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Development of a treatment selection algorithm for SGLT2 
and DPP-4 inhibitor therapies in people with type 2 diabetes: 
a retrospective cohort study 
John M Dennis, Katherine G Young, Andrew P McGovern, Bilal A Mateen, Sebastian J Vollmer, Michael D Simpson, William E Henley, 
Rury R Holman, Naveed Sattar, Ewan R Pearson, Andrew T Hattersley, Angus G Jones*, Beverley M Shields*, on behalf of the MASTERMIND 
consortium†

Summary 
Background Current treatment guidelines do not provide recommendations to support the selection of treatment for 
most people with type 2 diabetes. We aimed to develop and validate an algorithm to allow selection of optimal 
treatment based on glycaemic response, weight change, and tolerability outcomes when choosing between SGLT2 
inhibitor or DPP-4 inhibitor therapies.

Methods In this retrospective cohort study, we identified patients initiating SGLT2 and DPP-4 inhibitor therapies after 
Jan 1, 2013, from the UK Clinical Practice Research Datalink (CPRD). We excluded those who received SGLT2 or 
DPP-4 inhibitors as first-line treatment or insulin at the same time, had estimated glomerular filtration rate (eGFR) 
of less than 45 mL/min per 1·73 m², or did not have a valid baseline glycated haemoglobin (HbA1c) measure (<53 or 
≥120 mmol/mol). The primary efficacy outcome was the HbA1c value reached 6 months after drug initiation, adjusted 
for baseline HbA1c. Clinical features associated with differential HbA1c outcome on the two therapies were identified 
in CPRD (n=26 877), and replicated in reanalysis of 14 clinical trials (n=10 414). An algorithm to predict individual-
level differential HbA1c outcome on the two therapies was developed in CPRD (derivation; n=14 069) and validated in 
head-to-head trials (n=2499) and CPRD (independent validation; n=9376). In CPRD, we further explored heterogeneity 
in 6-month weight change and treatment discontinuation.

Findings Among 10 253 patients initiating SGLT2 inhibitors and 16 624 patients initiating DPP-4 inhibitors in CPRD, 
baseline HbA1c, age, BMI, eGFR, and alanine aminotransferase were associated with differential HbA1c outcome with 
SGLT2 inhibitor and DPP-4 inhibitor therapies. The median age of participants was 62∙0 years (IQR 55∙0–70∙0). 
10 016 (37∙3%) were women and 16 861 (62∙7%) were men. An algorithm based on these five features identified a 
subgroup, representing around four in ten CPRD patients, with a 5 mmol/mol or greater observed benefit with 
SGLT2 inhibitors in all validation cohorts (CPRD 8·8 mmol/mol [95% CI 7·8–9·8]; CANTATA-D and CANTATA-D2 
trials 5·8 mmol/mol [3·9–7·7]; BI1245.20 trial 6·6 mmol/mol [2·2–11·0]). In CPRD, predicted differential HbA1c 
response with SGLT2 inhibitor and DPP-4 inhibitor therapies was not associated with weight change. Overall 
treatment discontinuation within 6 months was similar in patients predicted to have an HbA1c benefit with SGLT2 
inhibitors over DPP-4 inhibitors (median 15·2% [13·2–20·3] vs 14·4% [12·9–16·7]). A smaller subgroup predicted to 
have greater HbA1c reduction with DPP-4 inhibitors were twice as likely to discontinue SGLT2 inhibitors than DPP-4 
inhibitors (median 26·8% [23·4–31·0] vs 14·8% [12·9–16·8]).

Interpretation A validated treatment selection algorithm for SGLT2 inhibitor and DPP-4 inhibitor therapies can 
support decisions on optimal treatment for people with type 2 diabetes.

Funding BHF-Turing Cardiovascular Data Science Award and the UK Medical Research Council.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 
4.0 license.

Introduction 
SGLT2 and DPP-4 inhibitors are recommended glucose-
lowering treatment options for people with type 2 
diabetes after metformin,1 representing around 60% of 
second-line treatment initiations in the UK2 and 27% in 
the US.3 Trial data suggest that the average glucose-
lowering efficacy of both therapies is similar, although 
SGLT2 inhibitors are associated with weight loss.4 
Differences in tolerability have not been evaluated in a 

large number of patients in routine practice. Although 
the American Diabetes Association and the European 
Association for the Study of Diabetes (ADA/EASD)
guidelines recommend SGLT2 inhibitors or GLP-1 
receptor agonists, or both, in people with established 
atherosclerotic cardiovascular disease, heart failure, or 
chronic kidney disease,1 this stratification only applies to 
15–20% of people with type 2 diabetes.5 Thus, there is 
considerable uncertainty regarding optimal treatment for 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(22)00174-1&domain=pdf
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most people with type 2 diabetes after receiving 
metformin.

A possible precision medicine approach to treatment 
selection is to use individual-level patient characteristics 
to target specific glucose-lowering treatment for people 
with type 2 diabetes who are most likely to benefit.6 Such 
a targeted approach might improve glucose-lowering 
efficacy and drug tolerability, reduce side-effects, and 
reduce the risk of diabetes complications when 
implemented. Studies7–10 in the past 5 years have shown 
the potential of precision medicine for people with type 2 
diabetes, identifying subgroups with different glycaemic 
response to specific agents, rates of glycaemic pro
gression, and risk of complications. However, previous 
studies have not evaluated the clinical use of proposed 
precision medicine approaches and whether differential 
outcomes between drug classes can be predicted in a 
robust way and used for targeted therapy.11

Here, we aim to build on modelling approaches to 
detect patient-level treatment effects12 and evaluate 
whether individual routinely collected clinical features 
are robustly associated with differential glycaemic 
response to SGLT2 and DPP-4 inhibitor therapies; 
whether combining these features to predict glycated 
haemoglobin (HbA1c) responses can inform treatment 
selection based on optimal glucose-lowering; and 

whether this treatment selection relates to changes in 
weight and treatment discontinuation.

Methods 
Study design and participants 
In this retrospective cohort study, routine clinical data 
were used to explore differential glycaemic response to 
SGLT2 and DPP-4 inhibitor therapies and develop a 
treatment selection model, taking advantage of the large 
sample size and greater heterogeneity of patients in 
clinical practice. Replication analysis and model validation 
was performed by reanalysis of clinical trials with 
systematic follow-up of randomly assigned participants.

We identified patients initiating SGLT2 and DPP-4 
inhibitor therapies after Jan 1, 2013, from the UK Clinical 
Practice Research Datalink (CPRD) 2013–19 GOLD after 
our published protocol.13 We excluded those who received 
SGLT2 or DPP-4 inhibitors as first-line treatment (not 
recommended in UK guidelines)14 or insulin at the same 
time, had eGFR of less than 45 mL/min per 1·73 m² (in 
which case use of SGLT2 inhibitors is usually 
contraindicated), or did not have a valid baseline HbA1c 
measure (<53 or ≥120 mmol/mol; appendix p 3). To 
reflect underlying diabetes pathophysiology, we extracted 
baseline clinical features including HbA1c (closest value 
within 6 months before to 7 days after treatment start), 

Research in context

Evidence before this study
Current type 2 diabetes treatment guidelines do not provide 
information to support targeted treatment based on differences 
in glycaemic outcomes. We searched PubMed and Medline for 
articles published from Jan 1, 2000, to June 29, 2022, using the 
search terms: Diabetes Mellitus[MeSH Major Topic] AND 
(“Precision” OR “stratification” OR “personalis*” OR 
“individualisation” OR “targeted” OR “effect heterogeneity” OR 
“individualis*” OR “prediction” OR “heterogenous treatment 
effects” OR “treatment selection” OR “effect modification”) AND 
(Sodium-Glucose Transporter 2 Inhibitors [MeSH Major Topic]) 
OR (Dipeptidyl-Peptidase IV Inhibitors[MeSH Major Topic]) AND 
“HbA1c”. We found studies of more than 100 individuals that 
assessed whether patient characteristics are associated with 
differences in glucose-lowering response (change in glycated 
hemoglobin [HbA1c] from baseline, with at least 3 months of 
follow-up) after initiating SGLT2 or DPP-4-inhibitor therapy. 
Previous studies have suggested that the glucose-lowering 
response to both therapies is heterogenous and might be 
associated with patient characteristics, but to the best of our 
knowledge, no studies have assessed whether differences in 
response are reproducible and of sufficient magnitude to 
support targeted treatment selection for individual patients.

Added value of this study
We show that routine clinical patient features are associated 
with clinically relevant differences in glucose-lowering response 

to SGLT2 and DPP-4 inhibitor therapies in observational and 
clinical trial data. We also developed the first treatment 
selection model that can provide individualised estimates of 
relative glucose-lowering benefit with these two therapies. 
Validation shows that the model can reliably identify novel 
strata for patients with type 2 diabetes and predict clinically 
relevant differences in glucose-lowering (HbA1c) outcome and 
risk of early treatment discontinuation. People with type 2 
diabetes who have the greatest predicted glycaemic benefit 
with SGLT2 inhibitors compared with DPP-4 inhibitors are 
usually not those who are preferentially recommended to 
receive SGLT2 inhibitors due to their cardiorenal risk status 
according to current treatment guidelines.

Implications of all the available evidence
Findings show that an individualised precision medicine 
approach based on routine clinical features can be used to 
support targeted SGLT2 and DPP-4 inhibitor therapy for 
people who are most likely to benefit. The validated 
treatment selection model provides individualised estimates 
of glycaemic response, weight change, and treatment 
discontinuation, for each therapy that can complement 
existing recommendations based on cardiorenal risk and 
could directly inform clinical decisions concerning optimal 
treatment choices for people with type 2 diabetes.
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current age, sex, diabetes duration, BMI, weight, eGFR 
(using the Chronic Kidney Disease Epidemiology 
Collaboration formula), HDL cholesterol, triglycerides, 
alanine aminotransferase, albumin, and bilirubin (closest 
values to treatment start in the previous 2 years). Ethnicity 
was extracted and used to describe the study population 
but was not analysed due to the limited numbers of 
patients of non-White ethnicity. We also identified the 
number of current and ever prescribed glucose-lowering 
treatments. To identify patients specifically recommended 
SGLT2 inhibitors in accordance with ADA/EASD 
treatment guidelines, we extracted records of athero
sclerotic cardiovascular disease (myocardial infarction, 
stroke, peripheral artery disease, ischaemic heart disease, 
or revascularisation), heart failure, and chronic kidney 
disease (eGFR <60 mL/min per 1·3 m² or urinary 
albumin to creatinine ratio >30 mg/g, or both). To identify 
patients at higher risk of future cardiovascular disease, 
we applied the Systematic Coronary Risk Evaluation 
(SCORE) model to identify patients with a 10-year risk 
SCORE of 5% or greater.15

We also extracted individual participant data from 
14 multi-country randomised clinical trials of SGLT2 and 
DPP-4 inhibitor therapies (n=10 414) from trial data sharing 
portals. These studies were three active comparator HbA1c 
efficacy trials (CANTATA-D [NCT01106677] and 
CANTATA-D2 [NCT01137812] trials of canagliflozin [SGLT2 
inhibitors] vs sitagliptin [DPP-4 inhibitors] or placebo [not 
analysed]; NCT01177813 trial of empagliflozin [SGLT2 
inhibitors] vs sitagliptin), six trials of SGLT2 inhibitors 
versus placebo or sulfonylurea (canagliflozin 
[NCT00968812, NCT01081834, NCT01106651, and 
NCT01106625 trials] or empagliflozin [NCT01210001 and 
NCT0115960]; non-SGLT2 inhibitor treatment groups were 
not analysed), the EMPA-REG OUTCOME cardiovascular 
outcome trial (NCT01131676 empagliflozin vs placebo; 
placebo group not analysed, patients with insulin 
cotreatment excluded, only HbA1c measures on unchanged 
glucose-lowering therapy analysed), and four efficacy trials 
of linagliptin (DPP-4 inhibitors) versus placebo or 
sulfonylurea (NCT00602472, NCT00621140, NCT00601250, 
and NCT00622284; non-DPP-4 inhibitor treatment groups 
not analysed). Participants randomly assigned to different 
doses of active agents were pooled for analysis. Full details 
of trial inclusion criteria, study cohorts, and trial references 
are provided in the appendix (pp 4–12). We extracted HbA1c 
outcome and baseline assessment data for the same 
clinical features, as in CPRD. Approval for the study was 
granted by the CPRD Independent Scientific Advisory 
Committee (ISAC 13_177R), the YODA Project 
(number 2017–1816), and Vivli (ID00005959). Patient 
consent was not required.

Outcomes 
The primary efficacy outcome was the HbA1c value 
reached 6 months after drug initiation, adjusted for 
baseline HbA1c.16 In CPRD, this outcome was defined as 

the closest HbA1c to 6 months after initiation (range 
3–15 months) on unchanged therapy (no addition or 
cessation of other glucose-lowering medication and 
continued prescription of the drug of interest). In trials, 
all on treatment HbA1c values at study visits from 
3–6 months after randomisation were evaluated.

Secondary outcomes in CPRD were the weight reached 
6 months after initiation (closest value within 
3–15 months), adjusted for baseline weight, and treat
ment discontinuation within 6 months of drug initiation 
(a proxy of drug tolerability). Patients were required to 
have 3 months of follow-up time after their last 
prescription to confirm that the drug was discontinued.

Statistical analysis 
We estimated the association between baseline HbA1c and 
HbA1c outcome by drug using linear regression with a 
drug-by-baseline HbA1c interaction term, with baseline 
HbA1c modelled as a 3-knot restricted cubic spline to 
allow for non-linearity. In this model and all subsequent 
CPRD models, we controlled for differences in drug 
order and potential adherence effects by adjusting for the 
number of current and ever prescribed glucose-lowering 
drug classes. We also adjusted for month of outcome 
measurement, defined as the month relative to baseline 
that HbA1c outcome was recorded.

We then sequentially assessed associations by drug 
for other baseline clinical features, by adding each in 
turn as drug-by-feature interactions to the baseline 
HbA1c adjusted model in complete case analysis. A 
complete case approach was used because missing 
baseline data were considered likely missing not at 
random, meaning imputation approaches might lack 
validity.17 Each feature was standardised to allow 
comparison of effect size. To evaluate model fit we 
examined normality of residuals and linearity of 
associations for continuous variables. We performed a 
series of sensitivity analyses to evaluate consistency of 
the same associations. To explore potential modifying 
effects of background therapy, we included only patients 
on metformin with or without sulfonylurea (the 
two biggest background therapy groups). To evaluate 
the effect of combination therapy with SGLT2 and 
DPP-4 inhibitors, we excluded patients initiating SGLT2 
inhibitors while receiving DPP-4 or initiating DPP-4 
inhibitors while receiving SGLT2 inhibitors. To explore 
the effect of defining clinical features using the closest 
values to treatment start in the previous 2 years, we 
reduced this time period to 1 year.

In trials, we estimated associations for the same clinical 
features using mixed-effect models with patient-level 
random effects to allow for repeated HbA1c outcome 
measures. Features were standardised to CPRD distri
butions. For active comparator trials, we estimated drug-
specific effects using drug-by-feature interaction terms. 
Trial estimates were pooled using two-stage random 
effect meta-analysis.18

For more on the YODA Project 
see https://yoda.yale.edu/

For more on the Vivli Center for 
Global Clinical Research Data 
see https://vivli.org/ 

https://yoda.yale.edu/
https://vivli.org/
https://yoda.yale.edu/
https://vivli.org/
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In CPRD, we combined clinical features to develop a 
treatment selection model to predict HbA1c outcome for 
an individual patient if they were to receive SGLT2 or 
DPP-4 inhibitor therapy. A multivariable linear regression 
model was developed in a 60% random sample 
(derivation cohort), with 40% of patients held back for 
model validation. By including treatment-by-feature 
interaction terms, the model facilitated prediction of the 
outcome on each therapy, conditional on the features 
included as interaction terms, and thus enabled 
prediction of individualised treatment effects. For each 
person, the difference between the predicted HbA1c 
outcome on the two therapies provided an estimate of 
their individualised treatment effect.

To inform variable selection, an initial linear regression 
model for 6-month HbA1c with interaction terms between 
treatment and all baseline clinical features (continuous 
features modelled as 3-knot restricted cubic splines) as 
explanatory variables was fitted, adjusting for number of 
current and ever prescribed glucose-lowering drug 
classes, and month of outcome measurement. 
Collinearity between clinical features was assessed to 
ensure variables were not highly correlated. To rank the 
relative importance of each baseline clinical feature for 
estimating individualised treatment effects, we estimated 
the proportion of χ² explained by the interaction term for 
each feature (which represents the differential drug-
specific effect of the feature on HbA1c outcome), with 
bootstrapped CIs. Stepwise forward selection was used to 
define features for the final model, by adding drug-by-
feature interaction terms in order of relative importance 
to a base model that included all clinical features without 
interaction terms (ie, p<0·01 threshold). Non-differential 

features were omitted from the final model because they 
explained little variation in predicting overall HbA1c 
outcome (additional R² 0·004). To adjust for overfitting, 
penalised ridge regression was used to optimise for 
Akaike information criterion.19 Standard performance 
metrics (optimism-adjusted R², root mean square error, 
calibration slope, and calibration in the large) were 
estimated to assess model performance for predicting 
HbA1c outcome directly.20

For treatment selection models, accurately predicting 
the magnitude of difference between therapies (the 
individualised treatment effect) is more important than 
accurately predicting the outcome.21 Therefore, standard 
model performance metrics that test the ability of a 
model to predict the outcome directly are of limited use 
in the context of evaluating a model estimating 
individualised treatment effects.21,22 The challenge for 
validation is that the difference in treatment effect cannot 
be measured directly within an individual, because for 
each individual the counterfactual outcome on the 
treatment they did not initiate cannot be observed.

Given this limitation, our approach to treatment 
selection model validation was to assess differences in 
observed HbA1c outcome in patient strata defined by 
model-predicted individualised treatment effects. 
Evaluation using this approach is described in figure 1. 
This validation approach was applied in three active 
comparator trials of SGLT2 inhibitors versus DPP-4 
inhibitors (a pooled analysis of trials CANTATA-D and 
CANTATA-D2, and separate analysis of trial BI1245.20) 
and the CPRD validation set. First, we used the model to 
predict individual-level HbA1c outcomes for all individuals. 
Second, predictions were used to estimate individualised 

Figure 1: SGLT2 inhibitor versus DPP-4 inhibitor treatment selection model
The treatment selection model assigns each patient to either DPP-4 inhibitors or SGLT2 inhibitors as the predicted optimal therapy. Concordant (therapy received is 
the predicted optimal therapy) and discordant (therapy received is not the predicted optimal therapy) subgroups can then be defined based on the therapy actually 
received by each patient. To evaluate treatment selection model performance, improvement of the outcome in the concordant compared with discordant subgroups 
can be estimated. More granular subgroups can be defined by the size of predicted treatment effect (eg, defined by a predicted HbA1c of more than 5 mmol/mol 
benefit with SGLT2 vs DPP-4 inhibitors).

Treatment
selection
model

DPP-4 inhibitor
optimal strata

Step 1: Use model to
estimate individualised
treatment effect in 
validation cohort

SGLT2 inhibitor
optimal strata

Concordant:
DPP-4 inhibitor received

Test whether the improved observed outcome is in the
concordant subgroup receiving DPP-4 inhibitor

Discordant:
SGLT2 inhibitor received

Discordant:
DPP-4 inhibitor received

Step 2: Define strata by 
predicted individualised
treatment effect

Step 3: Define subgroups
by therapy received

Step 4: Estimate difference in outcome between
concordant and discordant subgroups

Test whether the improved observed outcome is in the
concordant subgroup receiving SGLT2 inhibitor

Concordant:
SGLT2 inhibitor received

New users of SGLT2
or DPP-4 inhibitors 
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treatment effects (the difference in predicted HbA1c 
outcomes between the two therapies). Third, strata were 
defined by clinically defined HbA1c cutoffs of predicted 
individualised treatment effect (SGLT2 inhibitor benefit 
of ≥10, 5–10, 3–5, or 0–3 mmol/mol; DPP-4 inhibitor 
benefit of ≥3 or 0–3 mmol/mol). Fourth, for each strata 
linear regression models were fitted to compare HbA1c 
outcome in concordant (therapy received is the predicted 
optimal therapy for HbA1c) versus discordant (therapy 
received is the predicted non-optimal therapy for HbA1c) 

subgroups. In the trials, the primary outcome assessed 
was the last observation carried forward 6-month HbA1c, 
with 12-month HbA1c outcome evaluated as a sensitivity 
analysis. We also evaluated performance for treatment 
selection in the CPRD validation set excluding patients 
with established atherosclerotic cardiovascular disease, 

DPP-4 
inhibitor 
(n=16 624)

SGLT2 
inhibitor 
(n=10 253)

Standardised 
mean 
difference

Age, years 63·9 (10·8) 60·0 (9·2) 0·39

Duration of diabetes, 
years

8·0 (5·3) 8·5 (5·1) 0·11

Sex

Female 6265 (37·7%) 3751 (36·6%) 0·023

Male 10359 (62·3%) 6502 (63·4%) ··

Ethnicity

White 8089 (48·7%) 4793 (46·7%) 0·061

Asian 650 (3·9%) 354 (3·5%) ··

Black 216 (1·3%) 99 (1·0%) ··

Mixed or other 158 (1·0%) 90 (0·9%) ··

Missing 7511 (45·2%) 4917 (48·0%) ··

DPP-4 inhibitor type

Alogliptin 1957 (11·8%) ·· ··

Linagliptin 3331 (20·0%) ·· ··

Saxagliptin 2207 (13·3%) ·· ··

Sitagliptin 9025 (54·3%) ·· ··

Vildagliptin 104 (0·6%) ·· ··

SGLT2 inhibitor type

Canagliflozin ·· 1588 (15·5%) ··

Dapagliflozin ·· 5861 (57·2%) ··

Empagliflozin ·· 2804 (27·3%) ··

Number of glucose-lowering drug classes ever prescribed

1 7355 (44·2%) 2198 (21·4%) 0·55

2 7024 (42·3%) 3187 (31·1%) ··

3 1901 (11·4%) 3027 (29·5%) ··

4+ 344 (2·1%) 1841 (18·0%) ··

Number of other current glucose-lowering drugs

0 947 (5·7%) 286 (2·8%) 0·84

1 9702 (58·4%) 4117 (40·2%) ··

2 5770 (34·7%) 4701 (45·8%) ··

3+ 205 (1·2%) 1149 (11·2%) ··

Background therapy

Metformin 14 667 (88·2%) 9296 (90·7%) 0·08

Sulfonylurea 6320 (38·0%) 3981 (38·8%) 0·017

DPP-4 inhibitor ·· 2712 (26·5%) ··

SGLT2 inhibitor 361 (2·2%) ·· ··

Thiazolidinedione 422 (2·5%) 339 (3·3%) 0·046

GLP-1 receptor 
agonist

56 (0·3%) 650 (6·3%) 0·34

(Table continues in next column)

DPP-4 
inhibitor 
(n=16 624)

SGLT2 
inhibitor 
(n=10 253)

Standardised 
mean 
difference

(Continued from previous column)

Baseline biomarkers

HbA1c, mmol/mol† 73·0 (13·4) 76·9 (14·2) 0·29

BMI, kg/m² 32·3 (6·4) 34·4 (6·6) 0·31

eGFR, mL/min per 
1·3 m²

83·1 (17·3) 88·8 (14·7) 0·36

HDL cholesterol, 
mmol/L

1·2 (0·3) 1·1 (0·3) 0·15

Triglycerides, 
mmol/L

2·2 (1·6) 2·4 (1·6) 0·078

Alanine 
transaminase, IU/L

33·7 (52·4) 36·6 (40·2) 0·061

Albumin, g/L 42·2 (4·0) 42·2 (4·0) 0·014

Bilirubin, µmol/L 10·0 (5·1) 9·8 (5·0) 0·040

Cardiovascular disease

Atherosclerotic 
cardiovascular 
disease‡

3314 (19·9%) 1646 (16·1%) 0·10

Heart failure 535 (3·2%) 213 (2·1%) 0·071

Cardiovascular disease risk§

SCORE 10-year 
cardiovascular 
disease risk, %

1·8 (2·0) 1·2 (1·3) 0·37

High or very high 
cardiovascular 
disease risk 
(SCORE ≥5%)

1067 (6·9%) 186 (1·9%) 0·24

Renal disease

Chronic kidney 
disease¶

2257 (13·6%) 476 (4·6%) 0·31

SGLT2 inhibitor eligible 
due to cardiovascular 
disease or chronic 
kidney disease status

5475 (32·9%) 2184 (21·3%) 0·26

HbA1c outcome

HbA1c, mmol/mol 65·1 (16·1) 65·1 (14·4) 0·0010

Month of HbA1c 
measure

6·4 (2·7) 6·3 (2·6) 0·050

Data are mean (SD) or n (%). Clinical trial cohort characteristics are reported in the 
appendix (pp 4–6). eGFR=estimated glomerular filtration rate. HbA1c=glycated 
haemoglobin. SCORE=Systematic Coronary Risk Evaluation. *Standardised mean 
difference of 0·1 or higher is a metric for meaningful imbalance. †Median time 
before baseline of HbA1c measurements was 15 days (IQR 4–30 days). 4·8% of 
patients had a baseline HbA1c more than 91 days before baseline. ‡Composite of 
history of myocardial infarction, stroke, ischaemic heart disease, peripheral artery 
disease, and revascularisation. §Systematic Coronary Risk Evaluation, excluding 
patients with a history of myocardial infarction (n=1902 excluded). Derived using 
equations from Conroy and colleagues.15 ¶eGFR of less than 60 mL/min per 1·3 m² 
or urinary albumin to creatinine ratio of more than 30 mg, or both.

Table: Baseline clinical characteristics of patients from the UK Clinical 
Practice Research Datalink
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heart failure, chronic kidney disease, or SCORE risk of 
5% or higher.15

In the whole CPRD cohort, we assessed whether 
selecting treatment based on predicted HbA1c outcome 
altered 6-month weight change and risk of treatment 
discontinuation. For both analyses, we included all 
patients with valid data for the treatment selection model, 
whether a valid HbA1c outcome was recorded or not (to 
avoid selection bias because patients with a valid HbA1c 
outcome measure would have remained on treatment for 
at least 3 months) and applied the same concordant–
discordant approach used to evaluate HbA1c outcome. For 
treatment discontinuation, a logistic regression model 
was fitted with predicted HbA1c difference between 
therapies as the exposure (3-knot restricted cubic spline), 
adjusting for baseline HbA1c, the number of current 
glucose-lowering medications, and the number of 
previously initiated medications. For weight change, 
linear regression was used with additional adjustment 
for baseline weight. Longer term 12-month weight and 
treatment discontinuation outcomes were evaluated in 
sensitivity analyses. All analyses were conducted using R 
(version 4.0.2). We followed TRIPOD prediction model 
reporting guidance.20 A web tool including the algorithm 
developed for this study is available online.

Role of the funding source 
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results 
Between Jan 1, 2013, and July 1, 2019, we identified 
41 807 study-eligible participants initiating SGLT2 or 
DPP-4 inhibitors in CPRD (appendix p 3). For analysis of 
glycaemic response, the CPRD cohort included 
10 253 participants initiating SGLT2 inhibitor therapy and 
16 624 participants initiating DPP-4 inhibitor therapy with 
valid HbA1c outcome data (appendix p 3). The median age 
of participants was 62∙0 years (IQR 55∙0–70∙0). 

10 016 (37∙3%) were women and 16 861 (62∙7%) were 
men. Baseline clinical characteristics by initiated drug 
class are reported in the table for CPRD and 
appendix (pp 4–6) for the 14 clinical trial cohorts 
(n=10 414). In CPRD, higher baseline HbA1c was associated 
with a markedly greater HbA1c reduction at 6 months with 
SGLT2 inhibitors compared with DPP-4 inhibitors 
(figure 2). This association was replicated in trials. 
Adjusted for baseline HbA1c, multiple individual features 
showed evidence of differential responses in CPRD 
(figure 3A). Higher age and longer diabetes duration were 
associated with greater response to DPP-4 inhibitors, but 
not SGLT2 inhibitors. Higher eGFR and alanine 
transaminase were associated with greater response to 
SGLT2 inhibitors and lesser response to DPP-4 inhibitors. 
Higher BMI was associated with a lesser response to 
DPP-4 inhibitors, but not associated with SGLT2 inhibitor 
response. Associations were consistent in sensitivity 
analyses assessing patients receiving only background 
metformin (n=12 421), background metformin and 
sulfonylurea dual therapy (n=7579), when excluding 
patients receiving concurrent SGLT2 inhibitors or DPP-4 
inhibitors from each treatment group (analysis cohort; 
n=23 804), and when defining baseline clinical features 
using a 1-year rather than 2-year time period before drug 
initiation (appendix pp 18–19). Differential treatment 
effects for BMI and alanine transaminase were replicated 
in trials, as was the association between higher eGFR and 
greater SGLT2 inhibitor response (figure 3B). Associations 
between higher age and lower eGFR with greater DPP-4 
inhibitor response were not replicated.

In the CPRD model derivation cohort (n=16 126 for 
baseline characteristics in derivation and validation 
cohorts; appendix pp 20–21), when including all clinical 
features (n=12 034 with valid data for all features), the 
features with the highest explained variation for 
predicting differential treatment effects were baseline 
HbA1c and eGFR, followed by alanine transaminase, 
BMI, and current age (appendix p 22). Only these five 
differential features significantly improved prediction of 

For the Type 2 Diabetes 
Treatment Selection Decision 

Aid see https://www.
diabetesgenes.org/sglt2DPP-

4decisionaid/

Figure 2: Association between baseline HbA1c and 6-month HbA1c response with SGLT2 inhibitor versus DPP-4 inhibitor treatment
Shading represents 95% CIs. (A) CPRD routine clinical data (n=26 877). (B) CANTATA-D (NCT01106677) and CANTATA-D2 trials (NCT01137812; n=1755). 
(C) BI1245.20 trial (NCT01177813; n=630). CPRD=Clinical Practice Research Datalink. HbA1c=glycated haemoglobin.
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HbA1c outcome and were included in the final model, 
which included 14 069 patients with valid data for all 
five features. The full model equation and plots 
illustrating non-linear associations for continuous 
clinical features are reported in the appendix (pp 23–24). 
Model performance for predicting HbA1c outcome in the 
derivation cohort is reported in the appendix (pp 25–26). 
Internal validation showed that the final model explained 
29% of the variation in HbA1c outcome (R² 0∙29) and was 
well calibrated for predicting absolute HbA1c (calibration 
slope 0·9967).

There was evidence of marked heterogeneity in predicted 
individualised treatment effects, with the model predicting 
an HbA1c benefit with SGLT2 inhibitors for 11 814 (84%) of 
14 069 patients and a benefit with DPP-4 inhibitors for 
2255 (16%) in the derivation cohort (appendix p 27). Across 
deciles of predicted individualised treatment effect, 
observed HbA1c differences and predictions were similar, 
indicating predicted individualised treatment effects were 
well calibrated (appendix p 27).

In validation, calibration between observed HbA1c 
differences and predictions were good in the CANTATA-D 
and CANTATA-D2 trials and the CPRD validation cohort 
(appendix p 27). In the smaller BI1245.20 trial deciles 
with the greatest predicted HbA1c benefit on SGLT2 
inhibitors had a clear observed benefit in line with 
predictions. In the CPRD validation cohort, 9376 of 
10 751 had valid data to estimate model-predicted 
individualised treatment effects. 3756 (40·1%) of 
9376 patients had a predicted benefit of 5 mmol/mol or 
greater with SGLT2 inhibitors and an observed benefit of 
8·8 mmol/mol (95% CI 7·8–9·8) if they received SGLT2 
inhibitors compared with DPP-4 inhibitors. These results 
were similar in the CANTATA-D and CANTATA-D2 trials 
(5·8 mmol/mol [3·9–7·7] observed benefit) and the 
BI1245.20 trial (6·6 mmol/mol [2·2–11·0] observed 
benefit; figure 4).

The model also identified a smaller group of patients 
with a potential HbA1c benefit on DPP-4 inhibitor therapy. 
In CPRD validation, DPP-4 inhibitor concordant patients 
with a predicted benefit of 3 mmol/mol or greater who 
received DPP-4 inhibitors (450 [4·8%] of 9376) had a 
1·8 mmol/mol (95% CI –2·5 to 6·0) observed benefit, 
and this benefit was similar in trials (figure 4). Differences 
in HbA1c benefit were consistent when excluding 
2518 (26·9%) of 9376 patients with established athero
sclerotic cardiovascular disease, heart failure, chronic 
kidney disease, or SCORE risk of 5% or greater from the 
CPRD validation set (appendix p 30) and in trials for the 
12-month HbA1c outcome (appendix p 31).

Model performance for predicting HbA1c outcome in all 
validation sets is reported in the appendix (pp 25–26). 
Calibration was good in CPRD validation but observed 
HbA1c outcome was consistently lower than predicted 
HbA1c outcome in the trials.

In CPRD, at 6 months patients initiating SGLT2 
inhibitors had a greater median weight loss (–3·7 kg 

[IQR –4·3 to –3·2]) than patients initiating DPP-4 
inhibitors (–1·0 kg [–1·6 to –0·5]; appendix p 32) and 
predicted differential HbA1c response was not associated 
with weight change (figure 5A). Overall treatment 
discontinuation within 6 months was similar on SGLT2 
inhibitors (median 16·1% [13·5 to 20·3]) versus DPP-4 

Figure 3: Associations between clinical features and baseline adjusted 6-month HbA1c response with SGLT2 
inhibitor versus DPP-4 inhibitor treatment
Bars show 95% CI. Underlying plot data, including estimates from each individual trial and the correlation matrix, 
are shown in the appendix (pp 13–16, 17). Estimates are derived from separate models for each clinical feature. 
(A) CPRD routine clinical data (n=28 877) adjusted for baseline HbA1c by drug interaction, number of glucose-
lowering drug classes ever prescribed and currently, and month of HbA1c outcome measurement. (B) Meta-analysis 
data (14 clinical trials; n=10 414) adjusted for baseline HbA1c by drug interaction. The association for diabetes 
duration is not reported in the trials as it was not available in most trial datasets. I2 values are presented separately 
for SGLT2 and DPP-4 inhibitors. CPRD=Clinical Practice Research Datalink. eGFR=estimated glomerular filtration rate. 
HbA1c=glycated haemoglobin.
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inhibitors (14·4% [12·9 to 16·7]), and in patients predicted 
to have an HbA1c benefit with SGLT2 inhibitors over 
DPP-4 inhibitors (median 15·2% [13·2 to 20·3] vs 14·4% 
[12·9 to 16·7]; figure 5B; appendix p 32). In patients with 
a predicted HbA1c benefit of 3 mmol/mol or greater on 
DPP-4 inhibitors, discontinuation on DPP-4 inhibitors 
was lower than that observed for SGLT2 inhibitors 
(14·9% [13·0 to 16·9] vs 33·1% [29·7 to 36·9]; figure 5B; 
appendix p 32). Differences were consistent at 12 months 
(appendix p 33).

In 36 454 (87·2%) of 41 807 in the study eligible CPRD 
cohort (appendix p 3) with valid baseline data to fit the 
treatment selection model, patients with a predicted 
HbA1c benefit of 5 mmol/mol or greater with SGLT2 
inhibitor over DPP-4 inhibitor therapy (14 860 [40·8%]; 
around four in ten patients) were younger (median age 
55 years [IQR 50–61]), predominantly male (66·6%), with 
a higher BMI (median 34·1 kg/m² [30·7–38·3]), baseline 
HbA1c (median 80·2 mmol/mol [72–91]), eGFR (median 
97 mL/min per 1·3 m² [89–104]), and alanine 
transaminase (median 37 IU/L [27–52]; appendix p 34). 
Only 2125 (14·3%; around one in seven patients) of 14 860 
in this patient subgroup would be recommended SGLT2 
inhibitors, due to their lower prevalence of atherosclerotic 
cardiovascular disease (1806 [12·2%]), heart failure 
(240 [1·6%]), and chronic kidney disease (257 [1·7%]).

Conversely, patients with a predicted HbA1c benefit of 
3 mmol/mol or greater with DPP-4 inhibitor over SGLT2 
inhibitor therapy (1814 [5·0%]) were older (median age 
79 years [IQR 75–84]), had an equal proportion of 
males (51·5%) and females (48∙5%), with lower BMI 
(median 26·5 [24·0–30·0]), baseline HbA1c (median 
61 [57–66]), eGFR (median 59 [51–68]), and alanine 

transaminase (median 15 [12–20]; appendix p 34). Despite 
the predicted benefit of DPP-4 inhibitors for HbA1c 

outcome, 1360 (75·0%) of this group would be 
recommended SGLT2 inhibitors based on current 
guidelines, reflecting their older age and high prevalence 
of atherosclerotic cardiovascular disease (619 [34·1%]), 
heart failure (152 [8·4%]), and chronic kidney disease 
(712 [39·3%]). In practice, 1609 (88·7%) of these patients 
received DPP-4 inhibitor therapy.

Discussion 
Our study shows that the clinical features of people with 
type 2 diabetes are robustly associated with differential 
HbA1c responses to SGLT2 inhibitor and DPP-4 inhibitor 
therapies. Combining just five routinely measured 
clinical features into a treatment selection algorithm can 

Figure 5: 6-month weight change and risk of treatment discontinuation 
across subgroups defined by clinical cutoffs of predicted treatment benefit 
in CPRD clinical data
Data are median (IQR). 12-month outcomes are shown in the appendix (p 33). 
(A) Weight change at 6 months (n=15 627) for all participants with valid 
baseline data in the treatment selection model and with weight recorded 
3–15 months after drug initiation (the closest measure to 6 months was used) in 
those receiving unchanged glucose-lowering therapy. (B) Risk of treatment 
discontinuation within 6 months (n=28 514) for all patients with valid baseline 
data in the glucose-lowering treatment selection model and with 3 additional 
months of follow-up to confirm that treatment has been discontinued. 
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identify a large patient subgroup (around four in ten of 
UK patients; appendix p 34) with a predicted glycaemic 
benefit of 5 mmol/mol or greater on SGLT2 inhibitors 
compared with DPP-4 inhibitors, and a similar risk of 
early discontinuation for both agents. We estimate only 
one in seven of this group would currently be 
recommended SGLT2 inhibitors based on their cardio
renal disease status or risk according to ADA/EASD 
treatment guidelines. We also identify a smaller group of 
patients who might have a greater glycaemic reduction 
and a lower risk of short-term discontinuation on DPP-4 
inhibitors than those on SGLT2 inhibitors. However, due 
to older age and more severe cardiorenal disease profile, 
most of this group would be preferentially recommended 
SGLT2 inhibitors based on current guidelines.

Our analysis gives an example of translational precision 
medicine to inform the selection of type 2 diabetes 
therapy. Validation of findings in randomised clinical 
trial data provides a robust demonstration of the treat
ment selection algorithm. Although not all associations 
for individual clinical features observed in routine 
clinical data were replicated in the trials, specifically 
associations between higher age and lower eGFR with a 
greater DPP-4 inhibitor response, the algorithm 
performed well in validation. The validation framework 
based on strata defined by model predicted benefit is 
analogous to cardiovascular risk prediction models, such 
as QRISK, which are used routinely in current practice,23 
in which effectiveness reflects the ability of the model to 
accurately quantify risk at a population level, rather than 
to precisely define the time to a cardiovascular event for 
an individual. Individual-level estimates provided by the 
algorithm are not intended to be prescriptive, but instead 
to support more informed discussion between patients 
and clinicians on the benefits and risks of SGLT2 
inhibitor and DPP-4 inhibitor treatment for an individual, 
alongside understanding of average level class effects, 
and the known cardiorenal benefit of SGLT2 inhibitors 
for those with, or at high-risk of, cardiorenal disease.

The combination of clinical features predicting 
differential glycaemic response most likely relates to 
differences in the underlying mechanism of action of the 
two therapies, although this hypothesis needs to be 
studied further. For example, increased urinary glucose 
excretion offers a possible explanation for the greater 
response to SGLT2 inhibitors in patients with higher 
baseline HbA1c and higher kidney function, and it is 
biologically plausible that factors associated with insulin 
resistance (ie, BMI and alanine transaminase concen
trations) would reduce response to DPP-4 inhibitors that 
act primarily through potentiating insulin secretion, but 
not SGLT2 inhibitors which act though an independent 
mechanism.24

Our study has limitations. Notably, we were not able to 
validate differential treatment effects at the individual 
level, as while the outcome on the treatment received was 
observed for each individual, the counterfactual outcome 

the individual would have had if they received the other 
treatment was not observed (the fundamental problem of 
causal inference).25 Although randomised crossover trials 
provide the optimal way to study differential treatment 
effects,26 our validation in independent datasets, including 
head-to-head efficacy trials of the two therapies in which 
participants were randomly assigned and protocol driven 
follow-up was available, provides the next best evidence. 
As we developed the treatment selection model in routine 
clinical data, the potential of selection bias due to 
non-random treatment assignment means differential 
treatment effects for individual clinical features do not 
have a causal interpretation. However, our aim was not to 
uncover causal effects, but instead to develop a clinically 
useful treatment selection model and establish the 
generalisability and prediction accuracy of the model. We 
were unable to evaluate differential treatment effects by 
ethnicity, due to the low numbers of non-White 
individuals in routine and trial datasets. Although the 
trial validation in multicountry trial cohorts shows that 
the model is probably generalisable to other high-income 
countries, we acknowledge that further validation of the 
model in low-income and middle-income countries is 
needed before deployment in these settings. Although we 
incorporated cardiorenal risk stratification proposed in 
current ADA-EASD treatment guidelines in our eval
uation,1 we did not investigate individual-level hetero
geneity in cardiovascular or renal outcomes. This 
investigation would ideally require long-term trial data of 
SGLT2 inhibitors compared with DPP-4 inhibitors, and 
such trials have not yet been conducted. In the absence of 
comparative trials, further population-based studies 
applying causal inference methods to evaluate whether 
differences in short-term efficacy shown in this study 
alter long-term cardiorenal outcomes would be of 
considerable interest. Because our aim was to develop a 
model based on a simple set of clinical features, our 
variable selection approach omitted routine clinical 
features such as diabetes duration and biomarkers such 
as HDL cholesterol which were modest predictors of 
differential HbA1c outcome. We did not evaluate non-
routine biomarkers, diet or nutrition, physical activity, or 
genetics and did not fully explore differential effects of 
different background therapy combinations (for which a 
larger dataset would be required) or medication adherence 
(because only information on the prescriptions issued is 
electronically captured). Future research to identify 
whether these factors are associated with differential 
treatment effects could improve model performance and 
provide insight into underlying mechanisms of 
heterogeneous drug action.27 Finally, the relative 
performance of machine learning approaches designed 
to explicitly identify treatment effect heterogeneity28 
compared with the regression-based approach used in 
this study has yet to be evaluated.

By providing validated patient-level estimates of 
differences in glucose-lowering efficacy for two major 
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type 2 diabetes treatments, and assessing weight and 
discontinuation outcomes, our study has implications 
for clinical practice. The clinical features required to 
provide these estimates are available to most health 
professionals in high-income countries. Research to 
extend the prototype treatment selection decision aid to 
other type 2 diabetes treatment options is ongoing, 
informed by previously shown differential treatment 
effects for sulfonylurea, thiazolidinedione, and GLP-1 
receptor agonist therapy based on routine clinical 
features.9,29

In conclusion, routine clinical features can identify a 
large group of people with type 2 diabetes with a marked 
glycaemic benefit on SGLT2 inhibitor therapy and no 
increased risk of discontinuing treatment with SGLT2 
inhibitors compared with DPP-4 inhibitors. Only one in 
seven of this group would be preferentially recommended 
SGLT2 inhibitors based on current guidelines. A smaller 
group of predominantly older patients have a small 
glycaemic benefit on DPP-4 inhibitors and lower 
discontinuation risk on DPP-4 inhibitors compared with 
SGLT2 inhibitors. These findings show the potential of a 
precision medicine approach for people with type 2 
diabetes based on routine clinical features and evaluating 
multiple patient-centred outcomes to inform clinical 
decisions concerning choice of optimal glucose-lowering 
treatment.
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