostatistical interpolation, Airviro dispersion model and 

LUR model. Finally, NO2 concentrations estimated by Airviro and LUR models were fused 

with the measured NO2 concentrations. Chapter 8: Application of density plots and time series 

modelling to the analysis of nitrogen dioxides measured by low-cost and reference sensors in 

urban areas 

This chapter is based on the published paper: Munir, S., Mayfield, M. 2021. Application of 

density plots and time series modelling to the analysis of nitrogen dioxides measured by low-

cost and reference sensors in urban areas. Nitrogen, 2, 167–195. This paper addresses 

objective # 5: “To analyse temporal variability of AQ using both graphical and time series 

analysis”. In this chapter temporal variability of NO2 concentration was analysed at different 

temporal scales. In the first part of chapter 8, NO2 concentrations measured by twenty-eight 

Envirowatch E-MOTEs, thirteen AQMesh pods, five reference sensors operated by Sheffield 

City Council and three reference sensors operated by DEFRA were analysed. NO2 

concentrations measured by different sensors were compared using density plots and time 

variation plots for over a year (August 2019 to September 2020). Long-term trend of NO2 

concentration was also determined for over twenty years (2000 – 2020). In the second part of 

the chapter, NO2 concentrations were analysed employing univariate linear and nonlinear time 

series models based on persistence, and their performance was compared with a more advanced 

time series model using two exogenous variables (NOx and O3). 

Chapter 9: Conclusions and future work  

Chapter 9 briefly discusses the main findings and summarises the results of this PhD project. 

Furthermore, the chapter provides suggestions for future work to further improve AQ 

monitoring and modelling in Sheffield. Main future works include understanding indoor-

outdoor interface of air quality and characterising chemical composition of particulate matter 

in Sheffield.    

1.5. Summary of the chapter 

Air pollution is a growing concern especially in large urban areas causing various negative 

impacts on the surrounding environment and human health. Air pollutant levels have declined 

in the UK during the last couple of decades, however the reductions are not sufficient and 

therefore air pollutant levels especially NO2 and PM10 still exceed AQ standards in large urban 

areas in the UK. Therefore, further interventions are required for effectively managing air 

quality to reduce exposure and negative impacts. In this project, different air quality monitoring 

and modelling approaches are deployed to understand the spatial variability of air quality in a 

typical urban city using Sheffield as a case study. This chapter described the main aims and 

objectives of this project and linked the various objectives of the study with different chapters 

of the thesis. In the next chapter a detailed literature review is carried out to put this project in 

the context of what is already done and identify a research gap, which will be addressed in the 

later chapters.   
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CHAPTER 2: WHAT IS THE STATE OF THE ART FOR AQ 

MONITORING AND MODELLING? 

2.1. Introduction 

This chapter provides a detailed literature review of various air quality (AQ) modelling and 

monitoring approaches. The aim is to find out as to what is the state of the art for AQ modelling, 

data fusion and low-cost sensors (LCS) in light of the current literature. This will help identify 

the research gap, which will shape this project.  

Firstly, it is important to understand why air quality is important and how it affects human 

health. Air pollution is one of the most serious environmental threats to health, killing 6.4 

million people in 2015 worldwide both in developed and less-wealthy nations (Landrigan, 

2016). Out of these, 2.8 million deaths were caused by indoor air pollution and 4.2 million 

deaths by outdoor air pollution. Air pollution is causing various health problems including 

respiratory problems, cardiovascular diseases, lung cancer and asthma (WHO, 2013). Walters 

and Ayres (2001) have also reported that air pollution especially particulate matter and nitrogen 

dioxide (NO2) pollution may cause premature deaths and hospital admissions for conditions 

such as cardiovascular problems, allergic reactions and lung cancer. The UK Committee on the 

Medical Effects of Air Pollutants (COMEAP, 2009 & 2010) have investigated the negative 

effects of long-term exposure to air pollution on human health and considered PM2.5 as the 

pollutant responsible for increased risk of mortality. It is reported that exposure to air pollution 

is particularly harmful for children, people with existing health problems and the elderly 

(Khallaf, 2011). Evidence suggests that the negative impacts of air pollution are dependent on 

the levels of air pollutants and length of exposure, where higher levels and longer exposure 

result in more severe adverse effects (Khallaf, 2011; Walters and Ayres, 2001). Furthermore, 

air pollution may reduce visibility, damage historical buildings and monuments, affect 

vegetation and reduce crop yield and quality (Khallaf, 2011; Ivaskova et al., 2015).   

It is important to mention that air pollution is a serious issue anywhere, however, it  is 

considered more of a serious problem in large urban areas (Brunt et al., 2016; DEFRA, 2017). 

This is due to the fact that urban areas possess greater number of emission sources and have 

densely built-up areas including tall buildings and street canyons, which hinder dispersion of 

locally emitted air pollutants (Wu et al., 2017). Urban areas have various emission sources, 

e.g., road traffic, point emissions and area emissions emitting high volume of both gaseous 

(e.g., NO, NO2, CO and SO2) and particle pollutants (e.g., PM10 and PM2.5) (DEFRA, 2017). 

In addition, more people live per unit area in urban areas, this causes the exposure of more 

people to air pollution. These factors like presence of high pollution concentrations and high 

population density make air pollution a more serious issue in urban areas. Therefore, it is vital 

to characterise the spatial variability of air pollution in urban areas.   

Understanding spatial variability of air pollution in urban areas has been a serious challenge 

due to the sparse air quality network operated by DEFRA and local authorities in large urban 

areas in the UK. This is also the case in Sheffield, where only three air quality monitoring 

stations (AQMS) are installed by DEFRA and 5 by the Sheffield City Council. The reason is 

that reference sensors are expensive to purchase and maintain, therefore historically it was not 

possible to design a dense air quality monitoring network in urban areas. However, with the 
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emergence of the low-cost sensors (LCS), now structuring a dense network has become 

feasible. As mentioned in Chapter 1, in this PhD project the intention is to structure a dense air 

quality monitoring network made of several layers of sensors including reference sensors, LCS 

and IoT sensors. Data collected by the dense network will be analysed using different data 

analysis and modelling techniques to create high-resolution maps. Sensors calibration and data 

fusion techniques will be employed to improve data quality by comparing and fusing air quality 

measurements with estimated pollution concentrations. Below a detailed review of the current 

air quality modelling and monitoring techniques is provided to understand the state of the art 

of such techniques.    

2.2. Urban air quality modelling  

Air pollution models are numerical tools for describing the causal relationship of atmospheric 

pollutants with emissions, meteorology, deposition, chemical transformation, and other factors 

like topography and land-use (Daly and Zannetti, 2007). Air quality modelling is carried out 

for several purposes including air quality prediction/forecasting, quantifying the impacts of air 

pollution (e.g., health impacts), modelling the impacts of various factors on air pollution, 

analysing the relationship between different pollutants, modelling pollution processes and 

transport, quantifying pollutant concentrations, deposition and environmental fate, running and 

testing emission scenarios, predicting the dispersion of air pollutants in the atmosphere based 

on emissions and meteorological parameters, quantifying the emissions of air pollutants from 

various emission sources, determining long-term trend in air pollutant concentrations, and 

producing high resolution spatiotemporal maps of air pollution (Aldrin and Haff, 2005; 

Andersen et al., 2006; Arnold et al., 2005; Baur et al., 2004; Berastegi et al., 2001; Brasseur et 

al., 1998; Munir et al., 2013; Westmoreland et al., 2007). Dispersion models are also used for 

emergency planning of accidental chemical releases (Wilkening and Baraldi, 2007). 

Modelling studies are carried out on local levels like modelling of pollutants dispersion from a 

road or a point source, regional scale smog modelling and global circulation modelling. Air 

pollutant concentration in the atmosphere is determined by four main processes: emissions, 

transport, chemistry and deposition. Air quality modelling try to quantify the effect of these 

processes and determine atmospheric concentrations. In this review air quality modelling is 

divided into two main branches: Dispersion modelling and Statistical Modelling. These are 

further divided into several sub-branches as shown in Figure 2.1. Each type of these modelling 

approaches is reviewed below. 
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Figure  2.1. Various types of air quality modelling 

  

2.2.1. Dispersion air quality modelling 

Dispersion air quality modelling techniques are effective tools for determining downwind 

concentrations of air pollutants at a given time and space emitted by a known emission source 

for example an industrial plant or road traffic. These models are mathematical representation 

of the atmospheric processes determining the rate at which pollutants are mixed with clean air. 

Dispersion models are run with computer programs, which are able to solve the mathematical 

equations and algorithms to simulate the pollutant dispersion in the atmosphere. Dispersion 

models have the potential to incorporate both temporal and spatial variations to replace the 

need for air pollutant monitoring. However, high cost of purchase, maintenance and high input 

demands limit their application. 

Dispersion of air pollutants in the atmosphere is mainly controlled by (e.g., Daly and Zannetti, 

2007):  

(a) Advection/transport,  

(b) Diffusion, 

(d) Chemical reaction, and  

(e) Deposition of air pollutants.  

Atmospheric dispersion model requires various inputs to produce the required outputs. The 

main inputs of dispersion model include (CERC, 2017): (a) Meteorological inputs, e.g., wind 

speed and direction, cloud cover, solar radiation, air temperature and stability classes for 

defining atmospheric turbulence, (b) Detailed emission data of pollutants, (c) Emissions release 

parameters which include source location, height, type of source (line source, area source and 
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point source), exit velocity, exit temperature and mass flow rate or release rate, (d) Terrain 

characteristics at both source and receptor locations, and (e) Surface roughness, defined in 

terms of rural or urban terrain.  

A number of techniques exist for modelling the dispersion of air pollutants, which vary in 

sophistication but all include some sort of simplification of the dispersion processes. Selecting 

a particular modelling approach depends on several factors such as the temporal and spatial 

scale of the modelling, resolution of the data available to run the model, the purpose of the 

modelling, skill of the modeller, time available and financial and computer resources available 

(El-Harbawi, 2013).  

There are three main types of dispersion modelling techniques: Gaussian modelling, Eulerian 

grid modelling and Lagrangian trajectory modelling (Salmond et al., 2006). El-Harbawi (2013) 

reviewed dispersion modelling techniques and divided them into five main types: Gaussian 

models, Box models, Lagrangian models, Eulerian Models and Dense gas models. Modi et al. 

(2013) reviewed dispersion modelling techniques in which in addition to the above five types 

they mentioned two other models: Computational Fluid Dynamic (CFD) and Aerosol Dynamic 

Models.    

2.2.1.1. Gaussian plume modelling 

Gaussian modelling was introduced by Pasquill (1961, 1962 and 1974) and Briggs (1965). 

Gaussian modelling technique is simple and computationally efficient and require simple input 

data. Gaussian modelling is normally used for fast screening type calculation of the pollutant 

dispersion from point sources, line sources or area sources. Urban areas can be modelled as a 

sum of area sources (e.g., domestic emission), point sources (e.g., factory or power stations), 

and line sources (e.g., road traffic). Gaussian modelling treats dispersion as a statistical process 

rather than representing individual turbulent motions of the atmosphere. Well known examples 

of Gaussian dispersion modelling are Airviro (Gauss model), AERMOD - EPA, CTDM 

(Complex Terrain Dispersion Model – EPA), ADMS – CERC UK, CALINE3 for highway air 

pollution and Offshore and Coastal Dispersion (OCD) model for coastal areas.  

In the Gaussian plume the expanding plume has a Gaussian or normal distribution of 

concentrations in the vertical (z) and lateral (y) directions. The concentration (C) (µg/m3) at 

any point (x, y, z) is given by (William, 2000):  

 

   (2.1) 

 

Where, 

C (x, y, z) pollutant concentration at point (x, y, z) 

x, y, and z are the along wind, crosswind, and vertical distance  

µ is wind speed (in the x downwind direction, m/s) 

σ represents the standard deviation of the concentrations in the y and z direction 
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Q is the pollutant mass emission rate (g/s) 

Heff is the effective stack height (height of the stack plus the plume rise) 

 

 

Figure 2.2. Schematic diagram of a Gaussian plume (Lagzi et al., 2013) 

Gaussian plume models are steady state model, assuming that conditions remain similar over 

the averaging period. Therefore, Gaussian models cannot capture the random fluctuations in a 

real plume. Gaussian models are suitable for modelling average concentrations of non-reactive 

pollutants, and therefore are commonly used for primary pollutants emitted by a road traffic 

and industrial chimneys.  

2.2.1.2. Lagrangian and Eulerian Dispersion Modelling 

Eulerian and Lagrangian models are state-of-the-art tools of recent atmospheric dispersion 

simulations (Dacre et al., 2011). In Lagrangian modelling an air parcel (puff) is followed along 

a trajectory and is assumed to keep its identity during its path, whereas in Eulerian modelling 

the area under investigation is divided into grid cells both in vertical and horizontal directions 

(Daly and Zannetti, 2007) and mathematical equations are solved for every grid point in the 

domain at each time step. 

Lagrangian models are simpler in concept and application than Eulerian models, which require 

greater complexity of inputs and computing (William, 2000). In contrast to Gaussian, these 

models are run for long range transport (>100 km). These models incorporate dry and wet 

deposition as well as chemical reaction of pollutants. Furthermore, they take into account large 

scale meteorological parameters like specifying the movement of air mass on a synoptic scale. 

Lagrangian models treat the atmosphere as a series of air parcels moved around within a wind 

field. In this way, it follows the trajectories of a single or multiple air parcels as they are 

transported by the wind over long distances. The Eulerian approach treats atmosphere as a grid 

made up of volumes or boxes, whose properties change with time. Perfect mixing is assumed 

within each grid. In this case the mathematical equations representing transport and chemical 

transformation have to be solved at each grid point. Eulerian models are better for modelling 

dispersion from area sources or secondary pollutants (e.g., ozone). However, Eulerian models 
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are computationally expensive and require large parallel computers to model smog or global 

climate models.   

Example of Lagrangian model: European UNECE/EMEP (European Monitoring and 

Evaluation Program) model, UK meteorological Numerical atmospheric dispersion modelling 

environment (NAME) model, UK meteorological STOCHEM model, Hybrid Single Particle 

Lagrangian Integrated Trajectory Model (HYSPLIT) developed at NOAA's Air Resources 

Laboratory. Example of Eulerian dispersion modelling: Urban Airshed Model (UAM) iv and 

v, the California Grid Model (CALGRID), Comprehensive Air Quality Model with Extensions 

(CAMx), the Regional Oxidant Model (ROM), the Community Multiscale Air Quality Model 

(CMAQ), Airviro (Grid model), the Regional Modelling System for Aerosols and Deposition 

(REMSAD) and the Community Multiscale Air Quality (CMAQ-UK) model.  

Eulerian and Lagrangian models are used for simulating air pollutant dispersion on large scale, 

e.g., meso- to macro-scale. These models depend on numerical weather prognostic (NWP) for 

meteorological data. However, the grid resolution of NWP models is normally from 1 to 10 

km, which is too coarse for urban air pollution modelling where source and receptor points are 

often located within a few hundred meters from each other, surrounded by a very complex 

geometry. Therefore, Eulerian and Lagrangian models cannot be used for urban scale 

modelling of air quality. For urban scale modelling three approaches can be applied: Gaussian 

dispersion modelling (section 2.2.1.1), Computational Fluid Dynamics (CFD) modelling 

(section 2.2.1.3) and statistical modelling (2.2.2).  

2.2.1.3. Computational Fluid Dynamics (CFD) Model 

CFD are vital tools that can model airflow and pollutant dispersion within up to 1 m resolution 

in urban areas (Sanchez et al, 2017). CFD models provide a tool to solve various partial 

differential equations (PDEs) that define the governing equations of transport and dispersion 

of air pollutants. The basic equations of motion are known as the Navier–Stokes equations, 

which relate the conservation of mass, energy and momentum. The basic form of the Navier–

Stokes equation for turbulent incompressible fluids is given below:  
(2.2) 

where  is the wind field,  is density, p is pressure,  is the eddy viscosity and  is the 

gravitational acceleration vector. CFD are flexible and can be applied at microscale. CFD 

models consist of four main parts (Lagzi et al., 2013): (i) A mesh generator, which splits the 

spatial domain into a user defined resolution cells; (ii) A PDE solver, which solves the Navier–

Stokes and other equations; (iii) Turbulence model, which characterise the turbulence in the 

complex geometry; and (iv) A visualization tool, which represents the outputs of the model. 

To predict a pollutant concentrations, CFD requires traffic emission and meteorological data. 

Emission data are obtained from an emission model coupled to a microscale traffic simulation 

system, whereas wind speed and direction are obtained from a microscale meteorological 

model. In CFD modelling longer periods of time, for example several weeks or months, is 

generally a problem due to huge computational time. To overcome this problem, Parra et al. 

(2010) and Santiago et al. (2017) suggested steady CD-RANS (Computational Fluid Dynamics 

- Reynolds-averaged Navier-Stokes) modelling approach. Sanchez et al. (2017) applied CFD 
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model in Madrid, Spain to model the spatial distribution of NOx concentrations in a heavily 

trafficked urban area. They followed a weighted average CFD simulations to compute the time 

evolution of NOx dispersion considering the actual atmospheric conditions. Pollutant 

emissions were estimated from the traffic emission model and meteorological parameters were 

derived from a mesoscale meteorological model. The predicted NOx concentrations were 

compared with measured concentrations. The estimated concentrated correlated well with 

measured concentrations in the research area in Madrid.  The German MISKAM and the 

French MERCURE are examples of CFD software designed for atmospheric dispersion and 

wind engineering studies.  

In addition to studying the atmospheric dispersion of pollutant in urban areas, the CFD models 

have good potential for studying anthropogenic ventilation sources of air dynamic and 

circulation. The main shortcoming is that due to the complexity of its mathematics, CFD 

simulations are processor-intensive, requiring substantial computational time and modelling 

cost.  

2.2.1.4. Photochemical air quality models 

The photochemical air quality models are large-scale models which simulate changes in 

pollutant concentrations using mathematical equations that describes the chemical and physical 

processes in the atmosphere (Daly and Zanetti, 2007). Photochemical models can be applied at 

all levels ranging from local to global scale. Photochemical models can play a vital role in 

understanding how pollutants evolve in the atmosphere and in determining the levels of various 

photochemical pollutants, mainly O3 and secondary NO2 which are formed in the atmosphere 

from the chemical reactions of primary pollutants.  

Photochemical models try to simulate the ways in which air pollutants form, accumulate, and 

dissipate in the atmosphere (Yarwood et al., 2014). They do this by describing the process 

which form O3 molecules in the atmosphere. For instance, emission of pollutants from a point 

source or a line source that can contribute to O3 formation. Another example is the simulation 

photochemical reactions that lead to O3 pollution. Photochemical reactions are chemical 

reactions which are caused by solar radiation. Photochemical reactions may result in the 

formation of radicals which react with volatile organic compounds (VOCs) and NOx to form 

O3 molecules (Yarwood et al., 2014).   

Examples of photochemical air quality models include Community Multiscale Air Quality 

(CMAQ), Comprehensive Air Quality Model with Extensions (CAMx), Regional Modelling 

System for Aerosols and Deposition (REMSAD), and Urban Airshed Model (UAM) (El-

Harbawi, 2013). 

2.2.1.5. Hybrid models 

Several models have been developed which used more than one modelling techniques known 

as hybrid models. For example, Airviro modelling system uses Guass model to calculate 

concentrations of pollutants above ground (open landscape) or rooftop (buildings) on the 

local/urban-scale, and it uses the Grid model to calculate concentrations on a regional scale. 
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2.2.2. Statistical modelling 

Statistical modelling utilises mathematical equations based on sampled data to approximate the 

underlying phenomena (population). In other words, statistical modelling is the formalisation 

of relationships between variables in the form of mathematical equations. Inferential statistics 

uses observed data to deduce properties of an underlying probability distribution. In contrast, 

descriptive statistics characterises only the sampled data without the assumption that it comes 

from a population. 

Statistical modelling techniques are widely applied to analyse air pollutant data around the 

globe. A brief review of these studies are provided below:   

2.2.2.1. Time series modelling  

Time series modelling is the act of predicting the future by understanding the past (Adhikari 

and Agrawal, 2013). Time series is a set of observations in sequence over successive times. 

Mathematically time series is a set of vectors x (t), where t represents the time elapsed and its 

value could be 0, 1, 2….n, and x is a random variable. The data points in a time series should 

be arranged in a chronological order. Time series could be either univariate (made of a single 

variable) or multi-variate (made of several variables). Time series is generally made of four 

components: Trend, Seasonal and Irregular (random) components (Adhikari and Agrawal, 

2013).  

To account for the four components time series models could be either multiplicative or 

additive.  

Multiplicative time series model: Y(t) = T(t)× S(t)×C(t)× I(t)       (2.3) 

Additive time series model: Y(t) = T(t) + S(t) + C(t) + I(t)          (2.4) 

Where Y(t) is the time series variable (observations) and T(t), S(t), C(t) and I(t) are trend, 

seasonal, cyclical and irregular components. Multiplicative time series model assumes that the 

components of a time series are not necessarily independent and might affect each other; 

whereas the additive time series model assumes that the four components are independent of 

each other. A time series is non-deterministic in nature, which in simple words means that the 

future prediction cannot be certain. The probability structure of a time series is termed as a 

stochastic process (Hipel and McLeod, 1994).  

Time series modelling is a useful tool for data analysis and have several benefits, which include 

data cleaning, data understanding and forecasting (Bush, 2020). Time series modelling can help 

us filter out the noise and reveal the true signal in a dataset. Once dataset is cleaned and the 

time series is divided into its different components, it helps us understand the true nature of the 

dataset. Finally, like other modelling approaches, time series modelling helps us predict future 

levels with the help of present and past levels of the time series (here NO2 concentrations) 

(Bush, 2020). To build a time series model the time series must be stationary. For the time 

series to be stationary the mean, variance and covariance of the series should not be a function 

of time (Srivastava, 2015). If the time series is not stationary, it should be stationarised first 

and then fit a stochastic model (Srivastava, 2015). Differencing and power transformations can 
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be used to detrend and deseasonalise the time series to make it stationary (Adhikari and 

Agrawal, 2013).   

Time series model could be linear or nonlinear depending on the relationship between current 

and past observations (Adhikari and Agrawal, 2013). Autoregressive (AR) and moving average 

(MA) are the two widely used linear time series models (Hipel and McLeod, 1994). The AR 

and MA are combined to form the Autoregressive Moving Average (ARMA) and 

Autoregressive Integrated Moving Average (ARIMA) (Cochrane, 1997).  To model and predict 

a seasonal time series the Seasonal Autoregressive Integrated Moving Average (SARIMA) 

model is used which is a variation of ARIMA (Hipel and McLeod, 1994). ARIMA along with 

its various variations are also known as the Box-Jenkins models because they are based on 

Box-Jenkins principle (Hipel and McLeod, 1994). Kadiyala and Kumar (2012) have reported 

three general categories of time series linear modelling: (a) the univariate time series models 

(e.g., AR, MA, ARMA, ARIMA); (b) the multivariate time series models (e.g., Autoregressive 

Moving Average model with eXogenous inputs (ARMAX) and Autoregressive Integrated 

Moving Average model with eXogenous inputs (ARIMAX)); and (c) the multiple time series 

models (e.g., Vector Autoregressive with eXogenous inputs (VARX), Vector Autoregressive 

Moving Average (VARMA), Seasonal Vector Autoregressive (SVAR), Vector Error 

Correction (VEC) model). Further details provided in chapter 8, Figure 8.1.  

Pisoni et al. (2009) have developed a Nonlinear Autoregressive model with eXogenous variable 

(NARX) for predicting peak ozone concentrations in Italy. Pisoni et al. (2009) discussed the 

possible advantages of using polynomial NARX instead of artificial neural network. The model 

was able to predict ozone concentrations with the model performance similar to neural 

network-based NARX. However, in addition polynomial-based NARX model identified the 

best set of regressors for ozone prediction which is an extra advantage of the model. Diaz-

Robles et al. (2008) and Goyal et al. (2006) have applied ARMA and ARIMA for predicting 

PM10 in urban areas. The models were unable to capture the nonlinear behaviour and extreme 

PM10 concentrations. Both ARMA and ARIMA require continuous past AQ data, which is 

sometimes an issue for employing these models. More advance time series modes like 

ARMAX and ARIMAX have the ability to include external variables (explanatory variables). 

ARMA and ARIMA models can be coupled with ANN (e.g., Diaz-Robles et al., 2008) and 

polynomial (e.g., Pisoni et al., 2009) to make hybrid models, which are more powerful. To 

build a hybrid model, firstly ARIMA or ARIMAX model is developed and then ANN or 

polynomial model is employed to model the residuals of the time series model. To predict daily 

maximum PM10 concentrations four models: ARMAX, ANN, Multiple Linear Regression 

(MLR) and a hybrid model (ARIMAX couple with ANN) were employed in Chile. The hybrid 

model produced significantly better performance capturing 100 % alert and 80 % pre-

emergency episode. Goyal et al. (2006) developed ARIMA, MLR and hybrid of ARIMA-MLR 

to predict respirable particulate matter in India and Hong Kong. Again, the hybrid model 

demonstrated significantly better than the other individual two models in terms of particulate 

matter predictability. Rahman et al. (2016) employed two models for forecasting air pollution 

index in Malaysia. They employed seasonal autoregressive integrated moving average 

(SARIMA) and fuzzy time series (FTS). AQ data from three monitoring stations were used 

which included industrial, residential and sub-urban areas. SARIMA which used data from 

urban areas perform better, whereas FTS perform better when using data from suburban areas. 
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This indicates that classical time series (SARIMA) models can perform as good as the modern 

techniques (FTS).  

This review shows that time series models have made continuous progress during the last 

decade or so. The updated time series modelling techniques not only can handle multivariate 

time series but also address nonlinearities and include exogenous variables. The most recent 

version is the NARMAX (Chen and Billings,1989), which has been applied in several 

engineering studies, for example Zito and Landau (2005) applied polynomial NARMAX model 

to diesel engine in which a practical identification procedure was developed. However, no 

example of NARMAX application to air quality was found in the current literature.      

2.2.2.2. Linear regression models 

Linear regression models are probably the most widely used models for air quality modelling. 

They can be represented as below:  

Yi = βo + βiXi + εi                  (2.5) 

Where Y is the response (dependent) variable, X is the explanatory (independent or predictor 

variable), βo is the intercept, β is the slope (coefficient) of the equation and ε is the error term. 

The regression parameters or coefficients (βo and βi) are generally calculated by minimising 

the sum of square errors (least square method).   

Regression techniques correlate air pollutants such as NOx concentrations to independent 

(explanatory) variables (e.g., road traffic characteristics, meteorological parameters and the 

concentrations of other air pollutants). These statistical models are used: (a) to understand the 

association between response and explanatory variables; (b) to predict and forecast air pollutant 

levels; (c) investigate temporal and spatial variations in air pollutant levels; and (d) to analyse 

the health impacts of air pollutants (Aldrin and Haff, 2005; Baur et al., 2004; Gardner and 

Dorling, 2000). Traditional statistical models such as simple linear regression and multiple 

linear regression models usually show inferior performance in terms of predicting future air 

pollutant concentrations. These models are probably the most commonly used approaches for 

air quality modelling. However, as reported previously by several researchers (e.g., Baur et al., 

2004; Gardner and Dorling, 2000; Munir et al., 2014), air pollutant data are non-normally 

distributed and the association between explanatory and response variables is non-linear, 

therefore classic statistics which assume normality and linearity of the data should not be 

applied to air quality data, otherwise it can result in erroneous results (Reimann et al., 2008).  

Linear regression models were employed to predict several air pollutants (NO2, PM10, and O3) 

using six pollutants (NO, NO2, O3, SO2, CO, PM10) and meteorological parameters (wind 

speed, solar radiation, humidity and temperatures) as predictors in Surabaya City, Indonesia 

(Syafei et al., 2015). Serial error correlations in the predicted concentration was addressed to 

improve the model prediction. Alternative, variables selection based on independent 

component analysis (ICA) and principal component analysis (PCA) were used to obtain subsets 

of the predictor variables to be imputed into the linear model. The former models using original 

variables showed much better performance in comparison to the model using ICA and PCA for 

predictors extraction.  
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Pires et al. (2008) compared the performance of five linear models for predicting the daily 

concentrations of PM10. The models were: (i) multiple linear regression; (ii) principal 

component regression; (iii) independent component regression; (iv) quantile regression; and 

(v) partial least squares regression. Several air pollutants (SO2, CO, NO, NO2 and PM10) and 

meteorological parameters (wind speed, wind direction, temperature and relative humidity) 

were used as predictors in the models. Using the training data set quantile regression model 

demonstrated the best, whereas independent component regression demonstrated the worst 

performance. Using the testing dataset multiple linear regression, principal component 

regression and partial least squares regression models showed similar results to each other and 

had better performance compared to the other approaches. Pires et al. (2008) reported that the 

model performance was affected by the data size and the fact whether the data were included 

in the training dataset or not.  

2.2.2.3. Quantile regression model 

Ordinary linear regression analyses the average relationship between the response and 

explanatory variable, whereas quantile regression describes the relationship at different points 

in the conditional distribution of response variable (y). These points could be median (50th 

percentile or 0.5 quantile), 1st quartile (25th percentile or 0.25 quantile), 3rd quartile (75th 

percentile or 0.75 quantile) or any other point like 0.1, 0.2, …. 0.9 quantile (Hao and Naiman, 

2007). Quantile regression model is given by the following equation:  

𝑌𝑖 =  𝛽𝑜
(𝑝)

+ 𝛽(𝑖)
(𝑝)

𝑋𝑖 +  ε(𝑖)
(𝑝)

                                  (2.6) 

In the above equation ‘p’ is the pth quantile and its value lies between 0 and 1.  

In the quantile regression models the full distribution of response variable (e.g., NOx) as a 

function of several important explanatory variables, e.g., other air pollutants like CO, O3, SO2 

and meteorological variables like wind speed, direction, temperature and relative humidity. 

Standard regression models provide an incomplete picture of the relationship between response 

and explanatory variables as they consider only the mean response (Cade and Noon (2003). 

Quantile regression, which was developed by Koenker and Bassett (1978), provides a more 

complete picture of the conditional distribution by considering the whole distribution of the 

response variable.  

 Several researchers have applied quantile regression to the analysis of air quality data. Baur 

et al. (2004) utilised quantile regression model to analyse the nonlinear association between 

ground level ozone and local meteorology. Baur et al. (2004) demonstrated that quantile 

regression model produced better results than linear regression model in terms of R2-value. 

Also, it was demonstrated that the effect of explanatory variables on ozone concentrations 

varied significantly at various quantiles of ozone distribution. Carslaw et al. (2013) used a 

quantile regression technique to analyse the air pollutant emissions of petrol and diesel 

passenger cars aiming to explore the effects of high power vehicles on exhaust emission. 

Carslaw et al. (2013) noted that significantly more insight was gained into the pollutant 

emissions by using quantile regression model which described and modelled the full 

distribution of vehicle emissions as a function of several important explanatory variables. 

Moreover, Sayegh et al. (2014) compared the performance of five modelling techniques, 

including quantile regression, multiple linear regression, generalised additive model,  and 1-
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way and 2-way Boosted Regression Trees models. They used several statistical metrics 

including root mean squared error (RMSE), correlation coefficients (r), the fraction of 

prediction within a factor of two (FAC2), Index of agreement (IA), and mean bias error (MBE) 

to assess the models performance. Sayegh et al. (2014) concluded that the performance of 

quantile regression model was better than the other models included in the study. Quantile 

regression model predicted PM10 concentrations with minimum error and high accuracy. The 

better performance of quantile regression model was believed to be due to the model’s 

approximation behaviour which is based on a number of quantiles used in the model, in contrast 

to other models which is based on average association. Furthermore, Martin et al. (2009), Sousa 

et al. (2008), Munir et al. (2012) and Munir (2014) have employed quantile regression 

modelling techniques to model various air pollutants and reported significantly improved 

prediction as compared to some other regression approaches, mostly multiple linear regression.  

It is important to note that quantile regression model has the ability to model pollutant 

concentration using different quantiles, for example 0.05 quantile (5th percentile), median or 

0.5 quantile (50th percentile), 0.75 quantile (75th percentile) and so on. There are two ways to 

assess the performance of quantile regression model: (a) local performance that considers only 

the prediction of a single quantile, let say median; and (b) global performance which considers 

the prediction of several quantiles at the same time. It is not mentioned whether Pires et al. 

(2008) considered local or global performance of quantile regression model. Quantile 

regression model has the potential to show much better performance when global performance 

is assessed, which is reported by Baur et al. (2004), Sayegh et al. (2014), and Munir et al. 

(2014).    

Several authors (e.g. Duenas et al. 2002) have reported that air pollutants data are not normally 

distributed. Furthermore, it is reported that air pollutants have nonlinear association with their 

predictors (e.g. Gardner and Dorling2000; Baur et al. 2004), which means that the contributions 

of the explanatory variables (e.g. meteorological variables) vary significantly at different levels 

of the response variable. Ordinary linear regression modelling techniques assume linearity of 

the relationship between response and explanatory variables and normal distribution of the 

error terms, therefore, when parametric linear regressions are applied to air quality data, they 

may result in biased results. It is, therefore, advised to apply more robust nonlinear statistical 

approaches for air quality data analysis.   

2.2.2.4. Nom-linear regression model  

Nonlinear models relax the assumption of linearity between response and explanatory 

variables. Polynomial regression and step functions are simple examples of nonlinear 

regressions, whereas regression splines, smoothing spline, local regression and generalized 

additive models are more sophisticated example of nonlinear regression modelling (James et 

al., 2013).  

Singh et al. (2012) compared the performance of linear and nonlinear modelling for predicting 

air quality in Lucknow, India. The modelling approaches they employed were partial least 

squares regression (PLSR), multivariate polynomial regression (MPR) and artificial neural 

network (ANN). Three different ANN models were developed viz. multilayer perceptron 

network (MLPN), radial-basis function network (RBFN) and generalized regression neural 

network (GRNN). They modelled SO2, NO2 and particulate matter (PM) using several 

explanatory variables including meteorological parameters (air temperature, relative humidity, 
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wind speed) and air pollutants (PM, NO2, SO2). Nonlinear models (MPR, ANNs) performed 

better than the linear PLSR models. Among nonlinear models, the performance of the ANN 

models was better than the low-order nonlinear MPR models. Furthermore, among ANN, 

GRNN outperformed the other two ANN showing high correlation between modelled and 

observed concentrations.  

Nieto and Anton (2014) applied a nonparametric regression algorithm known as multivariate 

adaptive regression splines (MARS) in norther Spain to determine the controlling factors of air 

pollution. The MARS model produced results which were simple and easy to interpret. The 

model is computationally efficient and has the ability to accurately estimate the contributions 

of the input variables. The three fitted MARS models for NO2, SO2 and PM10 had coefficients 

of determination equal to 0.84, 0.90 and 0.77 and correlation coefficients equal to 0.92, 0.95 

and 0.88, respectively, indicating an acceptable goodness of fit.  

Examples of non-linear regression models are Generalised Additive Models (GAM) and 

Boosted Regression Trees (BRT) models, below a brief review of these models is provided.  

Generalised Additive Models (GAM) 

Generalised Additive Model (GAM) which was proposed by Hastie and Tibshirani (1990), 

relaxes some of the assumptions which are assumed by the classical statistical tests, such as 

normality of the error term and linear association between response and explanatory variables 

(Wood, 2006). 

To permit nonlinear relationship between explanatory and response variables GAM replaces 

the linear components of multiple linear regression (βjxij) with a nonlinear smooth function fj 

(xij). GAM model can be expressed as given below:  

yi =  β0 + ∑ 𝑓𝑖(𝑋𝑖𝑗)𝑝
𝑗=1 +  εi                     (2.7) 

 

In the above equation ‘f’ is a basic function known as smoothing function and can be 

parametric, semi-parametric or non-parametric in nature. Several options for selecting the 

smoothers are available including regression splines, natural spline and smoothing spline 

(Woods, 2017; James et al., 2013). GAM is additive because separate ‘fj’ for each Xj are 

calculated and then their total contributions are determined by adding them up.   

GAM has the properties of both generalised linear models and additive models. GAM does not 

assume the response probability distribution to be normal and can allow it to be any member 

of the exponential family, such as exponential, gamma, Poisson or any other (Wood, 2006). To 

model the concentrations of NO, NO2 and PM10 with the help of meteorological parameters 

and traffic characteristics, Aldrin and Haff (2005) applied GAM and assessed the model 

performance by comparing the predicted values with measured ones. On the other hand, 

Carslaw et al. (2007) employed a GAM for quantifying temporal trends in air pollutants mainly 

emitted by road traffic, such as NO, NO2, CO, benzene and 1,3-butadiene at Marylebone Road 

London. Also, Westmoreland et al. (2007) used GAM to model NO2 levels in a busy street 

canyon in Gillygate York. They compared the outcomes of GAM and ADMS-Urban dispersion 

model with measured concentrations of NO2. The results showed that NO2 concentrations 

predicted by GAM were in much better agreement with measured concentrations than those 

predicted by ADMS-Urban.  
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Li et al. (2013) modelled Polycyclic Aromatic Hydrocarbons (PAH), particle number count 

(PNC), NOx and PM2.5 using traffic, meteorology and elevation variables in Southern 

California. They compared the performance of a GAM and MLRM, where GAM explained 

57-89% of the variance and performed significantly better than MLRM. Furthermore, wind 

speed and direction were found to be the most important predictors for all pollutants used as 

response variables, whereas traffic-related variables played a significant role for PAH, PNC, 

and NOx, and air temperatures and relative humidity for PM2.5. Generally GAM performs 

better that the linear counter parts.   

 Boosted Regression Trees (BRT)   

In statistical models recently more advanced approaches are available which have the 

capability to handle non-normal distributed data, explain interaction between various variables 

and provide better prediction. Such approaches include tree-based methods for classification 

and regression. Tree-based methods involve stratifying (segmenting) the explanatory variables 

into a number of simple regions (James et al., 2013). These methods are known as decision tree 

methods because the rules which are used for splitting the predictor variables are generally 

summarised in a tree form. Tree-based methods are simple and easy to interpret. Different 

techniques are available to produce multiple trees viz. bagging, random forests, and boosting 

(James et al., 2013).  

 

Classification and regression trees methods also include Boosted Regression Trees (BRT), 

which is a type of additive regression model. BRT combines the strengths of two algorithms: 

Regression trees and Boosting techniques, where the former relates a response variable to its 

predictors by recursive binary splits and the latter combines many simple models to give 

improved predictive performance (Elith et al., 2008). Bagging creates multiple copies of the 

original training dataset using the bootstrap technique. Firstly, it fits a separate decision tree to 

each copy of the data, and then combine all of the trees in order to create a single predictive 

model (James et al., 2013). Boosting works in a similar way, except that the trees are grown 

sequentially i.e. each tree is grown using information from previously grown trees. Boosting 

does not involve bootstrap sampling, instead each tree is fit on a modified version of the 

original dataset. To apply a BRT model, the user should first select the BRT tuning parameters 

which include a loss function (distribution), number of iterations, number of trees, the depth of 

each tree, interaction depth, the learning rate parameter λ (shrinkage) and the subsampling rate 

p (bag fraction) (Suleiman et al., 2015). 

 

BRT approaches have been applied in a number of environmental studies including air quality 

modelling. Carslaw and Taylor (2009) have applied BRT to air quality data collected near 

Heathrow Airport in London UK. They used hourly NOx data and modelled the complex 

interaction between various emission sources, especially they tried to separate air pollutant 

emissions from air crafts and road transports. In this study BRT model was applied to determine 

which variable had more effect on NOx concentrations. Air craft emissions of NOx were 

estimated and the effects of meteorological conditions and runway patterns were determined. 

Furthermore, the model results were compared with those from a more detailed independent 

field campaign, where a close association was observed between the model outcomes and field 

observations. Sayegh et al. (2016) applied BRT model to analyse how roadside NOx 

concentrations were affected by traffic density, background concentrations of NOx and 

meteorological conditions at three different monitoring sites, which were urban road, open 

motorway and motorway tunnel. BRT model showed a strong association between NOx 
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concentrations and background NOx levels. Results showed that model prediction was strongly 

influenced by the quality and resolution of explanatory variables, especially background NOx 

levels.  

 

Suleiman et al. (2015) compared the performance of artificial neural network (ANN) and BRT 

to model the concentrations of PM10, PM2.5 and particle number counts on Marylebone Road 

in London using air pollution, traffic and meteorological data as predictors in the model. The 

correlation coefficient (R) values of the ANN and BRT models were 0.96 and 0.95 for PM10, 

0.96 and 0.96 for PM2.5 and 0.89 and 0.87 for PNC, respectively. Suleiman et al. (2015) 

recommended BRT for air quality modelling despite the fact that it showed slightly weaker 

performance because BRT model offered much better interpretation and permit feature 

selection. Furthermore, Suleiman (2015) assessed several statistical and machine learning 

approaches and concluded that machine learning models performed better than the ADMS-

road model in spatiotemporal predictions of air pollution. Moreover, machine learning 

techniques performed significantly better in predicting the concentrations in street canyons. 

2.2.2.5. Land-use regression model 

Geographical Information System (GIS) based interpolation methods, such as Kriging, can be 

used to interpolate air pollutant concentrations between various air monitoring stations to 

provide better spatial coverage. However, when these approaches are applied at a local scale 

such as intra-city scale, these methodologies are known to produce considerable variations in 

air pollutant concentrations within a small area and are more effective at large scales, such as 

national or regional scale (Briggs, 2005). Land Use Regression (LUR) models provide an 

effective alternative on urban scale. LUR approach was introduced by Briggs et al. (1997) and 

since has been used in numerous studies around the world (e.g., Eeftens et al., 2012; Lee et al., 

2013; Muttoo et al., 2017; Rehman et al., 2017). LUR is a regression modelling technique that 

regresses spatially-explicit variables onto monitored pollutant concentrations within a GIS 

system. More specifically, LUR models associate pollutant concentrations, such as NO2 to site 

specific geographical characteristics, e.g., topography, land use, traffic, population density, 

altitude and meteorological parameters. The use of these variables in the regression model are 

known to capture small scale variability (Ryan and LeMasters, 2007). Rehman et al. (2017) 

developed a LUR model in Brisbane Australia to predict NO2 and NOx during 2009 – 2012. 

The model was able to explain 64 % and 70 % variations in NO2 and NOx, respectively. 

Distance to major roads and industrial areas were the common predictor variables for both NO2 

and NOx, suggesting an important role for road traffic and industrial emissions. Rehman et al. 

(2017) used the following independent variables in their model: distance to coast (km), distance 

to port (km), distance to airport (km), distance to nearest major road (km), distance to nearest 

minor road (km), major road length (km), minor road length (km), population density 

(person/km2), land use by type (km2) and elevation (m). Muttoo et al. (2017) used several 

geographic predictor variables to predict NOx concentrations in Durban South Africa 

employing a land use multivariate regression model. They used length of minor roads within a 

1000 m radius, length of major roads within a 300 m radius and area of open space within a 

1000 m radius in the model as independent variables. The LUR model was able to explain 73% 

variance in NOx concentrations, however cross validation resulted in R2 value of 0.59. 
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Wang et al. (2014) developed a European and regional level LUR model for modelling NO2 

and PM.  The LUR model used 17 PM and 23 NO2 ESCAPE (European Study of Cohorts for 

Air Pollution Effects) study areas across 14 European countries. The LUR model explained 

56% of the concentration variability across all sites for NO2, 86% for PM2.5, and 70% for 

PM2.5 absorbance at European level. Molter et al. (2010, Part I & II) developed a LUR model 

in Great Manchester, UK to model NO2 and PM10 and used the results of dispersion modelling 

(ADMS) for training the model instead of monitored data. This approach provides relative 

more number of sites as compared to monitored data. They have analysed both spatial and 

temporal variability in air pollution concentrations. Traffic intensity, emissions, land-use and 

physical geography were used as predictors in the models. He et al. (2018) have provided a 

review of the LUR models and listed the more commonly used predictors, viz. pollutant data, 

land use classification (e.g., residential, industrial, urban green space, street morphology, 

aspect ratio, traffic data (e.g., number and types of vehicles, railways network, road network), 

census data (e.g., houses density, population density), meteorology (e.g., wind speed, 

temperature, relative humidity), topography (e.g., altitude, slope angle), emission data, and 

remote sensing satellite data.  

Hoek et al. (2008) has provided a detailed review on LUR models, identifying 25 studies on 

the subject. They have identified several significant predictors for LUR models, including 

various traffic characteristics (e.g., traffic flow, road length, distance to major and minor roads), 

population characteristics (e.g., number of houses, housing density ), land use (e.g., urban, open 

space, industry, commercial), physical geography (e.g., altitude, distance to sea), and climatic 

conditions (e.g., wind speed, temperature, relative humidity). For details see Briggs et al. 

(1997), Stedman et al. (1997), Beelen et al. (2007), Ryan et al. (2007), and Hoek et al. (2008).  

Gillespie et al. (2016) developed a LUR model to estimate exposure to NO2 in Glasgow, 

Scotland. They used 135 NO2 passive diffusion tubes, which were divided to four groups (32 

– 35 sites per group) and models were developed using a combination of 1 to 3 groups as 

training sites to assess how the number of training sites affected the model performance. The 

explanatory variables used in the models were major road length, minor road length, all urban 

areas, building volume, distance to nearest major or minor road, green rural area, minor road 

length, and street configuration. The models were able to explain moderate to high variance in 

the data, where R2 ranged from 0.62 to 0.89 for training dataset and 0.44 to 0.85 for hold-out 

dataset. Precision of estimated exposure was increased with increasing number of training sites. 

Gillespie et al. (2016) concluded that use of more than 60 training sites had a considerable 

beneficial effect on model performance.      

Mostly, LUR approaches are applied in small or large urban areas (e.g., Beelen et al., 2013; 

Ryan and LeMasters, 2007), however, some researchers have also applied LUR to entire 

countries (e.g., Vienneau et al., 2010; Beelen et al., 2007; Stedman et al., 1997), who applied 

LUR models in Netherland and UK. Vienneau et al. (2010) developed land use regression 

models and compared their outputs in Great Britain and Netherland. The predictor variables 

included characteristics of traffic, population, land use and topography. They developed a 

common model for Great Britain and Netherland, which performed well with adjusted R2 0.63 

to predict NO2 concentrations. However, the model developed specifically for each country 

improved the model predictability. Furthermore, the model based on common data from both 

countries showed slightly lower performance than the model using local data from within each 

country. Models developed in one country and transferred to the other country showed 
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substantially worse performance than the country specific model. Therefore, they concluded 

that much care should be taken in transferring models from one area to another and in 

developing an LUR model for predicting air pollution in a large urban area. 

Several authors have reported the potential of LUR modelling techniques for improving spatial 

and temporal coverage of air pollution in urban areas. However, further works is required to 

improve the LUR modelling performance. This is possible by: (a) Improving air quality 

monitoring network (AQMN) – historically AQMN were sparse which did not provide enough 

monitoring data for training LUR model. More recently, low-cost sensors have enabled 

researchers to design purpose-designed networks, which have much greater number of 

monitoring sites. Increasing the number of monitoring stations could provide better spatial 

coverage and hence improvement in LUR model performance. (b) Data fusion techniques – 

fusing measured and modelled data can provide better quality and better spatial coverage of air 

pollution in urban areas, which can lead to better LUR modelling results. (c) Advance 

modelling techniques – the LUR modelling reviewed above used multiple linear regression 

model, which is based on several assumptions not met by air quality and meteorology data. 

More advanced nonlinear regression approaches (e.g., GAM and BRT) can be applied to 

improve the performance of LUR modelling. The intention in this project is to set up a dense 

network of AQ sensors in Sheffield, which could provide a better platform for training the LUR 

model employing advanced regression and machine learning approaches.  

2.3. Air quality data fusion techniques  

Integrating and merging data and information from several sources is known as data fusion 

(Castanedo, 2013). In literature, data fusion is also referred to as decision fusion, data 

combination, data aggregation, multisensor data fusion and sensor fusion. Data fusion 

originated in 1970 in the US and has several benefits, e.g., it is cost-effective and convenient, 

it minimises the need for primary research to collect further data thus reducing cost, and it fits 

into existing analysis (Nielsen, 2007). Data fusion integrates data from numerous sensors 

which have different physical characteristics and thus provides a basis for decision making, 

planning and control of intelligent machines (Meti and Sangam, 2005). Furthermore, data that 

have been fused from several sources help achieve inferences that are unfeasible from an 

individual source. Also, data fusion helps achieve data from various information sources in 

such a way that it provides better performance than when each information source is used alone 

(Meti and Sangam, 2005). Data fusion techniques merge observed data with modelled data in 

a mathematical objective way, adding value to both observed and modelled data. The observed 

data are improved by filling spatiotemporal gaps, whereas the modelled data are improved by 

constraining it with observed data (Schneider et al., 2015). Therefore, data fusion of observed 

data with modelled data can improve urban scale air quality mapping.  

Schneider et al. (2017) reported that the accuracy of fused data normally depends on a range 

of factors, which include (a) the total number of observations, (b) spatial distribution of the 

network, (c) uncertainty of the measured data, and (d) the ability of the model to accurately 

predict air pollutant levels with high spatial and temporal resolution. Son (2002) has classified 

data fusion methods into 3 main clusters: (1) Least square-based methods, e.g., optimal theory, 

Kalman filtering, uncertainty ellipsoids and regularization; (2) Probabilistic methods, e.g., 

evidence theory, Bayesian analysis of values of sensor, recursive operations and robust 

statistics; and (3) Intelligent aggregation methods, e.g., genetic algorithms, neural networks 
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and fuzzy logic. Meti and Sangam (2005) reviewed data fusion approaches and focused on four 

approaches, viz., fuzzy logic, artificial neural networks, wavelets transform and image fusion.  

Below some of the data fusion approaches are reviewed in light of the current literature.  

Geostatistics is one of the most widely used techniques for data fusion in spatial analysis. Olea 

(1999) has defined geostatistics as a collection of numerical algorithms that characterises 

spatial attributes in a similar way that time series characterises temporal data.  Basic 

components of geostatistics are (a) Variogram analysis (characterisation of spatial correlation), 

(b) Kriging (optimal interpolation which generates best linear unbiased estimate employing 

semivariogram model), and (c) Stochastic simulation (also employs semivariogram model to 

generate multiple equiprobable images of the variables) (Olea, 1999).   

Schneider et al. (2017) employed geostatistics methodology to fuse data obtained from a 

network of low-cost sensors and EPISODE dispersion model. EPISODE is a 3-D 

Eulerian/Lagrangian dispersion model that provides atmospheric pollutants forecast at urban 

and regional scales. For more details on EPISODE model see Slordal et al. (2003). Schneider 

et al. (2017) evaluated the geostatistics methodology for using both measured and predicted 

data of NO2 in Oslo, Norway during January 2016. The results showed that the fusing methods 

were able to produce realistic hourly NO2 concentrations which inherit spatial trend of the 

pollutant from the EPISODE model. Furthermore, fused data were compared to measured data 

from a reference instrument and results showed reasonably good resemblance between 

measured and fused data with R2 value of 0.89 and mean squared error of 14.3 µg/m3.  

One of the basic and probably most widely used approach for interpolation in geostatistics is 

Kriging. Kriging interpolates air pollutant levels (e.g., NO2 concentrations) between two values 

by modelling them with Gaussian process. Schneider et al. (2017) used the universal kriging 

techniques to combine modelled and measured values of NO2. Universal kriging is more 

advance and performs the data fusion by predicting NO2 concentrations through the 

interpolation of the observed concentrations and uses the model data for spatial trend. Universal 

kriging through the usage of one or more independent variables makes the overall mean as non-

constant. Universal kriging is mathematically equivalent to regression kriging or residual 

kriging (Hengl et al., 2007) but can perform both spatial interpolation and the linear regression 

in a single step.   

Hsu et al., (2017) reviewed different methods used for interpolation and divided them into two 

categories: Geostatistical techniques and Non-geostatistical methods. The geostatistical 

techniques include Ordinary Kriging, Universal Kriging, Simple Kriging, Empirical Bayesian 

Kriging and Original CoKriging. The non-geostatistical techniques include Splines, Trend 

Surface Analysis, Inverse Distance Weighting and Natural Neighbor. According to the findings 

of Hsu et al. (2017) the geostatistical interpolations showed better prediction than the non-

geostatistical interpolation techniques.  

Liang et al. (2017) developed a data fusion method and compared the outputs with Kriging-

with-external-drift (KED) and Chemistry module from WRF-Chem (Weather Research and 

Forecast Model with Chemistry Module). KED is a type Universal Kriging which takes into 

account the local trend of the variable (e.g. air pollutants concentrations) as well as external 

drift (a spatial trend) when minimising the variance of estimation (Hengl et al., 2003). Both 

KED and WRF-Chem were used to estimate daily PM2.5 levels in 10 km grid cells in North 
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China during 2013. The estimated concentrations from both KED and WRF-Chem were then 

fused with measured observations. For fusion a simple linear regression model was applied 

between the observed and estimated concentrations for both KED and chemistry models in 

turns. The regression coefficients obtained from the regression model were used to adjust the 

predicted concentrations. The performance of the models was evaluated. KED and data fusion 

methods showed better performance in terms of R2 value of 0.95 and 0.94, respectively as 

compared to 0.51 value for WARF-Chem model.  

2.4. Various types of  air quality sensors  

Air quality monitoring is important to promote air quality awareness and to support abatement 

strategies (Borrego et al., 2016). Several techniques are used to monitor air quality (Penza et 

al., 2014), which include (a) Reference air quality monitoring stations; (b) Portable air quality 

monitors; (c) Passive diffusion tubes; and (d) Low-cost sensors. Reference air quality 

monitoring is used for air quality compliance purpose, studying exposure, supporting air 

quality management and developing policy for cutting emissions. Reference instruments are 

the most expensive to purchase and maintain, therefore their density is normally very low and 

not dense enough for detailed spatial mapping in urban areas. Portable monitors are either 

carried by individuals or installed on vehicles to be parked in places where fixed sensors are 

not possible to be installed. Portable instruments can be useful for monitoring air quality in 

certain cases and provide high-resolution temporal data for shorter period of time, but have 

limited application for spatial maps. Passive tubes are small tubes used for monitoring gaseous 

air pollutants such as NO2 and provide long-term averaged data (e.g., annual average 

concentrations). Diffusion tubes are the cheapest technique and potentially can provide better 

spatial coverage, however, these can be used only for gaseous air pollutants and are unable to 

provide daily and hourly concentrations. Low-cost sensors are used to collect real-time air 

quality data providing high resolution spatial and temporal air quality data. This is the new 

trend in air quality monitoring and can support the conventional air quality monitoring stations 

(Heimann et al., 2015; Van den Bossche et al., 2015; Viana et al., 2015). The low-cost sensors 

use the latest microsensing technology and are considered the innovative tools for air quality 

monitoring (Castell et al., 2015; Snyder et al., 2013; Kumar et al., 2015; Stojanovic et al., 

2015). Data collected by the low-cost sensors can be used for detailed spatial mapping of air 

pollution, especially over small areas such as an urban area or a part of it, for atmospheric 

model validation, and for assessing population exposure. However, the quality of the data 

produced by the low-cost sensors, their robustness to the environmental conditions, comparison 

with reference techniques, and comparison of low-cost sensors produced by difference 

manufacturers need further investigation over large spatial and temporal range.   
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Table 2.1. Comparison of various air quality monitoring sensors 

Sensors 

type 

Pollutant 

monitored 
Power Pro and cons 

Reference 

sensors 

Gases and 

particles 
Mains 

Expensive, most accurate, coarse 

spatial resolution due to high 

purchase price, large size and heavy 

Diffusion 

tubes 
Only gases No need 

Coarse temporal resolution, 

cheaper, high spatial resolution, low 

quality data 

Low-cost 

sensors 

Both gases and 

particles 

Battery, solar 

or mains 

Low quality data, cheaper, high 

temporal and spatial resolution. 

 

2.4.1. Low-cost air quality sensors 

Several authors have analysed the performance of the low-cost sensors in comparison to 

reference methods and to other low-cost sensors. Borrego et al. (2016) performed an 

assessment of the low-cost sensors in comparison to reference instruments in Aveiro (Portugal) 

from 13th to 27th October 2014. The instruments both low-cost sensors and reference 

instruments installed side by side were used to monitor the levels of gaseous pollutants (e.g., 

CO, NOx, O3, SO2), particulate matter (PM10, PM2.5) and meteorological parameters (e.g., 

temperature, wind speed and direction, relative humidity, solar radiation and precipitation) and 

their measurements were mutually compared. Different sensors showed significantly different 

performance in terms of the statistical metrics used for evaluating the sensors performance. 

The range of R2 values for different air pollutants were: O3 (0.12-0.77), CO (0.53-0.87), NO2 

(0.02-0.89), PM (0.07-0.36) and SO2 (0.09-0.20), where lower R2 value shows poor 

performance of the low-cost sensors. Borrego et al. (2016) concluded that low-cost sensors 

have great potentials for air quality monitoring if properly supported by post processing and 

data modelling tools.   

Different sensor-systems use different principles to measure the concentrations of atmospheric 

pollutants (Borrego et al., 2016), which include optical particle counters (OPC), metal oxide 

semiconductor sensors (MOS), electrochemical sensors (EC), nondispersive infrared sensors 

(NDIR) and photo-ionisation detection sensors (PID). Aleixandre and Gerboles (2012) 

reported that low-cost air quality sensors (LCS) works through either measuring the 

electrochemical interaction between the sensing materials and the atmospheric chemicals or 

through absorption of visible light. Principle of light scattering or absorption is used for 

measuring the levels of PM. 

Individual sensors are usually integrated into a platform of sensors known as sensor node. 

Sensor node contains a sensor board, the sensors, and a control board, which integrates all the 

necessary parts such as GPS, data storage, communication ports and signal conditioning. Some 

of the well-known LCS sensors and their manufacturers (developers) are provided in Table 2.2. 

For more details on these sensors see chapter 3.   
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Table 2.2. Various brands of low-cost sensors (LCS) and their specifications 

Sensor name Pollutant measured Sensor type Manufacturer 

Cambridge 

university SNAQ1 

Gaseous pollutants, 

particulate matter 

Electrochemical, 

OPC 

University of 

Cambridge, UK 

AUTh-ISAG 

sensors2 

Gaseous pollutants (e.g., 

NO2 and O3) 
Metal oxides Libellium 

ECN – Airbox3 

Particulate matter (e.g., 

UFP, PM1, PM2.5, and 

PM10), gaseous (e.g., NO2 

and O) 

OPC and 

electrochemical 

Energy research 

Centre of the 

Netherlands 

NanoEnvi platform4 

Gaseous pollutants (e.g., 

SO2, NO, NO2, CO, CO2, 

O3, H2S and VOCs), 

particulates (PM10 and 

PM2.5) 

OPC, metal 

oxides and 

electrochemical 

Envira, Spain 

AQMesh sensors5 

Gaseous pollutants (NO, 

NO2, O3, CO) and particles 

(PM10, PM2.5, PM1) 

OPC and 

electrochemical 

Environmental 

Instruments Ltd, 

UK 

ENEA air sensor6 
Gaseous pollutants and 

particles 

OPC and 

electrochemical 

ENEA (Energia 

Nucleare ed 

Energie 

Alternative), 

Italy 

EveryAware sensor 

box7 

CO, SO2, NO2, O3, and 

PM10 

OPC and 

electrochemical 
Vito, Belgium 

Earthsense Zephyrs8 
NO, NO2, O3 and PM10 and 

PM2.5 

OPC, 

electrochemical 
EarthSense, UK 

Envirowatch 

E-MOTEs9 

Gaseous pollutants (NO, 

NO2, CO) 
electrochemical 

Envirowatch 

Newcastle, UK 
1. Mead et al. (2013); Popoola et al. (2013); Borrego et al. (2016) 

2. Borrego et al. (2016) 
3. Borrego et al. (2016); Hamm et al. (2016) 

4. https://enviraiot.com/nanoenvi-and-its-applications-for-air-quality-control/  

5. Borrego et al. (2016); Carruthers et al. (2016) 
6. Suriano et al. (2015) 

7. Borrego et al. (2016); Dongol (2015) 

8. https://www.earthsense.co.uk/zephyr 
9. http://www.envirowatch.ltd.uk/ 

2.4.2. Uncertainties in low-cost sensor measurements 

Low-cost air quality sensors are cheaper, compact, user-friendly and provide high-resolution 

spatiotemporal maps of air pollutant concentrations. These sensors have the potential to 

enhance the existing air quality network run by the local authorities on local levels or by 

DEFRA at the national levels. In addition, these sensors can be installed independently by 

various research and government organisations to monitor public exposure to various air 

pollutants within a specific area. However, despite all these positive points, the quality of air 

pollution data collected by the low-cost sensors is questionable.  There is a need for further 

investigation to quantify uncertainties in the low-cost sensor datasets. These uncertainties are 

https://enviraiot.com/nanoenvi-and-its-applications-for-air-quality-control/
https://www.earthsense.co.uk/zephyr
http://www.envirowatch.ltd.uk/
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related to the degree of harshness of the environmental conditions, especially extreme 

temperature and relative humidity and the time interval i.e. for how long these instruments 

work in the outdoor environment. Furthermore, uncertainties are also affected by the measuring 

principles of the sensors and the quality of the materials used by the manufacturers. Therefore, 

intercomparison of low-cost sensors made by different manufacturers and with reference 

instruments is required. Below a brief literature review of such studies is provided. 

Castell et al. (2016) have evaluated the performance of the AQMesh pods measuring gaseous 

air pollutants (e.g., NOx, CO, and O3) and particulate matter (PM10 and PM2.5) in Oslo, 

Norway. They performed the evaluation of both outdoor and in laboratory conditions. They 

considered several types of emissions and environmental conditions such as roadside traffic 

conditions and urban background conditions over a 6 month’s period (April to September, 

2015). Castell et al. (2016) concluded that good performance of the low-cost sensors in the 

laboratory conditions does not imply such performance in the outdoor conditions. Therefore, 

to reduce uncertainties, sensors must be calibrated in outdoor field conditions. They also 

concluded that there is a lack of adequate outdoor testing of the sensors by the manufacturers 

before marketing such sensors, which can lead to poor performance and low-quality data, 

which is of great concern, especially when public use such instruments by themselves to collect 

and interpret air quality data.  

Borrego et al. (2016) compared the performance of several low-cost sensors with reference 

instruments and reported that for measuring O3 AQMesh and NanoEnvi sensors had the lowest 

errors and higher coefficient of determination (R2 > 0.70), whereas ENEA Air-Sensors, ISAG 

and Cambridge SNAQ showed poor performance with R2 < 0.2. To measure the levels of NO2, 

Borrego et al. (2016) compared the performance of 6 senosrs, where the highest correlation 

and lowest errors were shown by AQMesh, ECN-Airbox and Cambridge University SNAQ 

with R2 > 0.80 and mean biased error (MBE) close to zero. In contrast, ENEA Air-Sensors and 

AUTh-ISAG sensors demonstrated very poor correlation (R2 < 0.1). For measuring the levels 

of CO, AQMesh and Cambridge University SNAQ had the highest correlation (R2 > 0.80) with 

reference instruments, whereas the performance of the rest of the sensors was also satisfactory 

(R2 > 0.50) (Borrego et al., 2016). For monitoring NO, AQMesh and Cambridge University 

SNAQ were compared, where AQMesh showed better correlation (R2 = 0.80) than Cambridge 

University SNAQ (R2 = 0.30). For measuring PM10, all low-cost sensors showed poor 

correlation with reference instruments, where R2 = 0.36 being the highest was observed for 

ECN Air-box (Borrego et al., 2016). ECN Air-box also showed the highest R-squared (R2 = 

0.27) with reference instruments for measuring PM2.5, the other sensors showed even lower R2-

value.  

Castell et al. (2017) compared the measurements from 24 commercial low-cost sensors 

AQMesh against reference instruments and reported that the quality of the data obtained from 

the low-cost sensors were questionable. The performance of the sensors varied both spatially 

and temporally and is dependent on the atmospheric composition and meteorological 

conditions, such as temperature and relative humidity. Furthermore, Castell et al. (2017) 

reported that the performance varied from unit to unit, therefore it is necessary to check the 

data quality of each unit separately before use. The sensors installed in the laboratory showed 

much stronger correlation (R2 > 0.95 for all pollutants) with reference instruments, than those 

installed outdoor, where average R2 values were 0.60, 0.86, 0.49, 0.54, 0.56 and 0.51 for CO, 

NO, NO2, O3, PM10 and PM2.5, respectively. Air quality data collected by using low-cost 
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sensors are suitable for promoting air quality awareness, general information and for 

highlighting air pollution hotspots, however, the data are not suitable for air quality compliance 

and research, especially for assessing health and environmental impacts of air pollution (Castell 

et al., 2017).  Dongol (2015) has also concluded that air quality data collected by low-cost 

sensors cannot be used for air quality regulatory purposes and for other purposes where high 

accuracy of data is required. Therefore, there is a need for further legislation to regulate the 

usability of data obtained from low-cost sensors (Lewis and Edward, 2016).   

Referring to the uncertainties in air quality data collected by low-cost sensors, Lewis and 

Edward (2016) have commented that the recent introduction of these sensors for monitoring 

public exposure to air pollution are generating a high volume of data, which remain mostly 

untested, and therefore their quality is questionable and will become a headache for air quality 

managers and planners in the future. Furthermore, Lewis and Edward (2016) mentioned that 

microsensors show stability and sensitivity issues and that the sensors readings are interfered 

by other long-lived air pollutants, e.g., CO2 and H2O and meteorological conditions like relative 

humidity, temperature and wind speed. The low-cost sensors performs better when air pollutant 

levels are high (Lewis and Edward, 2016).  

2.4.3. Recommendations for future improvement of air quality sensors 

The low-cost microsensors have potential to measure air pollutant levels in places where 

traditional monitoring is not possible. The low-cost microsensors are portable, cheaper, and 

can provide much better spatial and temporal coverage in real time providing more localized 

and timely warning to the public, however, the data obtained from these sensors are 

questionable and therefore further work is required to improve their quality.  

The performance of the low-cost sensors vary from place to place, therefore, local outdoor 

calibration is needed. Frequent calibrations of sensors improve their correlation with reference 

instruments (Smith et al., 2017). Lewis et al. (2016) have shown that one potential solution to 

reduce the uncertainties of air quality data obtained by using low-cost sensors is the application 

of supervised machine learning techniques, for instance Boosted Regression Tree (BRT) 

model. Spinelle et al. (2017) applied three approaches for calibrating the concentration of NO2, 

CO, and CO2. The methods were simple linear regression, multiple linear regression and 

supervised machine learning technique (artificial neural network). In the simple linear 

regression only the reference concentration was used as an explanatory variable, whereas in 

the other models relative humidity and temperature were also used. Supervised learning 

technique showed better performance than the other two models.  

Experimental design should be further improved to get better results. Studies (e.g., Castell et 

al., 2017) have shown that the performance of the low-cost sensors degraded with time. 

Therefore, shorter terms experiments should be designed which are likely to be less affected as 

compared to long-term experiments. Moreover, the sensors ideally should be used in locations 

and times where they are less likely to be exposed to extreme environmental conditions of 

temperature and relative humidity. Furthermore, using a cluster of sensors, in contrast to 

individual sensor, can significantly improve the data quality (Smith et al., 2017).   



31 

 

2.5. Research gaps 

The aim of this chapter was to carry out a detailed literature review and identify research gaps 

related to urban air quality modelling to be addressed in this project. The research gaps 

identified are listed below:  

 Since the emergence of low-cost sensors, several authors have deployed these sensors 

in urban areas. However, no formal approach has been used to identify the locations for 

sensors installation. Furthermore, the current air quality monitoring networks are 

structured using a single criterion (e.g., potential air pollution hotspots). To address 

this, in this project we aim to develop a formal approach for deploying a dense network 

of AQ sensors based on multiple criteria using sensors of different grades. This is 

related to objective 1 of the project.  

 From the literature review it was found that previously most of the sensor calibration 

studies whether in the laboratories or outdoor fields were carried out for a short period 

of time. Therefore, further research is required to compare the performance of low-cost 

sensors to each other and to reference sensor in outdoor fields for a longer period of 

time at least for a year, employing a nonlinear regression model. This is related to 

objective 2. 
 The literature review showed that previously several approaches have been employed 

for modelling the spatial variability of air pollutants in urban area. However, little was 

done on comparing different modelling approaches for analysing the spatial variability 

of pollutants in urban areas. To address this gap, in this project several modelling 

techniques will be used and their performance will be compared. This is related to 

objective 3 of the project.   

 Literature review revealed that the application of data fusion techniques improve the 

quality of data, however, little is done to demonstrate how these techniques help in 

improving the spatial modelling of air quality in urban areas. This is related to objective 

4, which aims to improve both model estimations and low-cost sensor measurements.  

 How the concentrations of NO2 measured by LCS and reference sensors vary on 

different temporal scales in urban areas, and what is the best time series model for 

modelling NO2 concentrations. This is related to objective 5 of the project.    

 

2.6. Summary of the chapter   

In this chapter a detailed review of different air quality modelling and monitoring was carried 

out.  The aim was to find out as to what are the state of the art for AQ modelling and low-cost 

sensors in light of the current literature. Air quality modelling techniques are mainly divided 

into two main categories: Dispersion air quality modelling and statistical modelling. Dispersion 

modelling are further divided into: (a) Gaussian, (b) Lagrangian, (c) Eulerian, (d) 

Photochemical, and (e) Hybrid modelling. State of the art dispersion pollution modelling 

approaches are hybrid models, which incorporate more than one of these approaches to model 

air quality in urban areas. Statistical modelling techniques can be further divided into four main 

sub-groups which include time series, linear regression, non-linear regression and land-use 

regression. In time series modelling NARMAX is probably the more advance technique, which 

is able to handle nonlinearities in air pollutant concentrations and has the ability to utilise 

external parameters such as meteorological parameters and can be an effective tool for air 

quality modelling at urban scale. In regression models, LUR has the potential to model the 
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spatiotemporal variability of air pollutants in urban areas using traffic, land-use and 

topographical characteristics. Literature review showed that in most of the previous studies 

linear LUR models had been developed. In this project a nonlinear LUR model will be 

developed that has the ability to handle non-normal distribution of air pollutant concentrations 

and address nonlinearities in the association of air pollutants with other controlling parameters 

like emission sources and land-use.  

  

Low-cost sensors have the potential to improve traditional air quality monitoring programme 

as these sensors are cheap, compact, user-friendly and provide high-resolution spatiotemporal 

measurement of air pollutant concentrations. However, these sensors have their limitations and 

the data obtained from these sensors are questionable. The data from the low-cost sensors can 

be used for highlighting air pollutant hotspots, for public awareness and for complimenting 

traditional air quality monitoring programmes, however the data are not suitable for regulatory 

purpose and for assessing the air quality compliance with air quality standards. Therefore, 

further work is required to improve the performance of these sensors by developing their 

technology to make it more robust, by frequent calibration both in laboratory and outdoor and 

by improving the experimental designs.  

The literature review was helpful in identifying research gaps to be addressed in this research 

project, which included structuring a multipurpose air quality monitoring network, outdoor 

calibration of low-cost sensors, comparing different approaches for modelling the spatial 

variability of air pollutants in urban areas, improving of spatial modelling estimates and low-

cost sensor measurements by using data fusion techniques, and analysis of the temporal 

variability of air pollutant concentrations. These research gaps have been addressed in the 

coming chapters of the project. The next chapter addresses objective 2, which aim to present 

nonlinear calibration models for several gaseous pollutants measured by Envirowatch E-

MOTEs in Sheffield.   
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Abstract  

Traditional real-time air quality monitoring instruments are expensive to install and maintain, 

therefore such existing air quality monitoring networks are sparsely deployed and lack the 

measurement density to develop high-resolution spatiotemporal air pollutant maps. More 

recently, low-cost sensors have been used to collect high-resolution spatial and temporal air 

pollution data in real-time. In this paper, for the first time Envirowatch E-MOTEs are employed 

for air quality monitoring as a case study in Sheffield. Ten E-MOTEs were deployed for a year 

(October 2016 to September 2017) monitoring several air pollutants (NO, NO2, CO) and 

meteorological parameters. Their performance was compared to each other and to a reference 

instrument installed nearby. E-MOTEs were able to successfully capture the temporal 

variability such as diurnal, weekly and annual cycles in air pollutant concentrations and 

demonstrated significant similarity with reference instruments. NO2 concentrations showed 

very strong positive correlation between various sensors. Mostly correlation coefficients (r-

values) were greater than 0.92. CO from different sensors also had r-values mostly greater than 

0.92, however, NO showed r-value less than 0.5. Furthermore, several Multiple Linear 

Regression Models (MLRM) and Generalised Additive Models (GAM) were developed to 

calibrate the E-MOTE data and reproduce NO and NO2 concentrations measured by the 

reference instruments. GAMs demonstrated significantly better performance than linear 

models by capturing the nonlinear association between the response and explanatory variables. 

The best GAM developed for reproducing NO2 concentrations returned values of 0.95, 3.91, 

0.81, 0.005, and 0.61 for Factor of two (FAC2), Root Mean Square Error (RMSE), coefficient 

of determination (R2), Normalised Mean Biased (NMB) and Coefficient of Efficiency (COE), 

respectively. The low-cost sensors offer a more affordable alternative for providing real time 

high-resolution spatiotemporal air quality and meteorological parameter data with acceptable 

performance.  

Keywords: sensors cost, sensor networks, Envirowatch E-MOTEs, air pollution monitoring, 

generalised additive model.  
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3.1. Introduction  

With an increasing trend towards urbanisation due to better job opportunities and greater 

access to amenities and facilities in cities, urban areas are expanding rapidly globally. Given 

this trend, air pollutant levels are increasing, especially in large urban agglomerations and at 

roadside locations, which adversely impact human health in a variety of ways. Air pollutants, 

especially high levels of nitrogen dioxide (NO2) and particulate matter (PM10 and PM2.5) are 

considered the most significant environmental risks to public health in urban areas in the UK 

(Department for Environment, Food and Rural Affairs (DEFRA) 2015; World Health 

Organisation (WHO) 2013). Atmospheric air pollutants were estimated to cause seven million 

premature deaths in 2012, worldwide (WHO 2014). Air pollutants (e.g., NO2 and PM10) 

emitted by various emission sources are risk factors and are reported to increase the risk of 

incidence of various diseases including heart disease, lung cancer, and both chronic and acute 

respiratory diseases, including asthma (WHO 2014).  

Air quality monitoring is important to promote air quality awareness and to support 

abatement strategies (Borrego et al. 2016). Several techniques are used to monitor air quality 

(Penza et al. 2014), which include (a) Reference or conventional real-time air quality 

monitoring; (b) Portable air quality monitors; (c) Passive diffusion tubes; and (d) Digital 

sensors. Reference air quality monitoring instruments are the most accurate and are used for 

air quality compliance purposes, studying exposure, supporting air quality management and 

developing policies for reducing and controlling emissions. Reference instruments are 

expensive to purchase and maintain and therefore the spatial resolution of air quality 

measurement is low and insufficient for detailed spatiotemporal mapping. Portable or mobile 

monitors are either carried by individuals or installed in vehicles that can be stationed where 

fixed continuous monitors cannot be installed. Portable instruments can be useful for 

monitoring air quality in certain cases and can provide high-resolution temporal data for a short 

period of time, but have limited application for spatial mapping and long-term monitoring. 

Passive tubes are small collection devices used for monitoring gaseous air pollutants such as 

NO2 and typically provide monthly average concentrations, which can be converted to annual 

averages. These diffusion tubes are the cheapest technique and provide better spatial coverage. 

However, these can be used only for gaseous air pollutants and for long-term monitoring 

(mainly monthly average). Low-cost sensors (LCS) are used to collect real-time air quality data 

providing high-resolution spatial and temporal air quality data. These type of sensors are the 

new trend in air quality monitoring and can support the conventional air quality monitoring 

stations to increase the density of the sensing network (Heimann et al. 2015; Van den Bossche 

et al. 2015; Viana et al. 2015). The low-cost sensors use the latest microsensing technology 

and are considered the innovative tools for air quality monitoring in the future (Castell et al. 

2015; Snyder et al. 2013; Kumar et al. 2015; Stojanovic et al. 2015). Data collected by these 

sensors can be used for detailed spatial and temporal mapping of air pollution, especially over 

distinct areas such as city or an urban district, for atmospheric model validation and assessing 

population exposure, however, the data need to be handle with cautions and several corrections 

need to be applied first. 

Several authors have analysed the performance of the LCS, comparing their performance 

with reference instruments and with each other. Borrego et al. (2016) performed such an 

assessment (sensors compared to reference instruments) in Aveiro, Portugal from 13th to 27th 

October 2014. LCS and reference instruments were colocated and monitored the levels of 



43 

 

gaseous pollutants (e.g., CO, NOx, O3, SO2), particulate matter (PM10, PM2.5) and 

meteorological parameters (e.g., temperature, wind speed and direction, relative humidity, 

solar radiation and precipitation). The resultant measurements were mutually compared and 

different sensors showed significantly different performance in terms of the statistical metrics 

used for evaluating the sensors’ performance. The range of R2 (coefficient of determination) 

values for different air pollutants were: O3 (0.12-0.77), CO (0.53-0.87), NO2 (0.02-0.89), PM 

(0.07-0.36) and SO2 (0.09-0.20), where a lower R2 value shows poor measurement performance 

of the sensors. Borrego et al. (2016) concluded that LCS had great potential for air quality 

monitoring, if properly supported by post processing and data modelling tools.  

Different sensor systems use different principles to measure the concentrations of 

atmospheric pollutants (Borrego et al. 2016). These include optical particle counters (OPC), 

metal oxide semiconductor sensors (MOS), electrochemical sensors (EC), nondispersive 

infrared sensors (NDIR) and photo-ionisation detection sensors (PID). Aleixandre and 

Gerboles (2012) reported that these air quality sensors work through either measuring the 

electrochemical interaction between the sensing materials and the atmospheric chemicals or 

through absorption of visible light. The principle of light scattering or absorption is used for 

measuring the levels of PM. Individual sensors are usually integrated into a platform of sensors 

known as a sensor node. Each sensor node contains a sensor board, the sensors and a control 

board which integrates all the elements of the hardware such as GPS, data storage, 

communication ports and signal conditioning. Examples of networks based on these types of 

sensors  are: (a) Cambridge university Sensor Network for Air Quality (SNAQ) (Mead et al. 

2013; Popoola et al. 2013; Borrego et al. 2016), (b) AUTh-ISAG AQ Microsensors (Borrego 

et al. 2016), (c) Energy Centre of Netherlands (ECN Airbox) (Borrego et al. 2016; Hamm et 

al. 2016); (d) NanoEnvi platform (Borrego et al. 2016), (e) AQMesh sensors (Borrego et al. 

2016; Carruthers et al. 2016), (f) ENEA Air-Sensor (Suriano et al. 2015), (g) EveryAware 

Sensor Box (Borrego et al. 2016), and Envirowatch E-MOTE sensors (Reis et al. 2013). These 

sensors are briefly described below.  

(a) Cambridge university SNAQ are microsensors for measuring the concentrations of 

multispecies including gases air pollutants, particulate matter and meteorological parameters. 

These are low cost sensors and can be powered by battery or mains. Mead et al. (2013) 

employed these microsensors for monitoring air quality in Cambridge. Mead et al. (2013) 

reported widely varying concentrations of air pollutants in the urban environment, which could 

not be characterised by sparse static conventional air quality network. Furthermore, Popoola et 

al. (2013) deployed these sensors in Heathrow airport in London for air quality monitoring. 

They reported considerable spatial and temporal variations in air pollutant concentrations 

across the air quality network. According to their findings high air pollutant levels were linked 

with stable weather conditions.  

(b) AUTh-ISAG AQ Microsensors use the principle of Waspmote wireless network, developed 

by Libellium, which is an international IT and Engineering company. These sensors aim to 

reduce power consumption, reduce thermal noise, provide easy inspection and require low 

maintenance. Data are normally collected using an SD card and can be run using both battery 

and main power supply. These sensors were used by Borrego et al. (2016) in their study and 

their performance was compared to several other microsensors and reference instruments. 

These sensors can measure the concentrations of several air pollutants and meteorological 

parameters.  
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(c) ECN – Airbox were developed by the Energy research Centre of the Netherlands (ECN). 

Airbox sensors monitor particulate matter (e.g., Ultra-Fine Particles (UFP), PM1, PM2.5, and 

PM10), gaseous (e.g., NO2 and O3) and meteorological parameters (e.g., temperature and 

relative humidity). Airbox sensors have been used for air quality monitoring in Netherland in 

the city of Eindhoven in 35 locations since 2013. These sensors are powered by battery and 

mains. Hamm et al. (2016) have provided a detailed review of these sensors, which could be 

read for further details.  

(d) NanoEnvi sensors were manufactured by Envira. These analysers use several sensors with 

different technology. The sensors work is based on the changes in electrical properties that 

happen in the surface of sensors when pollutants are present. The air pollutants which can be 

measured by nanoEnvi are gaseous pollutants (e.g., SO2, NO, NO2, CO, CO2, O3, H2S and 

VOCs), particulates (PM10 and PM2.5), and meteorological parameters (e.g., wind 

characterisitcs, temperature, relative humidity).  

(e) AQMesh sensors are manufactured by Environmental Instruments Ltd, UK. These are low-

cost micro-scale sensors for effective environmental monitoring, which are developed for harsh 

outfield environmental conditions and are capable of working to high standards. AQMesh 

microsensors measure the concentrations of NO, NO2, O3, SO2, and CO using the latest 

generation of electrochemical sensors. Particulate matter is measured using a light scattering 

optical particle counter. Using solid state sensors, they can also measure the levels of 

temperature, RH and atmospheric pressure. Carruthers et al. (2016) compared the performance 

of AQMesh in Cambridge with reference instruments where AQMesh showed considerably 

higher concentrations of NO2, NO and PM10, however overall they performed well and showed 

great potential for contributing to the air quality monitoring, especially improving the spatial 

coverage in the UK.  

(f) ENEA Air-Sensor are manufactured by ENEA (Energia Nucleare ed Energie Alternative), 

which is an Italian agency for new technology, energy and environment. These sensors measure 

the levels of several air pollutants, such as CO, NO2, O3, SO2, H2S and PM10 and meteorological 

parameters such as relative humidity and temperature. These sensors can be operated via 

battery or mains. Suriano et al. (2015) evaluated the performance of these Air-sensors during 

a campaign of several months in Italian national projects for sustainable innovation in the smart 

cities. These sensors were used both as stationary and mobile air quality monitoring systems, 

and initial results indicated that these sensors potentially could improve air quality monitoring 

program.  

(g) EveryAware sensors are manufactured by Vito (a leading independent research and 

technology organisation based in Belgium and works in the areas of cleantech and sustainable 

development) under the European Seven Framework Program (EU-FP7). The EveryAware 

sensors are used for air quality monitoring in Belgium, Italy and the UK. EveryAware is a low-

cost, portable air quality monitor used for measuring personal exposure to traffic pollution. 

This device contains six low-cost gas sensors that react in the presence of traffic pollutants 

(e.g., CO, NOx). Borrego et al. (2016) used EveryAware sensors in Aveiro, Portugal to 

compare their performance with other microsensor and reference instruments. 

Dongol (2015) has listed several sensor platforms which include DunavNet Platform, 

UrVamm, GeoTech, and ATEKNEA. In addition to these sensors, there are several other types 

of sensors available for air quality monitoring and the listing is growing with time. Sensors of 
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this type are cheaper, compact, user-friendly and provide high resolution spatiotemporal air 

pollutant concentrations. They have the potential to enhance the existing air quality network 

run at local levels by local authorities and nationally by DEFRA. In addition, these sensors can 

be installed independently by various research and governmental organisations to monitor 

public exposure to various air pollutants within a specific area. Despite all these positive points, 

the quality of air pollution data collected by these sensors is unproven and cannot be used for 

regulatory and compliance purposes, however, the data can be used for highlighting air 

pollution hotpots, for public awareness and for complementing traditional air quality 

monitoring programmes. There is a need for further investigation to quantify uncertainties in 

the datasets these types of sensors produce. These uncertainties are related to exposure to harsh 

environmental conditions, especially extreme temperature and relative humidity and the 

associated time interval (i.e. the length of time the instruments are operated in such a harsh 

environment). Furthermore, uncertainties are also affected by the measuring principles of the 

sensors and the quality of the materials used by the manufacturers. Therefore, inter-comparison 

of LCS made by different manufacturers and with reference instruments is required. Further 

work is, also required to improve the performance of these sensors by (a) improving their 

technology further to make it more robust, (b) frequent calibration both in laboratory and 

outdoor and (c) improving the experimental designs. 

In this project the aim is to install LCS in the City of Sheffield to provide high resolution 

spatiotemporal maps of various air pollutants, especially NO2 which is a pollutant of 

particularly concern in Sheffield as well as the rest of the UK. In this paper the aim is to evaluate 

the monitoring capability of Envirowatch E-MOTEs for air quality monitoring. This is the first 

paper comparing the performance of Envirowatch E-MOTEs with each other and with 

reference instruments, which are recommended by the European Union and UK DEFRA for 

air quality monitoring. The paper analyses a year’s worth of data and provides a more detailed 

assessment in comparison to previous studies (which have generally analysed sensor data for a 

limited time ranging from a week to a couple of months). Furthermore, supervised machine 

learning approaches including multiple linear regression and generalised additive modelling 

approaches are employed to calibrate the sensors by comparing their measurements with the 

reference instruments and setting up the slope and intercept. 

3.2. Methodology 

In this project the aim is to analyse CO (ppm), NO and NO2 (ppb) data measured by LCS 

(Envirowatch E-MOTEs) and NO and NO2 (ppb) measured by reference sensors, along with 

meteorological data such as wind speed, temperature and relative humidity, to assess the 

performance of LCS. All these data were available for the period October 2016 to September 

2017. In this section, firstly we describe Envirowatch E-MOTEs, their operating principle and 

the air quality monitoring network in Sheffield. This is followed by a statistical analysis which 

includes model selection, development and assessment.   

3.2.1. Envirowatch E-MOTEs  

In this project E-MOTEs developed by Envirowatch Newcastle, UK were employed. The 

E-MOTE was launched by Envirowatch in 2010. Precision or reference instruments used for 

air quality monitoring are large and expensive to both purchase and maintain, in contrast these 

sensors are cheaper, small and suitable for a high density air quality monitoring network. E-
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MOTEs work on a similar principle as the AQMesh pods, which use the latest generation of 

electrochemical sensors made by Alphasense. E-MOTEs were used to measure the levels of 

three gaseous pollutants: carbon monoxide (CO), nitric oxide (NO) and nitrogen dioxide (NO2). 

The E-MOTEs use wireless technology to communicate their sensor reading and can be 

deployed on lamp posts or other street furniture (Fig. 3.1). E-MOTEs in a cluster communicate 

with a gateway by means of the Zigbee protocol within a specific area for high-resolution 

monitoring. The use of this protocol allows the individual units to communicate with each other 

and pass data from sensors that are not in range or without line-of-sight of the gateway. Using 

GPRS, the gateway device communicates the collected data over an internet connection to a 

cloud server operated by Envirowatch. The data are post-processed and presented for access 

by users via the Enviroview web interface as well made available for download via an 

application programming interface (API). 

  

Fig. 3.1: Envirowatch E-MOTEs post-mountedt (left) and showing the solar panel used for 

battery charging (right). Ten of these E-MOTEs were used for collecting data used in this 

study.    

LCS are more compact, portable and use less power as compared to reference instruments. 

E-MOTEs use electrochemical technology for measuring gaseous air pollutants, including 

NOx, CO and O3. Electrochemical sensors work by reacting to the target gas, generating an 

electrical output, which varies with the concentration of target gases present in air.  Independent 

Envirowatch E-MOTEs transmit raw measurement data to a cloud server. These data are not 

concentration readings as such and require post-processing. Once readings are received 

mathematical processing is applied to correct cross-gas effects and prevailing environmental 

factors.  

An electrochemical sensor contains a cell where three electrodes are present. These 

electrodes are known as the working or sensing electrode, counter electrode and reference 

electrode. The electrodes are separated by wetting filters, which are hydrophobic separators 

enabling ionic (cation and anion) contact between the electrodes, allowing transport of the 

electrolyte via capillary action. The sensed gas is either reduced or oxidised at the working 

electrode. These reactions are catalysed by the electrode materials specifically developed for 

the gas in question. Normally, the rate of diffusion of the sensed gas to the sensor electrode is 

slower than the rate of reaction of the gas at the electrode. Therefore, the concentration of the 

sensed gas determines the electrical current output by the sensor (Mead et al. 2013). The 

potential difference between the working and counter electrodes then generates an electric 

current which is the output signal of the sensor. With a resistor connected across the electrodes, 

http://www.envirowatch.ltd.uk/wp-content/uploads/2016/02/DSC01996.jpg
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a current proportional to the gas concentration flows between the anode and the cathode. Thus 

the current can be measured to determine the gas concentration. The current generated by these 

types of electrochemical sensors is measured using suitable electronics and, following further 

processing, displayed as a concentration measurement in ppm (for CO) or ppb (for NOx, and 

O3).  

3.2.2. Air Quality Monitoring Network (AQMN) 

Air quality data analysed in this paper are mainly from two sources: LCS and reference 

instruments, which are described below:  

 

LCS network 

LCS used for air quality monitoring were Envirowatch E-MOTEs. Ten E-MOTEs were 

deployed at the University of Sheffield Campus (Fig. 3.2) for a year (October 2016 to 

September 2017). This area is bounded by Mappin Street, Rockingham Street, Portobello Street 

and Broad Lane and can be classified as urban background area. This area is part of the 

University of Sheffield and is mainly comprised of offices, lecture theatres and student 

accommodation. E-MOTEs provide minute-by-minute air pollutant measurements, which were 

converted to hourly averages to make them comparable to the data collected by reference 

instruments. Sensor identities and coordinates of their locations are shown in Table 1 along 

with the average annual concentration of each pollutant measured. 

Reference instruments network 

Several reference instruments are installed to monitor various air pollutant concentrations 

in Sheffield. These total nine (9) continuous air quality monitoring stations (AQMS) and 

provide hourly concentrations of air pollutants, including NOx, CO, SO2, O3 and particulate 

matter mainly PM10 and PM2.5. Out of these, three (3) of the monitoring stations are part of the 

Automatic Urban and Rural Network (AURN) run by the UK government’s DEFRA, whereas 

the remaining six sites are installed and managed by Sheffield City Council (Fig. 3.3). 

Devonshire Green (AURN), Waingate (RM1) and Wicker (GH4) are the nearest to the E-

MOTEs network. However, data from October 2016 to September 2017 were available only 

from Devonshire Green (DG) monitoring station, which are compared with data from the 

installed sensors. Fig. 3.4 shows box plots comparing NO (lower-panel) and NO2 

concentrations (middle-panel) measured by each of the E-MOTEs and with reference sensors 

(upper-panel). The box plots show the distribution of the concentrations with some descriptive 

statistics including median (middle line of the box), lower or first quartile (lower end of the 

box), upper or third quartile (upper end of the box), inter-quartile range (representing middle 

50 % of the data points), upper and lower whiskers representing concentrations outside the 

middle 50%, and outliers (point lying beyond the whiskers. Box plots compare both central 

tendency and variability or distribution of the concentrations. NO2 concentrations measured by 

the various sensors exhibit a similar pattern, in contrast NO concentrations show much more 

variability.         

Table 3.1: Coordinates of the sensors and data summary showing the mean concentrations 

(annual mean) of various air pollutants from October 2016 to September 2017. 
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Sensors ID Northing (m) Easting (m) 
CO 

(ppm) 

NO  

(ppb) 

NO2  

 (ppb) 

S701 392846 631411 0.33 2.39 58.00 

S702 392846 631425 0.46 20.31 16.60 

S703 392845 631437 0.33 10.95 13.30 

S704 392878 631425 0.33 3.70 18.85 

S705 392878 631409 0.35 11.55 19.03 

S706 392883 631390 0.43 15.98 18.60 

S707 392878 631418 0.33 7.87 17.59 

S708 392900 631429 0.33 9.60 17.93 

S709 392837 631400 0.33 9.49 18.70 

S710 392837 631418 0.32 5.66 17.07 
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Fig. 3.2: Map of the locations of the Envirowatch E-MOTEs included in this study, where the 

red rectangle in the upper panel shows the location where sensors were deployed and the lower 

panel shows their localisation sites (the map was developed in ArcMap 10.4.1 using basemaps 

of OpenStreetMap). 
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Fig. 3.3: Air quality monitoring network of continuous monitoring stations in Sheffield 

comprised of AURN sites run by DEFRA and Sheffield City Council sites (the map was 

developed in ArcMap 10.4.1 using basemap of OpenStreetMap). 
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Fig. 3.4: Box plots of hourly concentrations (ppb) NO (lower panel), NO2 (centre panel) 

measured by E-MOTEs and their mean compared with reference measurements from 

Devonshire Green monitoring station (upper panel).   

3.2.3. Statistical analysis 

Statistical analyses were carried out, comprising correlation analysis, regression analysis 

and graphical presentations, in the base packages of the R programming language (R Core 

Team 2017) and two of its additional packages known as ‘openair’ (Carslaw 2016) and ‘mgcv’ 

(Wood 2017).  

In this paper supervised machine learning approaches are suggested for calibrating E-

MOTEs outputs in comparison with measurements gathered from the reference instruments. 

Although these sensors are pre-calibrated by the manufacturers, they require local outfield 

calibration to account for cross interference of other pollutants and meteorological parameters, 

e.g., temperature and relative humidity. Two modelling approaches are employed in this study: 

(a) Linear Regression Models (LRM); and (b) Generalised Additive Models (GAMs). For 

details on these models see Hastie and Tibshirani (1990), Wood (2006), Munir et al. (2013) 

and Sayegh et al. (2014).  

3.2.3.1. Model selection - choosing the best set of predictors 

Air pollutant data were obtained from ten E-MOTEs and a reference AQMS each 

measuring NO and NO2. Meteorological data of wind speed, relative humidity and temperature 

were also available from a weather station collocated with reference station. Firstly, NO and 

NO2 from all ten E-MOTEs (making twenty variables) along with relative humidity, wind 

speed and temperature were considered as predictors (independent variables) for predicting the 

concentration of NO and NO2 measured by the reference instrument (Fig. 3.5, upper-panel). 

Various other combinations of predictors were also tested to find the best set of predictors using 

Best Subset Regression (BSR). After testing a combination of various predictors, six predictors 

were chosen and were used in the model development to model the concentrations of NO2 and 

NO measured by reference instrument. It can be seen in (Fig. 3.5 upper-panel) that the value 

of R2 increases with an increase in the number of independent variables, however, after adding 

a certain number of covariates the line becomes horizontal showing little improvement in the 

R2 value. Considering the results of BSR and the outputs of the actual LRM and GAM 

(discussed in coming sections), the final number of covariates were decided. The whole dataset 

was divided into two subsets: a training dataset (75%) and a testing dataset (25%) both selected 

randomly. The raining dataset was used to train the model, whereas the testing dataset was used 

to assess the model’s performance and check its validity. 

The model selection process examines all possible sets of predictors in ordinary least 

square (OLS) regressions and leads to choosing one that fits best according to some criterion. 

The criterion could be based on p-value as in the standard stepwise methods (e.g., backwards 

stepwise regression), which take one variable away and then re-examine the model. 

Alternatively, the criterion could be based on R2 or adj-R2. This is called BSR or leaps-and-

bounds approach. Criterion based on R2 and adjR2 is technically much stronger than on the p-

value, therefore, in this paper the leaps-and-bounds method is adopted. To apply the leaps-and-

bounds method, we employed one of the package of R programming language known as 

‘Leaps’ to select the best set of predictors.  
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Fig. 3.5: Best Subset Regression (BSR) using 23 predictors (NO_1 to NO_10, NO2_1 to 

NO2_10, Wind Speed (WS), Temperature (Temp), and Relative Humidity (RH)) for predicting 

NO2_DG (upper panel) and 6 predictors (NO_mean, NO2_mean, NO_DG, WS, Temp and RH) 

for predicting NO2_DG (lower panel).  

3.2.3.2. Model development  

In this paper two modelling approaches are employed: Linear Regression Model (LRM) 

and Generalised Additive Model (GAM).   

 (a) LRM 

Two types of linear models were developed: Simple linear regression and multiple linear 

regression model. In simple linear regression model only one dependent variable (predictor) 

was used. This helps correct slopes and offsets (intercepts) values of the low-cost sensors to 

improve the accuracy of results. During calibration the measurements are regressed versus 

reference measurements, where readings from the E-MOTEs (NO_mean or NO2_mean) are 

taken as independent (x-axis) and reference readings (NO_DG or NO2_DG) as the dependent 

(y-axis) variable. The regression model is run and values of slopes and intercepts are calculated 
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as shown in equation 3.1 and 3.2, here DG stands for Devonshire Green, which is the location 

of a reference air quality monitoring station and NO_mean is the average of the readings from 

all the low-cost sensors.   

 

NO_DG = βo + β1(NO_mean) + Ɛ           (3.1) 

NO2_DG = βo + β1(NO2_mean) + Ɛ        (3.2) 

 

The values of slopes and intercepts are then applied to the whole dataset of E-MOTEs. βo 

is the intercept, β1 is the coefficient or slope, Ɛ is the error term (the difference between 

observed and modelled concentrations).  

To account for cross interference and for the effect of meteorological parameters, a 

multiple linear regression model was developed for each NO and NO2 value as given in 

equations 3.3 and 3.4 using the predictors selected in the model selection section (3.2.1).  

NO_DG= βo + β1 (NO_mean) + β2 (NO2_DG) + β3 (NO2_mean) + β4 (WS) + β5 (RH) + β6 

(Temp) + Ɛ                                                                                  (3.3)      

NO2_DG = βo + β1 (NO_DG) + β2 (NO2_mean) + β3 (NO_mean) + β4 (WS) + β5 (RH) + β6 

(Temp) + Ɛ                                                                                 (3.4) 

In the above equations βo is the intercept, β1 to β6 are the coefficients or slopes and Ɛ is 

the error term. Furthermore, NO_mean and NO2_mean are average concentrations of NO and 

NO2 from the low-cost sensors, NO_DG and NO2_DG are the concentrations from the 

Devonshire Green monitoring station, WS is wind speed (m/s), RH is relative humidity (%) 

and Temp is the air temperature (oC).  

(b) GAMs 

GAMs are advanced modelling techniques which are applicable to both normal and non-

normal data distribution and do not assume the relationship between response and explanatory 

variables to be linear. GAMs rather permit the response probability distribution to be any 

member of the exponential family (e.g., normal, exponential, gamma and poisson distribution). 

In contrast, a linear model assumes the response distribution to be normal and the relationship 

between response and explanatory variables to be linear. The GAM models developed in this 

study are shown in equations 3.5 to 3.8 below, using the same predictors used by LRM shown 

in equations 3.1 to 3.4.  

NO_DG = s1 (NO_mean) + Ɛ         (3.5) 

NO2_DG = s1 (NO2_mean ) + Ɛ     (3.6) 

NO_DG= s1 (NO_mean) + s2 (NO2_DG) + s3 (NO2_mean) + s4 (WS) + s5 (RH) + s6 (Temp) 

+ Ɛ                                                  (3.7) 

NO2_DG = s1 (NO_DG) + s2 (NO2_mean) + s3 (NO_mean) + s4 (WS) + s5 (RH) + s6 

(Temp) + Ɛ                                     (3.8) 
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In the above models (3.5 to 3.8), s1 to s6 are the smoothing terms (Wood 2006), each one 

of these is associated with the adjacent explanatory variable. Response or modelled variables 

are given on the left and the explanatory variables of each model are given on the right of the 

equations.  

 3.2.3.3. Models’ assessment  

 

To evaluate the models’ performance predicted and measured (observed) concentrations 

were compared. For this purpose, several statistical metrics were calculated including 

correlation coefficient (r), coefficient of determination (R2), Root Mean Square Error (RMSE), 

Normalised Mean Biased (NMB), Factor of two (FAC2) and Coefficient of Efficiency (COE), 

which are defined by Carslaw (2016) and Sayegh et al. (2014). RMSE provides a good measure 

of the model error by calculating how close or far the predicted values are to the observed 

values. NMB estimates average over or under prediction, whereas ‘r’ is the strength of the 

linear relationship between two variables (here modelled and observed concentrations). NMB 

value between +0.02 and -0.02 shows acceptable model performance. We would like ‘r’ to 

have a value as close to one (±1) as possible, however generally a value ranging from ±0.5 to 

±0.99 indicates reasonably good performance. FAC2 is the fraction of modelled values within 

a factor of 2 of the observed values. FAC2 should satisfy the condition that 0.5 ≤ Mi/Oi ≤ 2, 

where Mi represents the modelled values and Oi represents the observed values. A highly 

efficient or perfect model should have COE value of 1, however when analysing real data, a 

model should have a COE value of less than 1. COE having a zero value (COE = 0) means the 

model prediction is not better than the mean of the observed value, which in other words means 

its prediction power is zero; it has no predictive advantage. 

3.3. Results and discussion 

3.3.1. Temporal variability and correlation analysis 

Hourly average NO2 (ppb), NO (ppb) and CO concentrations (ppm) measured by ten E-

MOTEs seemed reasonable and had an overall mean of about 22 ppb, 10 ppb and 0.35 ppm, 

respectively. Overall, various air pollutant concentrations showed a similar pattern at different 

monitoring sites during different seasons, for instance, NO2 concentration was higher in winter 

months and lower in summer (time plots not shown for brevity). These seasonal trends are 

further analysed in coming sections. NO2 and NO concentrations measured at the Devonshire 

Green monitoring site also showed higher concentrations in colder months and lower 

concentrations in warmer months. Obara et al. (2011) and Cai et al. (2016) have reported that 

air pollutants levels are strongly associated with stable weather conditions, atmospheric 

inversion, low wind speed and shallow boundary layer, which are generally found in winter 

seasons in the UK. In such meteorological conditions air pollutants emitted by various sources 

do not disperse and stay near the emission sources due to poor horizontal and vertical 

dispersion.  

Fig. 3.6 shows correlation plots of hourly average NO2 (upper-panel), NO (centre-panel) 

and CO (lower-panel) concentrations collected by the ten E-MOTEs. The correlation 

coefficient values, ranging from -1 to +1, are normally represented as a decimal number (e.g., 

0.xx). However, here to facilitate presentation both zero and decimal points are avoided, 

following the default format of ‘openair’ suggested by Carslaw (2016).  NO2 concentrations 
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show very strong positive correlation between various sensors. Mostly correlation coefficients 

are greater than 0.92 (r > 0.92), except sensor-1 (NO2_1), which shows relatively weaker 

correlation, with r - values ranging from 0.60 to 0.67. The cause of this weaker correlation is 

likely due to erroneous data caused by bad communication between the sensor and the gateway. 

Taking this into account this shows all the E-MOTE measurements of NO2 are consistent with 

each other and show strong similarity with each other. This strong similarity puts confidence 

in the consistency of these sensors. This is the first study reporting the performance of E-

MOTEs, therefore no comparison was possible with previous studies. However, several 

researchers have assessed the performance of other LCS, such as AQMesh pods both in the 

UK and Europe and reported that their performance varied both spatially and temporally from 

sensor to sensor (Castell et al. 2017).   

In contrast, NO concentrations (Fig. 3.6, middle-panel) showed weaker correlation. NO_5 

vs NO_6 and NO_5 vs NO_7 showed strongest correlation with r - value of 0.48 each. NO_6 

vs NO_9 show zero r - value, whereas NO_2 vs NO_3 showed negative correlation. Fig. 3.6 

(lower-panel) presents correlation plots of CO concentrations showing much stronger 

correlation than NO concentrations. Except for CO_2 and CO_6, the remaining sensors 

compared against each other showed r - values greater than 0.90. CO_2 and CO_6 have r - 

values ranging from 0.35 to 0.64, which are those for CO_2 vs CO_6 and CO_1 vs CO_6, 

respectively. This confirms that E-MOTESs produce consistent measurements of CO 

concentration. For further analysis, time variation plots are constructed in the next section to 

see how the pollutant concentrations vary at various time scales, such as diurnal, weekly and 

annually.         
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Fig. 3.6: Correlation plots of NO2 ppb (upper-panel), NO ppb (centre-panel) and CO 

concentrations (ppm) (lower-panel) from ten E-MOTEs during Oct 2016 to Sept 2017 in 
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Sheffield. All r – values should have been presented as decimal number, however here both 

zero and decimal points are avoided to facilitate presentation.   

Fig. 3.7 shows time variation plots of NO2 concentrations (ppb) collected by nine of the 

E-MOTEs. NO2_1 was removed due to missing and likely incorrect measurements. These plots 

show strong similarities among the nine sensors on all time scales i.e. diurnal, weekly and 

annual cycles. During the diurnal cycle (Fig. 3.7, lower-left-panel) NO2 concentrations (ppb) 

start decreasing after mid-night and continue to do so until about 05:00 hours, then slightly 

increase at about 06:00 - 08:00 hours probably due to morning traffic peak hours. Afterwards, 

NO2 levels gradually decrease and reach a minimum level around midday (12:00 hours), most 

probably due to low traffic activities and atmospheric conditions which help disperse air 

pollutants quickly. Relatively high temperature, high wind speed and wider atmospheric 

boundary layer during the afternoon improve both horizontal and vertical air pollutant 

dispersion. Diurnal cycles of temperature (oC) and wind speed (m/s) during 2017 at the 

Devonshire Green monitoring stations are shown in Fig. 3.8, which clearly shows that wind 

speed and temperature reach the highest levels during the afternoon, which leads to a widening 

of the atmospheric boundary layer and help disperse locally emitted pollutants. After 14:00 

hours NO2 levels begin increasing and reach their highest levels in response to the evening’s 

busiest traffic hours (about 18:00 - 20:00 hours), when this activity cause pollutant emissions 

to increase. Furthermore, in the evening the atmosphere is colder and more stable which 

discourages air pollutants dispersion. The stable atmosphere continues as the night progresses, 

although, traffic levels decline. This reduction in traffic levels results in a slight decrease in 

NO2 levels. It is worth noting that all the sensors produce almost the same temporal pattern on 

daily basis. Diurnal cycles on individual days (Monday to Sunday) are shown in Fig. 3.7 

(upper-panel). Weekly cycles of NO2 concentrations (ppb) are shown in Fig. 3.7 (lower-right-

panel), where a uniform pattern of various sensors can be observed. As expected different 

traffic patterns during the weekend result in lower levels of NO2 on Saturday and Sunday.  

Annual cycles of NO2 (Fig. 3.7, lower-middle-panel) are somewhat confusing showing 

much higher levels of NO2 during October. It was expected that NO2 levels would have been 

higher during the colder months (i.e., November, December and January) and lower during the 

hotter months (i.e., May, June and July). This is seen in Fig. 3.9, which depicts NO2 levels 

measured at the Devonshire Green monitoring station during the same period as shown in Fig. 

3.7. Concentrations measured at this location are shown as NO_DG and NO2_DG, and average 

concentrations of the E-MOTEs are shown as NO_mean and NO2_mean. CO is not monitored 

at this site and therefore comparison with the E-MOTEs was not possible. All E-MOTE sensors 

have a strong correlation with each other and have the same temporal pattern therefore it is 

convenient to average their measurements to facilitate comparison with the measurements from 

the Devonshire Green site. NO2_mean and NO_mean are closely related with NO2_DG and 

NO_DG at diurnal, weekly and annual cycles, however, some differences can be observed at 

various temporal intervals. To summarise, it can be said that generally E-MOTEs show close 

similarities with the reference instrument, however there are some dissimilarities at various 

temporal scales. NO2 and NO concentrations (ppb) at Devonshire Green produced a smooth 

annual cycle going down from January to June-July and then going up until December. Such a 

smooth annual cycle does not exist when mean NO and NO2 concentrations measured by E-

MOTEs were plotted. NO2_mean showed lowest level in September and highest in October 

and the clear summer and winter difference demonstrated by Devonshire Green has 

disappeared here. Overall, the results discussed above are encouraging as they successfully 
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capture the temporal trends of air pollutants and show a consistent performance by showing 

strong correlation with each other.                

 

Fig. 3.7: Time variation plots of NO2 concentrations (ppb) from nine sensors from October 

2016 to September 2017 (Readings from one sensor, NO2_1 were excluded due to missing and 

erroneous data).  
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Fig. 3.8: Diurnal cycles of wind speed (m/s) and temperature (oC) at the Devonshire Green 

monitoring station during 2017, showing highest wind speed and temperature during the 

afternoon.  

 

Fig. 3.9: Time variation plots comparing diurnal, weekly and annual cycles of NO2 and NO at 

Devonshire Green and the mean of all 10 E-MOTE sensors during Oct 2016 to Sept 2017 in 

Sheffield. 

3.3.2. Modelling  

In this section both linear and nonlinear regression modelling approaches are employed 

and their performances are compared using several statistical metrics.  

3.3.2.1. Linear regression models  

The outputs of model 3.1 to 3.4 are presented in Table 3.2, showing the values of various 

statistical metrics. Table 3.2 shows that the multiple linear regression model (MLRM) 

demonstrated much better performance than the simple linear regression model (SLRM). This 

was expected as MLRMs used several extra explanatory variables including temperature, wind 

speed and relative humidity. The values of FAC2, RMSE, R2, NMB and COE are shown in 

Table 3.2. The values of NMB demonstrate acceptable model performance since they lie within 

the range of +0.02 to -0.02 (Table 3.2). The other metrics also signify a small degree of error 

in the model and good predictability. Fig. 3.10 shows a scatter plot with model lines and shows 

that most of the points lie between the FAC2 region, which again demonstrates acceptable 

model performance. It should be noted that these metrics were calculated using the testing data 

(25% randomly selected) and for the training dataset the values returned for these metrics 

displayed even better performance (not shown for brevity). This shows that using air quality 

data measured by LCS and meteorological data as explanatory variables, we can successfully 

predict (reproduce) NO2 concentrations measured by reference instruments. Further details of 

model 3.4 are given in Table 3.3, which shows that all explanatory parameters in the model 
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had highly significant effects (p-value < 0.01) on the response variable. Explanatory variables 

with positive coefficients (i.e., NO_mean and NO2_mean), show positive effect on the response 

variable, whereas the variables with negative coefficients (e.g., temperature and wind speed) 

show negative effect on the response variable. The negative effect of temperature and wind 

speed suggests that warmer and windier conditions help disperse locally emitted pollutants and 

hence decrease NO2 concentrations. The negative correlation between relative humidity and 

temperature is well known, therefore relative humidity is showing positive associations with 

NO2. Positive association between different NOx species is expected as they have the same 

emission source and therefore show positive coefficients in Table 3.3. Linear regression is 

unable to address the nonlinear relationship between response and explanatory variables 

therefore a nonlinear regression model is employed in the next section to test how it performs 

in comparison to its linear counterpart.   

Table 3.2: Showing the outputs of simple linear regression model (SLRM) and multiple linear 

regression models (MLRM) 

Model 
Response 

variable 

Explanatory 

Variable(s) 
FAC2 RMSE R2 NMB COE 

SLRM NO_DG NO_mean 0.98 2.84 0.25 0.002 0.10 

SLRM NO2_DG NO2_mean 0.78 10.15 0.15 0.013 0.05 

MLRM NO_DG 

NO_mean, WS, 

NO2_mean, RH, 

NO2_DG, Temp 

0.30 12.79 0.51 0.012 0.12 

MLRM NO2_DG 

NO_mean, WS, 

NO2_mean, RH, 

Temp, NO_DG 

0.83 5.76 0.64 0.001 0.41 

Table 3.3: Showing various parameters of model 3.4 along with their slopes and p-values  

Explanatory Variable Coefficient (slopes) 
Significance value   (p-

value) 

Intercept 14.74 0.000*** 

NO_mean 0.125 0.000 *** 

NO_DG 0.250 0.000*** 

NO2_mean 0.168 0.000*** 

Temp -0.412 0.000*** 

WS -1.219 0.000*** 

RH 0.026 0.001 ** 
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Fig. 3.10: Scatter plot comparing observed and MLRM predicted concentrations of NO2_DG 

(ppb) based on the testing data (25% randomly selected), where the solid middle line is the 1:1 

line, whereas the upper and lower lines represent 2:1 and 0.5:1, respectively. Most of the points 

lie within these lines demonstrating acceptable model performance. 

3.3.2.2. Generalised Additive Model (GAM) 

GAM models are shown in Equations 3.5 to 3.8. After running these models predicted and 

observed concentrations were compared and several metrics calculated to assess their 

performance, which are presented in Table 3.4. Comparing Tables 3.2 and 3.4, it can be 

observed that using the same explanatory variables GAM model performs better and display 

greater predictability. Comparing these models, model 3.8 showed best performance. Its 

outputs are shown in Fig. 3.11, which shows how the response variable (NO2_DG) changes 

with each explanatory variable. This figure also shows that the association between explanatory 

variables and response variable (NO2_DG) is not linear and changes for different values of the 

explanatory variables. It is interesting to see that the effect of temperature on NO2 is negative 

(the curve is downward) until around 20oC is reached, afterwards as temperature increases 

further the curve turns upward, showing a positive effect, most probably due to the formation 

of secondary NO2 in the atmosphere. In contrast, the effect of wind speed results in a downward 

curve regardless of wind speed, which is probably due to the fact that high wind speed disperses 

locally emitted pollutants more effectively. GAM models successfully address the non-linear 

relationship between response and explanatory variables and probably this is the reason that 

the GAM model performs significantly better than the MLRM, using the same explanatory 

variables. As an example, let us compare the GAM and MLRM models based on NO2_DG. 

GAM has resulted in a high R2 - value (0.83) and lower RMSE (3.91) than MLRM where the 

R2 - value was 0.64 and RMSE was 5.76. This shows that GAM has predicted NO2_DG more 
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accurately. Fig. 3.12 compares observed and predicted NO2 and the plot shows a linear 

association between observed and predicted concentrations with most of the points lying within 

FAC2 region. All independent variables have highly significant effects (P < 0.001) on 

NO2_DG. Although GAM shows better performance than MLRM, MLRM are used more often 

by researchers due to the ease with which it can be applied and interpreted. MLRM models 

provide a slope for each explanatory variable as it assumes a linear relationship, whereas in the 

case of GAM the slope changes almost at every point (Fig. 3.11). In real-life situations 

especially in the case of air quality data, relationships are not always linear, therefore GAM 

models provide a better option for air quality modelling and display greater predictability as 

shown in this study. To explain this further, several plots are shown in Fig. 3.13 showing that 

the association between various air pollutants is not linear. To address the non-linear 

association, we need a non-linear model. GAM successfully addresses the non-linear 

association between various air pollutants and so performs better than a linear model. A 

demonstrative is shown in Fig. 3.13 (lower-right panel), where the value of R2 is 0.79 for GAM 

and 0.5 for LRM showing considerable difference in performance of the two models.       

Table 3.4: Showing different statistical metrics for the GAM models   

Response 

variable 
Explanatory variable(s) FAC2 RMSE R2 NMB COE 

NO_DG NO_mean 0.98 2.80 0.17 0.014 0.101 

NO2_DG NO2_mean 0.80 10.06 0.16 0.012 0.048 

NO_DG 
NO_mean, NO2_mean, 

NO2_DG, WS, RH, Temp 
0.53 9.89 0.70 0.008 0.50 

NO2_DG 
NO_mean, NO2_mean, 

NO_DG, WS, RH, Temp 
0.95 3.91 0.83 0.005 0.614 
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Fig. 3.11: Outputs of GAM model (equation 3.8), in which NO2_DG (ppb) was used as the 

response variable and NO2_mean (ppb), NO_DG (ppb), NO_mean (ppb), Temperature (temp 
oC), wind speed (ws m/s) and relative humidity (rh %) were used as explanatory variables. The 

dashed lines are the estimated 95 % confidence interval, whereas the vertical short lines on the 

x-axis show the data presence.    
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Fig. 3.12: Scatter plot comparing observed and GAM predicted concentrations of NO2_DG 

(ppb) based on the testing data (25% randomly selected), where the solid middle line is the 1:1 

line, whereas the upper and lower lines are 2:1 and 0.5:1 lines respectively. The dashed lines 

show within the factor of two regions. Most of the points lie within these lines showing an 

acceptable model performance. 

 

 
R2 for GAM = 0.95 and LRM = 0.92 

 
R2 for GAM 0.9 and LRM 0.87 
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R2 for GAM 0.91 and LRM 0.84 

 
R2 for GAM 0.79 and LRM 0.5 

Fig. 3.13. Comparing the performance of linear (LRM) and non-linear (GAM) models.  

3.3.3. Further discussion of low-cost sensors 

Castell et al. (2016) have evaluated the performance of the AQMesh sensors measuring 

gaseous air pollutants (e.g., NOx, CO, and O3) and particulate matter (PM10 and PM2.5) in Oslo, 

Norway. They performed the evaluation of both outdoors and under indoor laboratory 

conditions. They considered several types of emissions and environmental conditions such as 

roadside traffic and urban background over a 6-month period (April to September, 2015). 

Castell et al. (2016) concluded that good performance of the low-cost sensors in the laboratory 

does not imply similar performance when sited outdoors. Therefore, to reduce uncertainties, 

sensors must be calibrated in outdoor field locations. They also concluded that there is a lack 

of adequate outdoor testing of the sensors by the manufacturers before marketing such sensors, 

which can lead to poor performance and misleading data, which is of great concern, especially 

when members of the public use such instruments without scientific supervision to collect and 

interpret air quality data.  

Borrego et al. (2016) compared the performance of several LCS with reference instruments 

from the 13th to 27th October 2014 and reported that for measuring O3 AQMesh and NanoEnvi 

sensors had the lowest errors and higher coefficient of determination (R2 > 0.70), whereas 

ENEA Air-Sensors, ISAG and Cambridge SNAQ showed poor performance with R2 < 0.2. To 

measure the levels of NO2, Borrego et al. (2016) compared the performance of six platforms, 

where the highest correlation and lowest errors were shown by AQMesh, ECN-Airbox and 

Cambridge University SNAQ with R2 > 0.80 and mean biased error (MBE) close to zero. In 

contrast, ENEA Air-Sensors and AUTh-ISAG AQ Microsensors demonstrated very poor 

correlation (R2 < 0.1). For measuring the levels of CO, AQMesh and Cambridge University 

SNAQ had the highest correlation (R2 > 0.80) with reference instruments, whereas the 

performance of the rest of the sensors was also satisfactory (R2 > 0.50) (Borrego et al. 2016). 

For monitoring NO, AQMesh and Cambridge University SNAQ were compared, where 

AQMesh showed better correlation (R2 = 0.80) than Cambridge University SNAQ (R2 = 0.30). 

For measuring PM10, all sensors showed poor correlation with reference instruments, with R2 

= 0.36 being the highest which was observed with the ECN Air-box (Borrego et al. 2016). The 

ECN Air-box also showed the highest correlation (R2 = 0.27) with reference instruments for 

measuring PM2.5, the other sensors had lower R2-values.  
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Castell et al. (2017) compared the measurements from 24 AQMesh sensors against 

reference instruments and reported that the quality of the data obtained from the LCS were 

questionable. The performance of the sensors varied both spatially and temporally and was 

dependent on the atmospheric composition and meteorological conditions, such as temperature 

and relative humidity. Furthermore, Castell et al. (2017) reported that the performance varied 

from unit to unit therefore it is necessary to check the data quality of each pod separately before 

use. The sensors installed in the laboratory showed much stronger correlation (R2 > 0.95 for all 

pollutants) with reference instruments than those installed outdoors, where the average R2 

values were 0.60, 0.86, 0.49, 0.54, 0.56 and 0.51 for CO, NO, NO2, O3, PM10 and PM2.5, 

respectively. Air quality data collected by means of LCS are suitable for promoting air quality 

awareness, general information and for highlighting air pollution hotpots however the data are 

not suitable for air quality compliance and research, especially for assessing health and 

environmental impacts of air pollution (Castell et al. 2017). Dongol (2015) has also concluded 

that air quality data collected by LCS cannot be used for air quality regulatory purposes and 

for other purposes where highly accurate data are required. Therefore, Lewis and Edward 

(2016) state there is a need for further legislation to regulate the usability of data obtained from 

low-cost sensors.  

Referring to the uncertainties in air quality data collected by LCS, Lewis and Edward 

(2016) have commented that the recent introduction of these sensors for monitoring public 

exposure to air pollution are generating a large volume of data, which remain mostly untested, 

and therefore their quality is questionable and will create difficulty for air quality managers 

and planners in the future. Furthermore, Lewis and Edward (2016) mentioned that these sensors 

show stability and sensitivity issues and that the sensors’ readings are subject to interference 

from other long-lived air pollutants, e.g., CO2 and H2 and prevailing meteorological conditions 

like relative humidity, temperature and wind speed. The lower-cost sensors perform better 

when air pollutant levels are high (Lewis and Edward 2016). The lower-cost sensors have 

potential to measure air pollutant levels in places where traditional monitoring was not 

previously possible. They are portable, cheaper, and can provide much better spatial and 

temporal coverage in real-time, providing more localized and timely warnings to the public.  

Lewis et al. (2016) have shown that one potential solution to reduce the uncertainties of air 

quality data obtained by using this class of sensors is by applying supervised machine learning 

techniques, such as the Boosted Regression Tree (BRT) model. Spinelle et al. (2017) applied 

three approaches for calibrating the concentration of NO2, CO, and CO2. The methods were 

linear regression, multiple linear regression and a supervised machine learning technique 

(artificial neural network). Using simple linear regression only the reference concentration was 

used as an explanatory variable, whereas in the other models relative humidity and temperature 

were also used. Supervised learning technique showed better performance than the other two 

models. The finding of this current study agrees with the above previous studies and show that 

the quality of NO2 concentrations measured by LCS can be much improved by applying 

supervised machine learning techniques based on GAM.  

3.4. Conclusions  

LCS have the potential to contribute to real-time air quality monitoring networks installed 

to-date as this type of sensors are cheap, compact, user-friendly and provide high-resolution 

spatiotemporal measurements of air pollutant concentrations. However, these sensors have 

limitations, therefore the sensors require outdoor calibration and the data obtained from these 
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sensors require further processing employing advanced statistical modelling approaches, such 

as GAM. In this paper, air pollutant data from ten Envirowatch E-MOTEs were compared with 

each other and with reference instruments. The sensors were able to capture the diurnal, weekly 

and annual cycles of air pollutant concentrations with some discrepancies. NO2 and CO showed 

stronger correlation between various sensors, where most of the correlation coefficients were 

greater than 0.9, however NO showed relatively weaker correlation between the various sensor 

locations. NO2 concentrations showed very strong positive correlation between various 

sensors. Mostly correlation coefficients (r-values) were greater than 0.92. CO from different 

sensors also had r-values mostly greater than 0.92, however, NO showed r-value less than 0.5. 

Several linear and non-linear models were developed for sensor calibration and for predicting 

NO2_DG and NO_DG concentrations using NO_mean and NO2_mean and meteorological 

parameters as explanatory variables. GAM models demonstrated better performance by 

exhibiting stronger similarity (e.g., greater correlation coefficient and FAC2 values) and lower 

error (e.g., weaker RMSE and NMB) between observed and modelled concentrations of NO 

and NO2. GAM models were able to capture the non-linear association between various air 

pollutants and performed better than linear models. The best GAM developed for reproducing 

NO2 concentrations returned values of 0.95, 3.91, 0.81, 0.005, and 0.61 for Factor of two 

(FAC2), Root Mean Square Error (RMSE), coefficient of determination (R2), Normalised 

Mean Biased (NMB) and Coefficient of Efficiency (COE), respectively. Therefore, GAM 

models are recommended for LCS calibration and for reproducing measured NO2. In the 

coming projects, we intend to deploy a more dense network of LCS in the whole city of 

Sheffield to collect high resolution spatial and temporal air quality data. We also aim to 

improve experimental designs of the sensors network, test other sensor technologies and 

identify new calibration approaches for better performance in the future. 
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Abstract  

Air pollution in large urban areas has become a serious issue due to its negative impacts on 

human health, building materials, biodiversity and urban ecosystems in both developed and 

less-wealthy nations. In most large urban areas, especially in developed countries air quality 

monitoring networks (AQMN) have been established that provide air quality (AQ) data for 

various purposes, e.g., to monitor regulatory compliance and to assess the effectiveness of 

control strategies. However, the criteria of structuring the network are currently defined by 

single questions rather than attempting to create a network to serve multiple functions. Here 

we propose a methodology supported by numerical, conceptual and GIS frameworks for 

structuring AQMN using social, environmental and economic indicators as a case study in 

Sheffield, UK. The main factors used for air quality monitoring station (AQMS) selection are 

population-weighted pollution concentration (PWPC) and weighted spatial variability (WSV) 

incorporating population density (social indicator), pollution levels and spatial variability of 

air pollutant concentrations (environmental indicator). Total number of sensors is decided on 

the basis of budget (economic indicator), whereas the number of sensors deployed in each 

output area is proportional to WSV. The purpose of AQ monitoring and its role in determining 

the location of AQMS is analysed. Furthermore, the existing AQMN is analysed and an 

alternative proposed following a formal procedure. In contrast to traditional networks, which 

are structured based on a single AQ monitoring approach, the proposed AQMN has several 

layers of sensors: Reference sensors recommended by EU and DEFRA, low-cost sensors (LCS) 

(AQMesh and Envirowatch E-MOTEs) and IoT (Internet of Things) sensors. The core aim is 

to structure an integrated AQMN in urban areas, which will lead to the collection of AQ data 

with high spatiotemporal resolution. The use of LCS in the proposed network provides a 

cheaper option for setting up a purpose-designed network for greater spatial coverage, 

especially in low- and middle-income countries.     

 Keywords: air quality monitoring, low-cost AQ sensors, AQ network, sensors deployment, 

Sheffield.   
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4.1. Introduction  

Air pollution is one of the most serious current threats to health, killing 6.4 million people 

in 2015 worldwide both in developed and less-wealthy nations (Landrigan, 2016). Air pollution 

is causing various health problems including respiratory problems, cardiovascular diseases, 

lung cancer and asthma (WHO, 2013). Particulate matter and nitrogen dioxide (NO2) pollution 

may cause premature deaths and hospital admissions for conditions such as cardiovascular 

problems, allergic reactions and lung cancer (Walters and Ayres, 2001). Air pollution is 

particularly harmful for children, people with existing health problems and the elderly (Khallaf, 

2011). Furthermore, air pollution may reduce visibility, damage historical buildings and 

monuments, affect vegetation and reduce crop yield and quality (Khallaf, 2011; Ivaskova et al., 

2015). Air pollution is considered more of a serious problem in large urban areas in both 

developed and less-wealthy nations (Brunt et al., 2016; DEFRA, 2015). This is due to the fact 

that urban areas possess greater numbers of emission sources and densely built-up areas 

including tall buildings and street canyons which hinder dispersion of locally emitted air 

pollutants (Wu et al., 2017). Urban areas have various emission sources, e.g., road traffic, point 

emissions and area emissions emitting high volume of both gaseous (e.g., NO, NO2, CO, SO2, 

and H2S) and particle pollutants (e.g., PM10 and PM2.5) (DEFRA, 2017). In addition, more 

people are exposed to air pollution due to high population density in urban areas.  

To improve air quality (AQ), the first step is to improve air quality monitoring networks 

(AQMN) in large urban areas as the current networks are not dense enough for developing high 

resolution maps and highlighting local micro-level drivers of air pollution (Castell et al., 2017; 

Schneider et al., 2017). Urban areas exhibit much greater spatial variability in air pollution 

levels, which require a dense (ubiquitous) AQMN. Traditional and more accurate AQ 

monitoring instruments are expensive to purchase and maintain, therefore it is not practical to 

set up a dense network to capture local-scale spatial variability in air pollution concentrations 

(Castell et al., 2017; Schneider et al., 2017). Traditional AQMN are sparse having few sites 

widely spaced around a city therefore historically no or little attention has been paid to selecting 

monitoring sites by following a formal approach to provide spatial coverage and deploy AQ 

sensors in various environmental types (e.g., roadside, kerbside, urban and suburban 

background and green spaces). The current literature lacks a rigorous methodology for 

determining locations of AQMS (Hoek et al., 2008; Wu et al.,2017).  

Assessment of the spatial representativeness of air quality monitoring station (AQMS) is 

an important subject and is linked to health risk assessment, population exposure to air 

pollution, the design of AQMN, AQ modelling and data assimilation (Kracht et al., 2017; 

Martin et al., 2015). The spatial representativeness of a monitoring site is related to the 

variability of pollutants concentrations around that site (Righini et al, 2014). However, 

scientific literature and European regulation lacks a clear definition and unified agreement for 

determining the spatial representativeness of an AQMS. Santiago et al. (2013) have reported 

that due to the complexity of urban meteorology and emissions distribution, AQ in urban areas 

cannot be assessed with confidence using only air pollutant measurements from a monitoring 

station. Air pollution levels estimated by street scale dispersion models and maps of population 

density and residence time can be used to get a more complete and precise view of the air 

pollution conditions. To analyse the spatial representativeness of urban AQMS and to 

complement their measured concentrations, Santiago et al. (2013) have developed a 

methodology using a set of computational fluid dynamics simulations based on Reynolds-

Averaged Navier–Stokes equations (CFD-RANS) for different meteorological conditions in 

two urban areas Pamplona and Madrid in Spain. They defined the representativeness area of 

AQMS, as the area where concentrations were within an interval of ±20% of the pollutant 

concentrations at the monitoring station. Righini et al. (2014) presented a methodology to 
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assess spatial representativeness of an AQMS by analysing the spatial variation of emissions 

around it. Spatial variability of several air pollutants was carried out using a neighbourhood 

statistic function in a Geographic Information System (GIS). Low variability of emission 

around a site showed high spatial representativeness of that site and vice versa. To detect spatial 

representativeness of several urban background or rural background monitoring sites the 

methodology was applied in Northern and Central Italy. 

There are two types of AQMN: routine networks and purpose-designed monitoring 

networks (Hoek et al., 2008). They both have their pros and cons. Routine monitoring networks 

are designed mainly for assessing AQ compliance with regulatory standards. An example of 

such a network is the Automatic Urban and Rural Network (AURN) in the UK. The AQ 

monitoring sites in the AURN are continuous sites and most of them have been running over a 

long period of time (ten years or more), however, the monitoring stations are sparse and not 

suitable for urban scale modelling and mapping. Purpose-designed monitoring networks are 

set up for a particular purpose, e.g., for developing a land-use regression (LUR) model or for 

developing urban scale air pollution maps. In these types of networks, the designers 

(researchers) have control over the selection of the types and number of monitoring sites 

required for the purpose, however they could be extremely expensive (Hoek et al., 2008) and 

unaffordable especially in low- and middle-income countries. Therefore, due to lack of funding 

many researchers have been using data from the routine (e.g., AURN) networks. More recently 

due to the introduction of low-cost sensors (LCS) (Schneider et al., 2017; Castell et al., 2017; 

Borrego et al., 2016; Lewis et al., 2016; Lebret et al., 2000; Goswami et al., 2002) several 

academic and research organisations have set up purpose-designed AQMN for urban scale 

modelling and exposure assessment. However, these studies have not followed formal 

procedures for allocating sites, which means performing the GIS calculation of various 

variables on the basis of which the sites are selected, e.g., population density, pollution 

concentrations and their spatial variability. In many studies sites are selected informally i.e. 

without the GIS calculation of various variables or on an ad hoc basis (favouring the placement 

of monitors in traffic hot spots or in areas deemed subjectively to be of interest). This is because 

using a formal procedure requires a significant amount of data on the required variables, which 

are normally not available. 

In this study, we intend to structure an AQMN in Sheffield utilising population-weighted 

air pollution concentration (PWPC) and weighted spatial variation (WSV), which incorporate 

population density (social indicator), pollution concentrations and spatial variability of 

pollution concentrations (environmental indicator). Furthermore, a conceptual model is 

presented which in addition to PWPC and WSV considers the opinions of experts having local 

experience and understanding of the purpose of AQ monitoring. This study proposes an 

integrated air quality monitoring network (IAQMN) in Sheffield using a multipurpose and 

more robust approach aimed at providing maximum value from a network of sensors by 

adopting an integrated approach which draws on multiple data sources and techniques to inform 

decision making. The procedure proposed in this study is based on numerical equations using 

data of population density, pollution concentrations and their spatial variability. The approach 

can be applied anywhere and shouldn’t be susceptible to failure due to changes in location or 

time. The proposed network integrates various layers of AQ monitoring techniques including 

reference sensors which are the most accurate and are recommended by EU and DEFRA for 

AQ monitoring, LCS (AQMesh and Envirowatch E-MOTEs), and very low-cost IoT (Internet 

of Things) sensors.  These sensors will be deployed as fixed stations in various layers and 

mounted on vehicles (mobile monitoring). The aim of the proposed AQ network is to collect 

AQ data of high spatiotemporal resolution to be used in local-scale high resolution mapping 

and modelling as a case study in Sheffield. This case study will provide a great example of a 

purpose-designed monitoring network using mostly LCS, especially for low- and middle-
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income countries where such networks don’t exist due to the high purchase and maintenance 

cost of reference AQ instruments.    

 

4.2. Methodology 

This paper proposes an IAQMN in urban areas using the city of Sheffield as a case study. 

The aim is to structure a multipurpose robust and systematic approach based on formal 

procedure utilising numerical, GIS and conceptual modelling techniques. In the proposed 

network AQMS are mainly selected on the basis of PWPC and WSV of air pollutant 

concentrations. PWPC accounts for population density and air pollution concentrations, 

whereas WSV is the factor of spatial gradients of air pollutant concentrations. In this way, the 

site selection criteria integrate population density, pollution concentrations and spatial 

variability of both population and pollution levels.  Furthermore, a conceptual model is 

provided, which in addition to PWPC and WSV focuses on the purpose of the monitoring 

network, opinion of experts with local experience and financial resources (budget of the 

project) to determine the number of monitoring sites and to select their locations. The total 

number of sensors is decided on the basis of project budget, whereas the number of sensors in 

each output area is a factor of WSV. Once the sensors are deployed and data collected, we will 

analyse the data to assess spatial representativeness of the sites, which can help us decide how 

many sensors are redundant and how many more sensors are required in areas where spatial 

variability of air pollution has not been captured. 

Air quality management areas (AQMA) are declared mainly on the basis of NO2 and PM10 

levels, which are the cause of primary concern in the urban areas of Sheffield and therefore the 

project focuses on these two pollutants. However, the measurements of other pollutants (e.g., 

O3, CO and SO2) and meteorological parameters (e.g., wind speed and direction, relative 

humidity and temperature) will be used to analyse the chemistry and dispersion of air 

pollutants, which will further help to determine the main drivers of air pollution in Sheffield. 

In this project the network is designed according to the spatial variability of NO2. Each 

pollutant has different spatial variability, therefore a network designed based on the spatial 

variability of another pollutant (e.g., PM10) will have different characteristics. 

In this project the intention is to make use of several layers of AQ sensors including both 

static (fixed) and mobile monitoring to provide AQ data for high spatial and temporal 

resolution AQ maps. AQ sensors are installed in vehicles, known as MOBIle Urban Sensing 

(MOBIUS) vehicle.  The monitoring only takes place when the vehicle is stationary. The 

vehicle is driven to the intended location, parked safely and then the monitoring equipment is 

turned on. AQ monitoring is not carried out when vehicle is in motion. These layers are shown 

in Figure 4.1 and their main features are given in Table 4.1. The types of AQ sensors employed 

include reference sensors, LCS and IoT sensors. IoT sensors are miniature electronic devices 

that are comprised of sensors, microprocessors and communication integrated circuits that are 

able to detect changes in the environment. IoT sensors are generally much cheaper, lighter and 

smaller than the LCS. Generally, their prices are a few tens of pounds for a single pollutant 

sensor. The quality of data collected by IoT sensors is inferior to the LCS and reference sensors. 

LCS are more compact, portable and use less power when compared to reference instruments. 

However, they are larger in size and have much better accuracy than IoT sensors. LCS range 

in price from a couple of thousand to several thousand pounds (for a relatively sophisticated 

multi-pollutant and meteorological sensor with communication capabilities). Reference 

sensors are expensive, both to purchase and maintain, and bulky but are the most accurate units, 

recommended for use by EU and UK government bodies for AQ monitoring and comply with 

standards such as MCERTS in the UK. A single unit costs in the region of twenty thousand 
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pounds to monitor a single gas or gaseous species or particle pollutants. IoT, LCS and reference 

sensors all employ different techniques of air pollutant measurement, which include optical 

particle counters, light scattering, metal oxide semiconductor sensors, electrochemical sensors, 

nondispersive infrared sensors, ultraviolet fluorescence, chemiluminescence, infrared 

photometry and photo-ionisation detection sensors. For more detail see Borrego et al. (2016) 

and Mead et al. (2013). The LCS used in this project are either Envirowatch E-MOTEs or 

AQMesh pods. Envirowatch E-MOTEs are deployed either in a local mesh (deployed in a 

cluster, providing data via ZigBee, within a certain area for high resolution monitoring, no 

more than 100 m from each other, with a gateway providing uplink capability) or independent 

(distributed sensors that can be deployed at any distance from each other and can be used for 

both high and low resolution monitoring, using longer distance communications systems such 

as GPRS or Wi-Fi providing internet access). AQMesh sensors are independent and can be 

deployed at both high and low spatial resolution. In this case each sensor independently sends 

data to a cloud server using GPRS. LCS offer great potential for AQ monitoring in low- and 

middle-income countries. 

 

 

  

Figure 4.1. Various layers of AQMS. In the diagram AURN stands for automatic urban and 

rural network, SCC for Sheffield City Council, HQ for High Quality (e.g., AQMesh and 

Envirowatch E-MOTEs), IoT for Internet of Things, Van – sensors mounted on a vehicle 

(MOBIUS), and Personal – sensors carried by people.  
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Table 4.1. Summarising the features of various types of monitoring techniques.  

Sensor type 
Temporality 

(resolution) 

Spatiality 

(resolution) 
Quality 

Reference sensors - AURN Medium (hourly), long term Low (fixed) High 

Reference sensors - SCC Medium (hourly), long term Low (fixed) High 

LCS High (minute), long term High (fixed) Medium 

IoT High (minute), long term High (fixed) Low 

Mobile Ref. sensors High (variable), short term 
Variable 

(determinate) 
High 

Mobile IoT sensors High (minute), short term 
Variable 

(indeterminate) 
Low 

 

The new generation of sensors such as E-MOTEs and AQMesh pods have the capability 

to mitigate the effect of climatic factors such as temperature and relative humidity on AQ data 

collection. The innovation is the addition of a fourth electrode, which is embedded in the sensor 

electrolyte allowing the reaction from environmental effects to be measured without the effects 

from the target gas. Furthermore, mathematical algorithms are developed for individual sensor 

types to compensate for environmental effects and cross-gas interference to provide the best 

possible precision and accuracy of measurement.  

All sensors are pre-calibrated by the manufacturers and, subsequently returned for sensor 

replacement and recalibration periodically as specified by the manufacturer. In-the-field local 

calibration of sensors is required in certain circumstances including: (a) following a sensor-

pack change the new sensor should be calibrated; and (b) following a large step change in 

environmental conditions, e.g., a change in average temperature of 10 degrees Celsius or more, 

relative to when it was originally calibrated. During this project, the sensors will be calibrated 

locally in two ways: (i) Co-location with reference sensors, and (ii) Using MOBIUS.  

Several LCS will be deployed next to reference AQMS including at Devonshire Green and 

Siemens Close Tinsley. At these sites one E-MOTE and one AQMesh pod will be deployed 

next to the reference AQMS. The sensors will be placed immediately adjacent or no further 

than 2 m apart from the reference sensors. This will help correct slopes and offset (intercept) 

values of the LCS to improve the accuracy of results by comparing data over a period of several 

months. The manufacturer recommends co-location of sensors with reference sensors for 

several days or weeks, however, in this project LCS will be co-located for a year with reference 

sensors and the calibration will be across the seasons (Winter – Nov, Dec, Jan; Spring – Feb, 

Mar, Apr; Summer – May, June, July; and Autumn – Aug, Sep, Oct), which can help determine 

the effect of various meteorological parameters on the performance of these sensors. During 

the calibration LCS measurements are regressed versus reference (Ref) measurements, where 

LCS data are taken as independent (x-axis) and Ref as dependent (y-axis) variable. Regression 

model is run and values of slope and intercepts are calculated using the measured LCS and Ref 

concentrations as shown in equation 4.1 and 4.2.  

 

Ref = intercept + (slope x LCS)    (4.1) 

 

NO2_Ref = a + (b x NO2_LCS)   (4.2) 
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The values of slope and intercept are then applied to the whole dataset of LCS.  

MOBIUS will be used for calibrating LCS around the city in different locations and different 

seasons. It will be parked for a minimum period of five hours adjacent to the sensors (preferably 

no more than two metres apart, but as close as practically possible). In situations where the 

vehicle cannot reach the vicinity of the sensor, it will be removed from its mount and 

temporarily affixed to MOBIUS for the period of calibration. Installation of the sensors is 

relatively easy and quick so if necessary this can be accomplished within a matter of minutes. 

The calibration time period is limited by the auxiliary battery/inverter sets (a total of 2.8 kWh) 

carried on MOBIUS which power the reference analysers. In some cases, where mains power 

is available (e.g., sensors deployed at the university campus) the period of colocation can be 

extended to 24 hours to cover the whole diurnal cycle. Calibration will be carried out at least 

once in each season (Winter – Nov, Dec, Jan; Spring – Feb, Mar, Apr; Summer – May, June, 

July; and Autumn – Aug, Sep, Oct). After obtaining the concentrations of the LCS and 

MOBIUS, the values of intercept and slopes will be calculated and applied as shown in 

equation 4.1 and 4.2. The main features we want to see in a sensor network are temporal 

resolution (time), spatial resolution (space) and quality of the data (Figure 4.2). Reference 

sensors provide high quality data with reasonable time resolution (hourly), however, their 

spatial resolution is low due to their large size, power requirements and high price. We have 

only 3 AURN sites and 6 Sheffield City Council (SCC) sites in the whole city of Sheffield, so 

spatial resolution is low. In contrast, LCS both AQMesh and Envirowatch E-MOTEs, can 

provide high resolution spatial and temporal data but at relatively lower quality. LCS can 

provide real-time minute-by-minute data and a high-density network can be set up due to their 

low price and maintenance cost. Both reference and LCS can provide long-term data (e.g., over 

a year or longer). On the other hand, mobile networks can utilise both reference sensors and 

LCS to provide high resolution temporal and spatial data, however they normally provide short 

term data (e.g., the vehicle can be parked on a specific location for a limited period of time, 

usually up to five hours) and their spatial resolution is variable. Mobile networks can provide 

high or low spatial resolution data depending on the need. Furthermore, using MOBIUS we 

have to monitor roads or streets one by one. This temporal differences (gaps) render the data 

incomparable with each other due to the fact that AQ levels vary during different hours of the 

day, days of the week or seasons of the year mainly due to differences in meteorological 

conditions (e.g., temperature, solar radiation, wind speed and direction) and boundary layer 

characteristics which affect pollutant dispersion. Therefore, MOBIUS will be mainly used for 

calibration or for short term monitoring purposes.   

As shown in Figure 4.2, in the three-dimensional (3-D) time-space and quality box we 

want to achieve point (P) ideally, which indicates high quality data with high spatiotemporal 

resolution. However, this is not always practical due to various reasons, mainly financial 

budget. Therefore, we need to compromise either on quality, spatial or temporal resolution. 

The dimension that will be subject to compromise is dependent on the reason for monitoring 

and the intended purpose of the output data. For example, if we want to determine a long term 

temporal trend over a ten-year period, there is no need for high temporal resolution (e.g., 

minute-by-minute or hourly data), daily or even monthly data will suffice. Also, we might not 

need a dense network of AQ sensors, a small number deployed in urban background, suburban 

background or rural locations will suffice. In contrast, if the purpose is to investigate how road 

traffic-flow affects AQ, we will need high temporal resolution, e.g., minute-by-minute data, 

because in this instance anything with less frequency will be too coarse. Furthermore, in 
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monitoring the effect of traffic on AQ, if the purpose is to see the pattern in air pollution levels, 

we might not need very accurate readings, so the quality (accuracy) of the readings might not 

be of a great concern. On the other hand, for urban-scale modelling and mapping, high-

resolution spatial data collected by a dense AQMN will be required. Therefore, it can be said 

that the type of sensors, type of monitoring sites, quality of data, density of monitoring network 

and temporal resolution are dependent on the purpose of monitoring programme.  

 
 

 

Figure 4.2. Three-dimensional (3-D) box, where x-axis is represented by time (temporal 

resolution of collected data), y-axis by space (spatial resolution of the collected data) and z-

axis by quality (quality of the collected data). Ideally, we want to achieve high spatial and 

temporal resolution with high quality data (represented by point ‘P’), however this may not be 

always possible. 

4.2.1. Population-weighted pollution concentration (PWPC) 

Human exposure to air pollution is a function of population density (residents/km2) and 

pollution levels. Therefore, both social (population) and environmental (air pollution) 

indicators should be considered in structuring an AQMN. Population data are normally more 

readily available than pollution data, e.g., population data can be obtained from a recent census 

or local council. In contrast, detailed pollution data of various air pollutants are generally not 

available, especially in countries with less well developed infrastructure. Therefore, in the 

absence of air pollution data, as an alternative air pollution emissions or modelling estimations 

of air pollutants can be used. For example, Righini et al. (2014) have used air pollutant 

emissions data to optimise AQMN in Italy. It is worth mentioning that air pollutant emissions 

and concentrations are not the same and the same amount of emissions may result in different 

concentrations due to differences in meteorological conditions and atmospheric boundary layer 

height. However, generally emissions of primary pollutants are accepted as a reasonable 

estimates of pollutant concentrations (Righini et al., 2014). In this study we used population 

density maps of 2016 to show population density of Sheffield (Figure 4.3). In these maps bright 

green (6000 – 8000 residents/km2) represents average population (7000 ±1000), as the average 

population of Sheffield is about 7000 residents/km2. Orange and red show areas where 

population is greater than average, in some case more than double and treble. Areas of high 

population density are mostly shown in the city centre where people live in multi-storey 

buildings. Locations of primary and secondary schools were used to represent areas of more 
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vulnerable people (children are more vulnerable and are more likely to be adversely affected if 

exposed to high levels of air pollution). Schools represent urban and suburban background 

environmental types. NO2 diffusion tube locations and annual concentrations (µg/m3) are 

shown in Figure 4.4. NO2 diffusion tubes data are available in Sheffield for the last several 

years providing reasonable spatial coverage. Therefore, these maps were used to determine 

spatial variability of NO2 in the City. In Figure 4.4, orange and red dots show locations where 

NO2 levels exceeded annual AQ limits (40 µg/m3) (Air quality objectives, 2015).   

NO2 concentration is shown in the form of points, whereas population density is shown in 

the form of polygons, therefore, firstly NO2 concentration was converted into the same format. 

In case there were more than 1 point in a polygon, their average NO2 concentrations were 

calculated for the polygon. Output areas (polygons) are the lowest geographical levels that are 

created for Census data. Output areas are built from clusters of adjacent unit postcodes. They 

are designed to be similar in terms of cultural and demographic characteristics with relatively 

similar populations for statistical purposes. Output areas do not mix urban and rural areas and 

should be consisted either entirely of urban postcodes or rural postcodes. An output area should 

have minimum size of 40 resident households and 100 resident people, however its 

recommended size is 125 households (Office for National Statistics, 2018).  

 Averaging NO2 concentrations across the polygon may introduce a degree of error, 

especially if the polygon is large and heterogeneous in terms of air pollutant concentrations. 

However, heterogeneity of air pollutants is minimised by the fact that an output area doesn’t 

mix urban and rural areas. Any polygon without data was excluded from the analysis, which 

means the polygon was not coloured. Unshaded polygons mean there were no data of NO2.   

To calculate population-weighted pollution concentrations (PWPC), firstly normalised 

population density (NPD) of each cell was obtained by dividing population density (PD) of 

each cell by average PD (mean-PD) of all polygons, following the approach used by Carslaw 

(2015) in the ‘openair-manual’ (equation 4.3). In the second step NPD was multiplied by 

pollution concentration (PC) of each cell (equation 4.4) to get PWPC, which is an important 

indication of people exposure to air pollution. PWPC was mapped using ArcGIS version10.4.1 

as shown in Figure 4.5.      

 

NPDi = (PDi/mean-PD)  (4.3) 

 

PWPCi = NPDi * PCi (4.4) 

 

In Figure 4.5, red shows the highest PWPC, whereas blue indicates the lowest PWPC. The 

number of sensors to be deployed will depend on the budget of the project (economic criteria). 

The areas with higher PWPC should get priority in deploying AQ sensors. However, it is 

important to quantify spatial variability of NO2 concentrations to determine how many sensors 

will be deployed in each polygon. More sensors should be deployed in the area with greater 

spatial variability and vice versa, which is discussed in the next section (2.2).         
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Figure 4.3. Population density (residents/km2) map of Sheffield, 2016.  

 

 

Figure 4.4. Locations and annual average NO2 concentrations (µg/m3) of NO2 diffusion tubes 

in Sheffield, 2016. 
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Figure 4.5. Population-weighted NO2 concentrations (PWPC) (µg/m3) Sheffield, 2016. 

 

4.2.2. Spatial variability of NO2 concentrations (µg/m3)  

In the previous section PWPC (Figure 4.5) was analysed, which highlights those areas 

where more people are exposed to NO2 concentrations. However, to decide where more sensors 

should be deployed we need to determine spatial variability of NO2. Areas experiencing high 

concentrations of PWPC and greater spatial variability require more sensors in contrast to those 

areas where PWPC is low and are spatially homogenous in terms of pollution concentrations. 

Therefore, in this section first we quantify spatial variability (SV) of NO2 concentrations.    

SV of NO2 concentrations (µg/m3) are shown in Figure 4.6, which are calculated and 

mapped in ArcGIS 10.4.1. Standard deviation (STD) determines how NO2 concentration is 

dispersed within a given area. To determine SV, we calculated STD of NO2 concentrations 

within each 400 m2 area, having at least 3 observations using equation 4.5.  

 

𝑆𝑇𝐷𝑖 = √1/𝑛 ∑ (𝑥𝑖 − 𝜇)2𝑛
𝑖=1 √1/n ∑ (xi − μ)2n

i=1   (4.5) 

 

In equation 4.5, x is NO2 concentrations, µ is the mean concentrations and n is the number 

of data points. STDi are mapped in Figure 4.6, where red shows more spatial variability of NO2 

concentrations. To provide a quantitative assessment as to how many sensors should be 

deployed in each area, in this study we propose an approach, which integrates PWPC (Figure 



81 

 

4.5) with SV (Figure 4.6), thus accounting for population density, pollution concentrations and 

SV. The resultant variable is termed weighted spatial variability (WSV), which is the product 

of PWPC and normalised standard deviation (NSTD) as shown in equation 4.6.  

 

WSVi = PWPCi * NSTDi  (4.6) 

 

Finally, the number of sensors in each cell (ni) is determined by solving equation 4.7 using 

the WSVi value within each cell and sum of the WSVi of all cells.  

 

ni = (WSVi / ∑(WSVi)) * Nt  (4.7) 

 

Where Nt is the total number of sensors to be deployed, which is decided on the basis of 

economic criteria (budget).  

 

 
Figure 4.6. Showing spatial variability of NO2 concentrations (µg/m3) 

 

The main points considered for site allocation are summarised in Figure 4.7, including 

population density, pollution levels and pollution spatial variability. Furthermore, the purpose 

of the AQ monitoring programme and the opinion of experts having experience of the local 

area are two important factors in siting the AQMS. They inform where exactly the sensors will 

be deployed in each polygon. Therefore, it is important to analyse the purpose of the AQ 

monitoring, discussed in next section (2.3).  
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Figure 4.7. Criteria for the selection of AQMS (ESCAPE,2010; LAQM.TG, 2009; Kanaroglou 

et al., 2005). Also, see Figure 4.8 for the description of ‘the purpose of monitoring’.  

4.2.3. Purpose of air quality monitoring and its role in site selection 

The primary criterion among those that are most important for selecting the locations of 

AQMS is the purpose of the AQ monitoring programme. Therefore, it is important to briefly 

describe the main purposes of AQ monitoring and what role they play in determining sites for 

AQMS deployment. AQ monitoring may be carried out due to the following reasons:  

(i) AQ review and assessment (regulatory compliance) (Kanaroglou et al., 2005; 

ESCAPE, 2010; LAQM.TG16, 2016; LAQM.TG09, 2009): AQ review and 

assessment involves monitoring current levels of air pollution and modelling how it 

might change in the near future. The main aim of the review and assessment is to 

ensure that national AQ objectives are achieved. The purpose of these objectives is to 

protect human health and environment from the negative impacts of air pollution. 

Probably the most important reason for AQ monitoring is to assess human exposure 

to air pollution. This determines the areas where people are exposed to high levels of 

air pollution. The monitoring programme should take into account air pollution and 

demographical characteristics of the region under consideration and consider worst-

case public exposure both in terms of pollution levels and population density.  

(ii) AQ modelling (Raffuse et al., 2007; LAQM.TG16, 2016): AQ monitoring is also 

carried out to assess the outcome of dispersion modelling studies. In these types of 

monitoring programmes sensors should be deployed close to the emission sources. For 

example, if the purpose is to assess the performance of a dispersion model developed 

for a particular road, the AQ sensors should be deployed at the roadside of that 

particular road, even if there is no exposure. In additional to dispersion modelling, AQ 

data collected by the monitoring programmes are used in various AQ statistical, 

photochemical, mathematical, forecasting and land-use regression models. These are 
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employed in various investigations into AQ related projects and multi-disciplinary 

projects like transportation models, climate models and other urban system models. In 

this case AQ sensors should be deployed where the other variables (e.g., weather 

parameters) are also monitored.   

(iii) Temporal trends (Raffuse et al., 2007): Sometimes AQ is monitored to determine how 

air pollutant levels have changed over a specific period of time, over the last ten years, 

for instance. In this case monitoring should be carried out at a background site, away 

from local sources, e.g., an urban background or suburban background site. However, 

if the purpose is to assess the temporal trend near a particular emission source, then 

sensors should be deployed as close as possible to that source. Furthermore, 

monitoring data can be used to determine diurnal, weekly and annual cycles of air 

pollutants, however for this purpose high resolution temporal concentration 

measurements are required, such as at intervals of one minute, 15 minutes or hourly.    

(iv) Source apportionment (Raffuse et al., 2007): AQ monitoring programmes are also 

launched to determine various sources of air pollutant emissions. In this case AQ 

sensors should be deployed in different types of environments including roadside 

(where both heavy and intermediate traffic loads are encountered), next to point 

sources, urban background, suburban background and rural sites. Sensors next to local 

sources determine the contribution of local sources, whereas background and rural 

sites help determine the contribution of urban level and regional level emission 

sources.  

(v) Spatial coverage (Raffuse et al., 2007):  AQ monitoring can help determine spatial 

trend in air pollution levels. Urban areas demonstrate high spatial variability in air 

pollution levels due to changes in emission sources and tall buildings which affect air 

pollutant dispersion processes. Therefore, urban areas in comparison to suburban or 

rural areas would require more sensors to capture variability in air pollution levels. 

Sensors should be deployed in different environmental conditions, including next to 

busy roads, point sources, open streets, street canyons, market places and residential 

areas. For air pollution mapping at an urban level, a dense network of sensors is 

required. The density of sensor should be high where air pollution levels are more 

variable and vice versa (Kanaroglou et al., 2005).   

(vi) Identifying the main drivers of AQ: AQ monitoring is sometimes carried out to 

investigate the effects of various factors on AQ conditions such as various land-use 

strategies, climate and meteorology, boundary layer height, and topographical and 

geographical characteristics. If this is the case, then AQ sensors should be deployed 

in various environment types such as urban background, suburban background, and 

traffic sites including various altitudes and land-use types.  

(vii) Dose-response relationship (Munn, 1981): If an air pollution monitoring programme 

is used to collect air pollutant data which will be used to establish a dose-response 

relationship for investigating the effects of air pollution on human health, vegetation, 

soiling and corrosion of different materials, and economic effect, then AQ sensors 

should be deployed next to the location where the investigation is taking place.   

(viii) Assessing AQ control strategies: Air pollution monitoring is needed for assessing the 

effectiveness of control strategies, e.g., if an air pollution management and control 

strategy is implemented in a specific area, then AQ data are required to cover the 
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period just before and after the implementation of the strategy to assess how effective 

the strategy has been.  

  

These are the main purposes of AQ monitoring, however by no means this list is 

exhaustive. The purposes of AQ monitoring are summarised in Figure 4.8. 

 

 

 

Figure 4.8. The main purposes of AQ monitoring (ESCAPE, 2010; LAQM.TG09, 2009; 

Raffuse et al., 2007).  

The opinion of experts having experience of the local area is a valuable asset in identifying 

suitable sites for the deployment of AQ sensors. To utilize this, several meetings were arranged 

with the AQ group and transport team at SCC and researchers from various departments of the 

University of Sheffield. They had extensive experience of the city and helped identify areas 

where air pollution has been or is likely to be a problem, where emissions have declined or 

increased, or where air pollutants emissions are going to change in the near future, e.g. 

Abbeydale and London Rd, Meadowhall, City Centre and so on. To fully utilise this resource 

an Air Quality Sensors Network (AQSN) workshop was organised, which was attended by air 

pollution and environmental science experts from different departments of the University of 

Sheffield and SCC. Their suggestions were sought on sensor deployment and utilised wherever 

possible and applicable.  

4.3. Results and discussion 

In this study following the WSV model and purpose of monitoring, AQ sensors will be 

deployed in a variety of locations including urban background, suburban background and 

roadside sites. Some AQMS will be located in the main city centre and others in the suburbs 

of the city to represent different types of environments. Roadside sites will include both highly 

and intermediately trafficked roads. Also, both open streets and street canyons will be 

monitored to analyse the effect of tall buildings on air pollutants dispersion. Urban and 

suburban monitoring sites will monitor the urban level emission, whereas roadside sites will 
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monitor more local emissions from the traffic. Several sensors will be deployed next to existing 

reference sites including both AURN and SCC sites for calibration purposes.  

Here firstly the existing AQMN is described (section 4.3.1), followed by the proposed AQMN 

(section 4.3.2). 

4.3.1. Existing air quality monitoring network  

4.3.1.1. Reference sensors (static) 

Reference sensors are the most accurate type and are recommended by the EU and UK 

DEFRA for monitoring AQ. However, reference instruments are expensive to purchase and 

maintain and require skilled staff for deployment and calibration. Due to their high purchase 

and maintenance costs DEFRA and SCC have a sparse network of these sensors in Sheffield. 

These networks are mainly set up for the purpose of regulatory compliance (in the UK 

commonly known as review and assessment), mostly providing hourly concentration of various 

air pollutants over a long period of time (Table 4.1). There are three AURN sites in Sheffield 

run by DEFRA and six under SCC control. These continuous AQMS are shown in Table 4.2 

giving their names, site types, pollutants measured and other details, whereas their locations 

are shown in Figure 4.9.     

Table 4.2. Automatic air quality monitoring stations (AQMS) in Sheffield (SCC, 2016). 

Site name Site type 
Easting 

(X) 

Northing 

(Y) 

Pollutant 

monitored 

Monitoring 

Technique 

Distance 

to road 

(m) 

AURN/S

CC 

Firvale School 

(GH1) 

Urban 

BG 
436990 390218 NO2, PM10 CL, TEOM 10 SCC 

Tinsley Infant 

School (GH2) 

Urban 

Industrial 
440077 390794 

NO2, PM10, , 

PM2.5 
CL, TEOM 90 (M1) SCC 

Lowfield School 

(GH3) 
Roadside 435181 385366 

NO2, PM10, 

SO2 

CL, TEOM, 

UV Fluores. 
10 SCC 

Wicker (GH4) 
Urban 

BG 
435959 388021 

NO2, PM10, 

O3 

CL, TEOM, 

UV abs. 
50 SCC 

King Ecgbert 

School (GH5) 

Urban 

BG 
430977 380760 

NO2, PM10, 

O3 

CL, TEOM, 

UV abs. 
100 SCC 

Waingate (RM1) Roadside 435750 387647 NO2, PM10 CL, TEOM 3 SCC 

Tinsley (SHE) 
Urban 

Industrial 
440215 390598 NO2 CL 120 (M1) AURN 

Devonshire 

Green (SHDG) 

Urban 

Centre 
435158 386885 

NO2, O3, 

PM10, PM2.5 

CL, TEOM, 

UV abs. 
20 AURN 

Barnsley Road 

(SHBR) 

Urban 

Traffic 
436276 389930 

NO, NO2, 

NOx 
CL 3 AURN 

Table abbreviations are as follows:  CL - Chemiluminescence, BG - Background, SCC - Sheffield City Council 

and AURN - Automatic Urban and Rural Network. 
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  Figure 4.9. Continuous Air Quality Monitoring Stations (AQMS) in Sheffield comprising of 

3 AURN (DEFRA) and 6 SCC sites.  

4.3.1.2. Low-cost sensors  

An AQMN of LCS in Sheffield is shown in Figure 4.10. In this network the city is divided 

into three parts: (I) The University of Sheffield Campus; (II) Sheffield City Centre; and (III) 

Other parts of the city, which include Meadowhall Shopping Centre, Brightside & Attercliffe, 

Abbeydale and London Roads, southwest of the city, north and northwest of the city, e.g., 

Penistone Road - A61 and Barnsley Road - A6135, and east and southeast of Sheffield, e.g., 

Sheffield Parkway. 

The University of Sheffield Campus has two meshes (clusters) of sensors, each made of 

nine (9) E-MOTE sensors. One is deployed along Broad Lane, Portobello Lane and between 

them (Figure 4.10, middle-panel) and second mesh along A57 (Brook Hill and Western Bank) 

near Sheffield Children Hospital, Royal Hallamshire Hospital and Sheffield Student Union 

(Figure4.10, middle-panel). The intention is to capture more micro-level factors causing 

changes in air pollution concentrations. In addition to multi-storey student accommodation, 

University students are present in this area much of the time. Further details of the sensor 

locations are provided in Table 4.3. The western side of the A57 also has many pedestrians due 

to university students and patients attending the hospitals (who may be sensitive receptors). 

Several major and minor roads further contribute to the number of emission sources.  

Ten (10) Envirowatch E-MOTE sensors are deployed around the city centre (Figure 4.10, 

lower-panel), covering the busiest area around the train and bus stations, Arundel Gate, Pond 

Street, Sheaf Street, Sheffield Hallam University and Town Hall. This area experiences high 

levels of air pollution and WSV due to several busy roads and transport hubs and is surrounded 

by tall buildings creating dispersion barriers. This area is extensively covered to obtain high 

spatial resolution readings in order to identify the main drivers of air pollution. The sensor on 

Arundel Gate between Genting Casino and Hallam Business School is especially deployed to 
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study the street canyon effect. One sensor next to Devonshire Green AQMS, which is part of 

the UK AURN, is deployed for calibration purposes. 

 Independent LCS are deployed in the rest of the city in various areas including 

Meadowhall (2 independent sensors), Brightside & Attercliffe (2 independent E-MOTEs), 

Abbeydale and London Roads (2 independent AQMesh pods), Southwest of City (2 

independent AQ Mesh pods), North and northwest of Sheffield, e.g., Penistone Road (A61) 

and Barnsley Road (A6135) (3 Independent AQMesh pods), and East and southeast of 

Sheffield, e.g., Sheffield Parkway (2 independent sensors) (Figure 4.10).  

Meadowhall is a very busy shopping centre with large parking areas which remain busy 

throughout the day and evening. Furthermore, Meadowhall is about to undergo major 

development in the coming years, therefore AQ monitoring in this area can determine how air 

pollutant levels will alter once the plans are completed. The Tinsley area is adjacent to a large 

road network interchange, where several busy roads intersect and access the Motorway (M1), 

A631 and A6178. In Tinsley a two continuous AQMS are also deployed. Sensors are deployed 

on Siemens Close, Meadowhall Way and the Meadowhall Interchange. Brightside and 

Attercliffe areas are also very busy in terms of traffic flow carrying most of the traffic from 

Sheffield City Centre, bus station, train station and universities to the M1 and Meadowhall 

Shopping Centre. These roads (A6178 and A6109) are therefore heavily trafficked and highly 

polluted. For these reasons, sensors are deployed on Savile Street (adjacent to Tesco Extra) and 

Brightside Lane. Sensors are also deployed in the Abbeydale and London road area, with high 

population density and pollution levels along these busy main roads. Proposals are in hand to 

retrofit buses to reduce emissions of NO2 and PM that should be observed by monitoring these 

corridors. Furthermore, southwest and north-and-northwest of the city are highly populated and 

polluted areas where several hospitals and schools are located give rise to possibility of 

exposure of people who may be more vulnerable to high levels of air pollutants. In the North 

of City sensors are deployed at the Northern General Hospital, Hills Borough Primary School, 

and St Marys CoE Primary School. In the west sensors are deployed at Endcliffe Crescent and 

Cowlishaw Road, and in the east two AQ sensors are deployed at Prince of Wales Road and 

Maltravers Road.  
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Figure 4.10. EnviroWatch E-MOTE & AQMesh pod sensors (total 42 sensors) deployed 

around Sheffield (upper-panel). University of Sheffield Campus (lower-left panel) and City 

Centre (lower-right panel) are magnified to show their details.  

4.3.2. Proposed air quality monitoring network  

According to the methodology described in section 4.2.2, the whole city was mapped based 

on the value of WSV which incorporates PD, pollution levels and SV of air pollution. The 

number of sensors in each polygon was proportional to the value of WSV, which means more 

sensors should be deployed in polygons which show greater WSV value using equation 4.7. 

Firstly, an AQMN (Figure 4.11) is proposed for nine reference instruments deployed by both 

SCC and DEFRA in Sheffield City (discussed in 4.3.1.1, Figure 4.9). Figure 4.11 (upper-panel) 

shows the proposed locations of nine AQMS. Comparing this to Figure 4.9, we can clearly see 

that the proposed network allocates more sensors around the city centre, where pollution levels 

are higher and more people are exposed to air pollution. Also, near the city centre air pollution 

levels demonstrate much greater SV probably due to tall buildings and numerous emission 

sources including many major and minor roads. Six sensors are sited in the city centre including 

two sensors along Blonk Street and one each along Sheffield Parkway, Arundel Gate, 

Shoreham Street leading to Sheaf Street and the University of Sheffield along Portobello. Three 
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sensors are allocated outside the city, one each along Whitham Road, Queens Road and 

Staniforth Road (Figure 4.11, upper-panel).    

Figure 4.11 (lower-panel) shows the locations of forty-two (42) LCS. The proposed 

network provides better spatial coverage, focusing more on the city centre and surrounding 

area where WSV values were higher. Seven sensors are allocated on the southern side of the 

city along Queens Road and Chesterfield Road. Two sensors to the east near the junction of 

Staniforth Road and Prince of Wales Road, and one near Tinsley roundabout. Four sensors are 

allocated in the north of city along Barnsley Road and five along Penistone Road and Walkley 

Road. Nine sensors are sited on the western side along Whitham Road and Ecclesall Road. 

Fifteen sensors are sited in the city centre: St Mary’s Road (2), Arundel Gate (2), Sheffield 

Parkway (2), Blonk Street (4), Haymarket (1), Corporation Street (1), Mapping Street (1), 

Headford Gardens (1) and Gell Street (1).  

The total number of sensors are decided on the basis of financial resources (budget of the 

project), whereas the number of sensors in each polygon are based on exposure (population 

and pollution levels) and its SV. Sometimes AQ sensors are deployed for a particular reason, 

to determine the background level of ground level O3, for instance. In this case the AQMS 

should be deployed in a rural background area. Therefore, based on the purpose of monitoring, 

AQ monitoring authority may deploy a sensor in a specific place against the recommendation 

of this network. Furthermore, once the general locations and number of sensors are decided 

using the methodology suggested in this manuscript, the final location for each sensor within 

the polygon will be decided based on the purpose of the monitoring using the opinion of experts 

having experience of the local areas.  

The final map of LCS and reference sensors is shown in Figure 4.12, where the lower-

panel shows the proposed locations according to WSV and the upper-panel shows the existing 

locations of AQMS in Sheffield. These two maps have been put together to facilitate their 

comparison. 
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Figure 4.11. Proposed AQ sensor locations based on WSV in Sheffield, where upper-panel 

shows locations of reference sensors and lower-panel shows locations of LCS.   
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Figure 4.12. AQMN with forty-two (42) LCS and nine (9) continuous AQMS, where the lower-

panel shows the proposed network whereas the upper-panel shows the present locations in 

Sheffield.   

In addition to reference sensors and LCS (AQMesh and EnviroWatch E-MOTEs), IoT 

sensors will be deployed in different parts of the city, however, how many is not yet known. 

IoT sensors will be deployed mostly next to AQMesh, E-MOTEs and reference sensors so that 

their performance can be compared. In addition, IoT sensors will be deployed to cover gaps 

between high quality sensors. MOBIUS will be used to take readings between static sensors. 

The data points are tagged with location and time utilising an on-board GPS. MOBIUS will be 

used for AQ monitoring in places where the deployment of fixed sensors is not possible due to 

limiting factors, e.g., lack of power supply, insufficient space or unsafe location for fixed 

monitoring stations. MOBIUS is helpful to collect data between various fixed monitoring 

stations, to highlight hot spots and provide much better spatial coverage, however they are 

mainly suitable for short term monitoring and sensors calibration. In this way using different 

types of sensors, an IAQMN will provide high spatiotemporal resolution maps in Sheffield.   

The proposed network is more spatially representative than the previous network because 

it is structured based on WSV. Air pollutant concentrations measured by the proposed network 

will capture spatial variability of air pollution in locations not captured before and will 

highlight hotspots of air pollution where more people are exposed to high levels of air 

pollutants. This proposed network provides a great example for local authorities and DEFRA 

for structuring an IAQMN. Future work includes collection of AQ data from the proposed 

network, integrating the data collected by various sensors, and developing a land-use regression 

model.   
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4.4. Conclusions 

With new developments in AQ monitoring technology including the availability and 

popularity of LCS, more and more people are setting up purpose-designed AQMN for various 

purposes, e.g., to produce high resolution AQ maps, to assess human exposure to air pollution, 

and to review regulatory compliance of air pollutant levels. In this study we proposed an 

IAQMN based on population density, pollution concentrations and WSV. This is further 

supported by a conceptual model which analyses the purpose of AQ monitoring and discusses 

how the purpose is linked with sensors deployments. This study proposes an IAQMN utilising 

several layers of AQ monitoring approaches including both fixed and mobile techniques 

employing reference, LCS, and IoT sensors. The aim is to achieve AQ data of high 

spatiotemporal resolution, however, in many cases there is a compromise made on one or more 

dimensions due to various constraints, e.g., financial constraints. As a case study, an IAQMN 

has been proposed in Sheffield, which will monitor AQ levels on roadsides, urban background, 

suburban background, hospitals, schools and universities. Forty-two (42) LCS along with nine 

(9) reference sensors will be deployed. The network will be further supported by mobile 

monitoring using both reference and LCS. The data obtained from various layers of the network 

will be fused together to be used for developing spatiotemporal high resolution maps and LUR 

model in Sheffield. This study provides a practical example as to how various types of AQ 

monitoring sensors can be integrated into one monitoring network in large urban areas to 

capture local level spatiotemporal variability in air pollution concentrations, especially in low- 

and middle-income countries where AQMNs either do not exist or are sparse. LCS will be of 

particular importance in those countries for setting up purpose-designed AQMNs.     
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Glossary 

AQ  Air quality 

AQMA Air quality management area(s) 

AQMN Air quality monitoring network(s) 

AQMS  Air quality monitoring station(s)  

AURN  Automatic Urban and Rural Network 

DEFRA Department for the Environment, Food and Rural Affairs (UK) 

GIS  Geographic information system 

GPRS  Global packet radio service 

IAQMN Integrated air quality monitoring network 

LUR  Land use regression 

NPD  Normalised population density 

PD  Population density 

PWPC  Population-weighted pollution concentration 

SCC  Sheffield City Council 

SV  Spatial variability 
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VOC  Volatile organic compound 

WSV  Weighted spatial variability 
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Abstract  

Two air pollutants, oxides of nitrogen (NOx) and particulate matter (PM10) are monitored and 

modelled employing Airviro air quality dispersion modelling system in Sheffield, United Kingdom. 

The aim is to determine the most significant emission sources and their spatial variability. NOx 

emissions (ton/year) from road traffic, point and area sources for the year 2017 were 5370, 6774 and 

2425, whereas that of PM10 (ton/year) were 345, 1449 and 281, respectively, which are part of the 

emission database. The results showed three hotspots of NOx, namely the Sheffield City Centre, 

Darnall and Tinsley Roundabout (M1 J34S). High PM10 concentrations were shown mainly between 

Sheffield Forgemasters International (a heavy engineering steel company) and Meadowhall shopping 

centre. Several emission scenarios were tested which showed that NOx concentrations were mainly 

from road traffic, whereas PM10 concentrations were from point sources. Spatiotemporal variability 

and public exposure to air pollution were analysed. NOx concentration was greater than 52 µg/m3 in 

about 8 km2 area, where more than 66 thousand people lived. Models validated by observations can 

be used to fill-in spatiotemporal gaps in measured data. The approach used presents spatiotemporal 

situation awareness maps that could be used for decision making and improving the urban 

infrastructure.     

Keywords: Air quality modelling; urban air quality; Airviro; dispersion modelling; Sheffield; 

Emissions. 

  

5.1. Introduction  

Air pollution has a significant negative impact on urban areas, especially in large megacities and 

roadside locations, where air pollution has become a growing issue for public health. Air pollution is 

causing numerous human health and environmental problems. Polluted air, especially with high levels 

of nitrogen dioxide (NO2) and particulate matter with aerodynamic diameter of up to 10 µm (PM10) and 

2.5 µm (PM2.5), is considered the most serious environmental risk to public health in urban areas in the 

UK [1]. Atmospheric pollutants were estimated to cause three million premature deaths in 2012 

worldwide [2], whereas according to Landrigan [3] air pollution caused 6·4 million deaths worldwide 

in 2015. Air pollutants (e.g., NO2 and PM10) emitted by various emission sources are reported to 

cause heart disease, lung cancer, and both chronic and acute respiratory diseases including asthma [2]. 

mailto:smunir2@sheffield.ac.uk
https://doi.org/10.3390/atmos11030285
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Air pollution models are numerical tools for describing the causal relationship of atmospheric 

pollutant concentrations with emissions, meteorology, deposition, chemical transformation and other 

factors like topography [4]. Modelling outputs can support Air Quality Monitoring Networks (AQMN) 

by improving spatial and temporal coverage in urban areas. Quantifying emission sources and 

predicting air pollutant concentrations, using dispersion modelling approaches like Airviro, AERMOD 

or ADMS-Urban can help understand the main drivers of air pollution. Outputs of the dispersion model 

in the form of contour maps highlight spatial variability of air pollutant concentrations in the cities and 

provide a continuous map that can be used to further fine tune the air quality monitoring network. 

Air quality modelling is carried out for several purposes including air quality 

prediction/forecasting, analysing the dispersion of air pollutants in the atmosphere based on emissions 

and meteorological parameters, quantifying the impacts of air pollution (e.g., health impacts), 

modelling the impacts of various factors on air pollution, analysing the relationship between different 

pollutants, modelling pollution processes and transport, quantifying deposition and environmental 

fate of pollutants, running and testing emission scenarios, quantifying the emissions of air pollutants 

from various emission sources, determining long-term trend in air pollutant concentrations, and 

producing high resolution spatiotemporal maps of air pollution [5 - 12]. Dispersion models are also 

used for emergency planning of accidental chemical releases [13].  

Air quality models can be divided into two main types, namely statistical and dispersion models. 

There is a wealth of statistical models, including time series (e.g., autoregressive moving average), 

regression (e.g., multiple linear regression), classification (e.g., logistic and discriminant analysis) and 

resampling methods (e.g., cross-validation and bootstraps) [14]. Dispersion modelling is further 

divided into Gaussian, Eulerian, Lagrangian, Computations Fluid Dynamics, Photochemical, Dense-

gas, Aerosol Dynamic and Box models [15:17]. A number of techniques exist for modelling the 

dispersion of air pollutants, which vary in sophistication but all include some sort of simplification of 

the real dispersion processes. Selecting a particular modelling approach depends on several factors 

such as the temporal and spatial scale of the model, resolution of the data available to run the model, 

the purpose of the modelling, skill of the modeller, time, financial and computer resources available 

[16]. Dispersion modelling techniques for air quality are effective tools for determining downwind 

concentrations of air pollutants at a given time and space emitted by a known emission source, for 

example, an industrial plant or a nearby road. Dispersion models are mathematical representation of 

the atmospheric processes determining the rate at which pollutants are mixed with clean air. Results of 

dispersion models can be used to replace the need for air pollutant monitoring. However, high cost of 

purchase and maintenance, high input demands and requirement of skilled staff limit their application.  

In this paper the Airviro version 4.01dispersion modelling system [18] is employed to model the 

emissions of NOx and PM10 in Sheffield, United Kingdom. The aim is to analyse different emission 

sources of air pollutants, investigate spatial variability of the pollutants, identify their main hotspots in 

Sheffield and assess the performance of Airviro model by comparing the modelled and observed 

concentrations in Sheffield. Furthermore, several emission scenarios will be tested which help identify 

the main drivers of air pollution in Sheffield. The rest of the paper is structured as follows: Methodology 

of this paper is presented in section 5.2, where section 5.2.1 presents the proposed framework, which 

includes the model for the air quality assessment of the Airviro dispersion. The air quality data and 

meteorological data are presented in section 5.2.2. The assessment and validation of the proposed 

model is given in section 5.2.3. Section 5.3 presents results and their analysis. The main outcomes of 

this work are summarised in section 5.4. 

5.2. Methodology 

This paper presents a spatiotemporal analysis of the two air pollutants (PM10 and NOx) sources, 

emissions and atmospheric concentrations in the city of Sheffield, United Kingdom. Air quality 

modelling and monitoring support each other in several ways. Air quality monitoring provides data 

only for points where the sensors are installed for the past and present time, whereas models provide 
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better spatial coverage and in addition to past and present, can predict air pollution concentrations for 

the future. Models validated by observations can be used to fill-in spatiotemporal gaps in measured 

data. Figure 5.1 compares air quality monitoring and modelling and shows how they support each 

other.   

 

Figure 5.1. Schematic diagram comparing air quality modelling and monitoring and how they support 

each other. 

5.2.1. Dispersion modelling system – Airviro 

In this paper Airviro version 4.01 was used, which is an air quality management system developed 

by Apertum [18, 19]. Airviro is an integrated modelling system for managing emission inventories 

(Emission Data Base – EDB), modelling dispersion of pollutants and data handling. Airviro is a state of 

the art dispersion model used by many researchers, consultants and local authorities globally for air 

quality modelling. Airviro has several modelling options [18, 19]. In this study for urban scale 

modelling in Sheffield, a Gaussian model is used, which was introduced by Pasquill [20-22] and Briggs 

[23]. The Gaussian modelling technique is simple, computationally efficient and requires simple input 

data. Gaussian modelling is normally used for fast screening type calculation of the pollutant 

dispersion in urban areas from point sources, line sources or area sources. Urban areas can be modelled 

as a sum of area sources (e.g., domestic and commercial emission), point sources (e.g., factory or power 

stations), and line sources (e.g., road traffic). 

In this paper two air pollutants NOx and PM10 are modelled using local topography, emissions 

and meteorological data to produce air quality maps of the estimated pollutants. In this paper emissions 

of NOx and PM10 from road traffic, point sources and area sources are modelled and the estimated 

concentrations are compared with measured concentrations from several sensors. Dispersion models 

convert pollutant emissions to atmospheric concentrations in the form of contour maps and receptor 

points. This paper presents emission data, real case studies and the developed approaches for air 

pollution modelling and prediction. 

In additional to annual levels, NOx and PM10 concentrations are estimated for spring, summer, 

autumn and winter seasons and compared with measured concentrations at three receptors points (as 

discussed in section 2.3).   

5.2.2. Emission and meteorological data 

Sheffield (53°23′N, 1°28′W) is a metropolitan borough and a vibrant city in South Yorkshire, United 

Kingdom. Historically known as the Steel City, Sheffield no more has the smoking chimney stacks and 

has emerged as a green and modern cityscape in the proximity of the Peak District National Park. 

According to 2011 census Sheffield City had a population of 552,700, however, since then the 
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population has grown and according to more recent estimates has reached about 700,000. Its elevation 

above sea level ranges from 29 m near Blackburn Meadows to 548 m near Margery Hill. Sheffield, like 

most of the United Kingdom, has a temperate climate with average maximum temperature of 20.8oC in 

June and July and average minimum temperature of 1.6oC in January and February. 

Both spatial road traffic and points air pollutant emission sources are shown in Figure 5.2 (a and 

b). In this paper the Airviro EDB for Sheffield was used, which contains detailed information on the 

sources of emissions and allows for emission rates for various types of emission sources such as point 

sources, area sources or road sources to be calculated. This EDB has an updated 2017 road traffic data 

(emission factors, traffic counts, vehicle speed, and fleet composition), area sources (commercial and 

domestic emissions) and point (industrial) sources. The new emission factors (Emissions Factor Toolkit 

v8.0.1b) include non-exhaust particulate matter such as resuspension of dust particles. The EDB also 

takes account of spatiotemporal variability in emission rates. Emissions are calculated as a function of 

day type (e.g., weekday or weekend), hour of day, and month of year. Temporal resolution of emissions 

is hourly, whereas the model outputs are presented in different time resolutions including hourly, 

seasonal or annual. For example, to calculate emissions for a road segment, the emission database uses 

some basic information including road name, road type (e.g., urban road, motorway etc.), vehicle 

speed, traffic counts, fleet composition, number of lanes, road length, slope and elevation. Likewise, to 

calculate emission from a point source, the emission database uses various information of the source 

such as name, location, coordinates, chimney characteristics (e.g., chimney height, outer and inner 

diameter of chimney, exhaust gas temperature and exhaust gas velocity), and characteristics of the 

emissions such as substance (e.g., NOx, PM10, SO2), amount of emissions and time variation of 

emissions. Full details on Airviro EDB are provided by Airviro User´s Reference [13]. Spatial resolution 

of area sources, which includes residential and commercial sources is 1km x 1km. Point sources 

emissions are calculated individually. The Airviro EDB for 2017 shows that there were 268 point sources 

emitting 12999 ton/year SO2, 6774 ton/year NOx, 3077 ton/year CO and 1449 ton/year PM10 in Sheffield 

and Rotherham. On the other hand, road sources emitted 5370 ton/year NOx and 345 ton/year PM10. 

Emission data of some pollutants were missing in the database (Table 5.1).   Several pollutants have 

demonstrated reduction in their emissions, e.g., SO2 from road sources due to the effects of Directive 

2005/33/EC of the European Parliament on the removal of sulphur from road traffic fuels. In addition, 

improvements in road vehicle fuels and technologies as a result of EU Directives on emission standards 

also resulted in reductions in CO from 65% (1990) to 16% (2017), in conjunction with reductions from 

industrial sources “due to the decline in the use of solid fuels in favour of gas and electricity, as well as 

a decline in the production of steel and non-ferrous metals” [24].  This study considers only two 

pollutants i.e. NOx and PM10. Emissions of NOx and PM10 are shown in Figure 5.3 (a and b), 

respectively, demonstrating their spatial variability and highlighting hotspots in terms of pollutant 

emissions [(ton/year)/km2]. 

Hourly meteorological data including temperature, relative humidity, wind speed and direction 

(Figure 5.4) were measured at Woodburn Road weather mast in Sheffield, located at Sheffield Hallam 

University City Athletics Stadium. These were used for the simulation of hourly NOx and PM10 

concentrations, whereas for monthly, seasonal and annual scenarios, Airviro used a statistical approach 

for estimating such meteorological conditions. Before model runs, the meteorological data were used 

to determine the boundary layer scaling parameters – surface friction velocity and the Monin-Obukhov 

length. The wind fields were simulated using the diagnostic wind model available in Airviro, which 

considered the effects of topography, surface roughness and surface adiabatic heating/cooling [25]. 

Atmospheric conditions are classified into six (6) stability classes in the model: very stable, stable, 

neutral negative, neutral positive, unstable and very unstable [26]. 
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Table 5.1. Emission of various air pollutants (ton/year) in Sheffield and surrounding areas. 

Pollutant Point sources Road sources Area sources Total Emission 

SO2 12999  1157 14156 

NOx 6774 5370 2425 14569 

NO2 122   122 

CO 3077  2203 5280 

PM10 1449 345 281 2075 

PM2.5  224  224 

(a) Point sources 
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(b) Road network 

 

Figure 5.2. Showing emission sources in Sheffield and surrounding areas including Rotherham for year 

2017: (a) point sources, (b) road network or line sources. 

 

(a) NOx emissions 
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(b) PM10 emissions 

Figure 5.3. Showing emissions’ strength [(ton/year)/km2] in Sheffield and surrounding areas including 

Rotherham for year 2017 from all emission sources: (a) NOx emissions, (b) PM10 emissions. 

 
 

Figure 5.4. Breuer frequency distribution (wind rose) for year 2017 weather Data, used in the Airviro 

model. 
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5.2.3. Model assessment 

PM10 and NOx concentrations (µg/m3) predicted by Airviro model are presented in the form of 

contour maps. Predictions are also made for three receptor points namely Devonshire Green, Sheffield 

Tinsley and Barnsley Road air quality monitoring stations, which are part of the UK Department for 

Environment, Food and Rural Affairs (DEFRA) Automatic Urban and Rural Network (AURN). Details 

of these sites are provided in Table 5.2. Measured and modelled NOx and PM10 concentrations are 

compared at these sites to assess the performance of the model. Comparisons are made for annual 

concentrations as well as for winter, spring, summer and autumn seasons. Furthermore, hourly 

predicted and observed concentrations are compared for the month of January representing winter and 

July representing summer season 2017. Several statistical metrics are calculated to assess the 

performance of the model. The metrics used in this paper are the correlation coefficient (r), Root Mean 

Square Error (RMSE), Mean Bias (MB), Normalised Mean Bias (NMB), Mean Absolute Error (MAE), 

Normalised Mean Absolute Error (NMAE), Factor of two (FAC2) and Coefficient of Efficiency (COE).   

The RMSE and Root Mean Square Deviation (RMSD) provide a good measure of the model error 

by calculating how close or far the predicted values are to the observed values. The RMSE measures 

the difference between the predicted and observed concentrations. The RMSE is a non-negative 

quantity and ideally we want it to have a zero value which means a perfect fit of the model having no 

error. MB is simply the average bias between the predicted and observed values. NMB is calculated by 

adding up the difference between the predicted and observed values (∑ (predi − obsi)) and normalising 

it by the sum of the observed values (∑obsi). NMB is reported as a percentage (%). NMB estimates 

average over or under prediction and its value between +0.02 and -0.02 shows acceptable model 

performance. MAE provides a good indication of the mean absolute error and is in the same units as 

the quantities being considered. The MAE is normalised dividing it by the observed value. The 

normalised value is known as NMAE. The correlation coefficient (r) characterises the strength of the 

linear relationship between two variables i.e. modelled and observed concentrations. The closer to one 

(±1) the value of ‘r’ is, the better the similarity is. Generally, a value ranging from ±0.5 to ±0.99 indicates 

reasonably good performance of the model. FAC2 is the fraction of modelled values within a factor of 

2 of the observed values. FAC2 should satisfy the condition that 0.5 ≤ predi/obsi ≤ 2. The ideal value for 

the FAC2 is 1 (100%). A highly efficient or perfect model should have COE value of 1. However, when 

analysing real data, a model has a COE value of less than 1. COE having a zero value (COE = 0) means 

the model prediction is not better than the mean of the observed value, which in other words means its 

prediction power is zero or it has no predictive advantage. These metrics are further described by [27] 

and [28]. 

Table 5.2. Air quality monitoring sites (receptor points) where measured and modelled concentrations 

are compared. 

Site name Site type 
Easting 
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5.3. Results and discussion  

Employing the Airviro model, emissions (ton/year) of NOx and PM10 are modelled to produce 

atmospheric concentrations (µg/m3) of these pollutants in the form of contour maps for year 2017 in 

Sheffield. In sections 3.1 results of NOx and section 3.2 results of PM10 are presented and discussed.  

5.3.1. NOx maps  

Figure 5.5 shows modelled annual average NOx concentrations (µg/m3) in the form of contour 

maps using traffic, points and area emission sources employing Gauss module for scenario 2017. Figure 

5.5 shows three areas of high NOx concentrations in the city namely Sheffield City Centre, Darnall and 

near Tinsley Roundabout (M1, J34S). High levels of NOx are also predicted on Sheffield Parkway (A630, 

A57) and between Meadowhall Shopping Centre and Sheffield Forgemasters International (a heavy 

engineering steel company). Sheffield City Centre probably experiences the highest levels of NOx, 

which is mainly due to high level of road traffic but various point and area sources also contribute. 

Pollution levels are highest in the busiest part of the city including St. Mary’s Gate, More Street, Eyre 

Street, Arundel Gate, Sheaf Street, Pond Street, Exchange Place and Castlegate. The train station, the 

bus station, the area of the Sheffield Hallam University and a busy shopping centre make this area very 

busy in terms of road traffics, exposing visitors, workers, students, commuters and residents to high 

levels of air pollution. Areas adjacent to the city centre also experience considerable amount of air 

pollution. Generally, pollution levels gradually decrease with distance from the city centre. However, 

due to prevailing south westerly winds and the locations of some industrial sources, there is a north-

eastern trend in air pollution levels i.e. north-eastern region towards M1 experiences considerably high 

amount of air pollution (39 – 52 µg/m3) (Figure 5.5). In the north-eastern region, there are three hot 

spots where air pollution levels are higher (NOx levels > 65 µg/m3), namely Darnall, near Tinsley 

Roundabout on M1 J34S and between Sheffield Forgemaster International and Meadowhall shopping 

centre. The reasons for these hotspots are high traffic levels and some heavy steel industries. The north-

eastern region experiences considerably more road traffic due to the Motorway (M1) and several major 

roads to-and-from Sheffield City Centre, Meadowhall and the M1.     
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Figure 5.5. Estimated annual mean NOx concentrations (µg/m3) using all emission sources in Sheffield 

for year 2017. 

Figure 5.6 shows the effect of various emission scenarios on atmospheric NOx concentrations in 

Sheffield, where Figure 5.6 (a) represents emissions of road traffic, (b) HGV (Heavy Goods Vehicles) 

and LGV (Large Goods Vehicles), (c) cars both petrol and diesel, (d) buses, and (e) points sources in 

Sheffield. Here HGV and LGV are European terms used for any vehicles or trucks with a gross weight 

of over 3500 kg. These different categories of emissions result in different spatial variability of NOx. 

The outputs of these scenarios show that the levels of NOx pollution are mostly controlled by road 

traffic. HGVs seem to emit a considerable amount of emissions in the city centre (Figure 5.6b) and their 

contribution is greater than that of the buses or cars. Scenario (6a) which represents all traffic modes 

shows high pollution levels in the city centre and surrounding areas. Furthermore, it shows higher 

pollution levels along Sheffield Parkway leading to Motorway (M1) and along Penistone Road (A61). 

The other traffic scenarios show moderate levels of air pollution in the city centre and the adjacent 

areas. Figure 5.6(e) which considers only point sources represents totally different spatial pattern of 

NOx concentrations. In this scenario the hotspots in the city centre and surrounding areas have 

disappeared. Here the two hotspots are in Tinsley (near J34SM1) and Attercliffe (near A6109). In Tinsley 

there are about 15 point sources, whereas on both sides of A6109 (where the hotspot is shown) there 

are about 13 point sources, which are the most likely reasons for these two hotspots.  

 

(a) Road traffic 
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(b) HGV and LGV 

 

 

(c) Cars 
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(d) Buses 

 

(e) Point sources 

 

Figure 5.6. Estimated mean annual NOx concentrations (µg/m3) using emissions from road traffic (a), 

HGV and LGV (b), cars both petrol and diesel (c), buses (d), and points sources (e) in Sheffield for year 

2017. 
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Atmospheric levels of NOx were estimated in various seasons of the year Figure not shown for 

brevity)  namely: (a) winter (November, December, January), (b) spring (February, March, April), (c) 

summer (May, June, July), and (d) autumn (August, September, October). Generally atmospheric 

pollutant levels were higher in colder seasons due to (i) greater combustion of fossil fuels, mainly diesel, 

petrol, gas and coal to a lesser extent, and (ii) atmospheric stagnation and shallower atmospheric 

boundary-layer height which discourage pollutant dispersion as compared to hotter seasons when the 

atmosphere is more turbulent and boundary layer height is wider. Mainly there are four hotspots, 

which are Sheffield City Centre, Tinsley, near Forgemaster International and Darnall. The four seasons 

demonstrated slightly different patterns and levels of NOx. Relatively higher levels of NOx were 

predicted in winter and autumn in which minimum, mean and maximum levels (µg/m3) were 4, 23, 87 

and 2, 21, 91, respectively. Summer and spring showed relatively lower NOx levels in which minimum, 

mean and maximum NOx levels (µg/m3) were 2, 16, 68 and 2, 19, 81, respectively. 

5.3.2. PM10 maps  

Figure 5.7 shows the results of modelled annual average PM10 concentrations (µg/m3) in the form 

of contour maps using road traffic, point and area emission sources. Gauss module of Airviro for 

scenario 2017 was employed in this study. In contrast to NOx concentrations, the areas with elevated 

PM10 concentrations are shown outside Sheffield City Centre. The highest PM10 pollution levels were 

observed between Meadowhall shopping centre and Sheffield Forgemaster International. This hotspot 

seems to be due to the point sources (heavy steel and other companies) in this area. However, this is 

also a busy area in terms of road traffic, which must be contributing a significant amount of emissions. 

The second hotspot of PM10 is shown in Attercliffe, which has six point sources emitting a significant 

amount of PM10 and other pollutants. The third hotspot of PM10 is shown in Sheffield Parkway having 

three point sources. The fourth hotspot is the north-eastern corner of the city centre in the Wicker and 

West Bar near Derek Dooley Way. The model results demonstrate that PM10 levels are affected more by 

the heavy industries rather than the road traffic, which is in contrast to NOx levels which are more 

linked with road traffic. Figure 5.8 showing PM10 concentrations estimated from point sources (upper 

panel) and road traffic (lower panel) provides further evidence that PM10 levels in Sheffield are more 

affected by point sources. When only point sources were considered as inputs to the model, the 

minimum, mean and maximum PM10 levels (µg/m3) were 0.24, 1.3 and 13.9, respectively, whereas when 

only road traffic was considered these levels were 0.04, 0.56 and 2.5, respectively.  

PM10 concentrations (µg/m3) in various seasons of the year were also modelled and compared. 

PM10 concentrations slightly varied and showed slightly different spatial pattern in various seasons. 

The minimum, mean, and maximum PM10 concentrations (µg/m3) in winter, spring, summer, and 

autumn were: 1.0, 4.12, 15.4; 0.66, 3.75, 15.4; 0.47, 3.47, 15.5; and 0.75, 4.49, 19.0, respectively. Autumn 

showed relatively higher average (4.49 µg/m3) and maximum (19.0 µg/m3) PM10 concentrations 

compared to other seasons.   
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Figure 5.7. Estimated annual mean PM10 concentrations (µg/m3) using all emission sources in Sheffield 

City Centre for year 2017. 
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Figure 5.8. Estimated PM10 concentrations (µg/m3) from point sources (upper-panel) and road sources 

(lower-panel) in Sheffield. 

5.3.3. Comparison of predicted and observed concentrations 

5.3.3.1. Comparison of seasonal and annual data 

Modelled and observed NOx and PM10 concentrations cannot be compared in the form of contour 

maps because observed concentrations are not available in the form of contour maps. To make 

comparison with observed concentration, both NOx and PM10 concentrations were predicted for three 

receptor points in Sheffield namely Devonshire Green, Sheffield Tinsley and Barnsley Road air quality 

monitoring stations (AQMS). Details of these sites are provided in Table 5.2. NOx is monitored at all 

three sites, however PM10 is only monitored at Devonshire Green site, and therefore comparison of 

measured and modelled PM10 is made only at Devonshire Green site. 

Predicted and measured NOx and PM10 concentrations are compared in Table 5.3. Predicted NOx 

concentrations are higher than the observed concentrations at Devonshire Green and Tinsley and lower 

at the Barnsley Road AQMS. The encouraging fact is that the model has captured the seasonal trend in 

NOx concentrations, showing higher levels in winter and lower in summer. Devonshire Green and 

Tinsley are background sites, whereas Barnsley Road is an urban traffic (roadside) site, therefore lower 

prediction of NOx as compared to observed concentrations at Barnsley Road site probably indicates 

that emission inventory for Barnsley Road has under estimated road traffic flow. Observed NOx levels 

are more than double of the predicted concentrations at Barnsley Road site. However, there is a good 

positive correlation (r = +0.66) between observed and predicted concentrations. Correlation between 

observed and modelled NOx at Devonshire Green and Tinsley sites was slightly weaker (r = +0.46 at 

both sites). A comparison of predicted and observed PM10 concentrations at Devonshire Green site 

showed lower predicted than observed PM10 concentrations by a factor of more than two. Furthermore, 

there was a weak negative correlation (r= -0.18) between the observed and predicted PM10 

concentrations. However, the data are very limited, only five of each observed and predicted values 

were available for comparison, therefore to make such comparison meaningful, long term time series 
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observed and predicted NOx and PM10 concentrations are required, which are analysed in the next 

section. 

Table 5.3. Comparison of measured and predicted NOx and PM10 concentrations (µg/m3) at Devonshire 

Green, Tinsley and Barnsley Road AQMS in various seasons in year 2017. 

Pollutant  Season 2017 
Devonshire Green Tinsley  Barnsley Rd 

Observed Predicted Observed Predicted Observed Predicted 

 NOx  

Winter  49.2 76.0 69.4 66.3 111.7 47.5 

Summer  23.3 58.3 30.5 50.6 63.6 31.2 

Autumn 27.3 79.6 41.4 73.3 73.8 47.2 

Spring  36.2 70.9 44.2 56.9 86.5 41.2 

Annual 33.9 65.5 46.3 56.4 83.7 38.8 

PM10 

Winter  15.8 6.98 

Not monitored 

Summer  16.08 5.98 

Autumn 13.5 7.55 

Spring  19.0 7.19 

Annual 16.0 6.63 

 

5.3.3.2. Comparison of hourly data 

To compare hourly observed and predicted data, NOx concentrations were predicted for the 

months of January and July 2017 for Devonshire Green and Sheffield Tinsley. Comparison was not 

possible at Barnsley Road AQMS due to missing observed data for both January and July. PM10 

concentrations are monitored only at Devonshire Green monitoring station, therefore comparison was 

not possible at the other two sites. To compare predicted and observed concentrations of NOx and PM10 

both graphical approach and statistical metrics were used.  

Predicted and monitored NOx concentrations (µg/m3) are compared for the months of January 

and July at Devonshire Green (DG) and Sheffield Tinsley (ST) AQMS. January represents winter 

whereas July represents summer season of the year. The aim is to see how the model prediction varies 

in winter and summer seasons in comparison to observed data. Figure 5.9 shows the comparison of 

observed and predicted concentrations in January at Devonshire Green (upper-panel) and at Tinsley 

(lower-panel). At both Devonshire Green and Tinsley sites the model is slightly under predicting NOx 

concentrations in January (Figure 5.9). Predicted mean and median concentrations at Devonshire Green 

in January were 40.29 and 28.20 and observed were 49.04 and 32.17, respectively, whereas at Tinsley 

predicted values were 51.21 and 27.40 and observed 63.25 and 42.75, respectively (Table 5.4). Negative 

MB and NMB at both sites also show under prediction (Table 5.5). Metrics showing error of the model 

(e.g., MB, RMSE and MAE) are slightly greater at Tinsley indicating larger difference between predicted 

and observed concentrations. However, correlation coefficient value is also higher at Tinsley (0.62) than 

DG (0.55), showing better linear association between predicted and observed concentrations. The 

model performance expressed by r (0.65) and FAC2 (0.52) is satisfactory in January at both receptor 

points.  

Summary of predicted and observed NOx concentrations (µg/m3) for the month of July at both 

Devonshire Green and Tinsley is shown in Table 5.6. In the month of July predicted mean and median 

concentrations at Devonshire Green were 35.78 and 32.10, whereas observed concentrations were 19.73 
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and 16.62, respectively. At the Tinsley site the predicted and observed mean and median concentrations 

were 38.71, 26.10 and 32.00, 27.48, respectively (Table 5.6). Minimum, mean, median, and maximum 

values show over prediction of the model in July at both sites. Various statistical metrics calculated for 

the month of July are shown in Table 5.7, where the values of MB and NMB also show that the model 

is over predicting NOx concentrations in July. Figure 5.10 graphically compares modelled and observed 

NOx concentrations, again showing slightly over prediction of NOx concentrations.   

Table 5.4. Summary of the observed and predicted NOx concentrations (µg/m3) in January at 

Devonshire Green and Tinsley monitoring stations. 

Metric 

January 

Devonshire Green Tinsley 

NOx_pred NOx_obs NOx_pred NOx_obs 

Minimum 0.83 2.73 1.30 3.24 

1st Quartile 11.80 18.54 14.15 23.61 

Median 28.20 32.17 27.40 42.75 

Mean 40.29 49.04 51.21 63.25 

3rd Quartile 46.85 61.23 58.05 78.78 

Maximum 284.00 367.97 381.00 496.62 
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Figure 5.9. Comparison of predicted (pred) and observed (obs) NOx at both Devonshire Green (dg) and 

Sheffield Tinsley (tins) for the month of January 2017. 

Table 5.5. Showing the value of various statistical metrics used for assessing the performance of the 

model for predicting NOx concentrations in the month of January 2017 at both Devonshire Green and 

Sheffield Tinsley. 

Metric Devonshire Green Sheffield Tinsley 

FAC2 0.65 0.52 

MB -8.67 -11.96 

MAE 25.99 38.18 

NMB -0.18 -0.19 

NMAE 0.53 0.60 

RMSE 45.62 59.86 

r 0.55 0.62 

COE 0.22 0.12 
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Table 5.6. Summary of the observed and predicted NOx concentrations (µg/m3) in July at Devonshire 

Green and Tinsley monitoring stations. 

Metric 

July 

Devonshire Green  Tinsley  

NOx_pred NOx_obs NOx_pred NOx_obs 

Minimum 3.95 2.10 5.42 4.56 

1st Quartile 21.30 12.16 16.50 17.70 

Median    32.10 16.62 26.10 27.48 

Mean     35.78 19.73 38.71 32.00 

3rd Quartile 40.45 23.47 46.05 40.30 

Maximum 161.00 87.82 260.00 143.45 

 

Table 5.7. Showing the value of various statistical metrics used for assessing the performance of Airviro 

model for predicting NOx concentrations in the month of July 2017 at both Devonshire Green and 

Sheffield Tinsley. 

Metric Devonshire Green Sheffield Tinsley 

FAC2 0.51 0.59 

MB 16.05 6.78 

MAE 19.40 23.58 

NMB 0.81 0.21 

NMAE 0.98 0.74 

RMSE 28.15 36.36 

r 0.32 0.34 

COE -1.24 -0.65 
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Figure 5.10. Comparison of modelled and monitored NOx at both Devonshire Green (dg) and Sheffield 

Tinsley (tins) for the month of July 2017. 

Predicted and observed PM10 concentrations (µg/m3) at Devonshire Green monitoring station are 

also compared in the month of January and July for year 2017. Table 5.8 shows summary of the 

predicted and observed PM10 concentrations in both months. In January, the predicted mean and 

median concentrations were 3.17 and 1.57 and observed mean and median were 17.77 and 15.20, 
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respectively. In July predicted mean and median concentrations were 2.05 and 1.46 and observed mean 

and median concentrations were 11.12 and 10.35, respectively (Table 5.8), which clearly shows that the 

model under predicts PM10 concentrations in both January and July. This can also be observed in 

graphical presentations (Figure 5.11) and Table 5.9, which show significant difference in predicted and 

observed concentrations. FAC2 values are very low in the months of both January (0.05) and July (0.06). 

Furthermore, NMB value (-0.82) in both January and July shows under prediction by the model. These 

values show that the model performance is not satisfactory for predicting PM10 concentrations at 

Devonshire Green AQMS. RMSE values for the month of January and July were 17.59 and 9.90, 

respectively, whereas r values were 0.46 and 0.40 in January and July, respectively. Although the model 

under predicts PM10 concentrations in both months, it captures the trend, therefore, multiplying the 

modelled concentrations by a constant factor can  bring the two time-series (observed and predicted 

concentrations) close together.  

  

Table 5.8. Summary of the observed and predicted PM10 concentrations (µg/m3) in the month of January 

and July 2017 at Devonshire Green monitoring stations. 

Metric 
January July 

PM10_obs PM10_pred PM10_obs PM10_pred 

Minimum 1.50 0.15 4.00 0.24 

1st Quartile 9.83 0.55 8.55 0.812 

Median 15.20 1.57 10.35 1.46 

Mean 17.77 3.17 11.12 2.05 

3rd Quartile 22.80 3.17 12.69 2.38 

Maximum 58.35 28.30 39.20 13.30 
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Figure 5.11. Comparing measured and predicted PM10 concentrations (µg/m3) at Devonshire Green 

Sheffield in the month of January (upper-panel) and July 2017 (lower-panel). 



118 

 

Table 5.9. Showing the value of various statistical metrics used for assessing the performance of the 

model for predicting PM10 concentrations in the month of January and July 2017 at Devonshire Green 

monitoring station. 

Metric Devonshire Green 

 January July 

FAC2 0.05 0.06 

MB -14.60 -9.07 

MAE 14.84 9.07 

NMB -0.82 -0.82 

NMAE 0.84 0.82 

RMSE 17.59 9.90 

r 0.46 0.40 

COE -0.74 -2.11 

 

5.3.4. Population exposure to air pollution  

Modelled annual NOx concentrations (µg/m3) in the form of contour map are shown in Figure 5.5, 

which were obtained using emissions from road traffic, point and area sources employing the Gauss 

module of Airviro model. The main three hotspots of NOx are shown in the city namely Sheffield City 

Centre, Darnall and near Tinsley Roundabout on M1 J34S. High levels of NOx are also predicted on 

Sheffield Parkway (A630, A57) and between Meadowhall Shopping Centre and Sheffield Forgemasters 

International. Sheffield City Centre is probably the most polluted part of the city, which is mainly due 

to high level of road traffic.  

In this section Figure 5.5 is further analysed and the area of each colour representing a specific 

level of NOx concentrations is quantified. For this purpose, Figure 5.5 was exported to ArcGIS to 

calculate area of each colour segment. Red colour which shows NOx levels greater than 65 (µg/m3) had 

an area of 2.128 sq. km, whereas yellow colour having NOx levels from 52 to 65 (µg/m3) had an area of 

6.001 sq.km (Table 5.10). To calculate population exposure to NOx pollution, population map (Figure 

5.12) was used which was provided by Sheffield City Council. As shown in Table 5.11, 19218 people 

were estimated to live in the red area and 47517 people were estimated to live in the yellow area. These 

are the areas mainly in-and-around the city centre of Sheffield. This provides evidence that most of the 

population exposure to high levels of air pollution in Sheffield is due to NOx pollution which is mainly 

emitted by road traffic (as discussed above).         

Areas with high levels of PM10 (Figure 5.7) are mostly outside the city centre, mainly in industrial 

areas, where population density is low. As discussed above, PM10 pollution in Sheffield is mainly 

caused by point sources, which are mostly located outside the city residential area. Therefore, PM10 

pollution in Sheffield causes less population exposure compared to NOx pollution.   

 

 



119 

 

 

Table 5.10. Showing area (in km2) and estimated exposed population to air pollution in Sheffield 

(according to Figure 5.5 and 5.12).  

 
Red Yellow Green Blue Purple Total 

Area (sq.km) 2.128 6.001 20.533 36.269 43.308 108.239 

Pop (# residents) 19218 47517 81201 160797 143023 451756 

NOx conc. (µg/m3) > 65 52 - 65 39 - 51 26 - 38 13 - 25 NA 

  

 

Figure 5.12. Population density (residents/km2) map of Sheffield, 2016. 

5.3.5. Further discussion  

Dispersion modelling systems are applied to predict (estimates) pollutant concentrations, which 

are reflective of emissions, meteorological and topographical data. Dispersion models in the UK are 

generally divided into: screening, intermediate and advanced models [29]. Advance models are utilised 

for assessment and review purposes at an urban scale using emissions from point, line and area sources. 

Among these ADMS-Urban, AERMOD and Airviro modelling system are frequently used throughout 

the world by local authorities, consultants and researchers.    
There is always a degree of uncertainty in the model outputs that is why the predicted 

concentrations are either lower or higher than the measured concentrations. These uncertainties are 
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mainly due to two reasons [30]: (a) model inputs, including emission inventory, meteorological 

parameters, parameterisation of boundary layer and stability classes; (b) the model itself. Svensson [30] 

predicted NOx concentrations in Stockholm, Sweden using Airviro model and compared the results 

with measured concentrations, reporting that the model under-predicted NOx concentrations, 

especially in winter season, which is in agreement with the current study. In this paper PM10 are 

significantly under-predicted, which seems to be mainly related with shortcomings in emission 

inventory. There are several possible sources of uncertainties in emission inventory that may cause the 

difference between modelled and measured PM10 levels including [31]: (a) Emission from diffuse 

sources, like emissions from coke ovens, metal processing and construction are difficult to be measured 

satisfactorily as their levels are variable in both time and space. (b) Combustion related emissions are 

also subject to high uncertainty, especially in cases where PM emissions are very low and difficult to 

measure (e.g., from gas combustion or emissions from vehicles with a diesel particulate filter). (c) 

Emissions of PM from non-exhaust traffic sources, such as tyre and brake wear and road abrasion are 

particularly uncertain. (d) Coarse particles from resuspended soils and road dusts are subject to 

considerable uncertainties. Furthermore, the emission inventory used in this study does not take into 

account secondary aerosols, which are formed in the atmosphere. The formation of secondary particles 

is dependent on the precursor’s emissions, e.g., SO2 and NOx that lead to the formation of secondary 

particles like nitrate (NO3-) and sulphate (SO42-) and meteorological conditions like temperature and 

relative humidity. Secondary particles can contribute significantly into the observed concentrations of 

particles, especially fine particles (PM2.5). Air Quality Expert Group (AQEG) [31] has shown that a 

significant amount of secondary particles made of nitrate and sulphate adding to the background 

concentrations is transferred from other large cities in the UK and Europe. Another possible reason for 

under-predicting PM10 is ignoring of small streets in emission inventory, which can directly contribute 

to the observed concentrations. According to AQEG the estimated uncertainty in total UK emissions is 

estimated to be between –20% and +30%. 

In a recent study Dedele et al. [32] modelled NO2 concentrations with Airviro in Kaunas, which is 

the second-largest city in Lithuania. They measured the levels of NO2 using NO2 diffusion tubes in 5 

streets with different traffic and building characteristics for a two-week period in each season. 

Measured NO2 concentration was higher in winter and autumn, and lower in spring and summer 

seasons than the modelled concentrations. The difference between modelled and measured 

concentrations was greatest in winter, which was reported to be due to domestic heating in winter that 

was not accounted for in the model. Dedele et al. [32] reported that because the street canyon model 

did not take into account emissions from the other emission sources, it resulted in lower estimated 

values than measured values. Mukharjee et al. [26] also used Airviro to model the levels of NOx, SO2 

and CO in Singapore. They concluded that although road traffic contributed 24% NOx emissions in the 

city, the exposure caused was 40 % due to the fact that the pollutants were emitted at the ground-levels 

within the breathing zone. Leksomono et al. [29] also reported that industrial sources produced 

relatively smaller contribution to ground level NO2 concentrations per unit of emission. This is because 

emissions from industrial sources are released at heights well above the ground and therefore subject 

to more dilution. According to the findings of Mukharjee et al. [26] the predicted and the measured 

hourly CO concentrations agreed to an accuracy of approximately 19 % with R2 value of 0.67. The model 

also captured the changes in the meteorological characteristics. The Airviro model over-predicted the 

measured NOx concentrations significantly, which was believed to be due to the constraint that the 

model did not take into account the photochemical transformation of NOx and ozone. Gidhagen et al. 

[33] employed Airviro model to assess the impact of residential wood combustion on exposure to PM2.5 

and its health impacts in three urbanised areas in Sweden. Gidhagen et al. [33] estimated that annual 

mortality due to modelled PM2.5 concentrations from residential wood combustion was approximately 

four people (4 persons/year), corresponding roughly to 0.4 % of the total number of deaths in the region. 

Leksmono et al. [29] have reported that distance of the site where meteorological data are collected 

from the area where pollution is to be modelled is important for assessing the levels of a pollutant, 

especially for modelling short-term concentrations. 
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The above discussion and the finding of this study indicates that dispersion modelling systems are 

important tools for air quality management in urban areas, however, care should be taken to minimise 

the sources of error, which might include: (a) selection of appropriate model, (b) appropriateness of the 

emission inventory for the purpose, (c) availability of meteorological data and the distance of the 

meteorological monitoring site from the site of interest, (d) background contribution (both urban and 

regional), (e) photochemical transformation of pollutants, (f) complexity of the terrain.   

5.4. Conclusions 

Main aims of the study were: (a) To determine the most significant emission sources of NOx and 

PM10 in Sheffield; (b) To analyse spatiotemporal variability of NOx and PM10 in Sheffield and 

surrounding areas, highlighting the hotspots of air pollution and discussing the main reasons; (c) To 

assess the performance of Airvrio air quality model for NOx and PM10 prediction in different 

geographical locations in Sheffield during different time of the years.  

In this paper NOx and PM10 pollutant emissions are modelled and their spatial distribution is 

analysed employing the Airviro air quality dispersion modelling system. Air pollutant emissions from 

road traffic, point sources and area sources in Sheffield are modelled for year 2017. Spatial variability 

of NOx and PM10 concentrations is presented in the form of contour maps. Furthermore, NOx and PM10 

concentrations are predicted for three receptor points. Airviro outputs showed three locations with 

high NOx concentrations namely Sheffield City Centre, Darnall and near Tinsley Roundabout on M1 

J34S. High levels of NOx were also predicted on Sheffield Parkway and between Meadowhall shopping 

centre and Sheffield Forgemasters International. High PM10 concentrations were estimated mainly 

between Sheffield Forgemasters and Meadowhall, near Sheffield Parkway and Attercliffe. Several 

emission scenarios were tested for both NOx and PM10 which showed that high levels of NOx were 

mainly linked to road traffic, whereas those of PM10 seemed to be linked with point sources. As 

expected, estimated levels of pollutants were higher in colder season (e.g., winter) than in warmer 

season (e.g., summer). In case of PM10, predicted concentrations were significantly lower than the 

observed concentrations at the Devonshire Green monitoring station in both January and July, 

however, the model successfully captured temporal trends.  Furthermore, modelled NOx 

concentrations showed better association with observed concentrations in terms of both pollutant levels 

and trends. Also, modelled NOx concentrations were slightly lower in January and higher in July than 

measured concentrations. Spatial analysis showed that more people were exposed to NOx 

concentrations mostly emitted by road traffic in the city centre and surrounding areas than to PM10 

mostly emitted by point sources in Sheffield.   

The main outcomes of this study can be summarized as follows: (1) NOx concentrations in 

Sheffield are mainly from road traffic related emission sources, whereas PM10 concentrations are from 

point sources, e.g., various types of industries such as steel industry. (2) More people are exposed to 

NOx pollution mainly emitted by road traffics in the city centre. (3) There are three hotspots of NOx 

pollution in Sheffield namely the Sheffield City Centre, Darnall and near the Tinsley Roundabout (M1 

J34S), whereas the high PM10 concentrations were shown mainly between Sheffield Forgemasters 

International and Meadowhall shopping centre. (4) Relatively higher average levels of NOx and PM10 

were predicted in winter and autumn than in summer and spring compared to measured 

concentrations. (5) NOx predictions by Airviro were lower in January and higher in July than measured 

NOx concentrations at both Devonshire Green and Sheffield Tinsley. However, the model under 

predicted PM10 concentrations in both January and July at Devonshire Green site. The difference 

between measured and predicted PM10 concentrations was considerably greater compared to NOx. (6) 

In Sheffield nearly 19000 people live in areas with NOx levels greater than 65 µg/m3 and 48000 people 

live in areas with NOx levels 52 – 65 µg/m3, which together are approximately 15 % of Sheffield 

population.  

Models validated by observations can be used to fill-in spatiotemporal gaps in measured air 

quality data. Furthermore, dispersion models are important tools for urban air quality management, 
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however, steps should be taken to minimise potential errors in emission data, meteorological data and 

complexity of the terrain. Particulates generated from vehicle wear and tear, resuspension of dust 

particles and emission from natural sources require special attention to improve model performance. 

In addition, further work is required to quantify people exposure to air pollution in Sheffield using 

dense network of static sensors and personal monitors. People can be exposed to air pollution in their 

houses (residents), work places and when commuting to-and-from work using various means of 

transports, e.g., buses, trains, trams, cars, cycles or walking. How exposure levels vary using various 

transport modes needs to be quantified in Sheffield.   
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Abstract 

Land Use Regression (LUR) based on multiple linear regression model is one of the techniques used 

most frequently for modelling the spatial variability of air pollution and assessing exposure in urban 

areas. In this paper, a nonlinear generalised additive model is proposed for LUR and its performance 

is compared to a linear model in Sheffield, UK for the year 2019. Pollution models were estimated 

using NO2 measurements obtained from 188 diffusion tubes and 40 low-cost sensors. Performance of 

the models was assessed by calculating several statistical metrics including correlation coefficient (R) 

and root mean square error (RMSE). High resolution (100m x 100m) maps demonstrated higher levels 

of NO2 in the city centre, eastern side of the city and on major roads. The results showed that the 

nonlinear model outperformed the linear counterpart and that the model estimated using NO2 data 

from diffusion tubes outperformed the models using data from low-cost sensors or both low-cost 

sensors and diffusion tubes. The proposed method provides a basis for further application of 

advanced nonlinear modelling approaches to constructing LUR models in urban areas which enable 

quantifying small scale variability in pollution levels.   

Keywords: air quality modelling; land-use regression; nonlinear regression; Sheffield; spatial analysis; 

low-cost sensors; nitrogen dioxide.   

 

6.1. Introduction  

Air pollution is one of the serious environmental issues that affects human health and may cause 

mortality. Landrigan [1] reported that air pollution caused 6·4 million deaths worldwide in 2015, which 

shows the significance of the impact of poor air quality on human health. Several air pollutants are 

shown to have negative impacts on human health, however, among gaseous pollutants nitrogen 

dioxide (NO2) is considered the most serious pollutant causing both chronic and acute respiratory 

diseases including asthma, hospital admission and mortality [2]. NO2 is considered the most serious 

gaseous pollutant in urban areas and many air quality management areas (AQMAs) in the UK are based 

on the exceedances of NO2 [3]. Therefore, it is important to carry out different monitoring and 

modelling investigations to analyse its spatial variability, especially micro-level variability. This could 

be done by developing high resolution maps in urban areas that help in understanding the main drivers 

of NO2 levels and quantifying exposure to elevated NO2 concentrations in urban areas. It is not feasible 

to capture micro-level spatial variability in NO2 concentration with the help of monitoring network in 

mailto:martin.mayfield@sheffield.ac.uk
mailto:d.coca@sheffield.ac.uk
mailto:l.s.mihaylova@sheffield.ac.uk
mailto:smunir2@sheffield.ac.uk
https://doi.org/10.3390/atmos11070736
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a large urban area as this requires a huge number of sensors. Alternatively, a certain number of sensors 

can be installed, and the concentrations can be extrapolated to other area using modelling techniques. 

This is exactly what this study intends to do. 

One of the challenges of air pollution in urban areas is the quantification of small-scale local level 

exposure by analysing spatial variability in pollutant concentrations. The small scale variability in 

urban areas is controlled by emission sources, land use features, building density-and-height and 

geographical characteristics. To characterise spatial variability in pollutant concentrations, three 

approaches are most commonly used: GIS based interpolation methods, Dispersion models, and LUR 

models. 

Hsu et al., [4] reviewed different methods used for interpolation and divided them into two 

categories: Geostatistical techniques and Non-geostatistical methods. The geostatistical techniques 

include Ordinary Kriging, Universal Kriging, Simple Kriging, Empirical Bayesian Kriging and Original 

CoKriging. The non-geostatistical techniques include Splines, Trend Surface Analysis, Inverse Distance 

Weighting and Natural Neighbour. According to the findings of Hsu et al. [30] the geostatistical 

interpolations showed better prediction than the non-geostatistical interpolation techniques. 

Interpolation methods are used to interpolate air pollutant concentrations between various air 

monitoring stations to provide better spatial coverage. However, when these approaches are applied 

at a local scale such as intra-city scale, these methodologies are known to produce considerable 

variations in air pollutant concentrations within a small area and are more effective at large scales, such 

as national or regional scale [5]. Therefore, at urban scale interpolation approaches should not be the 

priority for analysing spatial variability of air pollution. 

Dispersion models are probably the most advanced modelling techniques for determining the 

spatial variability of air pollutants in urban areas. Dispersion models combine the data of pollutant 

emission from different sources (e.g., point, line and area sources), the geophysical characteristics of 

the study area and meteorological parameters. Dispersion models have the potential to incorporate 

both temporal and spatial variations to replace the need for air pollution monitoring. However, high 

cost of purchase and maintenance, high input demands, and requirement of skilled staff limit their 

application. 

LUR models provide an effective alternative to GIS interpolation and dispersion modelling 

techniques on urban scale. LUR is a spatial modelling approach used most frequently for analysing the 

spatial variability and quantifying public exposure to air pollution in urban areas. Different modelling, 

mapping and data fusion techniques are available for modelling spatial variability of air pollution in 

urban areas [6]. Several authors have preferred Land Use Regression (LUR) over other approaches. 

Briggs et al. [7] compared the performance of LUR with spatial interpolation methods (e.g., kriging, 

TIN-contouring and trend surface Analysis) and reported that LUR performed much better than the 

interpolation techniques. The reason was that in urban areas spatial variability of air pollutants is more 

controlled by the local emission sources and geographical characteristics, rather than a smoothly 

varying field which is assumed by the interpolation methods. Hoek et al. [8] reviewed several LUR 

models and reported that the performance of the LUR model in urban areas was either equivalent or 

better than dispersion and geostatistical approaches. LUR is a widely employed approach for air 

pollution exposure estimation using Geographical Information Systems (GIS) and statistical analyses 

to determine the association between geographic features and measured atmospheric pollutant 

concentrations [9]. LUR is easy to implement and can provide an effective alternative to geostatistical 

and dispersion modelling techniques on urban scale. LUR approach was introduced by Briggs et al. [9] 

and since then has been used in numerous studies around the world [8, 10-16]. LUR models associate 

pollutant concentrations, such as NO2 to site specific geographical characteristics, e.g., topography, land 

use, traffic, population density, altitude and meteorological parameters. The use of these variables in 

the regression model are known to capture small scale variability on city scale [17]. Recent development 

in GIS technology has also added to the popularity of LUR approaches. 

Rahman et al. [13] developed a LUR model in Brisbane, Australia to predict NO2 and NOx during 

2009 – 2012. The model was able to explain 64 % and 70 % variations in NO2 and NOx, respectively. 
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Distance to major roads and industrial areas were the common predictor variables for both NO2 and 

NOx, suggesting an important role of road traffic and industrial emissions. Rahman et al. [13] used the 

following independent variables in their model: distance to coast (km), distance to port (km), distance 

to airport (km), distance to nearest major road (km), distance to nearest minor road (km), major road 

length (km), minor road length (km), population density (person/km2), land use by type (km2), and 

elevation (m). Muttoo et al. [12] used several geographic predictor variables to predict NOx levels in 

Durban, South Africa employing an LUR model. They used length of minor roads within a 1000 m 

radius, length of major roads within a 300 m radius, and area of open space within a 1000 m radius in 

the model as independent variables. The LUR model was able to explain 73% variance in NOx 

concentrations, however cross validation resulted in R2 value of 0.59. Hoek et al. [8] have provided a 

detailed review on LUR models, identifying 25 studies on the subject. They have identified several 

significant predictors for LUR models, including various traffic characteristics, population 

characteristics, land use, physical geography, and climatic conditions. Gillespie et al. [18] developed an 

LUR model to estimate exposure to NO2 in Glasgow, Scotland and reported that the use of more than 

60 training sites had a considerable beneficial effect on model performance. Mostly, LUR approaches 

are applied typically at a city scale e.g. [17, 19], however, some researchers have applied LUR models 

to entire countries. Beelen et al. [15] and Stedman et al. [14] applied LUR models in Netherland and 

UK, respectively, whereas Vienneau et al. [20] developed an LUR model for both UK and Netherland 

and compared its outputs in both countries. 

Sheffield City Council (SCC) has declared most of the urban area in Sheffield City as AQMA due 

to the high levels of NO2. Detailed modelling investigations are required to model NO2 concentrations 

and to create high resolution maps in the city for quantifying public exposure to NO2 and determining 

small scales NO2 spatial variability in the city. In this paper LUR models are developed to predict NO2 

concentrations and make high resolution maps (100m x 100m) using NO2 data measured by a network 

of diffusion tubes (DT) and low-cost sensors (LCS). The literature reviewed above all have employed 

multiple linear regression models (MLRM) for developing LUR models, which work on the assumption 

that response and predictor variables have linear association. Here an advanced nonlinear approach 

Generalised Additive Model (GAM) is proposed, which is more suitable for air quality data analysis. 

The rest of the paper is structured as follows: Methodology of this paper is presented in section 6.2, 

wherein section 6.2.1 describes monitoring sites and predictor variables; section 6.2.2 describes LUR 

model development; section 6.2.3 describes model specifications; section 6.2.4 describes model 

validation; and section 6.2.5 describes statistical software used in this study. Results and discussion are 

presented in section 6.3 and the main outcomes of this work are summarised in section 6.4. 

6.2. Methodology 

In this study three LUR models are developed for modelling the spatial variability of NO2 

concentrations and producing high resolution maps (100m x 100m) in Sheffield for the year 2019. 

Sheffield (53°23′N, 1°28′W) is a historical metropolitan borough in South Yorkshire, United Kingdom 

and has emerged as a green and modern cityscape in the proximity of the Peak District National Park. 

According to 2011 census Sheffield City had a population of 552,700, however, since then the 

population has grown and according to more recent estimates has reached about 700,000. Among 

gaseous pollutants, NO2 is the pollutant of concern in Sheffield and most of the AQMA in Sheffield is 

declare due to the elevated levels of NO2 concentrations mostly emitted by road traffic [21]. 

6.2.1. Predictor variables and NO2 monitoring sites 

In this paper NO2 concentration (µg/m3) is modelled using data from DT and LCS. There were 188 

DT and 40 LCS measuring NO2 concentrations (µg/m3) in Sheffield. The locations of DT and LCS are 

shown in Figure 6.1. There are two types of LCS: 13 AQMesh pods and 27 Envirowatch E-MOTEs. For 

a brief description of these sensors see Munir et al. [21, 22]. DT and LCS have relatively high uncertainty 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Sheffield&params=53_23_N_1_28_W_type:city_region:GB
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(25 to 30 %) as compared to reference sensors (15%). Generally, DT are exposed for a period of 2-4 weeks 

(no longer than 5 weeks and no shorter than 1 week). After this period, the old DT are replaced with 

new ones. In this way, the monitoring is carried out for the whole year to get annual average. LCS (both 

AQMesh and Envirowatch E-MOTEs) were installed around the city (Figure 6.1), providing high 

resolution temporal data (e.g., 5 minutes to hourly), which were converted to annual average. A 

summary of NO2 concentrations measured by DT and LCS for year 2019 is provided in Table 6.1. 

 

Table 6.1. Descriptive statistics of NO2 measured by DT and LCS in Sheffield.  

Metrics DT NO2 LCS NO2 

Minimum 13.58 12.74 

1st Quartile (25th percentile) 28.29 25.23 

Median 33.77 33.19 

Mean 34.23 41.23 

3rd Quartile (75th percentile) 40.00 45.28 

Maximum 62.03 146.54 

Standard Deviation 9.65 27.69 

 

To model NO2 concentration, data of different land use, traffic and population variables were 

collected to be used as predictor (independent) variables. Maps of the predictor variables were 

downloaded from the ordinance survey UK and provided by the Sheffield City Council. ArcGIS version 

10.7.1 and its LUR tools were used to extract different values within 100 m x 100 m grid.  These variables 

are given below: 

(a) Area (m2) of industrial land use, residential area, commercial area, parks and green area, and 

building area;  

(b) Length (m) of motorways, major roads, and minor roads; 

(c) Distance (m) to motorway, major road, minor road, building, industry, bus stop, parks, 

commercial area, and residential area;  

(d) Population (persons per km2), Altitude (m), number of bus stops, easting (m), northing (m), 

and street intersection. 

As the impact distance varies among different variables, buffers of multiple radii (10, 50, 100, 200, 

300 500, and 1000 m) were created for industrial area, commercial area, park and green area, residential 

area, major roads, minor roads, motorways, and bus stops. Figure 6.2 shows the spatial distribution of 

different predictor variables in the city. 
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Figure 6.1. Showing the locations of 188 NO2 diffusion tubes (DT) (a), 40 low-cost sensors (LCS): 13 

AQMesh pods and 27 Envirowatch E-motes (b), and both LCS and DT (c) in the City of Sheffield. 

(a) 

 
(b) 

 
(c) 

 

Figure 6.2. Altitude (a), major roads, commercial and residential area (b) and motorway, green parks 

and industrial area (c) in Sheffield. 
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6.2.2. LUR model development 

In this paper LUR models were developed for modelling NO2 concentrations in Sheffield. NO2 

concentration was regressed against the predictor variables. Both linear and non-linear LUR models 

were developed using three NO2 datasets:  

(1) Measurements of NO2 obtained from 188 DT; 

(2) Measurements of NO2 obtained from 40 LCS; 

(3) Combined NO2 measurements obtained from both LCS and DT (228). 

It should be remembered that in each case 75 % randomly selected data were used for model 

training (fitting) and 25 % data were hold-out for model testing (cross validation). The novelty of this 

study is that in addition to a Multiple Linear Regression Model (MLRM), a nonlinear Generalised 

Additive Model (GAM) is proposed for developing LUR model. The performance of MLRM and GAM 

is compared. Secondly, in addition to DT measurements, NO2 data from a network of 40 LCS are also 

used in this paper. It should be noted that both MLRM and GAM were developed and validated in R 

programming language [23]. However, to extrapolate predicted NO2 concentration to the entire 

Sheffield city to produce continuous heat maps, MLRM and GAM used different approaches. 

 

MLRM and GAM are shown in equation (6.1) and (6.2) (these are just examples, total 72 predictor 

variables were used in the initial model, which were minimised by stepwise regression model). 

i. MLRM 

NO2Conc ~ βo + β1 (Population) + β2 (BusStops) + β3 (Altitude) + β4 

(IndustrialArea) + β5 (ResidentialArea) + β6 (BuildingArea) +β7 (ParksArea) + β8 

(Easting) + β9 (Northing) + β10 (MajorRd) + β11 (MinorRd) + β12 (St_Intersect) + 

β13 (CommercialArea) + β14 (Dist_MajorRd) + β15 (Dist_MinorRd) + β16 

(Dist_Building) + β17 (Dist_Industry) + β18 (Dist_Parks) + β19 (Dist_Motorway) + 

β20 (Dist_commercialArea) + β21 (Dist_ResidentialArea)+ β22 (Dist_BusStop) + β23 

(Motorway) + ε 

(6.1) 

In equation (1), βo is the intercept, β1 to β23 are the coefficients (slopes) of the predictor variables 

and ε is the error term (the difference between modelled and measured concentrations).  

ii. GAM  

NO2Conc ~ α +s1 (Population) + s2 (BusStops) + s3 (Altitude) + s4 (IndustrialArea) 

+ s5 (ResidentialArea) + s6 (BuildingArea) +s7 (ParksArea) + s8 (Easting) + s9 

(Northing) + s10 (MajorRd) + s11 (MinorRd) + s12 (St_Intersect) + s13 

(CommercialArea) + s14 (Dist_MajorRd) + s15 (Dist_MinorRd) + s16 (Dist_Building) 

+ s17 (Dist_Industry) + s18 (Dist_Parks) + s19 (Dist_Motorway) + s20 

(Dist_commercialArea) + s21 (Dist_ResidentialArea)+s22 (Dist_BusStop) +s23 

(Motorway) + ε 

(6.2) 

In equation (6.2), α is the intercept, ‘s’ term is the smoothing function of the covariates and ε is the 

residual or error term, the difference between measured and predicted values. For smoothing term the 

degree of smoothing was automatically assigned by the generalised cross validation (GCV) method 

described by Wood and Augustin [24]. For more details on smoothing functions see Wood [25, 26]. 

MLRM explicitly assume normality of the error term and linearity of the relationship between response 

variable and predictor variables. GAM is an advanced model and relaxes such restrictions. Therefore, 

GAM is able to successfully handle nonlinearities in the association between response and predictor 

variables, which is important for air quality data as the relationship is not always linear. For more 

details on GAM see Hastie and Tibshirani [27], Wood [25] and Wood [26]. 
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6.2.3. Model specification  

Model specification (also refer to as model selection) is the process of determining which predictor 

variable to include or exclude from the model. In this study we employed stepwise regression 

algorithm (both forward and backward) for model selection. The aim was to find the best performing 

model (minimising prediction error) with minimum number of predictors (Parsimonious model) by 

selecting only those predictors whose contribution was significant in controlling the variations of NO2 

concentrations. For this purpose MASS-package [28] in R-programming language [23] was used.  

6.2.4. Model validation  

Model validation is testing the goodness of fit of the fitted model. In this process we compare the 

predicted concentrations with measured one. Here we used cross validation process which is a 

generalisation of the model to an independent dataset, not used in the model fitting. Randomly selected 

75 % data was used for model fitting and 25 % for model validation.  

6.2.5. Mapping modelled NO2 concentration 

After both MLRM and GAM were fitted and validated, NO2 concentration was predicted for the 

entire Sheffield City for 37605 square grids each with size 100m x 100m. To do this MLRM and GAM 

used different techniques. In case of MLRM to predict NO2 concentrations the coefficients of predictor 

variables were used in ArcGIS using ‘field calculator’ function in attribute table. However, GAM being 

a nonlinear model, doesn’t produce a single coefficient (slope) for each predictor variable. Therefore, it 

was not possible to use the same approach. Instead, NO2 concentration was predicted in mgcv-package 

[25] in R-programming language [23] and then exported to ArcGIS. Once in ArcGIS, the layer 

containing the predicted NO2 concentration was joined with the polygon layer having the squared 

grids. For this purpose the whole study area was divided into 37605 square grids, each100m x 100m 

resolution using ArcGIS 10.7.1 software. 

6.2.6. Statistical software 

In this study mainly two statistical and mapping software were used: (a) ArcGIS version 10.7.1 

and its LUR tools. LUR Tools is an ArcGIS toolbox having some important functions for constructing 

land use predictor variables for developing LUR model. (b) R programming language ([23] and several 

of its packages including ‘MASS’ [28], ‘openair’ [29] and ‘mgcv’ [25]. The ‘mgcv-package’ was used for 

running GAM, ‘MASS’ was used for running stepwise regression and ‘openair-package’ was used for 

general data analysis and developing different plots. 

6.3. Results and discussion  

In this study both MLRM and GAM are employed to model the spatial variability of NO2 

concentrations in Sheffield. NO2 data were collected from two main sources: DT and LCS. Firstly, 

MLRM and GAM were developed using data from 188 DT (section 6.3.1), followed by the models using 

NO2 data from LCS (section 6.3.2), and both DT & LCS (section 6.3.3). In all three case the data were 

divided into training dataset (randomly selected 75% data, used in the fitted model) and hold-out 

testing dataset (randomly selected 25 % data, used in the modle cross validation). Both GAM and 

MLRM were fitted using all predictor variables first, and then stepwise regression was used for model 

specification aiming to select only those predictors which had significant effect. 
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6.3.1. LUR model using NO2 data from diffusion tubes 

Both GAM and MLRM were used to regress NO2 concentrations from DT against the predictor 

variables. Stepwise regression showed that the following covariates had significant effect: distance to 

major road (m), distance to minor road (m), residential area (m2), commercial area (m2), distance to bus 

stops (m), building area (m2), and altitude (m). Among them, building and commercial area had 

positive coefficients, whereas residential area, distance to major road, distance to minor road, distance 

to bus stop and altitude had negative coefficients. 

Three types of roads were used as covariates in the models: motorway, major roads (A-roads and 

B-roads), and minor roads. Among these the effect of major and minor roads was significant, the reason 

is obvious that these roads carry most of the traffic and are spread throughout the study area. In contrast 

motorway, although very busy has little length inside the study area as shown in Figure 6.2 (c) and 

therefore had an insignificant effect. It should be noted that negative coefficients of distance to major 

roads, minor roads and bus stops show positive effect of these three variables. In other words, as the 

distance between DT and these variables increase, NO2 concentrations decrease. Therefore, areas near 

roads and bus stops have higher concentrations compared to areas away from the roads and bus stops, 

which is expected. Some researchers have suggested to take inverse or squared-inverse of the distance, 

e.g., [30] to turn the coefficients positive, however, it does not change the output of the model. 

Therefore, we stick to the original values. The negative effect of altitude on air quality is well known 

[31], meaning NO2 concentration decreases at higher altitude. According to the data used in this study, 

minimum altitude was 26 m and maximum 551 m (Figure 6.2a). The effect of altitude was negative on 

NO2 concentrations and highly significant. The western side of the city including Peak District National 

Park had higher altitude and lower NO2 concentrations as compared to the city centre and eastern side, 

which had lower altitude and higher level of NO2. The effect of residential area was negative, probably 

due to the fact that NO2 levels were relatively lower at residential areas than at commercial areas and 

roadside locations. The effect of industrial area was insignificant probably due to the reasons that not 

many sensors are installed near industrial area. In addition, due to tall chimneys the emissions from 

the industry are not read by the local sensors. More recently Munir et al. [21] reported that industrial 

emissions in Sheffield had significant effect on the level of PM10, but not on the levels of NO2. 

Coefficients and level of significance of different predictor variables for MLRM are shown in Table 

6.2. Nonlinear model does not provide a single coefficients for each predictor variable, the output of 

the GAM model showing the association between NO2 and predictor variables is shown in Figure 6.3 

(only two predictor variables are shown for brevity). Figure 6.3 shows that NO2 concentrations decrease 

drastically as distance from the roadside increases up to approximately 500 m, afterwards the curve is 

flattened as the distance increase further and there are fewer data points, resulting in wider error bars. 

In case of altitude, the negative effect is stronger at higher altitudes (altitude >180 m). 

Several statistical metrics were calculated for model assessment for both fitted model (FM) and 

cross validation (CV) (Table 6.3). Statistical metrics used here were correlation coefficients (r, unitless), 

fraction of predictions within a factor of two of observations (FAC2, unitless), root mean squared error 

(RMSE, same units as the quantity being considered, here µg/m3), mean bias (MB, same units as the 

quantity being considered, here µg/m3), mean gross error (MGE, same units as the quantity being 

considered, here µg/m3), normalised mean bias (NMB, unitless) and normalised mean gross error 

(NMGE, unitless). Generally, GAM with r-values 0.73 and 0.70 for training and hold-out dataset, 

respectively showed better performance than MLRM with r-value 0.67 for both training and hold-out 

dataset. Other metrics showing error of the model (e.g., NMGE, MGE and RMSE) are slightly greater 

for MLRM than GAM, indicating better performance of GAM in terms of smaller difference between 

predicted and observed concentrations. Furthermore, RMSE, NMGE and MGE have positive values, 

showing slightly over prediction of the model. FAC2 having value of 1 shows acceptable model 

performance for both MLRM and GAM. Results showed that models performance was not deteriorated 

considerably when applied to independent testing dataset. Comparison of predicted and measured 

NO2 concentrations is made graphically in the form of scatter plots in Figure 6.4, showing strong 
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correlation between modelled and measured concentrations for both models. Both models have over-

predicted at lower levels of NO2 (< 40 µg/m3) and under-predicted at higher levels (> 40 µg/m3), 

especially for the testing datasets (Figure 6.4 c & d). 

Table 6.2. Showing coefficients and significance levels of different predictor variables for MLRM. 

Predictor variable Coefficient p-value 

Intercept 43.7025 < 2e-16 *** 

Building 0.0020 0.075+ 

Dist_MajorRd -0.0114 0.001 ** 

Dist_MinorRd -0.0968 0.052+ 

Residential -0.0006 0.002 ** 

Commercial 0.0005 0.053+ 

Altitude -0.0543 0.000 *** 

Dist_Bstop -0.0308 0.026 * 

Note: p.stars relate to how statistically significant the effect is: p-value < 0.001 = ∗∗∗, p-value < 0.01 = ∗∗, 

p-value < 0.05 = ∗ and p-value < 0.1 = +. 

Furthermore, NO2 concentration was predicted for 37605 square grids with 100m x 100m 

resolution to produce maps of NO2 concentrations for the entire Sheffield City. The resultant maps of 

predicted NO2 concentrations for both MLRM and GAM are shown in Figure 6.5. The model 

successfully captured spatial variability of NO2 concentrations in Sheffield, showing higher levels of 

NO2 in the city centre and on busy roads around the city. The city centre and the area between the 

motorway (M1) and the city centre is particularly highlighted with NO2 levels higher than EU annual 

limits of 40 µg/m3 (Figure 6.5). Western part of the city especially Peak District National Park has shown 

lower level of NO2 concentrations due to high altitude and limited amount of minor and major roads. 

Recently, Munir et al. [21] using Airviro dispersion modelling system, have reported similar results in 

Sheffield. However, the results of this study are much more detailed (100m x 100m resolution), 

successfully capturing micro-level local variations in NO2 concentrations, intended for quantifying 

public exposure. The maps show how NO2 levels vary from street to street. Spatial trends of predicted 

NO2 levels closely match with measured NO2 levels (Figure 6.5). 
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 (a) 

 
(b) 

 

Figure 6.3. Showing the nonlinear association of NO2 concentrations (µg/m3) with altitude in meters (a) 

and distance to major roads in meters (b). The dashed lines are the estimated 95% confidence intervals. 

The vertical lines on the x-axis show the presence of data. 
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Table 6.3. Showing various statistical metrics for assessing the performance of MLRM and GAM for 

both fitted model (FM) using training dataset and cross-validation (CV) using hold-out dataset based 

NO2 data from DT. MB, MGE and RMSE have the same units as the quantity being considered (here 

µg/m3), whereas FAC2, r, NMGE and NMB are unitless.  

Metrics 
MLRM GAM 

FM CV FM CV 

FAC2 1 1 1 1 

MB 1.51e-15 -0.95 -3.68e-11 -1.17 

MGE 4.98 6.89 4.80 6.55 

NMB 4.45e-17 -0.03 -1.09e-12 -0.03 

NMGE 0.15 0.19 0.14 0.18 

RMSE 6.44 8.98 6.13 8.69 

r 0.67 0.67 0.73 0.70 
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 (a) 

 

 

(b) 

 

 
(c) 

 

(d) 

 

Figure 6.4. Comparing measured and predicted NO2 concentrations using multiple linear regression 

model (MLRM) and generalised additive model (GAM) for training (a and b) and testing dataset (c and 

d) using NO2 data from diffusion tubes (DT) only. 
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(a) 

 

(b) 

 

Figure 6.5. High resolution maps (100m x 100m) of NO2 concentrations (µg/m3) predicted by (a) MLRM 

and (b) GAM in Sheffield. The points show values of NO2 measured by DT. 

6.3.2. LUR model using NO2 data from low-cost sensors 

Employing MLRM and GAM, NO2 concentration (µg/m3) from 40 LCS was modelled using the 

same predictor variables as in section 6.3.1. Using a stepwise regression algorithm 5-covairaites were 

found to have a significant effect on NO2 concentrations, which were: distance to major road, distance 

to minor road, distance to commercial area, distance to residential area, and altitude. Several statistical 
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metrics for both fitted and cross validated models are shown in Table 6.4. Comparing fitted model, 

GAM with r-value of 0.89 showed better performance than the MLRM with r-value 0.55. However, 

when the models were applied to an independent set of data (hold-out dataset), MLRM showed better 

performance (r-value = 0.78) as compared to GAM (r-value = 0.56). Likewise, metrics (e.g., RMSE, MGE, 

NMGE, NMB) showing error of the models were lower for training dataset and higher for testing 

dataset for GAM than MLRM. FAC2 having value of 1 or nearly 1 shows acceptable model performance 

for both MLRM and GAM. The results of MLRM on hold-out dataset do not seem genuine as r-value is 

greater and RMSE is less than the fitted model, which probably shows that the model is over-fitted. 

This is also confirmed by the fact that overall both fitted and cross-validated model showed good 

performance, however, when the model results were extrapolated to the entire city, both MLRM and 

GAM models failed to predict the expected spatial variability of NO2 concentrations in the city (Figure 

6.6), which should have been more like Figure 6.5. This is probably due to the fact that LCS are mostly 

installed in the city centre and at the University of Sheffield, and are not representing the wider area of 

the city. Therefore, extrapolation of the modelled NO2 outside the calibration range, results in 

unreasonable values. Secondly, there were only 40 LCS probably not providing enough spatial 

coverage to represent the whole city. Therefore, the models are over fitted and are not successfully 

fitting the data from the rest of the city. 

Gillespie et al. [18] developed an LUR model to estimate exposure to NO2 in Glasgow, Scotland. 

They used 135 NO2 passive diffusion tubes, which were divided to four groups (32 – 35 sites per group) 

and models were developed using a combination of 1 to 3 groups as training sites to assess how the 

number of training sites affected the model performance. The explanatory variables used in the models 

were major road length, minor road length, all urban areas, building volume, distance to nearest major 

or minor road, green rural area, minor road length, and street configuration. The models were able to 

explain moderate to high variance in the data, where R2 ranged from 0.62 to 0.89 for training dataset 

and 0.44 to 0.85 for hold-out dataset. Precision of estimated exposure was increased with increasing 

number of training sites. Gillespie et al. [16] concluded that the use of more than 60 training sites in 

LUR model has quantifiable benefits in epidemiological application. Therefore, this might suggest that 

probably in present study the number of sites (40 LCS) were not enough and resulted in over fitting of 

the model. 

Table 6.4. Showing various statistical metrics for assessing the performance of MLRM and GAM for 

both fitted model (FM) using training dataset and cross-validation (CV) using hold-out dataset based 

on NO2 data from LCS. 

Metrics 
MLRM GAM 

FM CV FM CV 

FAC2 0.97 1 1 0.90 

MB -9.18e-15 -0.48 -1.67e-10 -3.76 

MGE 11.07 8.82 7.60 16.35 

NMB -2.42e-16 -0.01 -4.42e-12 -0.10 

NMGE 0.29 0.24 0.20 0.44 

RMSE 19.31 12.56 10.40 22.21 

r 0.55 0.78 0.89 0.56 
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(a) 

 
 

(b) 

 

Figure 6.6. High resolution (100m x 100m) maps of NO2 concentrations (µg/m3) in Sheffield, predicted 

by (a) MLRM and (b) GAM. The points show values of NO2 measured by LCS.  

6.3.3. LUR model using NO2 data from diffusion tubes DT and low-cost sensors  

In this section NO2 data from 188 DT and 40 LCS were combined to increase the number of 

monitoring sites and see how it affects the model outputs. At the model selection stage six predictors 

showed significant effect, which were distance to major road, minor roads length, commercial area, 

population, distance to commercial area and altitude. Performance of the model was assessed by 
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calculating several statistical metrics as shown in Table 6.5. In case of MLRM, r-values were 0.60 and 

0.52 for training and hold-out dataset, whereas in case of GAM r-values were 0.69 and 0.53, respectively. 

Metrics (e.g., RMSE, MGE, NMGE, MB and NMB) expressing error of the models have smaller values 

for GAM than MLRM, showing GAM outperforms MLRM. FAC2 also shows that prediction of GAM 

is closer to the measured values. Furthermore, comparing Table 6.5 with Table 6.3, it can be clearly 

observed that combining DT and LCS did not improve the models performance compared to the 

models using DT data only. This is probably due to the fact that DT and LCS use different techniques 

for measuring NO2 concentrations and combining their data might not be the right thing to do. Second, 

DT provide long-term NO2 concentrations (e.g., annual mean), whereas LCS provide short-term 

average (e.g., 5 minutes to 1 hour mean), which is converted to annual mean. It probably indicates that 

ideally all sensors should be of the same type and mixing of sensors of different grades might cause 

conflict and affect the model outputs. Finally, 188 DT are enough to build an LUR model, further 

increasing the number does not improve the model outputs. 

Figure 6.7 shows the maps of predicted NO2 concentrations, where NO2 concentrations predicted 

by MLRM range from 0 to 50 µg/m3, whereas NO2 concentrations predicted by GAM range from 0 to 

70 µg/m3. City centre and the eastern side of the city towards the motorway are highlighted as having 

high levels of NO2 due to lower altitude and greater length of major and minor roads and commercial 

areas. 

Table 6.5. Showing various statistical metrics for assessing the performance of the MLRM and GAM for 

both fitted model (FM) using training dataset and cross-validation (CV) using hold-out dataset based 

on NO2 data obtained from DT and LCS. 

Metrics 
MLRM GAM 

FM CV FM CV 

FAC2 0.93 0.89 0.99 0.91 

MB 7.41e-15 -2.28 -4.01 -2.03 

MGE 7.31 9.32 6.49 9.21 

NMB 2.36e-16 -0.09 -1.28 -0.07 

NMGE 0.23 0.31 0.21 0.30 

RMSE 9.47 12.33 8.62 12.22 

r 0.60 0.52 0.69 0.53 
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(a) 

 
(b) 

 

Figure 6.7. High resolution (100m x 100m) maps of predicted NO2 concentrations (µg/m3) in Sheffield, 

estimated by (a) MLRM, and (b) GAM. The points show values of NO2 measured by both DT and LCS. 

Major roads, minor roads, commercial areas and altitude had significant effects in all three models 

(described in sections 6.3.1, 6.3.2 and 6.3.3). Residential areas had significant effect in two models, 

whereas bus stops and population has significant effect only in one model. This shows that in addition 

to emission sources, topography especially altitude plays an important role in controlling the levels of 

air pollution. However, the effect of predictor variables is not the same everywhere and may change 

from region to region. To build an LUR model, researchers have used different sets of land use and 

traffic related features. The most common predictor variables used are topography, land use, traffic, 

population density, altitude and meteorological parameters. The use of these variables in the regression 
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model are known to capture small scale variability [17]. The effect of predictor variables may vary from 

one area to another, depending on the nature of geographical conditions, size of urban area, the type 

of environment of the monitoring site (e.g. roadside, urban background or rural) and type of the 

pollutant modelled (e.g., NO2, O3, VOCs, PM10, PM2.5 etc.). The main constraint for building an LUR 

model is the unavailability of reasonable size monitoring network to provide measured data of 

pollutant for fitting and validating the model. This is particularly a problem in poor and low income 

countries having no air quality monitoring networks. To overcome this problem, Molter et al. [32] have 

suggested to use existing data from a dispersion air quality model. However, this is a problem in itself 

as dispersion model requires emission, geographical and meteorological data. 

To the best of our knowledge, almost all previous investigations have used linear regression 

approach for building LUR model. Therefore, linear regression has become a default methodology for 

developing LUR models. This is due to the fact that in contrast to linear regressions, nonlinear 

regressions do not produce a single coefficient for each explanatory variable and therefore need to be 

applied in a different way to the traditional linear methods. With advances in IT and data analysis 

software (e.g., R programming language and Python), nonlinear LUR models can be developed and 

predicted in these software. These software have several special packages for spatial analysis and 

producing maps of measured or predicted pollutants. Therefore, maps of the predicted pollutants can 

be either produced in these software or alternatively the predicted pollutants can be exported to GIS 

software (e.g., ArcGIS) for further analysis. In this paper, the nonlinear model was developed using 

both R programming language and ArcGIS. The proposed method provides a basis for further 

application of advanced nonlinear modelling approaches to constructing LUR models in urban areas 

which enable quantifying small scale variability in pollution levels.  

6.4. Conclusions  

It has been a common practice to use the linear regression for developing LUR models, however, 

the association between air pollutant levels and spatial features is not always linear, therefore, ideally 

nonlinear modelling approaches should be used for developing LUR models, which can help in 

understanding small scale spatial variability of different air pollutants in urban areas. In this paper, the 

GAM was fitted and predicted in R programming language and the predicted concentrations was then 

transferred to ArcGIS for producing maps of NO2 in Sheffield. Alternatively, R has several special 

packages that can be used for mapping and spatial analysis of the predicted concentrations. 

In this paper spatial variability of NO2 concentration is modelled in the city of Sheffield for year 

2019. MLRM is a traditional and most commonly used approach for developing LUR models, here in 

addition to the linear approach, a nonlinear GAM model is employed and its benefits and the way it is 

applied are discussed. Three datasets of NO2 measurements were used: (a) NO2 data from 188 DT, (b) 

NO2 from 40 LCS, and (c) NO2 data from both DT and LCS. The first group performed better than the 

other two groups. Among predictor variables altitude (negative effect), major roads (positive effect), 

minor roads (positive effect), and commercial area ( positive effect) had significant effect in all three 

groups. The model successfully captured the spatial variability of NO2 in Sheffield, estimating high 

levels of NO2 in the city centre and on major roads around the city. The eastern area between the city 

centre and motorway (M1) showed particularly high levels, whereas the western area (Peak District 

National Park) demonstrated lower levels of NO2 concentrations. 

The main contributions of this work are summarised as follows: (a) An advanced nonlinear GAM 

is proposed for developing an LUR model, which outperforms the linear counterpart. (b) High 

resolution maps (100 m x 100 m) of NO2 are developed in Sheffield using a nonlinear LUR model for 

quantifying public exposure to NO2 and determining how the exposure varies at small scales in the 

city. (c) NO2 data measured by a network of DT and LCS are integrated to developed high resolution 

maps. (d) It is confirmed that Sheffield City Centre and its eastern sides experience relatively higher 

levels of NO2 pollution. 
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Future work could include developing a spatiotemporal LUR model using meteorology, traffic 

counts and fleet composition data. In this study, the effect of major and minor roads is analysed on NO2 

levels, however, road traffic and composition may vary from time to time on a given road. It is, 

therefore, important to capture temporal and spatial variability in meteorology and traffic data and 

feed it to the nonlinear LUR models. This will probably further improve the model performance, 

depending on the quality and temporal resolution of the data. 
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Abstract  

Small-scale spatial variability in NO2 concentrations is analysed with the help of pollution maps. Maps 

of NO2 estimated by the Airviro dispersion model and land use regression (LUR) model are fused 

with measured NO2 concentrations from low-cost sensors (LCS), reference sensors and diffusion 

tubes. In this study, geostatistical universal kriging was employed for fusing (integrating) model 

estimations with measured NO2 concentrations. The results showed that the data fusion approach was 

capable of estimating realistic NO2 concentration maps that inherited spatial patterns of the pollutant 

from the model estimations and adjusted the modelled values using the measured concentrations. 

Maps produced by the fusion of NO2-LCS with NO2-LUR produced better results, with r-value 0.96 

and RMSE 9.09. Data fusion adds value to both measured and estimated concentrations: the measured 

data are improved by predicting spatiotemporal gaps, whereas the modelled data are improved by 

constraining them with observed data. Hotspots of NO2 were shown in the city centre, eastern parts 

of the city towards the motorway (M1) and on some major roads. Air quality standards were exceeded 

at several locations in Sheffield, where annual mean NO2 levels were higher than 40 µg/m3. Road 

traffic was considered to be the dominant emission source of NO2 in Sheffield. 

Keywords: nitrogen dioxide; spatial variability; urban air quality; data fusion; dispersion modelling; 

land use regression; Sheffield 

7.1. Introduction 

Poor air quality is one of the growing environmental issues in urban areas. Long-term exposure to 

air pollution is known to cause various health issues including both chronic and acute respiratory 

diseases such as asthma, cancer, cardiovascular diseases, hospital admission and mortality [1-3]. Air 

pollution caused 6.4 million deaths worldwide in 2015, showing the significance of the impact of poor 

air quality on human health [4]. Both particulates (e.g., PM10 and PM2.5) and gaseous pollutants have 

negative impacts on human health; however, among gaseous pollutants, nitrogen dioxide (NO2) is 

considered the most serious pollutant for human health [3]. Many Air Quality Management Areas 

(AQMAs) in the UK were declared due the high levels of NO2 exceeding air quality standards set for 

human health protection [5]. Among the other challenges of air pollution in urban areas is the 

quantification of small-scale spatial variability, which is controlled by local emission sources, land use 

features, building density and height and geographical characteristics. To characterise spatial 

variability in pollutant concentrations, three approaches are used most commonly [6]: GIS-based 

interpolation methods, dispersion models and land use regression (LUR) models. 

mailto:smunir2@sheffield.ac.uk
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Interpolation methods are used to interpolate (predict) air pollutant concentrations between 

various air quality monitoring stations to provide better spatial coverage. One of the basic and probably 

most widely used approaches for interpolation in geostatistics is kriging. Kriging interpolates air 

pollutant levels (e.g., NO2 concentrations) between two points by modelling them with Gaussian 

processes. However, when these approaches are applied at a local scale, such as an intra-city scale, these 

methodologies are known to produce considerable variations in air pollutant concentrations within a 

small area and are more effective at large scales, such as national or regional scale [6, 7]. For handling 

these shortcomings, more advanced kriging techniques (e.g., cokriging and universal kriging) can be 

used to combine modelled and measured values of NO2, which further improve the performance of the 

interpolation [8, 9]. The second approach for spatial modelling is dispersion modelling techniques, 

which are probably the most advanced modelling techniques for determining the spatial variability of 

air pollutants in urban areas. Dispersion models use emission data of different sources (e.g., point, line 

and area sources), the geophysical characteristics of the study area and meteorological parameters. 

Dispersion models have the potential to incorporate both temporal and spatial dimensions to 

complement air pollution monitoring. The third approach for modelling spatial variability is LUR 

models, which provide an effective alternative to GIS interpolations and dispersion modelling 

techniques on urban scales. LUR is a spatial modelling approach used most frequently for analysing 

the spatial variability and quantifying public exposure to air pollution in urban areas. Several authors 

have preferred LUR to the other approaches [6, 10] due the fact that it produces realistic and detailed 

maps and is easy to apply. 

Integrating and merging data and information from several sources is known as data fusion [11]. 

In the literature, data fusion is also referred to as decision fusion, data combination, data aggregation, 

multisensor data fusion and sensor fusion. Data fusion techniques merge observed data with modelled 

data in a mathematical, objective way, adding value to both observed and modelled data. The observed 

data are improved by filling spatiotemporal gaps, whereas the modelled data are improved by 

constraining them with observed data [9]. Therefore, data fusion of observed data with modelled data 

can improve urban-scale air quality mapping. Schneider et al. [9] reported that the accuracy of fused 

data normally depends on a range of factors, which include (a) the total number of observations, (b) 

spatial distribution of the network, (c) uncertainty of the measured data, and (d) the ability of the model 

to accurately predict air pollutant levels with high spatial and temporal resolution. 

In this study, firstly, the maps produced by the LUR and Airviro dispersion models are compared 

for analysing the spatial variability of NO2 concentrations in Sheffield [12, 13]. Secondly, using the 

universal kriging technique, modelled NO2 concentrations are fused with the measured concentrations 

in a view to further improve the spatial maps of NO2. Measured NO2 concentrations in the form of 

points provide absolute values, whereas modelled concentrations provide spatial patterns for the fused 

high-resolution maps, which are helpful for understanding local-level spatial variability of air pollution 

and quantifying public exposure in urban areas. This study used measured NO2 concentrations from 

three sources (reference sensors, low-cost sensors (LCS) and diffusion tubes) and estimated 

concentrations from two sources (Airviro dispersion model and LUR model). Measurements of LCS 

and diffusion tubes are not as reliable as of reference sensors; however, due to cheaper price and 

maintenance they provide better spatial coverage and a unique opportunity for the spatial modelling 

of different air pollutants.  

The rest of the paper is structured as follows: the methodology of this paper is presented in Section 

7.2. In the Methodology, Section 7.2.1 provides a brief description of the study area, Section 7.2.2 

describes the air quality monitoring network (AQMN) in Sheffield, Section 7.2.3 describes the NO2 map 

estimated by Airviro, Section 7.2.4 describes the NO2 map estimated by LUR and Section 7.2.5 describes 

kriging and universal kriging techniques. Results and discussion are presented in Section 7.3 and the 

main conclusions of this study are presented in Section 7.4.  
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7.2. Methodology 

In this paper, NO2 concentrations are analysed from the AQMN in Sheffield. In the first part of the 

paper, spatial variability of NO2 concentrations (µg/m3) is analysed using three modelling approaches: 

kriging interpolation, Airviro dispersion model [13] and LUR model [12]. In the second part, NO2 

concentrations measured by various sensors are fused with the NO2 concentrations estimated by both 

Airviro and LUR models. For data fusion, one of the geostatistical techniques known as universal 

kriging is used, which was employed in R programming language using “automap” package [14]. The 

aim is to develop high-resolution NO2 maps for understanding the spatial variability of NO2 in the city 

of Sheffield, UK.  

Below, a brief description of the study area and the AQMN in Sheffield is provided, followed by 

a description and comparison of the Airviro and LUR NO2 estimated maps. 

7.2.1. Brief Description of the Study Area 

Sheffield (53°23′ N, 1°28′ W) is one of the oldest and most historical cities in South Yorkshire, UK. 

Sheffield is the second largest city in the Yorkshire and Humber region and had a population of 584,853 

in 2019. Sheffield is known as a green city and 61% of its area is composed of green space. The Peak 

District National Park and Pennine upland range lie to the west of the city and constitute one third of 

the city’s area. Sheffield has a temperate climate. Air pollution is a serious environmental issue in 

Sheffield and most of the urban area has been declared as an Air Quality Management Area (AQMA) 

due to the high levels of NO2 and particulate matter (PM10). Sheffield has a large AQMN, which is 

briefly described below (Section 7.2.2).  

7.2.2. Air Quality Monitoring Network (AQMN) in Sheffield 

There is a large network of one hundred and eighty-eight (188) NO2 diffusion tubes (DT) in 

Sheffield (Figure 7.1a). The Urban Flows Observatory, at the University of Sheffield, has made a 

network of forty-one (41) low-cost sensors (LCS) which has twenty-eight (28) Envirowatch E-MOTEs 

and thirteen (13) AQMesh pods, providing continuous hourly data of NO2 concentrations (Figure 7.1b). 

Furthermore, in Sheffield, there are three (3) Automatic Urban and Rural Network (AURN) reference 

sites run by the UK Department for Environment, Food and Rural Affairs (DEFRA) and five (5) 

reference stations run by the Sheffield City Council (SCC) (Figure 7.1b). All these sensors make a multi-

layer network providing NO2 data. In this paper, NO2 data for over a year (August 2019 to September 

2020) are analysed. A summary of the NO2 data from the network is provided in Table 7.1. Further 

details on the network can be found in [12]. 

Table 7.1. Summary of annual mean NO2 concentrations (µg/m3) measured by diffusion tubes (DT), 

automatic urban and rural network (AURN), Sheffield City Council (SCC) and low-cost sensors (LCS) 

(AQMesh and Envirowatch) in Sheffield (August 2019 to September 2020). 

Metrics DT NO2 AURN SCC 
AQMesh/Envirowatch 

E-MOTE 

Minimum 13.58 19.09 8.12 12.69 

1st Quartile  28.29 21.00 24.05 25.08 

Median 33.77 22.90 24.62 34.23 

Mean 34.23 24.69 21.53 38.70 

3rd Quartile 40.00 27.50 25.02 42.36 

Maximum 91.75 32.09 25.86 136.81 

Standard Deviation 9.65 6.68 7.53 27.69 

Number of Sensors 188 3 5 41 
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(a) 

 
(b) 

 

Figure 7.1. Showing the locations of DT, LCS (both AQMesh pods and Envirowatch E-MOTEs), AURN and 

SCC monitoring sites in Sheffield: (a) DT locations; (b) AURN, SCC and LCS locations. 
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7.2.3. NO2 Map Estimated by Airviro 

The Airviro dispersion model’s estimated map of NO2 concentrations is adopted from Munir et al. 

[13], who used the Airviro (version 4.01) dispersion model, which is an integrated modelling system 

for managing the emission database, modelling the dispersion of pollutants, and handling air quality 

data. Airviro is a state of the art dispersion model used by many researchers, consultants and local 

authorities globally for air quality modelling. Like other dispersion models, Airviro requires local 

topography, pollutant emissions and meteorological data to produce maps of estimated air pollutants. 

The Airviro model, the required inputs and produced outputs are discussed in detail in Munir et al.[13]. 

Munir et al. [13] estimated the map of NOx concentrations, which were converted to NO2 by analysing 

the ratio of NO2/NOx. The original map is given in Munir et al. [13] and the adopted map which is 

further analysed in this paper is shown here in Figure 7.2. The resulting estimated map showed 

hotspots of NO2 concentrations around the city centre and eastern part of the city towards the Tinsley 

Roundabout (M1 J34S). NO2 concentrations decrease gradually going away from the city centre, 

particularly towards the west and northwest of the city.  

 

 

Figure 7.2. Spatial variability of annual mean modelled NO2 in Sheffield. Maps were developed using 

Airviro model (modified from [13]). 

7.2.4. NO2 Map Estimated by LUR 

The LUR map used here is adopted from Munir et al. [12]. LUR is a widely employed approach 

for the estimation of air pollution exposure using geographical information systems (GIS) and statistical 

analysis to determine the association between geographical features and measured atmospheric 

pollutant concentrations [15]. The LUR approach was introduced by Briggs et al. [15] and since then 

has been used in numerous studies around the world [16 - 23]. LUR models associate pollutant 

concentrations, such as NO2, to site-specific geographical characteristics, e.g., topography, land use, 

population density and altitude. The use of these variables in the regression model is known to capture 

small-scale variability on a city scale [24]. For more details, see [12]. The resulting map produced by the 
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LUR model [12], employing a generalised additive model, a nonlinear regression approach, is shown 

in Figure 7.3, which is a high-resolution (100 m × 100 m) map. Figure 7.3 demonstrates higher levels of 

NO2 in the city centre, eastern side of the city and on major roads. As compared to Figure 7.2, here, the 

busy roads are successfully highlighted, showing high levels of NO2 concentrations. 

 

 

Figure 7.3. Maps of annual mean modelled NO2 (µg/m3) estimated by LUR model in Sheffield. Modified 

from [12]. 

7.2.5. Kriging and Universal Kriging  

Kriging is a type of geostatistical interpolation technique based on statistical models that include 

statistical relationships among the measured points (autocorrelation). Kriging is a form of probabilistic 

and local interpolation technique. Kriging uses Gaussian processes for interpolating between various 

spatial points.  

The kriging formula is expressed as: 

Zo(So) = ∑ λiZi(Si)i=n
i=1                  (7.1)  

where Zi(Si) is the measured value at the ith location, λi is an unknown weight for the measured value 

at the ith location, Zo(So) is the predicted value at the prediction location. 

Simple kriging is used for stationary data if the mean is known; otherwise, ordinary kriging is 

used. To fuse (integrate) model estimations with measured NO2 concentrations, here, we employed the 

universal kriging technique, which is more advanced and capable of handling data with more than one 

correlated variable. In universal kriging, the additional observations of one or more covariates may lead to 

increased precision of the predictions. This approach enables the merging of NO2 observations from a 

network of sensors, with modelled values providing spatial information from the air quality models. 

Universal kriging, in contrast to ordinary kriging, allows the overall mean to be non-constant 

throughout the domain and to be a function of one or more explanatory variables [9, 25]. Universal 

kriging is similar to kriging, with external drift and mathematically equivalent to regression kriging or 
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residual kriging [8]. In this paper, measured values are fused with LUR and Airviro estimation using 

“automap” packages [14] in R programming language [26].  

7.2.6. Model Validation 

Performance of the universal kriging technique was assessed by calculating several statistical 

metrics. Statistical metrics used for comparing measured and estimated concentrations were factor of 

two (FAC2), mean bias error (MBE), mean absolute error (MAE), root mean square error (RMSE) and 

correlation coefficient (r). MAE and RMSE show the size of the average error; however, they do not 

provide information on the relative magnitude of the difference between predicted and observed 

values as these are based on absolute values of the difference between estimated and measured values. 

On the other hand, MBE describes the direction of the error bias. A negative value of MBE shows that 

predicted values are smaller than the observed values, showing underprediction of the model. FAC2 is 

the percentage of the predictions within a factor of two of the observed values and the correlation 

coefficient demonstrates the linear relationship between observed and estimated concentrations. For 

more details on these metrics see Munir et al. {12, 13].  

For comparison purposes, the measured data collected by different sets of sensors were split into 

training and testing datasets. Training dataset (75% of the data) and testing dataset (25% of the dataset) 

were randomly selected using “caTools” package of R programming language. After assessing the 

model performance, the model was retrained using the whole dataset and applied to the rest of the city 

where measured data were not available.  

7.3. Results and Discussion 

In this section, firstly, the measured and interpolated NO2 concentrations (µg/m3) are analysed 

(Section 7.3.1), followed by data fusion (Section 7.3.2), wherein model estimations are fused with 

measured NO2 concentrations.  

7.3.1. Measured and Interpolated NO2 Concentrations  

Figure 7.4 demonstrates both measured and interpolated NO2 concentrations for DT. Annual mean 

of measured NO2 concentrations (µg/m3) ranged from 13.58 to 91.75. It should be noted that the air 

quality limit for annual mean NO2 concentrations is 40 (µg/m3); therefore, to protect human health, 

annual mean NO2 levels should not exceed this level. The observed levels (Figure 7.4) show that the air 

quality limits are exceeded at several sites in the city, especially in the city centre and on main roads. 

These readings are only for point locations and there are large gaps between these locations. To create 

a continuous map, in this paper, we used ordinary kriging for predicting NO2 concentrations for the 

locations where measured concentrations were not available. Interpolated concentrations are shown in 

Figure 7.4b, which demonstrates that air quality standards are violated in some parts of the city centre 

and in the northeast of the city. However, in most of the city centre and northeast of the city, NO2 levels 

range from 35 to 40 (µg/m3). In the northwest and areas adjacent to the city centre, the NO2 levels ranged 

from 30 to 35. Deep green and light green areas mostly in the southwest part of the city show NO2 levels 

in the range of 20 to 30 (µg/m3), which is the area next to the Peak District National Park. 

Figure 7.5 shows NO2 levels measured by LCS, ranging from 8.12 to 136.81 (µg/m3). Exceedances 

of air quality standards are mainly shown in the city centre, where 10 Envirowatch E-MOTEs were 

installed. However, due to the low number of sensors compared to DT, the interpolated maps are not 

as detailed as those produced by the DT. Envirowatch E-MOTEs installed in the city centre recorded 

relatively higher concentrations than the other parts of the city. Three Envirowatch E-MOTEs recorded 

particularly higher NO2 concentrations: (a) outside Sheffield train station next to the taxi rank, E-MOTE 

904 (136.81 µg/m3), (b) Arundel Gate opposite to Genting Club, E-MOTE 732 (115.55 µg/m3), and (c) 

Sheaf Street/Sheaf Square adjacent to the pedestrian crossing for Howard Street, E-MOTE 903 (107.17 
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µg/m3). The reason for the higher concentrations is that these sites are very busy in terms of traffic flow 

and idling vehicles while stationary. The taxi stand (E-MOTE 904) is a good example, showing how 

idling vehicles contribute to air pollution in the city. E-MOTE 903 is installed next to a pedestrian 

crossing on a busy road. People coming out of the train station use the pedestrian crossing going 

towards the high street, Sheffield Hallam University and other parts of the city. The pedestrian crossing 

is regularly used, interrupting the traffic flow and causing congestion. When the lights turn red, road 

traffic stops but vehicle engines keep running. As soon as the lights turn green, all vehicles try to 

accelerate quickly. Therefore, idling of engine and sudden acceleration emits extra pollution, causing 

this location to be one of the most polluted sites. E-MOTE 732 is installed in a typical street canyon, 

where the road has tall buildings on both sides, hindering the dispersion of the pollutants emitted by 

the road traffic and causing the pollution levels to increase. The other sites in the city centre where air 

quality standards were exceeded are Paternoster Rows, Harmer Lane near Sheaf Street, Harmer Lane 

near the bus station, Arundel Gate near Surrey Street and Howard Street. Two E-MOTEs at the 

university campus that exceeded air quality limits were Regent Court and Broad Lane (near St. George’s 

Terrace). In the outskirts of the city, air quality limits were exceeded at three sites where AQMesh pods 

were installed: Saville Street, Abbeydale Rd and Brightside Lane. At these sites, the main source of 

emission is road traffic. Therefore, road traffic is the main source of emissions causing violation of AQ 

standards in Sheffield.  

Figure 7.6 combines both DT and LCS, showing a more detailed map of interpolated NO2 

concentrations (µg/m3). Generally, it demonstrates the same pattern as shown in Figure 7.4. However, 

in comparison to LUR (Figure 7.3) and Airviro models (Figure 7.2), the interpolated maps are less 

precise and less detailed. Briggs et al. [10] compared the performance of LUR with spatial interpolation 

methods (e.g., kriging, Triangular Interpolation Network (TIN) contouring and trend surface analysis) 

and reported that LUR performed much better than the interpolation techniques. The reason probably 

was that in urban areas, spatial variability of air pollutants was more controlled by the local emission 

sources, such as road traffic, rather than a smoothly varying field, which was assumed by the 

interpolation methods.  
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(a) 

 
(b) 

 

 

Figure 7.4. Showing point and interpolated NO2 levels from DT network: (a) NO2 concentrations (µg/m3) 

from DT, and (b) interpolated NO2 concentrations (µg/m3) using ordinary kriging. 
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(a) 

 

 
 

(b) 

 

 

Figure 7.5. Showing point and interpolated NO2 levels from LCS network: (a) NO2 concentrations (µg/m3) 

from LCS, (b) interpolated NO2 concentrations (µg/m3) using ordinary kriging. 
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(a) 

 

 
(b) 

 

 

Figure 7.6. Showing point and interpolated NO2 levels from both DT and LCS: (a) NO2 concentrations 

(µg/m3) from both 188 DT and LCS, and (b) interpolated NO2 concentrations (µg/m3) using ordinary 

kriging. 
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7.3.2. Data Fusion—Fusing Model Estimations with Measured Concentrations 

In this section, geostatistical universal kriging was used to fuse measured NO2 concentrations with 

estimated NO2 concentrations. NO2 measured by DT, LCS and DTLCS are expressed as NO2-DT, NO2-

LCS and NO2-DTLCS and estimation of LUR and Airviro as NO2-LUR and NO2-Airviro, respectively.  

7.3.2.1. Fusion of NO2-LCS with NO2-Airviro and NO2-LUR  

Universal kriging was used to fuse NO2-LCS with NO2-Airviro and NO2-LUR. Figure 7.7 presents 

the results of data fusion, where the fusion of NO2-Airviro with measured NO2 is presented in Figure 

7.7a and the fusion of NO2-LUR with measured NO2 is presented in Figure 7.7b. The resulting fused 

concentrations from the integration between NO2-Airviro and NO2-LCS (Airviro-LCS) ranged from 6.14 

to 138.93 µg/m3. The range of these values reflected the measured NO2-LCS concentrations (ranging 

from 8.11 to 136.81 µg/m3), whereas the spatial pattern followed the trend of NO2-Airviro. On the other 

hand, the fusion of NO2-LCS and NO2-LUR (LUR-LCS) (Figure 7.7b) demonstrated a slightly different 

pattern. The NO2 LUR-LCS ranged from 19.45 to 82.98 (µg/m3), slightly overestimating lower values 

and underestimating the higher values. For model validation, the fused concentrations were compared 

with the measured concentrations using the testing dataset (25% randomly selected) applying various 

statistical metrics (Table 7.2). Overall, NO2 LUR-LCS showed slightly better correlation (r, 0.96) and less 

error (RMSE, 9.09) than Airviro-LCS (r, 0.88 and RMSE, 18.16) when compared with measured 

concentrations. Overall, the fusion of Airviro-LCS slightly underestimated NO2 concentrations, 

demonstrated by the negative value of MBE (−4.14). 

Table 7.2. Showing the values of different statistical metrics calculated by comparing fused and 

measured NO2 concentrations based on randomly selected testing dataset (train/test cross-validation). 

FAC2, MBE, MAE, RMSE and r stand for factor of two, mean biased error, mean absolute error, root 

mean squared error, and correlation coefficient.  

Metrics 
Airviro-

LCS 
LUR-LCS 

Airviro-

DT 
LUR-DT 

Airviro-

DTLCS 

LUR-

DTLCS 

FAC2 1 1 1 1 0.98 0.96 

MBE −4.14 1.44 1.56 1.40 1.08 2.24 

MAE 12.79 7.99 5.81 5.29 8.20 3.73 

RMSE 18.16 9.09 7.18 6.74 10.42 10.43 

R 0.88 0.96 0.70 0.70 0.56 0.59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



159 

 

(a) 

 
(b) 

 

Figure 7.7. Resulting map of fused NO2 concentrations (µg/m3) using universal kriging techniques: (a) NO2 

Airviro-LCS; (b) NO2 LUR-LCS. 
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7.3.2.2. Fusion of NO2-DT with NO2-Airviro and NO2-LUR  

Maps produced by the fusion of NO2-DT with NO2-Airviro and NO2-LUR are presented in Figure 

7.8, where the fusion of Airviro-DT is shown in Figure 7.8a and the fusion of LUR-DT is shown Figure 

7.8b. The fused NO2 Airviro-DT ranged from 17.19 to 74.78 µg/m3. NO2-Airviro concentrations ranged 

from 0.69 to 110, whereas NO2-DT ranged from 13.58 to 91.75 µg/m3. Airviro-DT showed higher 

concentrations in the city centre, east and northeast part of the city and relatively lower concentrations 

in the outskirts of the city, especially towards the west and northwest part of the city. Figure 7.8b shows 

NO2 LUR-DT, which is the fusion between NO2-LUR and NO2-DT. Here, higher NO2 LUR-DT are 

shown in the city centre, eastern and northeastern parts. However, some busy roads and hotspots are 

also highlighted in some other parts of the city. NO2 LUR-DT ranged from 4.13 to 64.49 µg/m3.  

Statistical metrics used to compare measured concentrations with fused concentrations (Table 7.2) 

showed the same correlation coefficient for both LUR-DT and Airviro-DT (r, 0.70). The values of other 

metrics, e.g., RMSE and MAE, also demonstrated negligible differences. However, visually, LUR-DT 

produced more detailed maps and successfully highlighted higher pollution levels on several busy 

roads. 

(a) 

 

 
 

 

 

 

 

 

 

 

 

 



161 

 

 

(b) 

 

 

Figure 7.8. Resulting maps of fused NO2 concentrations (µg/m3) using universal kriging techniques: (a) 

NO2 Airviro-DT; (b) NO2 LUR-DT. 

7.3.2.3. Fusion of NO2-DTLCS with NO2-Airviro and NO2-LUR  

Finally, the measured NO2-DTLCS were fused with NO2-Airviro and NO2-LUR. The fused NO2 

concentrations are presented in Figure 7.9, where the fusion of Airviro-DTLCS is shown in Figure 7.9a 

and the fusion of LUR-DTLCS is shown in Figure 7.9b. The resulting maps shown in Figure 7.9 look 

similar to those presented in Figure 7.8 in terms of spatial coverage; however, actual values and their 

ranges are different. Fused Airviro-DTLCS ranged from 15.11 to 126.88, whereas LUR-DTLCS ranged 

from 19.45 to 82.98 µg/m3. The measured NO2-DTLCS ranged from 8.12 to 136.81 µg/m3. Combining 

DT and LCS measurements did not improve the model performance compared to using only NO2-DT. 

In contrast, the values of correlation coefficient slightly decreased to 0.56 and 0.59 for Airviro-DTLCS 

and LUR-DTLCS, respectively. Values of RMSE were 10.42 and 10.43 for Airviro-DTLCS and LUR-

DTLCS, respectively (Table 7.2). This shows that increasing the number of sensors will not necessarily 

improve the output of the data fusion, especially if the sensors are not the same type.  

The values of measured NO2 concentrations are reflected in fused values, whereas the spatial trend 

is determined by the model values. The fused maps provided better coverage and more realistic 

concentrations than the interpolated maps using ordinary kriging. Data fusion also improved the NO2-

Airvrio and NO2-LUR maps, producing more realistic maps based on both measured and estimated 

concentrations. Overall, the fusion of LUR with measured concentrations produced better results than 

the Airviro model in terms of correlation coefficient, RMSE and MAE.  
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(a) 

 
(b) 

 

Figure 7.9. Resulting map of fused NO2 concentrations (µg/m3) using universal kriging techniques: (a) 

Airviro-DTLCS; (b) LUR-DTLCS.  

In this study, different monitoring and modelling approaches were used to produce high-

resolution spatial maps of NO2 concentrations in urban areas. Air quality monitoring is the more 

accurate source of data for assessing air pollutant levels. However, the air quality monitoring network 

cannot be dense enough to provide measured data for each spatial point in the whole city. Therefore, 
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different modelling approaches (e.g., spatial interpolations, dispersion models and LUR models) are 

required to predict air quality information between monitoring stations. These models, in addition to 

measured data, use emission data, meteorology data, traffic characteristics, population data and land 

use characteristics. One of the issues with air quality modelling is its level of uncertainty, which is 

significantly higher than the measured data [27]. This is where data fusion techniques play their role 

by combining measured and modelled data in such a way to improve the spatiotemporal resolution of 

the measured data and accuracy of the modelled data.  

Huang et al. [28] applied data fusion techniques to integrate measured and model estimation over 

North Carolina, USA. In contrast to this study, Huang et al. [28] analysed the levels of several air 

pollutants which were PM2.5, CO, NOx, NO2 and five particulate species (organic carbon, elemental 

carbon, and sulphate, nitrate and ammonium ions). They reported that the application of data fusion 

reduced biases in the model estimation. The correlation coefficient for the cross-validation test was 0.91 

in Huang et al. [28], which was less than this study (r-value 0.96). Gressent et al. [29] analysed air quality 

data from low-cost sensors and integrated them with the estimation of ADMS-Urban in France. In 

contrast to this study, which uses annual NO2 concentrations, Gressent et al. [29] used hourly data and 

estimated PM10 concentrations for 29 November 2018 from 7 a.m. to 7 p.m. They used external drift 

kriging, which is similar to universal kriging, and reduced the bias from 8% to 2% when considering 

LCS observations instead of the model alone. Schneider et al. [9] employed geostatistics methodology 

to fuse NO2 concentrations obtained from a network of low-cost sensors (AQMesh) and EPISODE 

dispersion model. EPISODE is a 3-D Eulerian/Lagrangian dispersion model providing atmospheric air 

pollutant forecasts at urban and regional scales. For more details on the EPISODE model [30]. Schneider 

et al. [9] evaluated the geostatistics universal kriging methodology for fusing both measured and 

predicted data of NO2 in Oslo, Norway during January 2016. Results showed that the fusing method 

was able to produce realistic hourly NO2 concentrations, which inherited the spatial trend of the 

pollutant from the EPISODE model. Furthermore, fused data were compared to measured data from a 

reference instrument and results showed reasonably good resemblance between measured and fused 

data, with R2 value of 0.89 and mean squared error of 14.3 µg/m3. Their model showed slightly inferior 

performance in comparison to this study, with r-value 0.96 and RMSE 9.09. Furthermore, Schneider et 

al. [9] had used a shorter time-period of one month and fewer sensors as compared to this study, which 

used NO2 data for a whole year from more sensors.  

Most of the data fusion techniques mentioned above are applied on city scales. However, several 

researchers have also applied the data fusion approaches to air quality data on a country level [31] or 

global level [32]. Liang et al. [31] developed a data fusion method and compared the outputs with 

kriging-with-external-drift (KED) and the chemistry module from WRF-Chem (Weather Research and 

Forecast Model with Chemistry Module). KED is a type of universal kriging that takes into account the 

local trend of the variable (e.g., air pollutant concentrations) as well as external drift (a spatial trend) 

when minimising the variance of estimation [8]. Both KED and WRF-Chem were used to estimate daily 

PM2.5 levels in 10-km grid cells in China during 2013. The estimated concentrations from both KED and 

WRF-Chem were then fused with measured observations. For fusion, a simple linear regression model 

was applied between the observed and estimated concentrations for both KED and chemistry models 

in turns. The regression coefficients obtained from the regression model were used to adjust the 

predicted concentrations. The performance of the models was evaluated, and KED and regression data 

fusion methods showed better performance in terms of R2 value of 0.95 and 0.94, respectively, as 

compared to the value of 0.51 for WARF-Chem model. Shaddick et al. [32], employing a Bayesian 

hierarchical modelling framework, estimated that 92% of the world’s population lived in areas where 

air pollution levels exceeded the World Health Organization’s air quality guidelines. However, the 

results of these investigations carried out on a country or global level are not comparable with studies 

conducted on a city level. 
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7.4. Conclusions 

In this paper, different modelling and data fusion techniques were employed to analyse the spatial 

variability of NO2 concentrations (µg/m3) in the city of Sheffield. NO2 was monitored by 188 DT, 41 

low-cost sensors, 3 AURN and 5 SCC monitoring stations. The main difference between LCS and 

reference sensors is that LCS are cheaper, compact and their measurements are less reliable, whereas 

AURN and SCC use reference sensors which are much more expensive and reliable. However, the 

reference AQMN is sparse, having fewer AQMS, which are not enough for understanding the spatial 

variability of NO2 in Sheffield. Therefore, the networks of LCS and DT were used for analysing the 

spatial variability of NO2 concentrations and validating the models. Air quality standards were 

exceeded at several locations in Sheffield, particularly in the city centre and on some busy roads, where 

annual mean NO2 levels were higher than 40 µg/m3. The highest levels of NO2 were recorded by the 

Envirowatch E-MOTE installed next to the Sheffield train station taxi rank (136.81 µg/m3), followed by 

the Sheaf Street/Sheaf Square pedestrian crossing (115.56 µg/m3) and Arundel Gate (107.17 µg/m3). 

Three modelling approaches were used to produce maps of NO2 concentrations in Sheffield: (a) 

geostatistical kriging interpolation, (b) Airviro dispersion modelling, and (c) LUR based on the 

generalised additive model. Measured NO2 concentrations were fused with the estimated 

concentrations using universal kriging, which is an advanced kriging technique that is employed for 

data having more than one correlated variable. Six sets of measured and estimated NO2 data were 

fused: (i) Fusion of NO2-Airviro with NO2-LCS; (ii) Fusion of NO2-Airviro with NO2-DT; (iii) Fusion of 

NO2-Airviro with NO2-DTLCS; (iv) Fusion of NO2-LUR with NO2-LCS; (v) Fusion of NO2-LUR with 

NO2-DT; and (vi) Fusion of NO2-LUR with NO2-DTLCS. Fused NO2 were compared with measured 

concentrations in terms of different statistical metrics including FAC2, r, RMSE, MAE and MBE. Maps 

produced by the fusion of NO2-LCS and NO2-LUR produced better results, with an r-value of 0.96, 

followed by the fusion of NO2-Airviro with NO2-LCS, with an r-value of 0.88. Fused maps developed 

by universal kriging provided better spatial coverage and similarity with measured concentrations than 

the ordinary kriging interpolation, Airviro and LUR models. Fused maps combining measured and 

estimated concentrations produced more realistic concentrations and provided better spatial coverage. 

This study presents a geostatistical universal kriging approach for fusing measured and estimated 

NO2 concentrations to improve our understanding of small-scale spatial variability in NO2 

concentrations in Sheffield. This approach adds value to both measured and estimated values: the 

measured concentrations are improved by predicting spatiotemporal gaps, whereas the modelled 

concentrations are improved by constraining them with observed data. The main findings of this study 

are: (a) The universal kriging approach was capable of estimating realistic NO2 concentration maps 

from the fusion of measured and modelled concentrations. The fused NO2 concentrations inherited 

spatial patterns of the pollutant from the model estimations and adjusted the modelled values using 

the measured concentrations. (b) A huge number of sensors are required to provide reasonable spatial 

coverage at a city level, which is too expensive. Spatial modelling (e.g., dispersion model and LUR 

model) and data fusion approaches can provide city-level maps by integrating pollutant concentrations 

measured by the AQMS with modelled concentrations. (c) According to Schneider et al. [9], the 

accuracy of the data fusion depends on the number of sensors, their spatial distribution, their 

uncertainty and the accuracy of the estimated values to be fused with measured values. Here, we 

showed that in addition, the accuracy of the data fusion also depends on the uniformity of the sensors, 

meaning that using the same type of sensors can result in better accuracy. Increasing the number of 

sensors will not necessarily improve the model outputs, especially if sensors are not of the same type. 

For example, maps produced by the fusion of NO2-LCS with NO2-LUR (r-value 0.96) and NO2-Airviro 

(r-value 0.88) produced better results than when both NO2-DT and NO2-LCS were used together and 

fused with NO2-LUR or NO2-Airviro, when the r-values decreased to 0.59 and 0.56, respectively.  

The uniqueness of this study is that it uses estimated NO2 concentrations from two sources—a 

dispersion model and a land use regression model—and measured NO2 concentrations from three 
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sources: diffusion tubes, reference sensors and low-cost sensors. The study applies geostatistical 

universal kriging for data fusion and produces high-resolution maps of NO2 in Sheffield. 

Limitations/weaknesses: (a) NO2 diffusion tube data were downloaded from the Sheffield City 

Council website; we do not know which correction factors were applied before they were published 

online. (b) Low-cost sensors have their limitations and are not as accurate as reference sensors. The data 

from the low-cost sensors are postprocessed by the manufacturers with the aim of correcting cross-

interferences as well as the effects of temperature and relative humidity. The AQMesh pods include an 

O3-filtered NO2 sensor from Alphasense, which is designed to reject O3 and hence eliminate cross-

sensitivity issues. However, none of these sensors was collocated with the reference sensor in the field; 

therefore, we could not develop and apply correction factors. 

In the future, we aim to apply this approach to high-resolution spatiotemporal data (e.g., hourly 

data on city scale) to further improve spatiotemporal estimation of NO2 concentrations. Furthermore, 

the data fusion work would be done in as near to real time as possible in the form of an app, so as to 

provide public health advice. 
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Abstract  

Temporal variability of NO2 concentrations measured by 28 Envirowatch E-MOTEs, 13 

AQMesh pods, and eight reference sensors (five run by Sheffield City Council and three run 

by the Department for Environment, Food and Rural Affairs (DEFRA)) was analysed at 

different time scales (e.g., annual, weekly and diurnal cycles). Density plots and time variation 

plots were used to compare the distributions and temporal variability of NO2 concentrations. 

Long-term trends, both adjusted and non-adjusted, showed significant reductions in NO2 

concentrations. At the Tinsley site, the non-adjusted trend was −0.94 (−1.12, −0.78) µgm-

3/year, whereas the adjusted trend was −0.95 (−1.04, −0.86) µgm-3/year. At Devonshire Green, 

the non-adjusted trend was −1.21 (−1.91, −0.41) µgm-3/year and the adjusted trend was −1.26 

(−1.57, −0.83) µgm-3/year. Furthermore, NO2 concentrations were analysed employing 

univariate linear and nonlinear time series models and their performance was compared with a 

more advanced time series model using two exogenous variables (NO and O3 ). For this 

purpose, time series data of NO, O3 and NO2 were obtained from a reference site in Sheffield, 

which were more accurate than the measurements from low-cost sensors and, therefore, more 

suitable for training and testing the model. In this article, the three main steps used for model 

development are discussed: (i) model specification for choosing appropriate values for p, d and 

q, (ii) model fitting (parameters estimation), and (iii) model diagnostic (testing the goodness of 

fit). The linear auto-regressive integrated moving average (ARIMA) performed better than the 

nonlinear counterpart; however, its performance in predicting NO2 concentration was inferior 

to ARIMA with exogenous variables (ARIMAX). Using cross-validation ARIMAX 

demonstrated strong association with the measured concentrations, with a correlation 

coefficient of 0.84 and RMSE of 9.90. ARIMAX can be used as an early warning tool for 

predicting potential pollution episodes in order to be proactive in adopting precautionary 

measures.  

Keywords: ARIMA; ARIMAX; air quality modelling; low-cost sensors; air pollution; 

nonlinear modelling; time series analysis; autoregressive; moving average; Sheffield. 
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8.1. Introduction 

Air pollution is one of the most serious environmental threats to health, killing 6.4 million 

people in 2015 worldwide both in developed and less-wealthy nations [1]. Out of these, 2.8 

million deaths were caused by indoor air pollution and 4.2 million deaths by outdoor air 

pollution. Air pollution is causing various health problems including respiratory problems, 

cardiovascular diseases, lung cancer and asthma [2]. Walters and Ayres [3] have also reported 

that air pollution, especially particulate matter and nitrogen dioxide (NO2) pollution, may cause 

premature deaths and hospital admissions for conditions such as cardiovascular problems, 

allergic reactions and lung cancer. It is reported that exposure to air pollution is particularly 

harmful for children, people with existing health problems and the elderly [4–6]. Evidence 

suggests that the negative impacts of air pollution are dependent on the levels of air pollutants 

and length of exposure, higher levels and longer exposure resulting in more severe adverse 

effects [3,6]. Furthermore, air pollution may reduce visibility, damage historical buildings and 

monuments, affect vegetation and reduce crop yield and quality [4–7].  

Air quality modelling is carried out for several purposes, including air quality prediction, 

quantifying the impacts of air pollution, modelling the impacts of various factors on air 

pollution, modelling pollution processes and transport, running and testing emission scenarios, 

modelling the dispersion of air pollutants in the atmosphere, quantifying the emissions of air 

pollutants from various emission sources, determining long-term trends in air pollutant 

concentrations and producing high-resolution spatiotemporal maps of air pollution [6–15]. In 

this study, the main purposes were to compare the performance of different time series models 

and to develop a time series model for predicting future NO2 concentrations in Sheffield, UK. 

Time series models are one of the popular tools for predicting the future by understanding the 

past changes in air pollution concentrations [16].  

Time series modelling is a useful tool for data analysis and has several benefits, which 

include data cleaning, data understanding and forecasting [17]. Time series modelling can help 

us filter out the noise and reveal the true signal in a dataset. Once a dataset is cleaned and the 

time series is divided into its different components, it helps us understand the true nature of the 

dataset. Finally, like other modelling approaches, time series modelling helps us predict future 

levels with the help of present and past levels of the time series (here NO2 concentrations) [17]. 

To build a time series model the time series data must be stationary. For a time series to be 

stationary, the mean, variance and covariance of the time series should not be a function of 

time [18]. If the time series is not stationary, it should be stationarised first before fitting a 

model to it [18]. To stationarise a time series, it should be detrended and deseasonalised using 

differencing and power transformations [16]. A time series model can be linear or nonlinear 

depending on the relationship between current and past observations [16]. The Autoregressive 

(AR) and moving average (MA) models are the two widely used linear time-series models [19]. 

The AR and MA models can be combined to form the autoregressive moving average (ARMA) 

and autoregressive integrated moving average (ARIMA) models [20]. To model and predict a 

seasonal time series, the seasonal autoregressive integrated moving average (SARIMA) model 

is used, which is a variation of ARIMA [19]. ARIMA along with its various variations are also 

known as the Box–Jenkins models because they are based on the Box–Jenkins principle [19]. 

Classification of time series models is shown in Figure 8.1 [21–23].  

Although air pollutant levels have decreased in the UK and Europe during the last decade 

or so, some air pollutant levels still exceed air quality standards in many urban areas [24] and 
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620 air quality management areas (AQMAs) have been declared across the UK [25]. Out of 

these areas, five cities (Birmingham, Leeds, Southampton, Derby and Nottingham) will not 

achieve the targets until 2025 and London will not comply until 2030 if additional control 

measures are not taken [24]. Most of the exceedances are due to the high levels of NO2 and 

PM10 [26], emphasising that these air pollutants are a serious problem in urban areas. Further 

actions are required to cut emissions and understand the main drivers of high levels of NO2 and 

PM10 in urban areas. Air pollution modelling is a part of these actions.  

In first part of this article, NO2 concentrations measured by different grades of sensors are 

compared graphically, whereas, in the second part, a comparison of time series modelling 

approaches is made using measured time series data of NO2 collected at an urban monitoring 

site in Sheffield. A comparison is made between linear and nonlinear time series models and 

the better performing model is then compared with the ARIMAX model, which, in addition to 

persistence, uses exogenous variables. The aim is to assess the suitability of time series models 

for NO2 prediction and choose the best time series model for air quality modelling in the urban 

environment  

 

Figure 8.1. Classification of time series modelling techniques.  

8.2. Methodology  

8.2.1. A brief description of the monitoring network  

In this study, NO2 concentrations (µg/m3 ) from a network of low-cost sensors (LCSs) and 

reference sensors were analysed in Sheffield, United Kingdom. A network of LCSs was made 

by the Urban Flows Observatory, University of Sheffield, UK, consisting of 28 Envirowatch 

E-MOTEs and 13 AQMesh pods. These are all urban traffic sites. In addition, five reference 

air quality monitoring stations are operated by Sheffield City Council (SCC) and three are 

operated by the UK Department for Environment, Food and Rural Affairs (DEFRA), which 
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are part of the Automatic Urban and Rural Network (AURN), the largest air quality monitoring 

network in the UK. The locations of the air quality monitoring stations (AQMSs) are shown in 

Figure 8.2 and their names, coordinates and annual mean NO2 concentrations are given in Table 

8.1. Data from these sensors were analysed from August 2019 to September 2020.  

LCS are compact, portable and use less power when compared to reference instruments. 

LCS range in price from a couple of thousand to several thousand pounds (for a relatively 

sophisticated multi-pollutant and meteorological sensor with communication capabilities). 

Reference sensors are expensive, both to purchase and maintain, and bulky but are the most 

accurate units, recommended for use by EU and UK government bodies for AQ monitoring 

and comply with standards such as MCERTS in the UK. A single reference unit costs in the 

region of twenty thousand pounds to monitor a single gas or gaseous species or particle 

pollutants. LCS and reference sensors employ different techniques of air pollutant 

measurement, which include optical particle counters, light scattering, metal oxide 

semiconductor sensors, electrochemical sensors, nondispersive infrared sensors, ultraviolet 

fluorescence, chemiluminescence, infrared photometry and photo-ionisation detection sensors. 

For more detail see Borrego et al. (2016) and Mead et al. (2013). The LCS used in this project 

are either Envirowatch E-MOTEs or AQMesh pods. Envirowatch E-MOTEs are deployed in a 

local mesh deployed in a cluster, providing data via ZigBee, within a certain area for high 

resolution monitoring, no more than 100 m from each other, with a gateway providing uplink 

capability. AQMesh sensors are independent and can be deployed at both high and low spatial 

resolution. In this case each sensor independently sends data to a cloud server using GPRS.  
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(a) 

(b) 

  

Figur 8.2. (a) The locations of air quality monitoring stations (AQMSs) in Sheffield; (b) 

annual mean NO2 levels (µg/m3 ) measured by low-cost sensors (LCSs) and Automatic Urban 
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and Rural Network (AURN) and Sheffield City Council (SCC) AQMSs in Sheffield from 

August 2019 to September 2020. 

Table 8.1. Showing the names, ID and annual mean NO2 concentration (µg/m3) measured 

by Low-Cost Sensors (AQMesh and Envirowatch E-MOTEs), AURN and Sheffield City 

Council (SCC) Sites from August 2019 to September 2020. 

Site name Sensor type Sensor ID NO2 (µg/m3) 

Brightside Lane AQMesh 2003150 41.3 

Saville Street AQMesh 2005150 46.9 

Cundy Street AQMesh 2007150 19.8 

off Endcliffe Crescent AQMesh 2008150 12.7 

Sharrow Vale Rd AQMesh 2009150 25.1 

Abbeydale Rd AQMesh 2450206 43.7 

London Rd AQMesh 2001150 14.6 

Prince of Wales RD AQMesh 2006150 28.2 

Maltravers Rd AQMesh 2004150 20.8 

Hunter's Bar School AQMesh 2450204 29.0 

Malin Bridge PS AQMesh 1999150 22.6 

Broad Lane AQMesh 1998150 19.2 

Carter Knowle Bridge AQMesh 2450205 37.6 

Tinsley AURN SHE 22.9 

Devonshire Green AURN SHDG 19.1 

Barnsley Road AURN SHBR 32.1 

Regent Court, E-camp E_MOTE 711 41.7 

Leavygreave Road, E-camp E_MOTE 712 34.2 

Gell Street, E-camp E_MOTE 701 21.1 

Upper Hanover/Henderson’s building E_MOTE 702 28.7 

Behind Jessop West E_MOTE 703 23.7 

Diamond/Bio-incubator E_MOTE 704 34.2 

Broad Lane/St George’s Terrace E_MOTE 713 44.9 

Portobello Street, Mappin Street E_MOTE 714 37.6 

28 Portobello Street, EC E_MOTE 705 20.8 

Howard Street, CC E_MOTE 731 41.2 

Arundel Gate/Genting Club E_MOTE 732 115.6 

Arundel Gate/Surrey Street E_MOTE 733 43.5 

Harmer Lane/Pond Street E_MOTE 901 44.2 

Harmer Lane/Sheaf Street E_MOTE 902 49.9 

Pond Street/Sheaf Building E_MOTE 736 38.3 

Howard Street/Science Park E_MOTE 734 39.0 

Paternoster Rows E_MOTE 735 42.4 

Sheaf Street/Sheaf Square  E_MOTE 903 107.2 

Railway Station Taxi rank E_MOTE 904 136.8 

Upper Hanover St/Info. Commons E_MOTE 707 26.6 

Leavygreave Road/Favell Road E_MOTE 708 25.7 

Hounsfield Rd/Hicks Building E_MOTE 709 24.9 

Sheffield Children’s Hospital E_MOTE 710 28.2 

Robert Hadfield Building E_MOTE 706 25.2 

Brook Hill/Firth Court1 E_MOTE 737 39.3 

Brook Hill/Firth Court2 E_MOTE 738 42.9 

Arts Tower Concourse  E_MOTE 739 34.3 

Arts Tower Concourse/Library E_MOTE 740 33.2 

Firvale SSC GH1 25.0 

Tinsley SSC GH2 24.1 

Lowfield SSC GH3 24.6 

Wicker SSC GH4 25.9 

King Ecgbert SSC GH5 8.1 
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LCSs are compact, portable and use less power when compared to reference instruments. 

LCSs range in price from a couple of thousand to several thousand pounds (for a relatively 

sophisticated multi-pollutant and meteorological sensor with communication capabilities). 

Reference sensors are expensive, both to purchase and maintain, and bulky, but are the most 

accurate units, recommended for use by EU and UK government bodies for air quality (AQ) 

monitoring and complying with standards such as MCERTS in the UK. A single reference unit 

costs in the region of 20,000 pounds to monitor a single gaseous or particle pollutant. LCSs 

and reference sensors employ different techniques for air pollutant measurement, which 

include optical particle counters, light scattering, metal oxide semiconductor sensors, 

electrochemical sensors, nondispersive infrared sensors, ultraviolet fluorescence, 

chemiluminescence, infrared photometry and photo-ionisation detection sensors. For more 

detail, see [27,28]. The LCSs used in this project were either Envirowatch E-MOTEs [29] or 

AQMesh pods [30]. The Envirowatch E-MOTEs are deployed in a local mesh in a cluster, 

providing data via ZigBee, within a certain area for high-resolution monitoring, no more than 

100 m from each other, with a gateway providing an uplink capability. AQMesh sensors are 

independent and can be deployed at both high and low spatial resolutions. Both Envirowatch 

E-MOTEs and AQMesh pods are electrochemical sensors, whereas the sensors used by 

DEFRA and SCC are reference sensors which use chemiluminescent analysers for NO2 and an 

ultraviolet (UV) absorption analyser for O3 measurements. The reference sensors are more 

reliable and accurate than the electrochemical sensors. The lowest detection limit for reference 

sensors and electrochemical sensor is ˂ 2 µg/m3. Electrochemical sensors are smaller and 

cheaper to purchase and maintain. Envirowatch E-MOTEs in a cluster communicate with a 

gateway by means of the Zigbee protocol within a specific area for high-resolution monitoring. 

The use of this protocol allows the individual units to communicate with each other and pass 

data from sensors that are not in range or without line-of-sight of the gateway. Using GPRS, 

the gateway device communicates the collected data over an internet connection to a cloud 

server operated by Envirowatch. Each AQMesh pod independently sends data to a cloud server 

using GPRS. For the reference sensors, the data logger is connected to the central management 

and coordination unit (CMCU) central computer, which collects the data using a GPRS mobile 

phone connection or wireless broadband. 

8.2.2. Comparing NO2 measured at different sites 

 In this study, we compared NO2 concentrations measured at different AQMSs using LCSs 

and reference sensors from August 2019 to September 2020. For inter-site comparison, density 

plots and time variation plots were used, which were developed in R programming language 

[31] using the “openair” package [32]. Density plots, also known as kernel density estimation 

(KDE) plots, showed the distribution of NO2 concentrations and are smoothed versions of 

histograms. The peaks of density plots show where values of the variables are concentrated. 

Furthermore, time variation plots were developed to show the temporal variability in NO2 

concentrations over different temporal scales; especially, they depict the diurnal, weekly and 

annual cycles of NO2 concentrations. 

8.2.3. Long-term temporal trend analysis  

Quantification of temporal trends in air pollutant concentrations serves to assess the effects 

of emission control strategies over a given period of time. In this study, the temporal trend of 
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NO2 concentrations was determined over the last 20 years (2000–2019) at the Tinsley AQMS, 

which is part of the UK AURN. This is an urban background site located at the Sheffield 

Tinsley Community Centre, approximately 200 metres east of the M1 motorway. The temporal 

trend was also determined at the Devonshire Green AQMS from 2014 to 2019, an urban 

background site, installed in Devonshire Green Park in Sheffield within a self-contained air-

conditioned unit, surrounded mainly by open land and vegetation. To calculate long-term trend 

in NO2 concentrations, here we employed the TheilSen function of the ”openair”’ package [32]. 

The TheilSen function is a non-parametric approach and uses bootstrap simulations. This 

technique estimates all the regression parameters through bootstrap resampling. The technique 

is not affected by outliers as it is based on the median (not mean) and can be applied to a non-

normal distribution. 

8.2.4. Time series model 

To carry out time series modelling in this study, NO2, NO and O3 data were used from the 

Devonshire Green AQMS in Sheffield. The site is part of the AURN network and has been 

monitoring various air pollutants, including NO2, NO, NOx and O3, since 2013. Figure 8.3 

shows the monthly average of pollutants, which exhibits a general trend of higher NO, NO2 

and NOx concentrations in winter and lower concentrations in summer. In contrast, O3 

concentrations were higher in spring and summer and lower in winter. In winter the atmosphere 

is relatively static and the atmospheric boundary layer is shallower, which is a hindrance in 

pollutant dispersions; whereas, in summer, the atmosphere is more turbulent and both 

horizontal and vertical dispersion processes are active in dispersing locally emitted pollutants. 

This is probably the main reason that the concentrations of NO, NO2 and NOx were lower in 

summer and higher in winter. On the other hand, ground level O3 is a secondary pollutant and 

is produced by the photochemical reactions of NOx and volatile organic compounds (VOCs) 

in the presence of solar radiation. In summer, high temperature and solar radiation lead to 

higher levels of O3 production than in winter, when the weather in the UK is cold, not 

conducive to O3 formation. O3 concentration was highest in May, when in addition to the 

weather conditions, O3 precursors were abundant, in contrast to June and July when the 

precursors were relatively lower [33]. 

Time series data mainly have three building blocks: seasonality, trend and residuals [34]. 

Deconstruction (decomposition) of a time series is helpful in understanding the behaviour of a 

time series. The seasonality (seasonal component) of the time series refers to the fluctuations 

in the levels of pollutants related to seasonal factors. Seasonality is always of a fixed and known 

period, normally twelve months. The trend component is the overall long-term pattern of the 

time series and indicates if a pollutant concentration is increasing or decreasing over time. The 

residual or error component of the time series is the remainder part that cannot be attributed to 

seasonality and trend components. The three components of the time series are shown below 

in Equation (8.1):  

Y = Tc + Sc + Rc (8.1) 

In Equation (8.1), a time series (Y) is divided into three components, which are the trend 

component (Tc), seasonal component (Sc) and residual or remainder component (Rc). For 

dividing the time series into three components, seasonal-trend decomposition based on loess 

(STL) was used, which was initially proposed by Cleveland et al. [35]. The process of 
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extracting these components from the time series is referred to as decomposition. The three 

components of the NO2 time series are shown in Figure 8.4. 

In this study, air pollution data were analysed using four time series models: ARIMA, 

ARIMAX, the self-exciting threshold autoregressive (SETAR) and neural network nonlinear 

autoregressive (NNNAR). For more details on these models, see [36–38]. Time series model 

development and application consist of three main steps [39]:  

- model specification;  

- model fitting (parameters estimation); and  

- model diagnostic (testing the goodness of fit of the fitted model). 

 

 

Figure 8.3 Monthly average concentrations of NO, NO2, NOx and O3 in different months of 

the year from Devonshire Green AQMS in Sheffield, 2015 - 2019. 
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Figure 8.4. Three additive components obtained from STL (Seasonal-Trend Decomposition 

based on Loess) decomposition of NO2 concentration (µg/m3) collected at Devonshire Green 

AQMS, Sheffield.  

8.2.4.1. Model specification 

Model specification means choosing appropriate values for p, d and q for a given time 

series, where p is the lag orders (i.e., the number of lagged values that NO2 is regressed on), 

referred to as the autoregressive component, d is the degree of differencing (integration) and q 

is the order of moving average. Differencing a series involves simply subtracting its current 

and previous values’ d times. Often, differencing is used to stabilize a series when the 

stationarity assumption is not met. For model specification (to specify the values of p, d and 

q), firstly, the auto-correlation function (ACF) and partial auto-correlation function (PACF) 

plots of the NO2 time series were used. The ACF plot (Figure 8.5a) displays correlation 

between a series and its lags (previous values) and helps determine the order of differencing 

(d). Furthermore, the ACF plot can help in determining the order of the MA component. An 

MA component represents the error of the model as a combination of previous error terms [39]. 

The order q determines the number of terms to be included in the model. The ACF plot of the 

NO2 series (Figure 8.5a) shows the properties of a nonstationary series, as the ACF fails to die 

out rapidly with increasing lags. All ACF values are significant (significantly greater than zero) 

and the only pattern is perhaps a linear decrease with increasing time lag. This shows that NO2 

series is nonstationary. Before a time-series model (e.g., the ARIMA model) is applied, the 

time-series must be stationarised, which means the variance, mean and auto-covariance of the 

time series need to be time invariant. The ACF plots of the NO2 series differenced once and 

twice are presented in Figure 8.5b,c, respectively. After differencing once, the pattern emerged 
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much more clearly, suggesting that the ARIMA model with difference 1 (d = 1) was probably 

a suitable model. 

 

Table 8.2. ARIMA model specification and corresponding AIC values of NO2 time series, 

where ‘p’ represents order of autoregressive, ‘d’ represents difference and ‘q’ represents MA.  

AIC p d q 

8910.88 1 1 1 

9104.28 1 2 1 

8910.53 2 1 1 

8912.42 2 1 2 

8944.8 1 0 0 

8941.53 1 0 1 

8904.29 3 1 1 

8905.83 4 1 1 

 
(a)  (b) 

  
  

(c) (d) 
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(e) 

 
 

Figure 8.5. Auto-correlation function (ACF) plot of NO2 time series (not differenced) (a), 

differenced once (b), differenced twice (c), partial ACF plot (d) and differenced once NO2 plot 

of oscillating pattern around zero with no visible strong trend (e) showing that the series is 

stationary.  

The PACF plot (Figure 8.5d) displays the correlation between a variable and its lags that 

is not explained by previous lags. PACF plots are useful when determining the order p of the 

AR component, which specifies the number of lags used in the model; for example, AR (2) or 

ARIMA (2,0,0) showed that the order of AR was 2. The PACF plot showed that an AR (1) 

model should be considered (Figure 8.5d). The plot of differenced NO2 is shown in Figure 8.5e, 

wherein the oscillating pattern around the zero shows that the series was stationary after the 

series was differenced once. This suggested that differencing of order 1 terms is sufficient and 

should be included in the model. Sometimes, if the series is not stationarised after differencing 

once, we need to difference it again. In addition to the ACF and PACF plots, we also considered 

model selection criteria based on the value of the Akaike’s information criterion (AIC). The 

time series model with a lower value for the AIC showed a better fit. Based on the AIC values 

(Table 8.2), ARIMA (1,1,1) was selected. Differencing, autoregressive and moving average 

components make up an ARIMA model. ARIMA (1,1,1) showed that the model incorporated 

differencing of degree 1 and used an AR term of first lag and an MA of order 1. Although some 

of the other models (Table 8.2) had slightly lower AIC values, the difference was not significant 

and the model was more complicated, which is against the principle of parsimony, meaning 

that the selected model should use the lowest number of parameters providing adequate 

representation of the time series. When the ARIMA (1,1,1) model was applied to the square 

root and log of the NO2 time series in contrast to observed NO2 concentrations, the AIC values 

dropped to 3230.6 and 1117.5, respectively, which are much lower than the values presented 

in Table 8.2. Therefore, log-NO2 was adopted in this study instead. 

8.2.4.2. Model fitting  

Model fitting is basically parameter estimation. This study used the maximum likelihood 

estimation approach, which produces more accurate estimation of parameters in comparison to 

least square estimation [39]. The main advantage of the maximum likelihood estimation is that 
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it uses all of the information in the data rather than just using the mean and variance of the data, 

as is the case with least square estimation [39]. Using daily NO2 concentrations (2015 to 2019), 

the dataset was divided into training (70%) and testing (30%) datasets, which were selected 

randomly. Time series linear models were fitted (trained) with the TSA-package [40] and 

forecast-package [41] in R programming language [31]. The neural network nonlinear 

autoregressive and self-exciting threshold autoregressive (SETAR) nonlinear models were 

implemented in R-package ”tsDyn” [38]. The model performance was assessed using both 

training and testing datasets. The specified models were run to estimate the model parameters. 

8.2.4.3. Model diagnostic and forecasting   

Residuals of a model are defined as the difference between the actual (observed) and 

predicted (modelled) values as shown in equation 8.2:  

residual = actual values – predicted values                (8.2) 

Residual analysis of the model was performed by graphical presentation using a plot of 

standardised residuals, a quantile–quantile (Q–Q) plot and a histogram of the residuals. For an 

adequate model, a plot of standardised residuals shows a rectangular scatter around a zero 

horizontal level with no trends, whereas a Q–Q plot and histogram of the residuals show the 

normality of the error terms.  

The model performance was assessed by comparing predicted with observed NO2 

concentrations both graphically, using time plots and scatter plots, and using several statistical 

metrics, including correlation coefficients (r), root mean square error (RMSE), factor of two 

(FAC2), mean biased error (MBE) and mean absolute error (MAE) [42,43]. The Pearson 

correlation coefficient measures the strength of the linear relationship between the measured 

and modelled concentrations. FAC2 is the fraction of predicted concentrations within a factor 

of two of the measured concentrations. RMSE, MAE and MBE provide an estimation of the 

error of the model prediction. However, RMSE and MAE do not define the direction of the 

error, as they provide absolute error, whereas MBE, in addition to the size, defines the direction 

of the error; i.e., negative MBE indicates under-prediction whereas positive MBE indicates 

over-prediction of a model.  

The fitted model was used to predicted NO2 concentrations, which were crossvalidated 

with the testing dataset. If the predicted value (forecast) is denoted by Ŷt (l), where l is the lead 

time for forecast and time t is the forecast origin, then forecasting one time-unit into the future 

(one step ahead) (Yt (1)) can be achieved as in Equation (8.3) [39]:  

 

Ŷt (1) = µ + ϕ(Yt - µ)                   (8.3)  

 

Where µ is the intercept and φ is the estimated parameter of the AR component. Equation 

(8.3) shows that, to forecast the next step, a proportion φ of the current deviation from the 

process mean is added to the process mean. To consider a general lead time l, we replace time 

t by t + l in Equation (8.3) and take the conditional expectation of both sides, which produces 

Equation (8.4) [39]: 

 

Ŷt (l) = µ + ϕ [Ŷt (l - 1) - µ] for l > 1       (8.4) 
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Equation (8.4) is recursive in the lead time l and shows how the forecast for any lead time 

l can be built up from the forecast for a shorter lead time l by starting with the initial forecast 

as given by Equation (8.3). The forecast Ŷt (2) is then obtained from Ŷt (2) = µ + φ [Ŷt (1) − 

µ], then Ŷt (3) from Ŷt (2) and so on. Equation (8.4) is also known as the ”difference equation 

form” of the forecast [39]. An explicit expression for the forecast in terms of the observed 

history of the time series for Equation (8.4) can also be given in the form of Equation (8.5) 

[39].  

 

Ŷt = µ + φ l (Yt − µ) (8.5) 

 

Equation (8.5) shows that the current deviation from the mean is discounted by a factor φl 

, whose magnitude decreases with increasing lead time l. The discounted deviation is then 

added to the process mean to produce the lead l forecast. It should be noted that, in forecast, if 

an exogenous variable is used, then the number of steps ahead are ignored and the number of 

forecast periods is set to the number of rows of exogenous variables in the new data, which 

here is equal to the number of rows of the testing dataset. 

 

8.3. Results and discussion  

8.3.1. Comparing NO2 measured at different sites 

8.3.1.1. Density plots 

NO2 concentrations (µg/m3) measured by different grades of sensors at different 

monitoring stations in Sheffield were compared employing densities plots. Density plots offer 

an easy way to compare the distribution of NO2 concentrations measured at different 

monitoring stations. Figure 8.6 shows NO2 concentrations measured by Envirowatch E-

MOTEs. The performance of Envirowatch E-MOTEs was assessed by Munir et al. [44] by 

comparing their concentrations with a nearby reference sensor in Sheffield. The sensors were 

divided into four sub-groups based on the mean NO2 concentrations. In first group of sensors 

(Figure 8.6a), the range of NO2 concentrations was 0 to 50 µg/m3 and the highest density 

(mode) occurred at 10–15 µg/m3. This represents the group of sensors with the lowest 

concentrations, which are deployed outside the city centre at the University of Sheffield 

campus. The second group (Figure 8.6b) had mean values of 31–40 µg/m3 and the highest 

density was recorded at 20–25 µg/m3. Most of the sensors in this group had a range of 0 to 60 

µg/m3, however some sensors recorded NO2 concentrations as high as 120 µg/m3. The third 

group (Figure 8.6c) had mean concentrations of 41 to 50 µg/m3 and the concentrations ranged 

from 0 to 140 µg/m3. These sensors recorded mean values over 40 µg/m3 , exceeding annual 

air quality standard. The fourth group (Figure 8.6d) recorded the highest NO2 concentrations, 

where mean concentration was greater than 100 (NO2 > 100 µg/m3). The highest density was 

shown at 70 to 80 µg/m3. In total, 11 sensors violated AQ standards (NO2 > 40 µg/m3). Three 

sites with mean NO2 levels higher than 100 (µg/m3) were: (i) the Taxi Rank at the Sheffield 

Railway Station (NO2_904, 136.81 µg/m3), (ii) Arundel Gate opposite to the Genting Club 

(NO2_732, 115.56 µg/m3) and (iii) the pedestrian crossing at Sheaf Street/Sheaf Square 

(NO2_903, 107.17 µg/m3). The reason for recording higher NO2 concentrations is that these 
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sensors are installed next to busy locations in terms of road traffic flows and engine idling 

while stationary. The taxi stand (E-MOTE 904) is a good example of how engine idling can 

result in worse air pollution in urban areas. E-MOTE 903 is installed next to a pedestrian 

crossing on a busy road. People coming out of the train station use the pedestrian crossing 

going towards the high street, Sheffield Hallam University, and other parts of the city. The 

traffic light turns red and green regularly, which cause congestions. When the lights are red, 

road traffics stop but vehicle engines keep running. When traffic lights turn green, all vehicles 

try to accelerate quickly. Therefore, idling of engine and sudden acceleration emit extra 

pollution. E-MOTE 732 is installed in a typical street canyon, where the road has tall buildings 

on both sides, hindering the dispersion of the pollutants emitted by the road traffics, causing 

the pollution levels to go up. The other sites in the city centre where air quality standards were 

violated were Paternoster Rows, Harmer Lane near Sheaf Street, Harmer Lane near the bus 

station, Arundel Gate near Surrey Street, and Howard Street. Two E-MOTEs at the University 

campus that exceeded air quality limits were Regent Court and Broad Lane (near St. George’s 

Terrace).  

The distributions of NO2 concentrations measured by different AQMesh pods are 

compared using density plots in Figure 8.7. Most of the AQMesh pods were deployed in the 

outskirts of the city (Figure 8.2). The distribution is mostly skewed right with heavy right tails. 

Only three AQMesh pods exceeded AQ standards, which were NO2_206 (Abbeydale Rd, 43.67 

µg/m3), NO2_2003 (Brightside Lane, 41.34 µg/m3) and NO2_2005 (Savile Street, 46.91 

µg/m3). The measurements seem realistic as these sensors are deployed on very busy roadsides. 
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Figure 8.6. Different density plots of hourly NO2 concentrations (µg/m3) measured by 

Envirowatch E-MOTEs, August 2019–September 2020 in Sheffield.  

Density plots of NO2 concentrations measured by AURN sites and SSC sites are shown in 

Figure 8.8a and 8.8b, respectively. The distributions are skewed right. AURN sites had mean 

NO2 concentrations of 23, 19 and 32 µg/m3 at the Sheffield Tinsley, Devonshire Green and 

Barnsley road AQMSs, respectively. The SSC sites Firvale, Tinsley, Lowfield, Wicker and 

King Ecgbert had mean concentrations of 25, 24, 25, 26 and 8 µg/m3, respectively. The 

concentrations measured at both AURN and SCC sites were well below the AQ standards. The 

lowest concentrations were recorded at the King Ecgbert site, which is located in a background 

location well outside the city centre. In this section, we considered the distribution and annual 

mean of NO2 concentrations measured at different AQMSs of different grades. Density plots 

are a useful tool for understanding the distribution of NO2 concentrations and comparing the 

distributions of different monitoring sites. However, density plots provide no information on 

the temporal variability of NO2 concentrations, which are analysed in the coming section.   
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Figure 8.7. Density plots of hourly NO2 concentrations (µg/m3 ) measured by AQMesh pods 

from August 2019 to September 2020 in Sheffield.  

 

 

 

 



186 

 

(a) 

 

(b) 

 

Figure 8.8. Density plots of NO2 concentrations (µg/m3) measured by: (a) AURN sites-

Barnsley road (brn), Tinsley (tin) and Devonshire Green (dg); and (b) SCC sites-Firvale (fv), 

King Ecgbert (ke), Lowfield (lf), Tinsley (tins) and Wicker (wic), from August 2019–

September 2020.  
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8.3.1.2. Time variation plots 

It is important to know how NO2 concentrations vary at different time scales. Time 

variation plots show variations in NO2 concentrations on diurnal, weekly and annual cycles. 

Such information is useful in understanding the emission sources of air pollutants. In this 

section, temporal variabilities of NO2 concentrations are analysed by employing time variation 

plots, using data from AURN, SSC, Envirowatch E-MOTEs and AQMesh pods. NO2 

concentrations measured by AURN and SCC sites are analysed first to set a benchmark of 

temporal variation for the LCS. Barnsley is a roadside (urban traffic) AQMS, whereas Tinsley 

and Devonshire Green are urban background sites. Therefore, NO2 concentrations measured at 

Barnsley site (NO2_brn) were higher than at the other two sites (Figure 8.9). Figure 8.9 shows 

that, on diurnal cycles, NO2 concentrations were higher in the busy morning hours (07:00–

09:00 h) and busy afternoon hours (17:00–19:00 h) and lower at night and midday. Weekly 

cycles showed that NO2 concentrations were significantly lower on weekends (Sunday being 

the lowest) than on weekdays. Annual cycles of NO2 showed higher concentrations in colder 

months (e.g., January, February, November and December) than the warmer months (e.g., June, 

July and August). All three AURN sites demonstrated the same temporal trends on diurnal, 

weekly and annual cycles. Diurnal and weekly cycles of NO2 concentrations are controlled by 

road traffic flow, whereas annual cycles in addition to emissions are controlled by 

meteorological parameters. In winter, the temperature is low and the atmosphere is stagnant, 

which hinders the dispersion of air pollutants emitted locally. In contrast, in summer the 

atmosphere is more turbulent, encouraging both vertical and horizontal dispersion of 

pollutants.Figure 8.9 shows temporal variability of NO2 concentrations using data from five 

SSC sites: NO2_fv (Firvale), NO2_ke (King Ecgbert), NO2_lf (Lowfield), NO2_tins (Tinsley) 

and NO2_wic (Wicker). SCC AQMS demonstrated a temporal trend similar to AURN sites. In 

addition to some minor differences between different sites, NO2 concentrations were 

significantly lower at the King Ecgbert site, which is a background site located outside the city 

centre in a quite location. 

Figure 8.10 shows the temporal variability of NO2 concentrations using data from five SSC 

sites: NO2_fv (Firvale), NO2_ke (King Ecgbert), NO2_lf (Lowfield), NO2_tins (Tinsley) and 

NO2_wic (Wicker). SCC AQMSs demonstrated a temporal trend similar to AURN sites. In 

addition to some minor differences between different sites, NO2 concentrations were 

significantly lower at the King Ecgbert site, which is a background site located outside the city 

in a quite location.   
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Figure 8.9. Time variation plots of NO2 concentrations (µg/m3) in Sheffield at the three 

AURN AQMS: Barnsley, Tinsley and Devonshire Green. 

 

Figure 8.10. Time variation plots of NO2 concentrations (µg/m3) measured by SCC sites: 

Firvale, King Ecgbert, Lowfield, Tinsley and Wicker, from August 2019 – September 2020. 
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To demonstrate temporal variability in NO2 concentrations (Figure 8.11) measured by 

Envirowatch E-MOTEs, four E-MOTEs were selected: NO2_904 (Railway Station), NO2_902 

(Harmer Lane/Sheaf Street), NO2_731 (Howard Street) and NO2_738 (Brook Hill, near Firth 

Court). These four sites were selected because NO2_904 presented an unusual time profile, 

whereas NO2_902, NO2_738 and NO2_731 showed a typical time variations similar to many 

other sensors. The diurnal, weekly and annual cycles followed almost similar pattern as those 

shown by AURN and SSC sites. However, there were some minor differences between various 

E-MOTEs installed at different locations within the city. Also, differences in winter vs. summer 

and weekend vs. weekday concentrations were much prominent in AURN sites than in E-

MOTEs. NO2_904 demonstrated higher concentrations at all times, even at nights and 

weekend, as the taxi stand next to the train station remains busy at all times waiting for train 

passengers (probably with vehicles idle while waiting).  

Figure 8.12 shows the diurnal, weekly and annual cycles of NO2 concentrations measured 

by four AQMesh pods. The four AQMesh sites were: NO2_1999 (Malin Bridge School), 

NO2_2001 (London Rd), NO2_2003 (Brightside Lane) and NO2_204 (Hunter’s Bar School). 

Here the diurnal and weekly cycles showed similar trends; however, the annual cycles were 

different from each other and from the ones shown by AURN and SSC AQMSs. The NO2_2001 

annual cycle was particularly different as it showed higher concentrations in summer months 

than in winter months. However, weekly cycles presented normal trends, as expected and 

shown by AURN sites. 

 

Figure 8.11. Time variation plots of NO2 concentrations (µg/m3) measured by Envirowatch 

E-MOTEs. 
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Figure 8.12. Time variation plots of NO2 concentrations (µg/m3) measured by AQMesh pods.  

8.3.2. Long term trends in NO2 concentrations  

The temporal trend in NO2 concentrations was determined using the TheilSen function for 

the last 20 years (2000–2019) at Tinsley and for the last six years (2014–2019) at the 

Devonshire Green AQMS. Both of these sites are part of the AURN. Trends were expressed in 

µgm-3/year. Both non-adjusted (non-deseasonalised) and adjusted (deseasonalised) trends were 

calculated. Sheffield Tinsley demonstrated negative trends during the study period. Both 

adjusted and non-adjusted trends were negative and highly significant. The non-adjusted trend 

was −0.94 (−1.12, −0.78) µgm-3/year, whereas the adjusted trend was −0.95 (−1.04, −0.86) 

µgm-3/year (Figure 8.13). The temporal trend at the Devonshire Green site was also negative 

and highly significant. The non-adjusted trend was −1.21 (−1.91, −0.41) µgm−3/year and the 

adjusted trend was −1.26 (−1.57, −0.83) µgm−3/year (Figure 8.14).   
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Figure 8.13. Long-term temporal trend for NO2 concentrations (µg/m3) (2000–2019) at the 

Sheffield Tinsley site, one of the AURN sites. *** shows that the trend is highly significant. 



192 

 

 

 

Figure 8.14. Long-term temporal trend for NO2 concentrations (µg/m3) (2014–2019) at the 

Sheffield Devonshire Green site. *** shows that the trend is highly significant. 

 

At both AQMSs, NO2 levels decreased during the study period. The reduction in air 

pollution levels could have been caused by reductions in pollutant emissions or changes in 

climatic conditions. However, when the trends were adjusted for the effect of changes in 
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climatic conditions, the trends were still negative and slightly greater than the non-adjusted 

trends (Figures 8.13 and 8.14). This probably proves that reduction in NO2 levels were due to 

reductions in emissions, showing that, despite the fact that the number of vehicles on roads has 

gone up, the amount of exhaust emissions has decreased. The reduction in exhaust emissions 

was probably caused by the stringent emission policies of the UK government. Although 

generally pollution levels have decreased, the reduction is not uniform spatially and temporally. 

For example, the trend at the Tinsley site was lower (−0.94 µgm−3/year) than at the Devonshire 

Green site (−1.21 µgm−3/year). However, it should be noted that at Devonshire Green the trend 

was determined for a shorter period. When a shorter period was also considered for Tinsley, 

i.e., from 2014 to 2019, the trend was −1.65 µgm−3/year. This probably shows that reductions 

in pollutant concentrations have been greater more recently. However, the reductions are not 

enough and NO2 levels still exceed air quality standards in several parts of the city. Therefore, 

more actions are required to further improve air quality in Sheffield to comply with air quality 

guidelines. 

8.3.3. Time series modelling  

8.3.3.1. Comparison of linear and nonlinear time series  

The performances of two univariate nonlinear persistent models, NNNAR and SETAR, 

were compared to that of the linear ARIMA model. Several statistical metrics were calculated 

to assess the performances of these models (Table 8.3). Comparing their performances in Table 

8.3, it can be observed that the ARIMA model performed better than the two nonlinear models. 

Correlation coefficients (r-values) for ARIMA, NNNAR and SETAR were 0.59, 0.45 and 0.44 

and RMSE values were 8.61, 10.45 and 10.56, respectively, which show that there is probably 

no need for the use of a more complicated nonlinear model for air quality prediction, as ARIMA 

in this particular example performed better than the nonlinear counterparts. The nonlinear 

models are not discussed further. For more details on SETAR and NNNAR, readers are referred 

to Fırat [36] and Waheeb et al. [37].  

Table 8.3. Comparing the performances of different models, including both linear and 

nonlinear models, using the testing dataset (cross validation). MBE, MAE and RMSE are 

expressed in µg/m3. r is the value of correlation coefficient. 

Model FAC2 MBE MAE RMSE r 

SETAR 0.90 -0.13 8.28 10.56 0.44 

NNET 0.89 -0.29 8.12 10.45 0.45 

ARIMA 0.91 -0.26 6.46 8.61 0.59 

 

Here, we first discuss the univariate ARIMA model and then compare its performance with 

ARIMAX. The estimated parameters of the fitted ARIMA (1,1,1) model are shown in Table 

8.4. The estimated parameters were used to predict NO2 concentrations. A comparison of 

predicted and observed NO2 concentrations for the testing (held-out) dataset is shown in Figure 

8.15. As expected, the ARIMA model performed better when model performance was assessed 

based on the training dataset with r-value 0.68, MBE 0.07 and FAC2 0.93 than when the model 

performance was assessed using testing dataset having r-value 0.59, MBE −0.26 and FAC2 

0.91. 
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Table 8.4. Estimating the parameters of ARIMA (1,1,1) model for NO2 concentrations 

training dataset 

ARIMA model applied to log_NO2 with p, d and q order of 1, 1, 1 

Coefficients AR1 (ϕ) MA1(θ) 

 0.5362   -0.9511 

S.E. 0.0296    0.0117 

Sigma square (𝞂2) estimated as 0.148:  log likelihood = -556.75,  AIC = 1117.5 

    

 

 

Figure 8.15. Predicted vs. observed daily average NO2 concentrations (µg/m3) using the 

ARIMA (1,1,1) model. Model performance was assessed against held-out testing data, which 
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was not used for model fitting. No exogenous variable was used in the model. The solid line 

represents the 1:1 relationship, whereas the dashed lines represent the 1:0.5 and 1:2 

relationships, between observed and predicted concentrations. The dashed lines show the points 

that are within a factor of two (FAC2). 

Residual analysis was performed for the model. A plot of standardised residuals showed a 

rectangular scatter around a zero horizontal level with no trends, which showed the adequacy 

of the model. A quantile–quantile plot of the residuals showed that the data points followed the 

straight line closely, which led us to accept the normality of the error term. This was also 

confirmed by the histogram of the residuals, which appeared closed to normal (Figure not 

shown for brevity). 

8.3.3.2. Outputs of ARIMAX model  

In addition to the autoregressive, moving average and differencing components used by 

univariate ARIMA, the more advanced ARIMAX model incorporates external variables, also 

known as exogenous regressors, into time series modelling. The exogenous variables 

incorporated into the ARIMAX model should be strongly correlated with the modelled 

variable. Here, in the first instance we used a single exogenous variable (NO concentrations) 

for modelling NO2 concentrations and assessed how it improved the model performance 

compared to the ARIMA model developed in the previous section, which did not use any 

external variable. In the next step, NO and O3 were used as exogenous variables and their effect 

was assessed on the model goodness of fit. Ideally, meteorological parameters such as 

temperature, relative humidity and wind speed should have been used in the model as well. 

However, due to data availability problems, they were not used as regressors in the model. 

The estimated parameters of the ARIMAX (1,1,1) model are shown in Table 8.5. Various 

statistical metrics calculated for the fitted model and cross validation were significantly 

improved as compared to ARIMA model. The values of r, RMSE, MBE, MAE and FAC2 were 

0.85, 7.11, 0.07, 6.53 and 0.96, respectively, for the fitted model. However, when the model 

performance was assessed using the testing dataset the values of r, RMSE, MBE, MAE and 

FAC2 were 0.70, 10.15, 7.81, − 6.84 and 0.88, respectively (Table 8.6). For further analysis, 

model diagnostics were carried out by analysing the residuals of the model. The residual plots, 

Q–Q plots and histogram of error terms showed that the residuals were normally distributed 

and that the model performance was adequate (Figures are not shown for brevity). 

 

Table 8.5. Estimating the parameters of the ARIMAX (1,1,1) model for the NO2 concentrations 

(µg/m3) training dataset, with NO as exogenous variable. 

 

ARIMAX model applied to log_NO2 with p, d and q order of 1, 1, 1 and xreg as 

NO 

Coefficients AR1 (ϕ) MA1(θ) XREG 

 0.2533   -0.9689 0.4133 

Sigma square (𝞂2) estimated as 0.056:  log likelihood = 20.82,  AIC =-31.64 
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Table 8.6. Model statistics showing the value of several metrics to assess the model 

performance by comparing observed and predicted NO2 concentrations (µg/m3) for 

testing and training data using NO as exogenous variables. MBE, MAE and RMSE 

have the unit of µg/m3.  

Statistics FAC2 MBE MAE RMSE r 

Training data 0.96 0.07 5.53 7.11 0.85 

Testing data 0.88 -6.84 7.81 10.15 0.70 

 

Finally, we added two exogenous regressors (concentrations of NO and O3) to ARIMAX 

model for predicting NO2 concentrations. The estimated parameters of the ARIMAX model 

along with AIC value are given in Table 8.7. The values of different statistical metrics 

calculated for assessing the model performance are provided in Table 8.8, where r-values were 

0.90 and 0.84 and RMSE values were 11.75 and 9.90 for training and testing dataset, 

respectively. Graphical presentation showed strong association between predicted and 

observed concentrations (Figure not shown for brevity). This showed that the exogenous 

variables helped improve the model performance significantly compared to univariate 

persistent models.  

 

Table 8.7. Estimating the parameters of ARIMAX (1,1,1) model for NO2 

concentrations (µg/m3) training dataset with NO and O3 as exogenous variables. 

ARIMAX model applied to log_NO2 with p, d and q order of 1, 1, 1 and 

xreg as NO and O3 

Coefficients AR1 (ϕ) MA1(θ) 
XREG2 

(NOx) 
XREG3 (O3) 

 0.21 -0.985 0.839 -0.108 

Sigma square (𝞂2) estimated as 0.014:  log likelihood = 866.86,  AIC =-

1721.73 

Table 8.8. Statistical metrics assessing the model performance by comparing observed 

and predicted concentrations for both training and testing dataset using NO and O3 as 

exogenous variables. . MBE, MAE and RMSE have the unit of µg/m3. 

Statistics FAC2 MBE MAE RMSE r 

Training data 0.65 -10.25 10.45 11.75 0.90 

Testing data 0.73 -7.94 9.34 9.90 0.84 

 

The above analysis showed that traditional time series persistent models, e.g., ARMA or 

ARIMA are useful tools for air pollution analysis and prediction, however they only depend 

on the behaviour of the past data without taking into account the effect of other pollutants and 

meteorological parameters that interact with the modelled pollutant. Therefore, these 

approaches fail to predict future levels accurately. The more advanced versions of these models 

like ARIMAX are able to analyse the effect of environmental factors and other pollutants and 
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can result in better prediction by reducing the model error and strengthening correlation 

between modelled and observed concentrations.      

 

The association of NO2 concentration with NO and O3 concentrations is shown in the form 

of scatter plot (Figure 8.16). Chemistry of NO2 with O3 and NO is shown in equation 8.6 and 

8.7.  

 

NO + O3  NO2 +O2                (8.6) 

NO2 + hν (+O2)  NO + O3       (8.7) 

 

Equation 6 and 7 define the chemistry of NO, NO2 and O3. In equation 6 one molecule of 

O3 is consumed, and one molecule of NO2 is produced. In contrast, in equation 8.7 one 

molecule of NO2 is consumed and one molecule of O3 is produced, so no net chemistry occurs. 

NO2 is positively correlated with NO (r = +0.75) and NOx (r = +0.89) and negatively correlated 

with O3 (r = -0.68). The negative association between NO2 and O3 is well known (e.g., Jenkin, 

2004; Clapp and Jenkin, 2001; Munir, 2012). It shows that NO2 concentration is strongly 

correlated with O3 and other NOx species. Therefore, adding O3 and NO as exogenous 

regressors in the model can explain a significant proportion of NO2 and improves the model 

performance.  

Catalano et al. [47] developed an ARIMAX model and compared its performance to 

Artificial Neural Network (ANN). They modelled NO2 concentrations at Marylebone road 

London using several exogenous variables, which were traffic volume, wind speed, wind 

direction, temperature and lagged NO2 concentrations. According to Catalano et al. [47] 

ARIMAX model performed better than ANN. The mean ratio of the predicted to the measured 

concentrations was 0.89 for ARIAMX and 0.86 for ANN. Both models had the same 

correlation coefficient 0.91, however, mean absolute percentage error (MAPE) values were 

18.62 and 16.53 for ARIMAX and ANN, respectively. This shows that the prediction of 

ARIMAX model is comparable with neural network and can be used for air pollution forecast 

in urban areas to provide timely warning of high air pollution levels to the public. 
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Figure 8.16. Scatter plot showing the association of NO2 with NO, NOx and O3 concentrations 

(µg/m3 ) at the Devonshire Green AQMS in Sheffield. 

 

8.4. Conclusion 

We have a network of AQMSs in Sheffield consisting of low-cost and reference sensors. 

Here, NO2 concentrations measured by Envirowatch E-MOTEs, AQMesh pods and AURN and 

SCC AQMSs were analysed to characterise the temporal variability of NO2 concentrations. 

Density plots are a useful tool for comparing and analysing the distributions of NO2 

concentrations measured by various sensors. Time variation plots were employed to 

characterise and compare the temporal variability of NO2 concentrations measured at different 

monitoring sites. Time variation plots visualise how NO2 concentrations vary during different 

time periods (e.g., diurnal, weekly and annual cycles) and help us understand their emission 

sources. Long-term data for NO2 concentrations showed negative trends at both the Sheffield 

Tinsley and Devonshire Green sites, indicating that pollutant emissions decreased because of 

stringent emission policies. However, the reductions in pollution varied both spatially and 

temporally. Moreover, further smart interventions are required to cut emissions and improve 

air quality to comply with air quality guidelines.  

NO2 concentrations were modelled from the Devonshire Green AQMS in Sheffield using 

univariate linear and nonlinear and multivariate time series models with exogenous variables. 

The addition of exogenous variables to the ARIMAX model significantly improved the model 

performance. Model specification, fitting and diagnostics were discussed. Model performance 

was assessed by calculating several statistical metrics, including r, RMSE, MBE, FAC2 and 

MAE. The ARIMA model showed better performance than nonlinear persistent models, 
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showing that linear models were not only easy to apply and interpret but also showed better 

performance than the more complicated models such as SETAR and NNNAR. The best model 

fit was achieved when NO2 concentration was modelled using ARIMAX with two exogenous 

variables (NO and O3). These variables were strongly correlated with NO2. NO was positively 

correlated, whereas O3 was negatively correlated with NO2.  

Time series models with exogenous regressors can be successfully used to predict future 

pollution concentrations, providing early warning for the public so that timely precautionary 

measures can be adopted. The main weakness of the study was that we did not provide full 

details of the low-cost sensors calibration. Ideally, several of these low-cost sensors should 

have been collocated with reference sensors for detailed comparison and calibration. However, 

due to several practical problems (e.g., planning permission), this was not possible and the only 

calibration carried out was described in Munir et al. [44]. They compared the measurements of 

Envirowatch E-MOTEs with the measurements of an AURN site (Sheffield Devonshire 

Green). Future work will include installation of low-cost sensors, collocated with reference 

sensors for over a year, and a comparison of their measurements during different time periods. 

This study provides a detailed methodology for time series modelling, which can be used as an 

early warning tool for air pollution episodes, and compares different linear and nonlinear 

modelling approaches.  
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK   
 

9.1. Introduction   

Poor air quality (AQ) is a growing environmental issue especially in large urban areas causing 

various negative impacts on our natural environment, buildings, vegetation and human health. 

Air pollutant levels have declined in the UK for the last couple of decades, however the 

reductions are not sufficient to comply with air quality guidelines and therefore air pollutant 

levels especially NO2 and PM10 still exceed AQ standards in large urban areas in the UK. In 

the UK Air Quality Management Areas have been declared by many local authorities due to 

the high levels of traffic related air pollutants, for example NO2. Therefore, to reduce air 

pollution levels in urban areas to comply with AQ guidelines, further actions are required 

including real time AQ monitoring, modelling and introducing different interventions for 

cutting emissions. This project focused on air quality monitoring and modelling to analyse 

spatial and temporal variability of NO2 concentrations in urban areas as a case study in 

Sheffield.  

Firstly, a detailed literature review was conducted to understand the state of the art of air quality 

monitoring sensors, spatial and temporal modelling of air quality in urban areas, and data 

fusions approaches. In light of the literature review, research gaps were identified and 

objectives of the project were defined. The whole idea of the project revolves around the types 

of low-cost sensors, calibration of low-cost sensors, structuring a dense multipurpose air 

quality monitoring network, using data from the air quality monitoring network develop and 

validate models for studying the spatial variability of NO2 in Sheffield. Furthermore, data 

fusion techniques are employed to integrate model estimations with measured NO2 

concentrations to improve data quality and produce high-resolution NO2 maps. Finally using 

data from both low-cost and reference sensors temporal variability of NO2 is analysed.  

This PhD thesis is composed in the alternative format ‘publication format thesis’ incorporating 

a collection of papers that are already published in peer review journals as open access. 

Therefore, it is important to clearly present the structure of the thesis first and show how 

different chapters of the thesis are linked together. 

9.2. Alternative format thesis 

This PhD thesis is written in publication format, referred to as ‘alternative format thesis’, in 

which each published paper makes a separate chapter. The papers presented in this thesis are 

already published and are available online. However, in addition to the published papers, two 

chapters are added in the beginning of the thesis as an introduction and one chapter at the end 

to summarise the thesis. Chapter 1 introduces the motivation of the project, defines the main 

aims and objectives and shows how the objectives are addressed. Chapter 2 consists a detailed 

literature review to understand state of the art of the air quality monitoring, modelling and data 

fusion approaches. Chapters 3, 4, 5, 6, 7, and 8 are made of the published papers. Chapter 9 

(this chapter) summarises the whole thesis and describes how the objectives are addressed in 

this thesis. Table 9.1   summarises how the research gaps identified in literature review are 

addressed in this thesis.   
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Table 9.1. Showing how different research gaps identified in the literature review have been 

addressed in the thesis.  

Research gap How are the research gaps addressed? 

Literature review demonstrated 

that most of the purpose-

designed air quality networks 

have been structured on ado 

basis, without using a formal 

approach for selecting sites for 

the sensors deployment. In 

addition, the criteria of 

structuring the network are 

currently defined by single 

questions rather than attempting 

to create a network to serve 

multiple functions. There is a 

need for developing a formal 

approach based on multi-criteria 

for selecting the sites for the 

sensors installation.  

In this thesis, a formal approached is proposed for 

selecting the sites for sensors installation. In this thesis, 

we proposed a methodology supported by numerical, 

conceptual and GIS frameworks for structuring AQMN 

using social, environmental and economic indicators as 

a case study in Sheffield. The main factors used for the 

selection of air quality monitoring stations were 

population-weighted pollution concentration (PWPC) 

and weighted spatial variability (WSV) incorporating 

population density (social indicator), pollution levels and 

spatial variability of air pollutant concentrations 

(environmental indicator). Total number of sensors was 

decided on the basis of budget (economic indicator), 

whereas the number of sensors deployed in each output 

area was proportional to weighted spatial variability.   

Low-cost sensors are a useful 

tool for air quality monitoring. 

However, they require outfield 

calibration. Furthermore, it was 

found that previously most of the 

sensor calibration studies 

whether in the laboratories or 

outdoor fields were carried out 

for a short period. Therefore, 

further research was required to 

compare the performance of low-

cost sensors to each other and to 

reference sensor in outdoor fields 

for a longer period of time at least 

for a year. 

In this thesis, ten low-cost sensors known as 

Envirowatch E-MOTEs were deployed for a year for 

monitoring several air pollutants and meteorological 

parameters. The air quality measurements of these 

sensors were compared to each other and to a reference 

sensor installed nearby. The low-cost sensors were able 

to successfully capture the temporal variability such as 

diurnal, weekly and annual cycles in air pollutant 

concentrations and demonstrated significant similarity 

with reference instruments. However, NO2 and CO 

concentrations measured by low-cost sensors showed 

stronger positive correlation with each other than NO 

concentrations. To further improve the quality of 

measurements made by low-cost sensors, several 

calibrations models were employed, including both 

linear (multiple linear regression) and nonlinear 

(generalised additive) models were developed to 

calibrate the E-MOTE data and reproduce NO and NO2 

concentrations measured by the reference instruments. 

The nonlinear model demonstrated significantly better 

performance than linear model by capturing the 

nonlinear association between the response and 

explanatory variables. The best model developed for 

reproducing NO2 concentrations returned values of 3.91 
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and 0.81 for root mean squared error (RMSE) and 

coefficient of determination, respectively.  

Literature review revealed that 

previously several approaches 

have been employed for 

modelling the spatial variability 

of air pollutants in urban area. 

However, little was done on 

comparing different modelling 

approaches for analysing the 

spatial variability of pollutants in 

urban areas.  

In this PhD thesis, we employed two approaches to 

model NO2 concentrations in Sheffield and compared the 

models performance. The modelling approaches were 

Airviro dispersion modelling system and Land-Use 

Regression (LUR) model. The performance of these 

models were compared for predicting NO2 

concentrations. Several LUR models were developed 

using different modelling techniques and different 

datasets. The Generalised Additive Model (GAM) that 

was trained and validated by using data from NO2 

diffusion tubes showed better performance than the other 

LUR counterparts using linear regression. The GAM-

LUR model also outperformed the Airviro model. 

Correlation coefficient and RMSE values were 0.70 and 

8.69 for the GAM-LUR model, and 0.48 and 44.01 for 

the Airviro model, respectively. Comparison of the two 

models was not possible for PM10, as no LUR model was 

developed for PM10 due to the lack of measured PM10 

concentrations to train the LUR model. Therefore, it is 

concluded that GAM-LUR model performed better at 

urban scale and should be preferred over commercially 

available Airviro dispersion modelling system for 

modelling NO2 concentrations in urban areas.  

Literature review revealed that 

the application of data fusion 

techniques improved the quality 

of data; however, little is done to 

demonstrate how these 

techniques are helpful in 

improving the quality of 

estimated air quality data 

predicted by spatial modelling in 

urban areas.  

To show how data fusion techniques can improve the 

quality of air quality estimated by spatial modelling 

techniques, in this thesis firstly  three modelling 

approaches were used to produce maps of NO2 

concentrations in Sheffield. The techniques were 

geostatistical kriging interpolation, Airviro dispersion 

modelling, and LUR based on the generalised additive 

model. Measured NO2 concentrations were fused with 

the estimated concentrations using universal kriging, 

which is an advanced kriging technique that is employed 

for data having more than one correlated variable. Six 

sets of measured and estimated NO2 data were fused: (i) 

Fusion of Airviro estimations with LCS measurements; 

(ii) Fusion of Airviro estimations with diffusion tube 

measurements; (iii) Fusion of Airviro estimations with 

measurements of both LCS and diffusion tubes; (iv) 

Fusion of LUR estimations with LCS measurements; (v) 

Fusion of LUR estimations with diffusion tubes 

measurements; and (vi) Fusion of LUR measurements 

with both LCS and diffusion tubes measurements. Fused 

NO2 were compared with measured concentrations.  

Maps produced by the fusion of LCS measurements and 

LUR estimations produced better results, with an r-value 
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of 0.96, followed by the fusion of Airviro estimations 

with LCS measurements, with an r-value of 0.88, when 

compared to reference sensors. Fused maps developed 

by the fusion techniques produced better spatial 

coverage and better similarity with measured 

concentrations than the estimations of ordinary kriging 

interpolation, Airviro and LUR models. Therefore, the 

data fusion techniques were able to improve the air 

quality data quality and produced high-resolution maps. 

How the concentrations of NO2 

measured by low-cost sensors 

vary on different temporal scales 

in comparison to reference 

sensors in urban areas; and what 

is the best time series model for 

modelling NO2 concentrations.   

The diurnal, weekly and annual cycles of low-cost 

sensors, especially Envirowatch E-MOTEs followed 

almost similar pattern as those shown by the reference 

sensors. However, there were some minor differences 

between various low-cost sensors installed at different 

locations within the city. In addition, differences in 

winter vs. summer and weekend vs. weekday 

concentrations were much prominent in reference 

sensors than in low-cost sensors. The annual cycles of 

NO2 measured by AQMesh were different from each 

other and from the ones shown by the reference sensors.  

NO2 concentrations were analysed employing univariate 

linear and nonlinear time series models and their 

performance was compared with a more advanced time 

series model using two exogenous variables (NO and O3 

). For this purpose, time series data of NO, O3 and NO2 

were obtained from a reference site in Sheffield, which 

are more accurate than the measurements from LCS and, 

therefore, more suitable for training and testing the 

model. Interesting, the linear auto-regressive integrated 

moving average (ARIMA) performed better than the 

nonlinear counterpart did; however, its performance in 

predicting NO2 concentration was inferior to ARIMA 

with exogenous variables (ARIMAX). Using cross-

validation ARIMAX demonstrated strong association 

with the measured concentrations, with a correlation 

coefficient of 0.84 and RMSE of 9.90. ARIMAX can be 

used as an early warning tool for predicting potential 

pollution episodes in order to be proactive in adopting 

precautionary measures. 
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9.3. Summary of the thesis 

Air pollution levels in urban areas are driven by emission sources and influencing factors that 

control the dispersion of air pollutant emitted by different sources. For effective air quality 

management, the first and probably most important step is monitoring of the current levels of 

air pollutants and understanding the main drivers of air pollution in urban areas. Air pollutant 

levels demonstrate spatial variability at micro-levels in urban areas due to differences in 

emission sources and influencing factors that affect air pollutants dispersion such as 

meteorological parameters, building density and height, presence of open spaces, green areas, 

and street canyons. The current air quality monitoring network operated by DEFRA and 

Sheffield City Council is not dense enough to account for micro-level spatial variations in air 

pollutant concentrations. In Sheffield there are three air quality monitoring stations (AQMS) 

run by DEFRA and five run by Sheffield City Council.  This suggests a need for further 

improvement in AQMN in Sheffield, supported by modelling studies. Until more recently, it 

was not possible to develop a dense air quality monitoring network in urban areas because of 

the high purchase prices of reference air quality sensors. However, since the emergence of low-

cost sensors, it has become feasible to develop a dense multipurpose air quality monitoring 

network. The main objectives of the project are: (i) To structure a dense multipurpose AQMN 

made of several layers of air quality sensors including reference, low-cost sensors (LCS) and 

IoT sensors; (ii) To use LCS to render high quality measurements; (iii) To model the spatial 

variability of NO2 employing  LUR and dispersion models. ; (iv) To employ novel data fusion 

techniques for  improving  both model estimations and LCS measurements.; and (v) To analyse 

temporal trends of AQ employing TheilSen function, time series modelling and graphical 

presentations. Motivation and main objectives of the project are described in Chapter 1, which 

also describes the main drivers of air pollution and how different chapters (papers) address the 

objectives of the project.  

 Chapter 2 provides a detailed literature review of LCS, various AQ modelling, AQ monitoring 

and data fusion approaches. The aim is to find out as to what is the state of the art for AQ 

modelling, data fusion and AQ monitoring especially LCS in light of the current literature. AQ 

modelling is divided into two main types: dispersion modelling and statistical modelling. Each 

of the modelling type is further divided into several subcategories. Several research gaps have 

been identified in light of the literature review. The main research gaps identified are:  

o It is a critical decision to make what criterion should be used for identifying a suitable 

site for a sensor installation. However, literature shows that in most of the network 

developed previously sensors are installed on ad hoc basis or based on a single criterion 

without following a formal approach. To address this, in this project we deployed a 

dense network of AQ sensors based on multiple criteria using sensors of different 

grades. This is related to objective 1 of the project.  

o From the literature review, it was found that previously most the sensor calibration 

studies whether in the laboratories or outdoor fields were carried out for a short period 

of time mostly employing linear regression. Therefore, further research was required to 

compare the performance of low-cost sensors to each other and to reference sensor in 

outdoor fields for a longer period of time at least for a year, and develop a calibration 

approach employing a nonlinear regression model. This is related to objective 2. 
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o The literature review showed that previously several approaches have been employed 

for modelling the spatial variability of air pollutants in urban area. However, little was 

done on comparing different modelling approaches for analysing the spatial variability 

of pollutants in urban areas. This is related to objective 3 of the project.   

o Literature review revealed that the application of data fusion techniques improve the 

quality of data, howver, little is done to demonstrate how these techniques help in 

improving the spatial modelling of air quality in urban areas using estimated and 

measured concentrations of LCS. This is related to objective 4. 

o How the concentrations of NO2 measured by LCS and reference sensors vary on 

different temporal scales in urban areas and what is the best time series model for 

modelling NO2 concentrations. This is related to objective 5 of the project.    

 

In chapter 3, the performance of LCS, viz., Envirowatch EMOTEs was compared to each other 

and to a reference sensor  installed nearby. The comparison was made for a full year for various 

gaseous pollutants, namely NO, NO2 and CO. E-MOTEs were able to successfully capture the 

temporal variability such as diurnal, weekly and annual cycles in air pollutant concentrations 

and demonstrated significant similarity with reference instruments. NO2 concentrations 

showed very strong positive correlation between various sensors. Mostly correlation 

coefficients were greater than 0.92 between different E-MOTEs. CO concentrations measured 

by different E-MOTES also had r - values mostly greater than 0.92, however, NO 

concentrations showed r - values less than 0.5. Demonstrating consistency of measurements 

measurement by different E-MOTEs. Several Multiple Linear Regression Models (MLRM) 

and Generalised Additive Models (GAM) were developed to calibrate the E-MOTE data and 

reproduce NO and NO2 concentrations measured by the reference instruments using the 

measurements of E-MOTEs as predictors. The performance of MLRM and GAM was 

compared, where GAMs demonstrated significantly better performance than linear models by 

capturing the nonlinear association between the response and explanatory variables. The best 

GAM developed for reproducing NO2 concentrations returned values of 0.95, 3.91, 0.81, 0.005, 

and 0.61 for Factor of two (FAC2), Root Mean Square Error (RMSE), coefficient of 

determination (R2), Normalised Mean Biased (NMB) and Coefficient of Efficiency (COE), 

respectively, when predicted and measured concentrations of reference sensors were compared. 

The values of these metrics demonstrated that GAM calibration model could result in better 

results. This analysis showed  that the LCS offered a more affordable alternative for providing 

real time high-resolution spatiotemporal AQ and meteorological parameter data with 

acceptable performance, which can be further improved by nonlinear calibration modelling 

techniques.  

Reference sensors are very expensive to purchase, therefore, traditionally AQMN in urban 

areas are sparse and not dense enough for developing high-resolution air quality maps in urban 

areas. Since the emergence of low-cost sensors, it has become possible to create a purpose-

designed dense network. Recently several researchers have designed AQMN, however, these 

networks are based on a single criterion or sensors are installed on ad hoc basis. Chapter 4 

intended to address the issue of sparse AQMN by structuring a high-density network using 

various layers of sensors of different quality including reference instruments operated by 

DEFRA and Sheffield City Council, LCS deployed by the university of Sheffield and NO2 

diffusion tubes. Here we propose a methodology supported by numerical, conceptual and GIS 

frameworks for structuring an AQMN using social, environmental and economic indicators as 

a case study in Sheffield, UK. The main factors used for AQMS site selection are population-
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weighted pollution concentration (PWPC) and weighted spatial variability (WSV) 

incorporating population density (social indicator), pollution levels and spatial variability of 

air pollutant concentrations (environmental indicator). Total number of sensors is decided on 

the basis of budget (economic indicator), whereas the number of sensors deployed in each 

output area is proportional to WSV. The purpose of AQ monitoring and its role in determining 

the location of AQMS is analysed. Furthermore, the existing AQMN is analysed and an 

alternative proposed following a formal procedure. In contrast to traditional networks, which 

are structured based on a single AQ monitoring approach, the proposed AQMN has several 

layers of sensors: Reference sensors recommended by EU and DEFRA, LCS (AQMesh and 

Envirowatch E-MOTEs) and IoT (Internet of Things) sensors. The core aim is to structure an 

integrated AQMN in urban areas, which will lead to the collection of AQ data with high 

spatiotemporal resolution. The use of LCS in the proposed network provides a cheaper option 

for setting up a purpose-designed network for greater spatial coverage. This is a new trend in 

AQ monitoring and can support the conventional AQMN. Data collected by the LCS can be 

used for detailed spatial mapping of air pollution, especially over small areas such as an urban 

area or a part of it, for atmospheric model validation, and for assessing population exposure. 

However, the robustness of LCS and the quality of the data collected is questionable and require 

outfield calibration, which was discussed in chapter 3.  

In chapter 5, two air pollutants, viz., NOx and PM10 are monitored and modelled employing 

Airviro air quality dispersion modelling system in Sheffield. The aim was to determine the 

most significant emission sources and understand their spatial variability. NOx emissions 

(ton/year) from road traffic, point and area sources for the year 2017 were 5370, 6774 and 

2425, whereas that of PM10 (ton/year) were 345, 1449 and 281, respectively. Airviro dispersion 

model was run using emission inventory and meteorological data for Sheffield. The model was 

run using different emission scenarios. The model was also run for different seasons of the 

year. Estimating annual concentrations, the model results showed three hotspots of NOx, 

namely the Sheffield City Centre, Darnall and Tinsley Roundabout (M1 J34S). High levels of 

NOx are also predicted on Sheffield Parkway (A630, A57) and between Meadowhall Shopping 

Centre and Sheffield Forgemasters International (a heavy engineering steel company). 

Sheffield City Centre probably experiences the highest levels of NOx, which is mainly due to 

high level of road traffic but various point and area sources also contribute. Pollution levels are 

highest in the busiest part of the city including St. Mary’s Gate, More Street, Eyre Street, 

Arundel Gate, Sheaf Street, Pond Street, Exchange Place and Castlegate. The train station, the 

bus station, the area of the Sheffield Hallam University and a busy shopping centre make this 

area very busy in terms of road traffics, exposing visitors, workers, students, commuters and 

residents to high levels of air pollution. Areas adjacent to the city centre also experience 

considerable amount of air pollution. Generally, pollution levels gradually decrease with 

distance from the city centre. However, due to prevailing southwesterly winds and the locations 

of some industrial sources, there is a north-eastern trend in air pollution levels i.e. north-eastern 

region towards M1 experiences considerably high amount of air pollution (39 – 52 μg/m3). 

Model results showed that HGVs emitted a considerable amount of emissions in the city centre 

and their contribution was greater than that of the buses or cars. Generally atmospheric 

pollutant levels were higher in colder seasons probably due to (i) greater combustion of fossil 

fuels, mainly diesel, petrol, gas and coal to a lesser extent, and (ii) atmospheric stagnation and 

shallower atmospheric boundary-layer height, which discourage pollutant dispersion as 

compared to hotter seasons when the atmosphere is more turbulent and boundary layer height 

is wider.  Annual average PM10 levels were also predicted. The areas with elevated PM10 
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concentrations are shown outside Sheffield City Centre, in contrast to NOx. High PM10 

concentrations were shown mainly between Sheffield Forgemasters International (a heavy 

engineering steel company) and Meadowhall shopping centre. This hotspot seems to be due to 

the point sources (heavy steel and other companies) in this area. However, this is also a busy 

area in terms of road traffic, which must be contributing a significant amount of emissions. The 

second hotspot of PM10 is shown in Attercliffe, which has six point sources emitting a 

significant amount of PM10 and other pollutants. The third hotspot of PM10 is shown in 

Sheffield Parkway having three point sources. The fourth hotspot is the north-eastern corner of 

the city centre in the Wicker and West Bar near Derek Dooley Way.  When only point sources 

were considered as inputs to the model, the minimum, mean and maximum PM10 levels 

(μg/m3) were 0.24, 1.3 and 13.9, respectively, whereas when only road traffic was considered 

these levels were 0.04, 0.56 and 2.5, respectively. PM10 concentrations (μg/m3) in various 

seasons of the year were also modelled and compared. PM10 concentrations slightly varied and 

showed slightly different spatial pattern in various seasons. The minimum, mean, and 

maximum PM10 concentrations (μg/m3) in winter, spring, summer, and autumn were: 1.0, 

4.12, 15.4; 0.66, 3.75, 15.4; 0.47, 3.47, 15.5; and 0.75, 4.49, 19.0, respectively. Autumn showed 

relatively higher average concentrations. The results of different emission scenarios showed 

that NOx concentrations were mainly from road traffic, whereas PM10 concentrations were 

from point sources. Spatiotemporal variability and public exposure to air pollution were 

analysed. NOx concentration was greater than 50 µg/m3 in about 8 km2 area, where more than 

66 thousand people lived. Models validated by observations can be used to fill-in 

spatiotemporal gaps in measured data. The approach used presents spatiotemporal situation 

awareness maps that could be used for decision making and improving the urban infrastructure. 

Furthermore, dispersion models are important tools for urban air quality management, 

however, steps should be taken to minimise potential errors in emission data, meteorological 

data and complexity of the terrain. Particulates generated from vehicle wear and tear, 

resuspension of dust particles and emission from natural sources require special attention to 

improve model performance. In addition, further work is required to quantify people exposure 

to air pollution in Sheffield using dense network of static sensors and personal monitors. People 

can be exposed to air pollution in their houses (residents), work places and when commuting 

to-and-from work using various means of transports, e.g., buses, trains, trams, cars, cycles or 

walking. How exposure levels vary using various transport modes needs to be quantified in 

Sheffield.      

 

It has been a common practice to use the linear regression for developing LUR models, 

however, the association between air pollutant levels and spatial features is not always linear, 

therefore, ideally nonlinear modelling approaches should be used for developing LUR models, 

which can help in understanding small scale spatial variability of different air pollutants in 

urban areas. In chapter 6, the GAM was fitted and predicted in R programming language and 

the predicted concentrations was then transferred to ArcGIS for producing maps of NO2 in 

Sheffield. Alternatively, R has several special packages that can be used for mapping and 

spatial analysis of the predicted concentrations. In this paper spatial variability of NO2 

concentration is modelled in the city of Sheffield for year 2019. MLRM is a traditional and 

most commonly used approach for developing LUR models, here in addition to the linear 

approach, a nonlinear GAM model is employed and its benefits and the way it is applied are 

discussed. Three datasets of NO2 measurements were used: (a) NO2 data from 188 DT, (b) NO2 

from 40 LCS, and (c) NO2 data from both DT and LCS. The first group performed better than 
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the other two groups. Among predictor variables altitude (negative effect), major roads 

(positive effect), minor roads (positive effect), and commercial area (positive effect) had 

significant effect in all three groups. The model successfully captured the spatial variability of 

NO2 in Sheffield, estimating high levels of NO2 in the city centre and on major roads around 

the city. The eastern area between the city centre and motorway (M1) showed particularly high 

levels, whereas the western area (Peak District National Park) demonstrated lower levels of 

NO2 concentrations. The main contributions of this work are summarised as follows: (a) An 

advanced nonlinear GAM is proposed for developing an LUR model, which outperforms the 

linear counterpart. (b) High resolution maps (100 m x 100 m) of NO2 are developed in Sheffield 

using a nonlinear LUR model for quantifying public exposure to NO2 and determining how the 

exposure varies at small scales in the city. (c) NO2 data measured by a network of DT and LCS 

are integrated to developed high-resolution maps. (d) It is confirmed that Sheffield City Centre 

and its eastern sides experience relatively higher levels of NO2 pollution. Future work could 

include developing a spatiotemporal LUR model using meteorology, traffic counts and fleet 

composition data. In this study, the effect of major and minor roads is analysed on NO2 levels, 

however, road traffic and composition may vary from time to time on a given road. It is, 

therefore, important to capture temporal and spatial variability in meteorology and traffic data 

and feed it to the nonlinear LUR models. This will probably further improve the model 

performance, depending on the quality and temporal resolution of the data.  

 

Airviro model was applied in Chapter 5 and LUR model in Chapter 6 for estimating the NO2 

concentrations in Sheffield. Here the performance of these models are compared for predicting 

NO2 concentrations. In Chapter 6 several models were developed, here we used the 

performance of the GAM, which used data from NO2 diffusion tubes for both modelling 

training and cross-validation. Correlation coefficient and RMSE values were 0.70 and 8.69 for 

GAM LUR model, and 0.48 and 44.01 for Airviro model, respectively. This shows that GAM 

LUR model performed better than the Airviro model. Comparison of the two models was not 

possible for PM10, as no LUR model was developed for PM10 due to the lack of measured PM10 

data to train the LUR model. Therefore, LUR is recommended for the future modelling of NO2 

in urban areas.  

 

The aim of the chapter 7 is to analyse small-scale spatial variability in NO2 concentrations with 

the help of pollution maps. Maps of NO2 are produced using geostatistical interpolation, 

Airviro dispersion model and LUR model. Finally, NO2 concentrations estimated by Airviro 

and LUR models are fused with measured NO2 concentrations. Measured NO2 data were used 

from 49 continuous AQMS including 3 Automatic Urban and Rural Network (AURN) sites 

run by DEFRA, 5 reference sites run by Sheffield City Council and 41 LCS installed by the 

Urban Flows Observatory, the University of Sheffield. In addition, NO2 data were used from 

188 diffusion tubes provided by Sheffield City Council. Air quality standards were exceeded 

at several locations in Sheffield, particularly in the city centre and on some busy roads, where 

annual mean NO2 levels were higher than 40 µg/m3. The highest levels of NO2 were recorded 

by the Envirowatch E-MOTE installed next to the Sheffield train station taxi rank (136.81 

µg/m3), followed by the Sheaf Street/Sheaf Square pedestrian crossing (115.56 µg/m3) and 

Arundel Gate (107.17 µg/m3). Three modelling approaches were used to produce maps of NO2 

concentrations in Sheffield: (a) geostatistical kriging interpolation, (b) Airviro dispersion 

modelling, and (c) LUR based on the generalised additive model. Measured NO2 

concentrations were fused with the estimated concentrations using universal kriging, which is 

an advanced kriging technique that is employed for data having more than one correlated 

variable. Six sets of measured and estimated NO2 data were fused: (i) Fusion of NO2-Airviro 
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with NO2-LCS; (ii) Fusion of NO2-Airviro with NO2-DT; (iii) Fusion of NO2-Airviro with 

NO2-DTLCS; (iv) Fusion of NO2-LUR with NO2-LCS; (v) Fusion of NO2-LUR with NO2-DT; 

and (vi) Fusion of NO2-LUR with NO2-DTLCS. Fused NO2 were compared with measured 

concentrations in terms of different statistical metrics including FAC2, r, RMSE, MAE and 

MBE. Maps produced by the fusion of NO2-LCS and NO2-LUR produced better results, with 

an r-value of 0.96, followed by the fusion of NO2-Airviro with NO2-LCS, with an r-value of 

0.88. Fused maps developed by universal kriging provided better spatial coverage and 

similarity with measured concentrations than the ordinary kriging interpolation, Airviro and 

LUR models. Fused maps combining measured and estimated concentrations produced more 

realistic concentrations and provided better spatial coverage. Data fusion added value to both 

measured and estimated concentrations: the measured data were  improved by predicting 

spatiotemporal gaps, whereas the modelled data were  improved by constraining it with 

observed data. Hot spots of NO2 were shown in the city centre, eastern parts of the city towards 

the motorway (M1) and on some major roads. Road traffic is probably the dominant emission 

source of NO2 in Sheffield. The main findings of this study are: (a) The universal kriging 

approach was capable of estimating realistic NO2 concentration maps from the fusion of 

measured and modelled concentrations. The fused NO2 concentrations inherited spatial 

patterns of the pollutant from the model estimations and adjusted the modelled values using 

the measured concentrations. (b) A huge number of sensors are required to provide reasonable 

spatial coverage at a city level, which is too expensive. Spatial modelling (e.g., dispersion 

model and LUR model) and data fusion approaches can provide city-level maps by integrating 

pollutant concentrations measured by the AQMS with modelled concentrations. (c) According 

to Schneider et al. [9], the accuracy of the data fusion depends on the number of sensors, their 

spatial distribution, their uncertainty and the accuracy of the estimated values to be fused with 

measured values. Here, we showed that in addition, the accuracy of the data fusion also depends 

on the uniformity of the sensors, meaning that using the same type of sensors can result in 

better accuracy. Increasing the number of sensors will not necessarily improve the model 

outputs, especially if sensors are not of the same type. For example, maps produced by the 

fusion of NO2-LCS with NO2-LUR (r-value 0.96) and NO2-Airviro (r-value 0.88) produced 

better results than when both NO2-DT and NO2-LCS were used together and fused with NO2-

LUR or NO2-Airviro, when the r-values decreased to 0.59 and 0.56, respectively. The 

uniqueness of this study is that it uses estimated NO2 concentrations from two sources - a 

dispersion model and a land use regression model and measured NO2 concentrations from three 

sources: diffusion tubes, reference sensors and low-cost sensors.  

Chapter 8 analysed the temporal variability of NO2 concentrations measured by 28 

Envirowatch E-MOTEs, 13 AQMesh pods, and eight reference sensors (five run by Sheffield 

City Council and three run by the DEFRA). Density plots and time variation plots were used 

to compare the distributions and temporal variability of NO2 concentrations. Density plots are 

a useful tool for comparing and analysing the distributions of NO2 concentrations measured 

by various sensors. Time variation plots were employed to characterise and compare the 

temporal variability of NO2 concentrations measured at different monitoring sites. Time 

variation plots visualise how NO2 concentrations vary during different time periods (e.g., 

diurnal, weekly and annual cycles) and help us understand their emission sources.  Long-term 

trends, both adjusted and non-adjusted, showed significant reductions in NO2 concentrations. 

At the Tinsley site, the non-adjusted trend was −0.94 (−1.12, −0.78) µgm−3/year, whereas the 

adjusted trend was −0.95 (−1.04, −0.86) µgm−3/year. At Devonshire Green, the non-adjusted 

trend was −1.21 (−1.91, −0.41) µgm−3/year and the adjusted trend was −1.26 (−1.57, −0.83) 
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µgm−3/year. Furthermore, NO2 concentrations were analysed employing univariate linear and 

nonlinear time series models and their performance was compared with a more advanced time 

series model using two exogenous variables (NO and O3 ). For this purpose, time series data 

of NO, O3 and NO2 were obtained from a reference site in Sheffield, which are more accurate 

than the measurements from LCS and, therefore, more suitable for training and testing the 

model. In this article, the three main steps used for model development are discussed: (i) model 

specification for choosing appropriate values for p, d and q, (ii) model fitting (parameters 

estimation), and (iii) model diagnostic (testing the goodness of fit). The linear auto-regressive 

integrated moving average (ARIMA) performed better than the nonlinear counterpart; 

however, its performance in predicting NO2 concentration was inferior to ARIMA with 

exogenous variables (ARIMAX). Using cross-validation ARIMAX demonstrated strong 

association with the measured concentrations, with a correlation coefficient of 0.84 and RMSE 

of 9.90. ARIMAX can be used as an early warning tool for predicting potential pollution 

episodes in order to be proactive in adopting precautionary measures. 

The next section describes as to how the main objectives of the project are addressed.   

9.4. How are the main objectives of the project addressed? 

The core aims of this PhD project were to analyse spatiotemporal variability of AQ and 

determine the main drivers of air pollution in Sheffield by deploying a dense AQMN based on 

multiple criteria, and employing various modelling and mapping techniques for AQ prediction 

and developing high resolution maps. The main objectives of the project and how they are 

addressed are given below:  

Objective I: To define criteria for structuring a multipurpose AQMN  and to structure  a dense 

network made of several layers of AQ sensors including reference, LCS and IoT sensors in 

Sheffield.  

Objective 1 is addressed in Chapter 4, where a methodology was proposed supported by 

numerical, conceptual and GIS frameworks for structuring AQMN using social, environmental 

and economic indicators as a case study in Sheffield. The main factors used for the selection 

of an AQMS were population-weighted pollution concentration (PWPC) and weighted spatial 

variability (WSV) incorporating population density (social indicator), pollution levels and 

spatial variability of air pollutant concentrations (environmental indicator). Total number of 

sensors was decided on the basis of budget (economic indicator), whereas the number of 

sensors deployed in each output area was proportional to WSV. The purpose of AQ monitoring 

and its role in determining the location of an AQMS was analysed. Furthermore, the existing 

AQMN in Sheffield was analysed and an alternative proposed following a formal procedure. 

In contrast to traditional networks, which are generally structured based on a single AQ 

monitoring approach, the proposed AQMN has several layers of sensors: Reference sensors 

recommended by DEFRA and LCS mainly AQMesh and Envirowatch E-MOTEs. The core 

aim was to structure an integrated AQMN in urban areas, which will lead to the collection of 

AQ data of high spatiotemporal resolution. The use of LCS in the proposed network provides 

a cheaper option for setting up a purpose-designed network for greater spatial coverage, 

especially in low- and middle-income countries.     

Objective II: To deploy  LCS for rendering high quality measurements of NO2 concentrations. 

This objective assesses and improves the quality of LCS data using calibration models.  
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Objective II has been addressed in Chapter 3, which compared the measurements of 

Envirowatch E-MOTEs with the measurements of reference sensors. Ten E-MOTEs were 

deployed for a year (October 2016 to September 2017) in Sheffield, which measured several 

air pollutants (NO, NO2, CO) and meteorological parameters. The measurements of E-MOTEs 

were compared to each other and to a reference instrument installed nearby. E-MOTEs were 

able to successfully capture the temporal variability such as diurnal, weekly and annual cycles 

in air pollutant concentrations and demonstrated significant similarity with reference 

instruments. NO2 concentrations showed very strong positive correlation between various LCS 

sensors. Mostly correlation coefficients (r - values) were greater than 0.92. CO from different 

sensors also had r - values mostly greater than 0.92, however, NO showed r - value less than 

0.5. Furthermore, several MLRM and GAM were developed to validate the E-MOTE data and 

reproduce NO and NO2 concentrations measured by the reference instruments. GAMs 

demonstrated significantly better performance than the linear models by capturing the 

nonlinear association between the response and explanatory variables. The best GAM 

developed for reproducing NO2 concentrations returned values of 0.95, 3.91, 0.81, 0.005, and 

0.61 for FAC2, RMSE, R2, NMB and COE, respectively. 

Objective III: To model the spatial variability of AQ in urban areas using various modelling 

approaches including dispersion and land-use regression models.  

 

Objective III of this project has been  addressed in Chapter 5 and 6. In Chapter 5 NOx and 

PM10 concentrations were modelled employing Airviro air quality dispersion modelling 

system. The aim was to determine the most significant emission sources and analyse their 

spatial variability. NOx emissions (ton/year) from road traffic, point and area sources for the 

year 2017 were 5370, 6774 and 2425, whereas that of PM10 (ton/year) were 345, 1449 and 281, 

respectively, which are part of the emission database. The results showed three hotspots of 

NOx, namely the Sheffield City Centre, Darnall and Tinsley Roundabout (M1 J34S). High 

PM10 concentrations were shown mainly between Sheffield Forgemasters International (a 

heavy engineering steel company) and Meadowhall shopping centre. Several emission 

scenarios were tested which showed that NOx concentrations were mainly from road traffic, 

whereas PM10 concentrations were from point sources. Spatiotemporal variability and public 

exposure to air pollution were analysed. In Chapter 6 a nonlinear generalised additive model 

was proposed for LUR and its performance was compared to a linear model in Sheffield for 

the year 2019. Pollution models were estimated using NO2 measurements obtained from 188 

diffusion tubes and 40 LCS. Performance of the models was assessed by calculating several 

statistical metrics including correlation coefficient and RMSE. High-resolution (100m x 100m) 

maps demonstrated higher levels of NO2 in the city centre, eastern side of the city and on major 

roads. Comparison of Airviro and LUR models showed that LUR model performed better for 

predicting NO2 concentrations, and therefore is a better choice for model NO2 concentrations 

in urban areas.  

Objective IV: To explore the use of novel data fusion techniques to improve both model 

estimations and LCS measurements and further improve the quality of AQ maps.  

Objective IV is addressed in Chapter 7,  wherein NO2 concentrations measured by diffusion 

tubes, reference sensors and LCS  were fused with the estimations of Airviro and LUR model. 

Data fusion with universal kriging produced more realistic maps in terms of spatial coverage 
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and comparability with  measured data than the interpolated maps using ordinary kriging. The 

validity of the fused maps was analysed in terms of statistical metrics including correlation 

coefficient, RMSE, MAE, FAC2 and MBE. Maps produced by the fusion of NO2-LCS with 

NO2-LUR (r-value 0.96) and NO2-Airviro (r-value 0.88) produced better results.   

Objective V: To analyse temporal variability  of AQ using both graphical and time series 

analysis.    

 In chapter 8 measurements from LCS are analysed employing density plots and time series 

modelling and visualisation. Density plots are a useful tool for comparing and analysing the 

distributions of NO2 concentrations measured by various sensors. Time variation plots were 

employed to characterise and compare the temporal variability of NO2 concentrations measured 

at different monitoring sites. Time variation plots visualise how NO2 concentrations vary 

during different time periods (e.g., diurnal, weekly and annual cycles) and help us understand 

their emission sources. Long-term data for NO2 concentrations showed negative trends at both 

the Sheffield Tinsley and Devonshire Green sites, indicating that pollutant emissions decreased 

because of stringent emission policies. However, the reductions in pollution varied both 

spatially and temporally. Moreover, further smart interventions are required to cut emissions 

and improve air quality to comply with air quality guidelines. Time series model with external 

variables demonstrated better performance compared to linear and nonlinear time series models 

without external variables.  

.    

9.5. Future work 

In this PhD project only outdoor air pollution emissions were considered mainly road traffic 

and points sources, emission from indoor sources including residential houses were not 

considered. This needs further consideration for detailed modelling, especially for dispersion 

modelling. Quantification of the emissions from residential houses, especially from cooking 

and stove burners can further improve the performance of dispersion model and help quantify 

exposure to indoor pollution.  

How indoor and outdoor AQ interacts is not fully characterised, therefore it is vital to 

characterise the interface between indoor and outdoor air pollution. How outdoor AQ affects 

indoor and vice versa, and to understand the flow of air between the indoor and outdoor 

environments is vital for characterising exposure to air pollution. Understanding how to retain 

heat whilst allowing adequate ventilation to maintain clean air is also important from health 

and energy saving point of view. Timing and rates of ventilation are important for improving 

comfortability of residential house and working environments.    

People are exposed to air pollution in both indoor and outdoor environment, however, how the 

exposure vary from one house to another, from one office to another and what are the factors 

that affect air pollution levels and exposure need to be quantified. People are exposed to air 

pollution while commuting to-and-from work and the exposure varies in both time and space. 

Exposure also depends on the type of vehicle used for commuting and the route followed. All 

these factors need to be characterised in the future work.   

In Sheffield a dense network of AQ sensors was deployed monitoring different air pollutants 

including both gaseous (e.g., NO2, SO2, O3 and CO) and particle pollutants (e.g., PM10 and 
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PM2.5). However, the chemical composition of particulate is not determined to quantify 

different types of chemical particles in particulate matter. This is, therefore, important to carry 

out chemical analysis of particle samples and characterise their chemical composition. How 

the chemical composition of particles vary both spatially and temporally need to be 

characterised.   

9.6. Conclusion  

In this chapter the PhD project is summarised highlighting its main objectives, methodology, 

main findings and recommendations for future work.  

The main findings of the project are given below:  

 The project proposes a nonlinear generalised additive model for low-cost sensors 

calibrations in outdoor environment. Low-cost sensors are a cheaper source of air 

quality data; however, they require robust outfield calibrations.  

 A formal approach is proposed for structuring an air quality monitoring network in 

urban areas, which is be based on multiple criteria.  

 Several modelling options are available for modelling the spatial variability of air 

pollutants in urban areas (e.g., Airviro dispersion model and LUR models). It is shown 

that LUR model based on nonlinear machine learning approach outperforms the 

dispersion modelling approach.   

 Data fusion techniques (such as Universal krigging) are employed to integrate model 

estimations with measured concentrations. Such data fusion approaches are useful tools 

for improving data quality and producing high-resolution air quality maps.  

 Time series modelling ARIMA with exogenous variables (ARIMAX) outperformed 

other linear and nonlinear time series models, and is proposed as an early warning tool 

for predicting potential pollution episodes in order to be proactive in adopting 

precautionary measures.   

Potential future work may include: (a) characterisation of indoor air pollution and its interaction 

with outdoor air pollution, (b) quantification of human exposure to air pollution in different 

residential, working and commuting microenvironments, and (c) analysis of the chemical 

composition of particulate matter.  
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APPENDICES 
 

Appendix 1: R Code 

1.  R code for Chapter 3 – Low-cost sensor calibrations  

 

Require (openair) 

temp1<-read.csv(file.choose(), header=T)##701 temp1<-import()#i used import 

temp1<-import()#701 

temp2<-import()#702 

 

temp1$date <- as.POSIXct(strptime(temp1$date,format = "%d/%m/%Y %H:%M", tz = 

"GMT")) 

temp2$date <- as.POSIXct(strptime(temp2$date,format = "%d/%m/%Y %H:%M", tz = 

"GMT")) 

temp3$date <- as.POSIXct(strptime(temp3$date,format = "%d/%m/%Y %H:%M", tz = 

"GMT")) 

temp4$date <- as.POSIXct(strptime(temp4$date,format = "%d/%m/%Y %H:%M", tz = 

"GMT")) 

temp5$date <- as.POSIXct(strptime(temp5$date,format = "%d/%m/%Y %H:%M", tz = 

"GMT")) 

temp6$date <- as.POSIXct(strptime(temp6$date,format = "%d/%m/%Y %H:%M", tz = 

"GMT")) 

temp7$date <- as.POSIXct(strptime(temp7$date,format = "%d/%m/%Y %H:%M", tz = 

"GMT")) 

temp8$date <- as.POSIXct(strptime(temp8$date,format = "%d/%m/%Y %H:%M", tz = 

"GMT")) 

temp9$date <- as.POSIXct(strptime(temp9$date,format = "%d/%m/%Y %H:%M", tz = 

"GMT")) 

temp10$date <- as.POSIXct(strptime(temp10$date,format = "%d/%m/%Y %H:%M", tz = 

"GMT")) 

 

names(temp1) <- c("date", "CO_1", "NO_1", "NO2_1", "RH_1", "Temp_1") 

names(temp2) <- c("date", "CO_2", "NO_2", "NO2_2", "RH_2", "Temp_2") 

names(temp3) <- c("date", "CO_3", "NO_3", "NO2_3", "RH_3", "Temp_3") 

names(temp4) <- c("date", "CO_4", "NO_4", "NO2_4", "RH_4", "Temp_4") 

names(temp5) <- c("date", "CO_5", "NO_5", "NO2_5", "RH_5", "Temp_5") 

names(temp6) <- c("date", "CO_6", "NO_6", "NO2_6", "RH_6", "Temp_6") 

names(temp7) <- c("date", "CO_7", "NO_7", "NO2_7", "RH_7", "Temp_7") 

names(temp8) <- c("date", "CO_8", "NO_8", "NO2_8", "RH_8", "Temp_8") 

names(temp9) <- c("date", "CO_9", "NO_9", "NO2_9", "RH_9", "Temp_9") 

names(temp10) <- c("date", "CO_10", "NO_10", "NO2_10", "RH_10", "Temp_10") 

 

temp1_hr<-timeAverage(temp1, avg.time="hour") 

temp2_hr<-timeAverage(temp2, avg.time="hour") 

temp3_hr<-timeAverage(temp3, avg.time="hour") 
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temp4_hr<-timeAverage(temp4, avg.time="hour") 

temp5_hr<-timeAverage(temp5, avg.time="hour") 

temp6_hr<-timeAverage(temp6, avg.time="hour") 

temp7_hr<-timeAverage(temp7, avg.time="hour") 

temp8_hr<-timeAverage(temp8, avg.time="hour") 

temp9_hr<-timeAverage(temp9, avg.time="hour") 

temp10_hr<-timeAverage(temp10, avg.time="hour") 

 

summary(temp1_hr) 

temp1_hr<-subset(temp1_hr, NO2_1>0&NO2_1<100) 

temp1_hr<-subset(temp1_hr, NO_1>0&NO_1<100) 

summary(temp2_hr) 

temp2_hr<-subset(temp2_hr, NO_2>0&NO_2<100) 

 

summary(temp3_hr) 

temp3_hr<-subset(temp3_hr, NO_3>0&NO_3<100) 

summary(temp4_hr) 

temp4_hr<-subset(temp4_hr, NO_4>0&NO_4<100) 

summary(temp5_hr) 

temp5_hr<-subset(temp5_hr, NO_5>0&NO_5<100) 

summary(temp6_hr) 

temp6_hr<-subset(temp6_hr, NO_6>0&NO_6<100) 

summary(temp7_hr) 

temp7_hr<-subset(temp7_hr, NO_7>0&NO_7<100) 

summary(temp8_hr) 

temp8_hr<-subset(temp8_hr, NO_8>0&NO_8<100) 

summary(temp9_hr) 

temp9_hr<-subset(temp9_hr, NO_9>0&NO_9<100) 

summary(temp10_hr) 

temp10_hr<-subset(temp10_hr, NO_10>0&NO_10<100) 

 

install.packages ("plyr") 

require(plyr) 

 

merged<-Reduce(function(x, y) merge(x, y, all=TRUE), list(temp1_hr, temp2_hr, temp3_hr, 

temp4_hr, temp5_hr,  

temp6_hr, temp7_hr,temp8_hr, temp9_hr, temp10_hr))## 

write.csv(merged, "merged_sep.csv", row.names=F) 

timePlot(merged, pollutant=c("NO2_1","NO2_2","NO2_3", "NO2_4","NO2_5", "NO2_6", 

"NO2_7",  

"NO2_8", "NO2_9","NO2_10"), group = F, key.columns = 5, ylab="") 

timePlot(merged, pollutant=c("NO_1","NO_2","NO_3", "NO_4","NO_5", "NO_6", "NO_7",  

"NO_8", "NO_9","NO_10"), group = F, key.columns = 5, ylab="") 

timePlot(merged, pollutant=c("CO_1","CO_2","CO_3", "CO_4","CO_5", "CO_6", "CO_7",  

"CO_8", "CO_9","CO_10"), group = F, key.columns = 5, ylab="") 

summaryPlot(temp1_hr) 

scatterPlot(merged, x="date", y="NO2_1") 

merged$month <- as.Date(merged$date,format = "%m", tz = "GMT") 

head(merged$month)  

names(merged) 
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plot(merged$date, merged$NO2_1, xlab="date", ylab="NO2 concentraiton (ppb)", 

col="black", ylim=c(0,100)) 

points(merged$date, merged$NO2_2, col="red") 

merged$month <- format(as.Date(merged$date),%m") 

plot(merged$month, merged$no2_1, xlab="date", ylab="NO2 concentraiton (ppb)", 

col="black") 

timePlot(temp1_hr, c("NO_1", "NO2_1", "CO_1", "Temp_1", "RH_1")) 

timePlot(temp2_hr, c("NO_2", "NO2_2", "CO_2", "Temp_2", "RH_2")) 

timePlot(temp3_hr, c("NO_3", "NO2_3", "CO_3", "Temp_3", "RH_3")) 

timePlot(temp4_hr, c("NO", "NO2_4", "CO_4", "Temp_4", "RH_4")) 

timePlot(temp5_hr, c("NO_5", "NO2_5", "CO_5", "Temp_5", "RH_5")) 

timePlot(temp6_hr, c("NO_6", "NO2_6", "CO_6", "Temp_6", "RH_6")) 

timePlot(temp7_hr, c("NO_7", "NO2_7", "CO_7", "Temp_7", "RH_7")) 

timePlot(temp8_hr, c("NO_8", "NO2_8", "CO_8", "Temp_8", "RH_8")) 

timePlot(temp9_hr, c("NO_9", "NO2_9", "CO_9", "Temp_9", "RH_9")) 

timePlot(temp10_hr, c("NO_10", "NO2_10", "CO_10", "Temp_10", "RH_10")) 

head(merged) 

################################################# 

#correlation 

#NO2 

no2<-data.frame(merged$date, 

merged$NO2_1,merged$NO2_2,merged$NO2_3,merged$NO2_4, 

merged$NO2_5, merged$NO2_6, merged$NO2_7, merged$NO2_8, merged$NO2_9, 

merged$NO2_10) 

corPlot(no2) 

names(no2) <- c("date", "NO2_1", "NO2_2","NO2_3", "NO2_4","NO2_5", "NO2_6", 

"NO2_7",  

"NO2_8", "NO2_9","NO2_10") 

corPlot(no2, col="hue") 

#type of color for correlation plots->“increment”, “heat”, “spectral”, “hue”, “greyscale” 

 

#NO 

no<-data.frame(merged$date, merged$NO_1,merged$NO_2,merged$NO_3,merged$NO_4, 

merged$NO_5, merged$NO_6, merged$NO_7, merged$NO_8, merged$NO_9, 

merged$NO_10) 

names(no) <- c("date", "NO_1", "NO_2","NO_3", "NO_4","NO_5", "NO_6", "NO_7",  

"NO_8", "NO_9","NO_10") 

corPlot(no, col="hue") 

 

#CO 

co<-data.frame(merged$date, merged$CO_1,merged$CO_2,merged$CO_3,merged$CO_4, 

merged$CO_5, merged$CO_6, merged$CO_7, merged$CO_8, merged$CO_9, 

merged$CO_10) 

names(co) <- c("date", "CO_1", "CO_2","CO_3", "CO_4","CO_5", "CO_6", "CO_7",  

"CO_8", "CO_9","CO_10") 

corPlot(co, col="hue") 

############################################################## 

timeVariation2(merged, c("NO2_2","NO2_3" ,"NO2_5", "NO2_6", "NO2_7", 

"NO2_8", "NO2_9","NO2_10"), ylab="", ci=FALSE, key.columns = 5) 

timeVariation(merged, c("NO_1", "NO_2","NO_3", "NO_4","NO_5", "NO_6", "NO_7",  
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"NO_8", "NO_9","NO_10"), ylab="", ci=F, key.columns = 5) 

timeVariation(merged, c("CO_1","CO_3", "CO_4","CO_5", "CO_7",  

"CO_8", "CO_9","CO_10"), ylab="", ci=F, key.columns = 5) 

######################################################################### 

## to find average of several columns  

 no2$NO2_mean<-rowMeans(subset(no2,select=c(NO2_2,NO2_3,NO2_5, NO2_6, NO2_7,  

NO2_8, NO2_9,NO2_10), na.rm = TRUE)) 

head(no2) 

timeVariation(no2, "NO2_mean") 

 no$NO_mean<-rowMeans(subset(no,select=c(NO_2,NO_3, NO_4,NO_5, NO_6, NO_7,  

NO_8, NO_9,NO_10), na.rm = TRUE)) 

head(no) 

timeVariation(no, "NO_mean", ci=T) 

co$CO_mean<-rowMeans(subset(co,select=c(CO_1, CO_2,CO_3, CO_4,CO_5, CO_6, 

CO_7,  

CO_8, CO_9,CO_10), na.rm = TRUE)) 

head(co) 

timeVariation(co, "CO_mean") 

########################################################################## 

mrg<-merge(temp2,dev, by="date", all=TRUE) 

head(mrg) 

## Devonshire Green Data 

dev<-importAURN(site = "shdg", year =2016:2017, pollutant = "all")  

dev2<-dev[,1:3]## to select only date, NO and NO2 

dev3<-dev[,c(1:3, 12, 13)]## to select date, NO, NO2, ws, and wd 

names(dev2)<-c("date", "NO", "NO2") 

names(dev3)<-c("date", "NO", "NO2", "ws","wd") 

dev2$NO2<-(dev2$NO2/1.88) 

dev2$NO<-(dev2$NO/1.25) 

dev3$NO2<-(dev3$NO2/1.88) 

dev3$NO<-(dev3$NO/1.25) 

dev4<-selectByDate(dev3, start = "2016/10/01", end = "2017/09/30") 

timePlot(dev4, c("NO_DG", "NO2_DG"), group=T) 

dev5<-subset(dev4, NO<200) 

timePlot(dev4, c("NO_DG", "NO2_DG"), group=T, ylab="NO and NO2 concentrations 

(ppb)", main="Devonshire Green") 

timeVariation(dev4, c("NO", "NO2"), ylab="", main="Devonshire Green") 

names(dev4)<-c("date", "NO_DG", "NO2_DG", "ws", "wd")##rename to be easily identified 

in big dataset 

dev_sensors<-merge(merged, dev4, by="date", all=TRUE) 

head(dev_sensors) 

nrow(dev_sensors) 

dev_sensors$NO_mean<-rowMeans(subset(dev_sensors,select=c(NO_3, NO_4,NO_5, 

NO_6, NO_7,  

NO_8, NO_9,NO_10), na.rm = TRUE)) 

dev_sensors$CO_mean<-rowMeans(subset(dev_sensors,select=c(CO_1, CO_2,CO_3, 

CO_4,CO_5, CO_6, CO_7,  

CO_8, CO_9,CO_10), na.rm = TRUE)) 

dev_sensors$NO2_mean<-rowMeans(subset(dev_sensors,select=c(NO2_2,NO2_3,NO2_5, 

NO2_6, NO2_7,  



221 

 

NO2_8, NO2_9,NO2_10), na.rm = TRUE)) 

names(dev_sensors) 

timePlot(dev_sensors, pollutant=c("NO_mean","NO2_mean", "NO_DG", "NO2_DG"), 

group=T, ylab="Concentrations (ppb)") 

timePlot(dev_sensors, pollutant=c("NO_mean","NO2_mean", "NO_DG", "NO2_DG"), 

group=F, ylab="Concentrations (ppb)") 

timeVariation2(dev_sensors, pollutant=c("NO_mean","NO2_mean", "NO_DG", 

"NO2_DG"), ylab="Concentrations (ppb)", ci=T) 

timeVariation(dev_sensors, pollutant=c("NO_DG", "NO2_DG"), ylab="Concentrations 

(ppb)", ci=T) 

h<-dev_sensors 

h<-subset(h, NO_DG>0&NO_DG<100)##removing some higher and lower values  

timeVariation(h, pollutant=c("NO_mean","NO2_mean", "NO_DG", "NO2_DG"), 

ylab="Concentrations (ppb)", ci=T) 

no<-subset(h, select=c(NO_1, NO_2,NO_3, NO_4, NO_5, NO_6, NO_7, NO_8, NO_9, 

NO_10)) 

no2<-subset(h, select=c(NO2_1, NO2_2,NO2_3, NO2_4, NO2_5, NO2_6, NO2_7, NO2_8, 

NO2_9, NO2_10)) 

corPlot(no) 

corPlot(no2) 

############################################################## 

NO2<-dev_sensors[,c(4,9,14,19,24,29,34,39,44, 49, 53, 58)] 

NO<-dev_sensors[, c(3,8,13,18,23,28,33,38,43,48,52,56)] 

names(NO)<-c("NO_1", "NO_2", "NO_3", "NO_4", "NO_5","NO_6", "NO_7", "NO_8", 

"NO_9", "NO_10", 

"NO_DG", "NO_mean") 

names(NO2)<-c("NO2_1", "NO2_2", "NO2_3", "NO2_4", "NO2_5","NO2_6", "NO2_7", 

"NO2_8", "NO2_9", "NO2_10", 

"NO2_DG", "NO2_mean") 

names(dev_sensors) 

corPlot(NO2, col="hue") 

corPlot(NO, col="hue") 

test<-dev_sensors[, c(52, 53, 56, 58)] 

corPlot(test) 

dev_sensors2<-dev_sensors[,c(-4,-8)]##to remove NO_2 and NO2_1 which have some bad 

data 

dev_sensors2$NO_mean<-rowMeans(subset(dev_sensors,select=c(no_1,no_3, no_4,no_5, 

no_6, no_7,  

no_8, no_9,no_10), na.rm = TRUE)) 

dev_sensors2$NO2_mean<-rowMeans(subset(dev_sensors,select=c(no2_2,no2_3, 

no2_4,no2_5, no2_6, no2_7,  

no2_8, no2_9,no2_10), na.rm = TRUE)) 

NO2<-dev_sensors[,c(9,14,19,24,29,34,39,44, 49, 53, 58)] 

NO<-dev_sensors[, c(3,13,18,23,28,33,38,43,48,52,56)] 

NO2$NO2_mean<-rowMeans(subset(NO2,select=c(no2_2,no2_3, no2_4,no2_5, no2_6, 

no2_7,  

no2_8, no2_9,no2_10), na.rm = TRUE)) 

 NO$NO_mean<-rowMeans(subset(NO,select=c(no_1, no_3, no_4,no_5, no_6, no_7,  

no_8, no_9,no_10), na.rm = TRUE)) 
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timePlot(dev_sensors, c("no_1", "no_3", "no_4","no_5", "no_6", "no_7", "no_8", 

"no_9","no_10")) 

corPlot(NO2) 

windows() 

corPlot(NO) 

names(dev_sensors2) 

test2<-dev_sensors2[, c(50, 51, 54, 56)] 

corPlot(test2) 

############################################################## 

#removing no_2 and no2_1 columns 

timePlot(dev_sensors, pollutant=c("NO_mean","NO2_mean", "NO_DG", "NO2_DG"), 

group=T, ylab="Concentrations (ppb)") 

timeVariation(dev_sensors, pollutant=c("NO_mean","NO2_mean", "NO_DG", "NO2_DG"), 

ylab="Concentrations (ppb)") 

test<-subset(dev_sensors, select=c("NO_mean","NO2_mean", "NO_DG", "NO2_DG")) 

corPlot(test) 

y17<-selectByDate(dev_sensors, year=2017)##to select only 2017 as Oct and Nov in2016 are 

eroneous  

test2<-subset(y17, select=c("NO_mean","NO2_mean", "NO_DG", "NO2_DG")) 

corPlot(test2) 

train2<-na.omit(train) 

cor<-cor(train2) 

print(cor, digits=2) 

cor2<-cor(train2, method="spearman") 

print(cor2, digits=2) 

############################################################# 

Linear Regression Model 

hello<-dev_sensors2[,50:58] 

names(hello)<- c("NO_DG", "NO2_DG", "ws", "wd", "NO_mean", 

"CO_mean","NO2_mean", "temp", "rh") 

#select randomly 75% training dataset and 25% testing dataset  

smp_size <- floor(0.75 * nrow(hello)) 

train_ind <- sample(seq_len(nrow(hello)), size = smp_size) 

train <- hello[train_ind, ] 

test <- hello[-train_ind, ] 

lm_no<-lm(NO_mean~NO_DG, data=train) 

p1<-predict(lm_no, newdata=test) 

test$p1<-p1 

modStats(test, mod="p1", obs="NO_mean") 

lm_no2<-lm(NO2_mean~NO2_DG, data=train) 

summary(lm_no2) 

no2p<-predict(lm_no2, newdata=test) 

test$no2p<-no2p 

modStats(test, mod="no2p", obs="NO2_mean") 

mlr<-lm(NO_mean~NO_DG+NO2_DG+NO2_mean+temp+ws+rh,data=train) 

p3<-predict(mlr, newdata=test) 

test$p3<-p3 

modStats(test, mod="p3", obs="NO_mean") 

mlr2<-lm(NO2_mean~NO_mean+NO_DG+NO2_DG+temp+ws+rh,data=train) 

p4<-predict(mlr2, newdata=test) 
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test$p4<-p4 

modStats(test, mod="p4", obs="NO2_mean") 

mlr3<-lm(NO_DG~NO_mean+NO2_DG+NO2_mean+temp+ws+rh,data=train) 

p5<-predict(mlr3, newdata=test) 

test$p5<-p5 

modStats(test, mod="p5", obs="NO_DG") 

mlr4<-lm(NO2_DG~NO_mean+NO_DG+NO2_mean+temp+ws+rh,data=train) 

p6<-predict(mlr4, newdata=test) 

test$p6<-p6 

modStats(test, mod="p6", obs="NO2_DG") 

scatterPlot(test, x="NO2_DG", y="p6", mod.line=T, ylab="Predicted NO2 (ppb)",  

xlab="Observed NO2_DG (ppb)", xlim=c(0, 70), main="MLRM") 

####################################################### 

r_gam<-c(0.41, 0.40, 0.55, 0.52, 0.84, 0.91) 

fac2_gam<-c(0.98,0.80,0.98,0.84,0.53,0.95) 

ioa_gam<-c(0.55,0.52,0.63,0.55,0.75,0.81) 

nmb_gam<-c(0.014,0.012,0.010,0.011,0.008,0.005) 

coe_gam<-c(0.101,0.048,0.633,0.097,0.50,0.614) 

r_lm<-c(0.43, 0.39,0.52,0.42,0.72,0.80) 

fac2_lm<-c(0.98,0.78,0.98,0.81,0.30,0.83) 

ioa_lm<-c(0.55,0.52,0.62,0.52,0.56,0.705) 

nmb_lm<-c(0.002,0.013,0.010,0.012,0.012,0.001) 

coe_lm<-c(0.103,0.047,0.24,0.049,0.123,0.411) 

gm<-data.frame(r_gam,fac2_gam, ioa_gam, nmb_gam, coe_gam) 

lm<-data.frame(r_lm, fac2_lm, ioa_lm, nmb_lm, coe_lm) 

plot(1:6, r_gam, col="blue", pch=2, ylim=c(0,1)) 

points(1:6, r_lm, col="red", pch=2) 

points(1:6, fac2_gam,col="blue", pch=3) 

points(1:6, fac2_lm,col="red", pch=3) 

######################################################### 

require(mgcv) 

set.seed(123)## set the seed to make your partition reproductible 

gam_no<-gam(NO_mean~s(NO_DG), data=train)#....(7) 

p7<-predict(gam_no, newdata=test) 

test$p7<-p7 

modStats(test, mod="p7", obs="NO_mean") 

gam_no2<-gam(NO2_mean~s(NO2_DG), data=train)#....(8) 

p8<-predict(gam_no2, newdata=test) 

test$p8<-p8 

modStats(test, mod="p8", obs="NO2_mean") 

gam<-

gam(NO_mean~s(NO_DG)+s(NO2_DG)+s(NO2_mean)+s(temp)+s(ws)+s(rh),data=train) 

p9<-predict(gam, newdata=test) 

test$p9<-p9 

modStats(test, mod="p9", obs="NO_mean") 

gam2<-

gam(NO2_mean~s(NO_DG)+s(NO2_DG)+s(NO_mean)+s(temp)+s(ws)+s(rh),data=train) 

p10<-predict(gam2, newdata=test) 

test$p10<-p10 

modStats(test, mod="p10", obs="NO2_mean") 
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gam3<-

gam(NO_DG~s(NO2_mean)+s(NO2_DG)+s(NO_mean)+s(temp)+s(ws)+s(rh),data=train) 

p11<-predict(gam3, newdata=test) 

test$p11<-p11 

modStats(test, mod="p11", obs="NO_DG") 

gam4<-

gam(NO2_DG~s(NO2_mean)+s(NO_DG)+s(NO_mean)+s(temp)+s(ws)+s(rh),data=train) 

p12<-predict(gam4, newdata=test) 

test$p12<-p12 

modStats(test, mod="p12", obs="NO2_DG") 

plot(gam4, page=1, ylab="NO2_DG conc. (ppb)") 

scatterPlot(test, x="NO2_DG", y="p12", mod.line=T, ylab="Predicted NO2 (ppb)",  

xlab="Observed NO2_DG (ppb)", main="GAM", xlim=c(0, 70), ylim=c(0, 60), col="blue") 

summary(gam4) 

###################################################################### 

temp<-subset(dev_sensors, select=c("temp_1", "temp_2", "temp_3", "temp_4", "temp_5", 

"temp_6",  

"temp_7", "temp_8", "temp_9", "temp_10")) 

temp$temp_mean<-apply(temp, 1, mean) 

dev_sensors$temp_mean<-temp$temp_mean 

dev_sensors2$temp_mean<-temp$temp_mean 

rh<-subset(dev_sensors, select=c("rh_1", "rh_2", "rh_3", "rh_4", "rh_5", "rh_6",  

"rh_7", "rh_8", "rh_9", "rh_10")) 

rh$rh_mean<-apply(rh, 1, mean) 

dev_sensors$rh_mean<-rh$rh_mean 

dev_sensors2$rh_mean<-rh$rh_mean 

data_all<-merge(merged2, dev5, by="date", all=TRUE) 

dev_sensors$ws<-data_all$ws 

dev_sensors$pm2.5<-data_all$pm2.5 

dev_sensors$o3<-data_all$o3 

dev_sensors$wd<-data_all$wd 

###################################### 

smooth = FALSE, spline = FALSE, linear = FALSE 

method=“hexbin” 

scatterPlot(dev_sensors, y="NO2_DG", x="NO2_mean", mod.line=T) 

scatterPlot(dev_sensors, y="NO2_DG", x="NO2_mean", method="hexbin") 

scatterPlot(dev_sensors, y="NO2_DG", x="NO2_mean", linear=T) 

scatterPlot(dev_sensors, y="NO_DG", x="NO_mean", method="hexbin") 

scatterPlot(dev_sensors, y="NO_DG", x="NO_mean", linear=T) 

calendarPlot(dev_sensors, pollutant = "NO2_mean", year=2017) 

calendarPlot(dev_sensors, pollutant = "NO2_mean", year=2016) 

calendarPlot(dev_sensors, pollutant = "CO_mean", year=2017) 

calendarPlot(dev_sensors, pollutant = "CO_mean", year=2016) 

########################################################### 

polarPlot(dev_sensors2, "NO") 

polarPlot(dev_sensors2, "NO2") 

polarPlot(dev_sensors2, "NO2",type="rh_mean") 

polarPlot(dev_sensors2, "NO",type="rh_mean") 

polarPlot(dev_sensors2, "NO2", type="temp_mean") 

polarPlot(dev_sensors2, "NO", type="temp_mean") 
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hello<-subset(dev_sensors2, select=c("NO", "NO2", "NO_mean", "NO2_mean")) 

corPlot(hello) 

###################################################################### 

tinsely<-importAURN(site = "she", year =2017, pollutant = c("no", "no2"))  

tinsely2<-subset(tinsely,no>0&no<1000) 

tinsely3<-subset(tinsely2,no2>0&no2<400) 

tinsely3$no2<-(tinsely3$no2/1.88) 

tinsely3$no<-(tinsely3$no/1.25) 

timePlot(tinsely3, c( "no","no2"), group=T) 

TheilSen(tinsely3, pollutant = "no2", ylab = "NO2 (ppb)") 

TheilSen(tinsely3, pollutant = "no", ylab = "NO (ppb)") 

statistic = "percentile" 

percentile = c(5, 50, 95) 

smoothTrend(tinsely3, pollutant = "no2", ylab = "NO2 concentration (ppb)",statistic = 

"percentile", 

percentile = c(25, 50, 75, 99)) 

smoothTrend(tinsely3, pollutant = "no", ylab = "NO concentration (ppb)",statistic = 

"percentile", 

percentile = c(25, 50, 75, 99)) 

names(tinsely3)<-c("date", "NO", "NO2", "site", "code", ) 

names(tinsely3) 

timeVariation(tinsely3, c("NO", "NO2"), ylab="Concentrations (ppb)", normalise=T) 

########################################################################### 

require(leaps) 

train2<-na.omit(train) 

preds<-subset(train2, select=c("NO_mean", "NO_DG", "NO2_mean", "temp", "ws", "rh")) 

a1<-regsubsets(preds, NO2_DG) 

NO2_DG<-train2$NO2_DG 

summary(a1) 

head(train) 

x2<-leaps(preds, NO2_DG, nbest=1, method="r2") 

plot(x2$size-1, x2$r2, xlab="NO. of predictors", ylab="R2") 

lines(spline(x2$size-1, x2$r2)) 

tt<-na.omit(dev_sensors) 

NO2<-tt$NO2_DG 

preds2<-subset(tt, select=c("no_1","no_2","no_3", "no_4", "no_5", "no_6", "no_7", "no_8", 

"no_9", "no_10","no2_1","no2_2","no2_3", "no2_4", "no2_5", "no2_6", "no2_7", "no2_8", 

"no2_9", "no2_10", "ws", "temp_mean","rh_mean"))  

x3<-leaps(preds2, NO2, nbest=1, method="r2") 

labels(preds2[1,]) 

preds3<-subset(tt, select=c("NO_mean", "NO2_mean","NO_DG", "ws", 

"temp_mean","rh_mean")) 

x4<-leaps(preds3, NO2, nbest=1, method="r2") 

plot(x4$size-1, x4$r2, xlab="NO. of predictors", ylab="R2") 

lines(spline(x4$size-1, x4$r2)) 

windows() 

preds4<-subset(tt, select=c("NO_mean", "NO2_mean","NO_DG", "ws", "temp_mean")) 

x5<-leaps(preds4, NO2, nbest=1, method="r2") 

plot(x5$size-1, x5$r2, xlab="NO. of predictors", ylab="R2") 

lines(spline(x5$size-1, x5$r2)) 
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labels(preds4[1,]) 

###adjR2 

preds2<-subset(tt, select=c("no_1","no_2","no_3", "no_4", "no_5", "no_6", "no_7", "no_8", 

"no_9", "no_10","no2_1","no2_2","no2_3", "no2_4", "no2_5", "no2_6", "no2_7", "no2_8", 

"no2_9", "no2_10", "ws", "temp_mean","rh_mean", "NO_DG", "NO_mean"))  

x3<-leaps(preds2, NO2, nbest=1, method="adjr2") 

plot(x3$size-1, x3$adjr2, xlab="NO. of predictors", ylab="adjR2") 

lines(spline(x3$size-1, x3$adjr2)) 

labels(preds2[1,]) 

preds3<-subset(tt, select=c("NO_mean", "NO2_mean","NO_DG", "ws", 

"temp_mean","rh_mean")) 

x4<-leaps(preds3, NO2, nbest=1, method="adjr2") 

plot(x4$size-1, x4$adjr2, xlab="NO. of predictors", ylab="adjR2") 

lines(spline(x4$size-1, x4$adjr2)) 

windows() 

preds4<-subset(tt, select=c("NO_mean", "NO2_mean","NO_DG", "ws", "temp_mean")) 

x5<-leaps(preds4, NO2, nbest=1, method="adjr2") 

plot(x5$size-1, x5$adjr2, xlab="NO. of predictors", ylab="adjR2") 

lines(spline(x5$size-1, x5$adjr2)) 

labels(preds4[1,]) 

x5$which[which.max(x5$adjr2),] 

timeVariation2<-fix(timeVariation) 

timeVariation2(dev_sensors, pollutant=c("NO_mean","NO2_mean", "NO_DG", 

"NO2_DG"), ylab="Concentrations (ppb)", ci=T) 

timeVariation(dev_sensors, pollutant=c("NO_DG", "NO2_DG"), ylab="Concentrations 

(ppb)", ci=T) 

########################################################################### 

boxplot(no2[,c(-1, -12)], ylab="Concentrations (ppb)", xlab="Pollutants", ylim=c(0, 50)) 

boxplot(no[,c(-1, -12)], ylab="Concentrations (ppb)", xlab="Pollutants", ylim=c(0, 50)) 

boxplot(test, ylim=c(0, 150)) 

test2<-subset(test, test$NO_DG<60) 

boxplot(test2, ylab="Concentrations (ppb)") 

 

 

2. R Code for Chapter 6: Land Use Regression Model  

 

#require(arcgisbinding)#for bridging r and arcGIS 

#arc.check_product() 

require(openair)#for corPlot and other visualisation 

library(dplyr)#for renaming and selecting random sample 

library(tidyverse)# for easy data manipulation and visualization 

library(caret)# for easy machine learning workflow 

library(leaps)# for computing stepwise regression 

library(MASS) 

#ozone.path <- system.file("extdata", "ca_ozone_pts.shp", 

#                         package="arcgisbinding") 

#ozone.arc.dataset <- arc.open(ozone.path) 
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##################################################################### 

#Using Diffusion tubes data only 

dt<-read.csv("C:/Users/ci17sm/Desktop/AQdata2020/DTVar_selected157_CSV.csv") 

names(dt) 

dt<-dt[,-6]##to remove bus stops as it has only few observations 

#dt<-dt[,c(-5,-12)] 

(n<-nrow(dt))#157 

#75% 

set.seed(0000) 

(n75<-157*0.75)#118 rows 

(n25<-157*0.25)#39 rows 

train<-sample_n(dt,118) 

test<-sample_n(dt,39) 

lmtrain<-lm(NO2Conc~., data=train) 

summary(lmtrain)#R-squared 0.46 and adjusted R-squared 0.36 

pred_train<-predict(lmtrain) 

train$pred_train<-pred_train 

modStats(train, obs="NO2Conc", mod="pred_train") 

scatterPlot(train, x="NO2Conc", y="pred_train", mod.line=T,ylab="Predicted NO2",  

xlab="Measured NO2", xlim=c(0,60), ylim=c(0,60), main="LRM_Train") 

 

#Stepwise regression 

step.lmtrain <- stepAIC(lmtrain, direction = "both", trace = FALSE) 

summary(step.lmtrain)##R-squared 0.45, adjusted R-squared 0.41 

pred_swtrain<-predict(step.lmtrain) 

train$pred_swtrain<-pred_swtrain 

windows() 

scatterPlot(train, x="NO2Conc", y="pred_swtrain", mod.line=T,ylab="Predicted 

NO2",  

xlab="Measured NO2", xlim=c(0,60), ylim=c(0,60), main="LM_Train_DT") 

modStats(train, obs="NO2Conc", mod="pred_swtrain") 

pred_swtest<-predict(step.lmtrain, newdata=test) 

test$pred_swtest<-pred_swtest 

windows() 

scatterPlot(test, x="NO2Conc", y="pred_swtest", mod.line=T,ylab="Predicted NO2",  

xlab="Measured NO2", xlim=c(0,60), ylim=c(0,60), main="LM_Test_DT") 

modStats(test, obs="NO2Conc", mod="pred_swtest") 

 plot(train$NO2Conc, type="l") 

points(train$pred_swtrain, col="blue", type="l") 

plot(test$NO2Conc, type="l") 

points(test$pred_swtest, col="blue", type="l") 

########################################################################### 

##Using Low_Cost Sensors data only 

lcs<-read.csv("C:/Users/ci17sm/Desktop/AQdata2020/LCS_LURVriables_CSV.csv") 

lcs<-lcs[,-6]##remove bus stops, as it has very few data points 

lcs$NO2Conc<-lcs$NO2Conc*1.91 

lmlcs<-lm(NO2Conc~.,data=lcs) 

summary(lmlcs) 

step.lmlcs <- stepAIC(lmlcs, direction = "both",  

                    trace = FALSE) 
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summary(step.lmlcs) 

set.seed(1234) 

(n75<-40*0.75)#30 

(n25<-40*0.25)#10 

trainlcs<-sample_n(lcs,30) 

testlcs<-sample_n(lcs,10) 

lmtrainlcs<-lm(NO2Conc~Dist_MajRd+Dist_Comer+Dist_Resi+Altitude+Dist_Mway, 

data=trainlcs) 

lmtrainlcs2<-lm(NO2Conc~., data=trainlcs) 

summary(lmtrainlcs2) 

step.lmtrainlcs <- stepAIC(lmtrainlcs2, direction = "both",  

                    trace = FALSE) 

summary(step.lmtrainlcs) 

summary(lmtrainlcs2)#R-squared 0.30 and adjusted R-squared 0.15 

pred_trainlcs<-predict(lmtrainlcs) 

trainlcs$pred_trainlcs<-pred_trainlcs 

modStats(trainlcs, obs="NO2Conc", mod="pred_trainlcs") 

scatterPlot(trainlcs, x="NO2Conc", y="pred_trainlcs", mod.line=T,ylab="Predicted 

NO2",  

xlab="Measured NO2", xlim=c(0,70), ylim=c(0,70), main="LRM_Train_LCS") 

pred_testlcs<-predict(lmtrainlcs, newdata=testlcs) 

testlcs$pred_testlcs<-pred_testlcs 

modStats(testlcs, obs="NO2Conc", mod="pred_testlcs") 

scatterPlot(testlcs, x="NO2Conc", y="pred_testlcs", mod.line=T,ylab="Predicted 

NO2",  

xlab="Measured NO2", xlim=c(0,90), ylim=c(0,90), main="LRM_Test_LCS") 

#Stepwise regression 

#step.lmtrainlcs <- stepAIC(lmtrainlcs, direction = "both",  

#                     trace = FALSE) 

#summary(step.lmtrainlcs)##R-squared 0.89, adjusted R-squared 0.78 

#pred_swtrainlcs<-predict(step.lmtrainlcs) 

#trainlcs$pred_swtrainlcs<-pred_swtrainlcs 

#windows() 

#scatterPlot(trainlcs, x="NO2Conc", y="pred_swtrainlcs", mod.line=T,ylab="Predicted 

NO2",  

#xlab="Measured NO2", xlim=c(0,90), ylim=c(0,90), main="Stepwise_Train_LCS") 

#modStats(trainlcs, obs="NO2Conc", mod="pred_swtrainlcs") 

#pred_swtestlcs<-predict(step.lmtrainlcs, newdata=testlcs) 

#testlcs$pred_swtestlcs<-pred_swtestlcs 

windows() 

#scatterPlot(testlcs, x="NO2Conc", y="pred_swtestlcs", mod.line=T,ylab="Predicted 

NO2",  

#xlab="Measured NO2", xlim=c(0,150), ylim=c(0,150), 

main="Stepwise_Test_LCS") 

#write.csv(testlcs,"testlcs.csv") 

testlcs2<-read.csv("C:/Users/ci17sm/Desktop/AQdata2020/testlcs.csv") 

scatterPlot(testlcs2, x="NO2Conc", y="pred_swtestlcs", mod.line=T,ylab="Predicted 

NO2",  

xlab="Measured NO2", xlim=c(0,100), ylim=c(0,100), main="Stepwise_Test_LCS") 

########################################################################### 
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#using both diffusion tubes and sensors data 

dtlcs<-

read.csv("C:/Users/ci17sm/Desktop/AQdata2020/NO2_Variables(100x100)_CSV.csv") 

names(dtlcs) 

(n<-nrow(dtlcs))#188 

#75% 

(n75<-188*0.75)#141 rows 

(n25<-188*0.25)#47 rows 

traindtlcs<-sample_n(dtlcs,141) 

testdtlcs<-sample_n(dtlcs,47) 

lmdtlcs<-lm(NO2Conc~.,data=traindtlcs) 

summary(lmdtlcs)#r-squared 0.31, adj r-squred0.18 

step.lmdtlcs <- stepAIC(lmdtlcs, direction = "both", trace = FALSE) 

summary(step.lmdtlcs)##R-squared 0.27, adjusted R-squared 0.23 

pred_traindtlcs<-predict(step.lmdtlcs) 

traindtlcs$pred_traindtlcs<-pred_traindtlcs 

scatterPlot(traindtlcs, x="NO2Conc", y="pred_traindtlcs", mod.line=T,ylab="Predicted 

NO2",  

xlab="Measured NO2", xlim=c(0,70), ylim=c(0,70), 

main="Stepwise_Train_DTLCS") 

modStats(traindtlcs, obs="NO2Conc", mod="pred_traindtlcs") 

pred_testdtlcs<-predict(step.lmdtlcs, newdata=testdtlcs) 

testdtlcs$pred_testdtlcs<-pred_testdtlcs 

scatterPlot(testdtlcs, x="NO2Conc", y="pred_testdtlcs", mod.line=T,ylab="Predicted 

NO2",  

xlab="Measured NO2", xlim=c(0,70), ylim=c(0,70), main="Stepwise_Test_DTLCS") 

modStats(testdtlcs, obs="NO2Conc", mod="pred_testdtlcs") 

########################################################################### 

#Generalised additive modelling  

########################################################################## 

require(mgcv) 

require(sp) 

dt<-read.csv("C:/Users/ci17sm/Desktop/AQdata2020/DTVar_selected157_CSV.csv") 

dt<-dt[,-6]##to remove bus stops as it has only few observations 

#dt<-dt[,c(-5,-12)] 

(n<-nrow(dt))#157 

gmdt<-gam(NO2Conc~s(Building)+s(Dist_Bstop)+s(Dist_MajRd)+s(Dist_MinRd)+ 

s(Residential)+s(Commercial)+s(Altitude),data=dt) 

summary(gmtrain) 

plot(gmtrain) 

dt2<-subset(dt, 

select=c("NO2Conc","Building","Dist_Bstop","Dist_MajRd","Dist_MinRd", 

"Residential","Commercial","Altitude")) 

corPlot(dt2) 

gm<-gam(NO2Conc~s(Dist_MajRd), data=dt) 

gm2<-gam(NO2Conc~s(Altitude), data=dt) 

gm3<-gam(NO2Conc~s(Residential), data=dt) 

dt3<-subset(dt2,Dist_Bstop<150) 

gm4<-gam(NO2Conc~s(Dist_Bstop), data=dt) 

plot(gm4) 
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#75% 

(n75<-157*0.75)#118 rows 

(n25<-157*0.25)#39 rows 

set.seed(0000) 

train<-sample_n(dt,118) 

test<-sample_n(dt,39) 

##in the model using output of stepwise reg model 

gmtrain<-

gam(NO2Conc~s(Building)+s(Dist_Bstop)+s(Dist_MajRd)+s(Dist_MinRd)+ 

s(Residential)+s(Commercial)+s(Altitude),data=train) 

summary(gmtrain) 

plot(gmtrain) 

pred_gmtrain<-predict(gmtrain) 

train$pred_gmtrain<-pred_gmtrain 

modStats(train, obs="NO2Conc", mod="pred_gmtrain") 

scatterPlot(train, x="NO2Conc", y="pred_gmtrain", mod.line=T,ylab="Predicted 

NO2",  

xlab="Measured NO2", xlim=c(0,60), ylim=c(0,60), main="GAM_Train_DT") 

pred_gmtest<-predict(gmtrain, newdata=test) 

test$pred_gmtest<-pred_gmtest 

windows() 

scatterPlot(test, x="NO2Conc", y="pred_gmtest", mod.line=T,ylab="Predicted NO2",  

xlab="Measured NO2", xlim=c(0,60), ylim=c(0,60), main="GAM_Test_DT") 

modStats(test, obs="NO2Conc", mod="pred_gmtest") 

griddata<-read.csv("C:/Users/ci17sm/Desktop/AQdata2020/grid_37605.csv") 

pred_gmgrid<-predict(gmtrain, newdata=griddata) 

names(griddata) 

griddata$pred_gmNO2dt<-pred_gmgrid 

write.csv(griddata, "griddata.csv") 

#this data is uploaded into arcGIS (and join into a polygon layer)to map it on 

Sheffield area 

########################################################################### 

##Using Low_Cost Sensors data only 

lcs<-read.csv("C:/Users/ci17sm/Desktop/AQdata2020/LCS_LURVriables_CSV.csv") 

lcs<-lcs[,-6]##remove bus stops, as it has very few data points 

lcs$NO2Conc<-lcs$NO2Conc*1.91##convert into ug/m3 

#step.lmlcs <- stepAIC(lmlcs2, direction = "both",  

#                     trace = FALSE) 

#summary(step.lmlcs) 

#summary(lmlcs) 

#lcs<-lcs[,c(-5,-12)] 

#(n<-nrow(lcs))#40 

#75% 

set.seed(1234) 

(n75<-40*0.75)#30 

(n25<-40*0.25)#10 

trainlcs<-sample_n(lcs,30) 

testlcs<-sample_n(lcs,10) 

set.seed(1234) 
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gmtrainlcs<-gam(NO2Conc~s(Dist_MajRd)+s(Dist_Comer)+s(Altitude), 

data=trainlcs) 

summary(gmtrainlcs)#adjusted R-squared 0.66, deviance explained 79.6% 

pred_gmtrainlcs<-predict(gmtrainlcs) 

trainlcs$pred_gmtrainlcs<-pred_gmtrainlcs 

modStats(trainlcs, obs="NO2Conc", mod="pred_gmtrainlcs") 

scatterPlot(trainlcs, x="NO2Conc", y="pred_trainlcs", mod.line=T,ylab="Predicted 

NO2",  

xlab="Measured NO2", xlim=c(0,70), ylim=c(0,70), main="GAM_Train_LCS") 

pred_gmtestlcs<-predict(gmtrainlcs, newdata=testlcs) 

testlcs$pred_gmtestlcs<-pred_gmtestlcs 

modStats(testlcs, obs="NO2Conc", mod="pred_gmtestlcs") 

scatterPlot(testlcs, x="NO2Conc", y="pred_gmtestlcs", mod.line=T,ylab="Predicted 

NO2",  

xlab="Measured NO2", xlim=c(0,90), ylim=c(0,90), main="GAM_Test_LCS") 

griddata<-read.csv("C:/Users/ci17sm/Desktop/AQdata2020/grid_37605.csv") 

pred_gmlcsgrid<-predict(gmtrainlcs, newdata=griddata) 

names(griddata) 

griddata$pred_gmNO2lcs<-pred_gmlcsgrid 

write.csv(griddata, "griddata2.csv") 

########################################################################### 

#using both diffusion tubes and sensors data 

dtlcs<-

read.csv("C:/Users/ci17sm/Desktop/AQdata2020/NO2_Variables(100x100)_CSV.csv") 

names(dtlcs) 

(n<-nrow(dtlcs))#188 

#75% 

(n75<-188*0.75)#141 rows 

(n25<-188*0.25)#47 rows 

set.seed(2222) 

traindtlcs<-sample_n(dtlcs,141) 

testdtlcs<-sample_n(dtlcs,47) 

#gmtraindtlcs<-gam(NO2Conc~s(MajRd)+s(MinorRd)+s(Dist_Mway)+s(Industrial)+ 

#s(Pop_num)+s(Dist_MajRd)+s(Commercial)+ 

s(Dist_Parks)+s(Dist_Comer)+s(Dist_Resi)+s(Altitude)+s(Dist_Bstop),  

#data=traindtlcs) 

#summary(gmtraindtlcs) 

gmtraindtlcs<-gam(NO2Conc~s(Industrial)+s(Pop_num)+s(Dist_MajRd)+s(Commercial)+ 

s(Dist_Parks)+s(Dist_Comer)+s(Dist_Resi)+s(Altitude), data=traindtlcs) 

summary(gmtraindtlcs) 

pred_gmtraindtlcs<-predict(gmtraindtlcs) 

traindtlcs$pred_gmtraindtlcs<-pred_gmtraindtlcs 

scatterPlot(traindtlcs, x="NO2Conc", y="pred_gmtraindtlcs", mod.line=T,ylab="Predicted 

NO2",  

xlab="Measured NO2", xlim=c(0,70), ylim=c(0,70), main="GAM_Train_DTLCS") 

modStats(traindtlcs, obs="NO2Conc", mod="pred_gmtraindtlcs") 

pred_gmtestdtlcs<-predict(gmtraindtlcs, newdata=testdtlcs) 

testdtlcs$pred_gmtestdtlcs<-pred_gmtestdtlcs 

scatterPlot(testdtlcs, x="NO2Conc", y="pred_gmtestdtlcs", mod.line=T,ylab="Predicted 

NO2",  
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xlab="Measured NO2", xlim=c(0,70), ylim=c(0,70), main="GAM_Test_DTLCS") 

modStats(testdtlcs, obs="NO2Conc", mod="pred_gmtestdtlcs") 

pred_gmdtlcsgrid<-predict(gmtraindtlcs, newdata=griddata) 

names(griddata) 

griddata$pred_gmNO2dtlcs<-pred_gmdtlcsgrid 

write.csv(griddata, "griddata_dtlcs.csv") 

path2<-"C:/Users/ci17sm/Documents/ArcGIS/Default.gdb/Join_Output_2" 

d2<-arc.open(path2) 

data100<-arc.select(object=d2,fields=c("POINT_X", "POINT_Y", 

"RASTERVALU","MajRd", "MinorRd","Building","Avg_No2Con", 

"Industrial", 

"Parks","Bus_Stops","St_Interse","Pop_num","Dist_MajRd","Dist_MinRd","Residentia","Co

mmercial")) 

names(dr2) 

dr2<-dr %>% rename(NO2Conc=Avg_No2Con, Easting=POINT_X, Northing=POINT_Y, 

Altitude=RASTERVALU, 

Residential=Residentia,St_Intersect=St_Interse)#change names of NO2Conc etc 

names(dr2) 

dr3<-arc.select(object=d) 

names(dr3) 

dr4<-dr3 %>% rename(ID=OBJECTID,ID_1=OBJECTID_1,uid=UID, 

easting=POINT_X,northing=POINT_Y, 

UnID=UniqID,altitude=RASTERVALU,Easting2=Avg_Eastin, 

Northing2=Avg_Northi, NO2Conc=Avg_No2Con, 

Majln100=Avg_MajLn1,MajLn200=Avg_MajLn2, MajLn300=Avg_MajLn3, 

MajLn500=Avg_MajLn5, 

MinLn100=Avg_MinLn1,MinLn200=Avg_MinLn2,MinLn300=Avg_MinLn3, 

MinLn500=Avg_MinLn5, StInt100=Avg_StInt1, 

StInt200=Avg_StInt2, StInt300=Avg_StInt3, StInt500=Avg_StInt5, 

BusStp100=Avg_BusStp,  

BusStp200=Avg_BusS_1,BusStp300=Avg_BusS_2,BusStp500=Avg_BusS_3, 

AADT100=Avg_AADT10,  

AADT200=Avg_AADT20,AADT300=Avg_AADT30,AADT500=Avg_AADT50,Re

s100=Avg_ResAr1,Res200=Avg_ResAr2, 

Res300=Avg_ResAr3, Res500=Avg_ResAr5, Ind100=Avg_IndAr1, 

Ind200=Avg_IndAr2,Ind300=Avg_IndAr3, 

Ind500=Avg_IndAr5, Com100=Avg_ComAr1, Com200=Avg_ComAr2, 

Com300=Avg_ComAr3,Com500=Avg_ComAr5, 

Park100=Avg_ParkAr,Park200=Avg_Park_1,Park300=Avg_Park_2,Park500=Avg_P

ark_3,Wood100=Avg_WoodAr, 

Wood200=Avg_Wood_1,Wood300=Avg_Wood_2, 

Wood500=Avg_Wood_3,Pop100=Avg_PopNum,Pop200=Avg_PopN_1, 

Pop300=Avg_PopN_2,Pop500=Avg_PopN_3,Build100=Avg_BuilAr, 

Build200=Avg_Buil_1,Build300=Avg_Buil_2, 

Build500=Avg_Buil_3, Altitude=Avg_Altitu, DisTrain=Avg_DisTra, 

DisBus=Avg_DisBus, TramID=Avg_Tram_I, 

TramDist=Avg_DisT_1) 

dr5<-dr4[,21:72] 

lm2<-lm(NO2Conc~.,data=dr5) 

step.model2 <- stepAIC(lm2, direction = "both",  trace = FALSE) 
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summary(step.model2) 

lm3<lm(NO2Conc~MajLn500+MinLn200+BusStp200+Ind200+Com300+Park100+Build20

0+Altitude, data=dr5)    

path<-"C:/Users/ci17sm/Documents/ArcGIS/Default.gdb/Join_Outputs_2_Selection" 

d<-arc.open(path) 

dr<-arc.select(object=d,fields=c("POINT_X", "POINT_Y", 

"RASTERVALU","MajRd", 

"MinorRd","Building","Avg_No2Con","Industrial","Parks","Bus_Stops","St_Interse","Pop_n

um","Dist_MajRd","Dist_MinRd","Residentia","Commercial")) 

names(dr) 

dr2<-dr %>% rename(NO2Conc=Avg_No2Con, Easting=POINT_X, 

Northing=POINT_Y, Altitude=RASTERVALU, 

Residential=Residentia,St_Intersect=St_Interse)#change names of NO2Conc etc 

names(dr2) 

corPlot(dr2) 

 

 

3.  R Code for Chapter 7: Data fusion  

 

#how to make meuse_grid from meuse data 

#You can examine the fitted values for the variogram with the "summary()" function.  

#The sill is the "Mean" value of the "psill" values while the nugget is the "Min"  

#of the "psill". The range is in the "Mean" value for the "range". 

require(gstat) 

library(sp) 

require(automap) 

data(meuse) 

coordinates(meuse) = ~x+y 

meuse_grid = spsample(meuse, type = "regular", cellsize = c(40,40)) 

gridded(meuse_grid) = TRUE 

plot(meuse_grid) 

data(meuse.grid) 

gridded(meuse.grid) = ~x+y 

gridded(meuse_grid) = ~x+y  

meuse_grid2 = spsample(meuse, type = "regular", cellsize = c(100,100)) 

gridded(meuse_grid) = TRUE 

plot(meuse_grid2) 

head(meuse) 

nrow(meuse) 

plot(meuse$x, meuse$y) 

#################################### 

#sheffield example  

#aq<-read.csv(file.choose(), header=T) 

aq<-read.csv("C:/Users/ci17sm/Documents/AQ Data/2020/croppedAirviro.csv") 

aq2<-subset(aq,select=c("x","y", "Altitude", "NO2_AV", "NO2_msrd")) 

gridded(aq2) = ~x+y 

names(aq2)<-c("x", "y","altitude","no2av","no2msrd") 
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names(aq2) 

aq3<-subset(aq2, no2msrd>0)##remove rows having "zero" value 

aq4<-subset(aq2, no2msrd<10) 

aq4_grid<-read.csv("C:/Users/ci17sm/Documents/AQ Data/2020/croppedAirviro_grid.csv") 

gridded(aq4_grid) = ~x+y 

coordinates(aq3) = ~x+y 

#aq_grid = spsample(aq3, type = "regular", cellsize = c(100,100)) 

#gridded(aq_grid) = TRUE 

#plot(aq_grid) 

plot(aq3$x, aq3$y, xlab="Easting", ylab="Northing") 

 

kriging_result = autoKrige(no2msrd~1, aq3)#works 

plot(kriging_result)#works 

kriging_result2 = autoKrige(no2msrd~no2av+altitude, aq3, aq4_grid)## 

plot(kriging_result2) 

print(kriging_result2) 

names(kriging_result2) 

kr<-kriging_result2## 

names(kr)#krige_output, exp_var, var_mod,sserr 

names(kr$krige_output) 

p<-kr$krige_output$var1.pred 

aq4_grid$pred<-p 

###################################################################### 

kriging_result3 = autoKrige(no2msrd~no2av, aq3, aq2)## 

plot(kriging_result3) 

print(kriging_result3) 

names(kriging_result3) 

kr2<-kriging_result3 

names(kr)#krige_output, exp_var, var_mod,sserr 

names(kr2$krige_output) 

p2<-kr2$krige_output$var1.pred 

aq2$pred<-p2 

write.csv(aq2, "aq2.csv") 

############################################################## 

#Variogram using automap 

data(meuse) 

coordinates(meuse) =~ x+y 

variogram = autofitVariogram(no2msrd~1,aq3) 

plot(variogram) 

variogram2 = autofitVariogram(no2msrd ~ no2av + altitude, aq3) 

plot(variogram2) 

################################################# 

aq<-read.csv("C:/Users/ci17sm/Documents/AQ 

Data/2020/DT_DTLCS_LCS_AV_LUR.csv") 

names(aq) 

aq2<-subset(aq, NO2DT>0)##remove rows having "zero" value to de used as a training 

dataset 

##aq will be used as testing dataset, which contain the testing dataset as well 

coordinates(aq2) = ~x+y 

gridded(aq) = ~x+y 
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kr = autoKrige(NO2DT~NO2AV, aq2, aq)## 

plot(kr) 

print(kr) 

names(kr) 

names(kr)#krige_output, exp_var, var_mod,sserr 

names(kr$krige_output) 

p<-kr$krige_output$var1.pred 

aq$pred_AVDT<-p 

write.csv(aq, "aq_AVDT.csv") 

####################################### 

aq<-read.csv("C:/Users/ci17sm/Documents/AQ 

Data/2020/DT_DTLCS_LCS_AV_LUR.csv") 

names(aq) 

aq3<-subset(aq, NO2LCS>0)##remove rows having "zero" value to de used as a training 

dataset 

##aq will be used as testing dataset, which contain the testing dataset as well 

coordinates(aq3) = ~x+y 

gridded(aq) = ~x+y 

kr2 = autoKrige(NO2LCS~NO2AV, aq3, aq)## 

plot(kr2) 

print(kr2) 

names(kr2)#krige_output, exp_var, var_mod,sserr 

names(kr2$krige_output) 

p2<-kr2$krige_output$var1.pred 

aq$pred_AVLCS<-p2 

write.csv(aq, "aq_AVLCS.csv") 

################################################ 

aq<-read.csv("C:/Users/ci17sm/Documents/AQ 

Data/2020/DT_DTLCS_LCS_AV_LUR.csv") 

names(aq) 

aq4<-subset(aq, NO2DT>0)##remove rows having "zero" value to de used as a training 

dataset 

##aq will be used as testing dataset, which contain the testing dataset as well 

coordinates(aq3) = ~x+y 

gridded(aq) = ~x+y 

kr3 = autoKrige(NO2DT~NO2GAM, aq4, aq)## 

plot(kr3) 

print(kr3) 

names(kr3)#krige_output, exp_var, var_mod,sserr 

names(kr3$krige_output) 

p3<-kr3$krige_output$var1.pred 

aq$pred_lurdt<-p3 

write.csv(aq, "aq_lurdt.csv") 

##################################################### 

kr4 = autoKrige(NO2LCS~NO2GAM, aq3, aq)## 

plot(kr4) 

print(kr4) 

names(kr4)#krige_output, exp_var, var_mod,sserr 

names(kr4$krige_output) 

p4<-kr4$krige_output$var1.pred 
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aq$pred_lurlcs<-p4 

write.csv(aq, "aq_lurlcs.csv") 

################################### 

aq5<-subset(aq, NO2LCSDT>0) 

kr5 = autoKrige(NO2LCSDT~NO2GAM, aq5, aq)## 

plot(kr5) 

print(kr5) 

names(kr5)#krige_output, exp_var, var_mod,sserr 

names(kr4$krige_output) 

p5<-kr4$krige_output$var1.pred 

aq$pred_lurlcsdt<-p5 

write.csv(aq, "aq_lurlcsdt.csv") 

 

 

4.  R code for Chapter 8 – time series analysis 

#libraries 

library(Hmisc) 

#library('ggplot2') 

library('forecast') 

library('tseries') 

library(tsDyn) 

library(openair) 

require(TSA) 

modelt <- auto.arima(no2.train, xreg=NULL) 

pred2<-predict_rolling(modelt, newdata=no2.test) 

pred3 <- predict_rolling(modelt,newdata=no2.train) 

str(pred2) 

yx<-pred2$pred$no2.train 

xx<-pred2$true$no2.train 

test$yx<-yx 

test$xx<-xx 

scatterPlot(test, x="xx", y="yx",mod.line=T, xlim=c(0,90), ylim=c(0,70), ylab="predicted 

NO2", xlab="Observed NO2") 

par(mai=c(1,1,0.5,0.5)) 

plot(test$date, test$no2, xlab="Date", ylab=quickText("NO2 concentrations (ug/m3)"), 

pch=1) 

points(test$date, test$yx, col="red",pch=3) 

legend("topleft",col=c("black", "red"), legend=c("observed","predicted"), pch=c(1,3)) 

modStats(test, mod="yx", obs="xx") 

plot(rstandard(modelt),ylab ='Standardized Residuals',type='o'); abline(h=0) 

qqnorm(residuals(modelt)) 

qqline(residuals(modelt)) 

hist(residuals(modelt), xlab="residuals", main="") 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

yx3<-pred3$pred$no2.train 

xx3<-pred3$true$no2.train 

train$yx3<-yx3 

train$xx3<-xx3 
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scatterPlot(train, x="xx3", y="yx3",mod.line=T, xlim=c(0,90), ylim=c(0,70), ylab="predicted 

NO2", xlab="Observed NO2") 

windows() 

par(mai=c(1,1,0.5,0.5)) 

plot(train$date, train$no2, xlab="Date", ylab=quickText("NO2 concentrations (ug/m3)"), 

pch=1) 

points(train$date, train$yx3, col="red",pch=3) 

legend("topleft",col=c("black", "red"), legend=c("observed","predicted"), pch=c(1,3)) 

modStats(train, mod="yx3", obs="xx3") 

########################################################################### 

modelx <- auto.arima(no2.train, xreg=data.matrix(no.train)) 

newdata2<-no2.test 

newdata<-no2.train 

predx<-predict(modelx,newdata=no2.train, newxreg=data.matrix(no.train)) 

predx2<-predict(modelx,newdata=no2.test, newxreg=data.matrix(no.test)) 

train$fittedx.NO2<-predx$pred 

test$fittedx2.NO2<-predx2$pred 

plot(train$no2, train$fittedx.NO2) 

plot(test$no2, test$fittedx2.NO2, ylim=c(0,60), xlim=c(0,60)) 

scatterPlot(train, x="no2", y="fittedx.NO2", mod.line=T, linear=T, xlim=c(0, 100)) 

plot(train$date, train$no2, xlab="Date", ylab=quickText("NO2 concentrations (ug/m3)"), 

pch=1) 

points(train$date, train$fittedx.NO2, col="red",pch=3) 

legend("topleft",col=c("black", "red"), legend=c("observed","fitted"), pch=c(1,3)) 

modStats(train, mod="fittedx.NO2", obs="no2") 

modStats(test, mod="fittedx2.NO2", obs="no2") 

plot(predx2$pred, main="") 

plot(rstandard(model3),ylab ='Standardized Residuals',type='o', ylim=c(-4, 4)); abline(h=0) 

qqnorm(residuals(model3), main=""); qqline(residuals(model3)) 

hist(residuals(model3), xlab="residuals", main="") 

########################################################################### 

df<-data.frame(nox.train, o3.train) 

df2<-data.frame(nox.test, o3.test) 

model4<-auto.arima(no2.train, xreg=data.matrix(df))#same 

#model4<-auto.arima(train$no2, xreg=data.matrix(df))#same 

pred4 <- predict(model4, newxreg=as.matrix(df)) 

pred5<-predict(model4, newxreg=as.matrix(df2), newdata=no2.test) 

train$fitted_NO2<-pred4$pred 

test$fitted_NO2<-pred5$pred 

scatterPlot(train, x="no2", y="fitted_NO2", linear=T, mod.line=T) 

scatterPlot(test, x="no2", y="fitted_NO2", linear=T, mod.line=T) 

plot(train$date, train$no2, xlab="Date", ylab=quickText("NO2 concentrations (ug/m3)"), 

pch=1) 

points(train$date, train$fitted_NO2, col="red",pch=3) 

legend("topleft",col=c("black", "red"), legend=c("observed","fitted"), pch=c(1,3)) 

plot(test$date, test$no2, xlab="Date", ylab=quickText("NO2 concentrations (ug/m3)"), 

pch=1) 

points(test$date, test$fitted_NO2, col="red",pch=3) 

legend("topleft",col=c("black", "red"), legend=c("observed","fitted"), pch=c(1,3)) 
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#timePlot(df, c("no2", "fitted_NO2"), group=T, ylab="log(NO2 concentrations)", 

col=c("blue", "red")) 

plot(pred4, main="") 

modStats(train, mod="fitted_NO2", obs="no2") 

modStats(test, mod="fitted_NO2", obs="no2") 

plot(rstandard(model4),ylab ='Standardized Residuals',type='o'); abline(h=0) 

qqnorm(residuals(model4)); qqline(residuals(model4)) 

hist(residuals(model4)) 

 

#The End 

 

 

 

 

 

 

 

 


