

 Page 1 of 1

FedUni ResearchOnline
https://researchonline.federation.edu.au
Copyright Notice

This is the published version of:

Islam, M., Karmakar, G., Kamruzzaman, J., Murshed. M. (2020). A robust forgery detection
method for copy-move and splicing attacks in images. Electronics, 9(9), p.1-22.

Available online at: https://doi.org/10.3390/electronics9091500

© 2020 by the authors. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license, and indicate if
changes were made.

CRICOS 00103D RTO 4909

https://researchonline.federation.edu.au/
https://doi.org/10.3390/electronics9091500
http://creativecommons.org/licenses/by/4.0/

electronics

Article

A Robust Forgery Detection Method for Copy–Move
and Splicing Attacks in Images

Mohammad Manzurul Islam * , Gour Karmakar , Joarder Kamruzzaman
and Manzur Murshed

School of Engineering, IT and Physical Sciences, Federation University Australia, Churchill, Victoria 3842,
Australia; gour.karmakar@federation.edu.au (G.K.); joarder.kamruzzaman@federation.edu.au (J.K.);
manzur.murshed@federation.edu.au (M.M.)
* Correspondence: mm.islam@federation.edu.au

Received: 21 August 2020; Accepted: 9 September 2020; Published: 12 September 2020
����������
�������

Abstract: Internet of Things (IoT) image sensors, social media, and smartphones generate huge
volumes of digital images every day. Easy availability and usability of photo editing tools have
made forgery attacks, primarily splicing and copy–move attacks, effortless, causing cybercrimes
to be on the rise. While several models have been proposed in the literature for detecting these
attacks, the robustness of those models has not been investigated when (i) a low number of tampered
images are available for model building or (ii) images from IoT sensors are distorted due to image
rotation or scaling caused by unwanted or unexpected changes in sensors’ physical set-up. Moreover,
further improvement in detection accuracy is needed for real-word security management systems.
To address these limitations, in this paper, an innovative image forgery detection method has been
proposed based on Discrete Cosine Transformation (DCT) and Local Binary Pattern (LBP) and a new
feature extraction method using the mean operator. First, images are divided into non-overlapping
fixed size blocks and 2D block DCT is applied to capture changes due to image forgery. Then LBP is
applied to the magnitude of the DCT array to enhance forgery artifacts. Finally, the mean value of a
particular cell across all LBP blocks is computed, which yields a fixed number of features and presents
a more computationally efficient method. Using Support Vector Machine (SVM), the proposed
method has been extensively tested on four well known publicly available gray scale and color image
forgery datasets, and additionally on an IoT based image forgery dataset that we built. Experimental
results reveal the superiority of our proposed method over recent state-of-the-art methods in terms of
widely used performance metrics and computational time and demonstrate robustness against low
availability of forged training samples.

Keywords: Internet of Things; security; image forensics; machine learning models; feature extraction

1. Introduction

Today’s digital lives have been evolving around the concept of the Internet of Things (IoT) smart
objects. A recent report (June 2018) by Ericsson [1] projected that there will be 31.4 billion IoT devices
connected to the Internet by 2023, which means each person living on earth will have approximately
four IoT devices on average. Everyday objects such as home appliances, security devices, vehicles,
computing devices, visual sensors, wearable sensors are becoming smarter and connected to the
Internet, and they enable data sharing with each other to perform decision fusion for improved
accuracy of decision. Among them visual sensors like camera play a vital role in the physical as well
as cyberspace security and surveillance. Modern social media platforms such as Snapchat, Twitter,
Facebook, Instagram and online digital news media are producing millions of digital images everyday.
People tend to trust and rely on digital image contents more than written articles. However, easy to use

Electronics 2020, 9, 1500; doi:10.3390/electronics9091500 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-3008-081X
https://orcid.org/0000-0002-1308-7315
https://orcid.org/0000-0002-3748-0277
https://orcid.org/0000-0001-7079-9717
http://www.mdpi.com/2079-9292/9/9/1500?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9091500
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1500 2 of 22

photo editing software and tools have been available in recent days to alter image contents, and anyone
can produce fake images which appears to be quite natural and authentic. Our biological visual system
cannot trace these forgeries as the fake images leave no identifiable footprint of image tampering
to naked eyes. As a result, disrupting operational and decision making process, spreading false
propaganda and hiding facts have become a common practice for the digital criminals. Among all
image tampering techniques, copy–move and splicing are the most common and notorious digital
image forgery operation [2]. In the copy–move forgery, one or more portion of the host image is copied
and then pasted on different locations of the same image. In contrast, splicing forgery copies one or
more portion from one image and then pasts on a completely different image. In this research article,
we use ’image forgery’ or ’image tampering’ to denote copy–move and splicing attacks.

A single image can express a complex idea very easily as ‘a picture is worth a thousand words’.
Image tampering may convey a false impression which may lead to disastrous consequences [3–5].
An AP photo journalist Markus Schreiber captured the photo in Figure 1a on the very first day of
G-20 summit in Germany [6] in 2017. Later, the image was altered and uploaded to Facebook by a
Russian journalist [7]. By the time he deleted the post from Facebook, the image was already shared
thousands of times in different social media and news portals which caused confusion and generated
debate around the world. Similarly, a digitally forged image can convey wrong message to the world
political leaders which may end up in forcing them to make wrong decision, political steps or even
start a nuclear war.

(a) (b)
Figure 1. Image splicing example: (a) Original and (b) fake.

Though image tampering leaves no visible traces to human eyes, it can be identified through
the state-of-the-art image forgery identification techniques. Based on the type of image domain
used to extract the feature set(s), existing forgery detection methods available in literature can
be divided into three main categories: (i) Spatial domain based techniques [8,9]; (ii) frequency
domain based techniques [10,11]; and (ii) hybrid techniques [12,13]. Statistical artifacts introduced
by image forgery can be identified more explicitly by exploiting statistical measures of spatial
domain information. However, pixel value and boundary changes can be more accurately captured
by leveraging the frequency domain information as shown in recent works introduced by [11,14].
However, the performance of these methods has not been analyzed on Internet of Things (IoT)
image sensor data. For utilizing the benefits of spatial, temporal and frequency domains, there exist
many hybrid techniques in the literature. The literature shows researchers developed the forgery
detection techniques for color and grayscale images separately, however, most of these techniques do
not necessarily perform equally well for both types of images. Most techniques require a huge
number of features and hence, feature selection becomes essential to reduce the computational
complexity [15]. Moreover, to the best of our knowledge, none of the existing methods is evaluated for
an IoT image dataset.

To address these issues, in this paper, we introduce a new image forgery detection technique
and evaluate it with extensive experimentation. The main contributions of the paper are summarized
as follows:

Electronics 2020, 9, 1500 3 of 22

• Our proposed method is highly robust as it is capable of detecting image forgery even when
a low number of forgery samples (accuracy of 77.01% vs. 61.17% for 3% forgery samples in
training set for our proposed method vs. method in [10]) are available in training set for FBDDF
(Federation–Berkeley Deep Drive Forgery) dataset. This level of performance vindicates our
proposed detection system is more suitable for IoT image forgery detection.

• We introduce an innovative feature extraction method that reduces the impact of translation,
rotation, and scale on feature extraction, and inherently yields a fixed low dimensional feature set
presenting a more computationally efficient system. Another important aspect of this technique
is that the extracted feature set is equally applicable for both types of images which is justified by
the reported results using the benchmark datasets for color and gray level images.

• We develop a new dataset named FBDDF (Federation–Berkeley Deep Drive Forgery) using
Berkeley’s Deep Drive dataset [16], one of the widely used dataset for IoT based self-driving
vehicular vision research. FBDDF fills-in the gap for a benchmark dataset for IoT around image
forgery research.

• Our proposed method outperforms other image forgery detection techniques when tested on
five publicly available and widely used datasets. The use of DCT, LBP, and other processing
steps to extract features in our method which, when trained with SVM, leads to better detection
performance (up to 13.20% improvement across the datasets).

The rest of the paper is organized as follows. Section 2 reports the related works. Section 3
explains our proposed method in detail. Section 4 discusses the newly developed FBDDF dataset and
experimental results. It also compares our method with existing methods. Finally, Section 5 concludes
the article.

2. Related Works

All the methods proposed in the literature to identify image tampering mainly differ in identifying
and modelling the structural and statistical changes that occur due to image forgery. Considering
the image domain information from which features are extracted, we can broadly classify the image
forgery detection techniques into three categories: (A) Spatial domain based techniques that compute
the features using the value of a pixel and its location information [8,9]; (B) frequency domain
based techniques where features are calculated exploiting the frequency of image pixels [10,11];
and (C) hybrid techniques that use the combination of features comprising spatial, frequency,
wavelet (time-frequency) and other image domain information [12,13]. Note, since Discrete Wavelet
Transformation (DWT) uses both spatial (location) and frequency domain information and provides
temporal resolution, all techniques that utilize DWT based features have been classified into the hybrid
group. In the following sections, we discuss the existing and contemporary image forgery detection
methods belonging to these categories.

2.1. Spatial Domain Based Techniques

Since a human can easily perceive image using pixel values, earlier image processing techniques
use spatial domain information only. Thus, it led to the development of many forgery detection
techniques exploiting only spatial domain information. Hsu and Chang [17] proposed a method that
uses camera response function and its geometry invariants in a semi-automatic approach. This method
requires manual labelling of suspicious segments of the tampered image and hence, not workable for
real time applications. Later, they improved their work by integrating automatic segmentation [18].
However, automatic segmentation is also limited to its efficacy as there are huge number of natural
images having vast variations among them. In [8], Johnson and Farid introduced a technique that
exploits the lighting inconsistencies between forged and unaffected areas of the image. However, this
approach does not provide satisfactory result if the host image and the spliced section have similar
lighting condition. Wang et al. [19] presented a method for image tampering detection by extracting

Electronics 2020, 9, 1500 4 of 22

features from chroma space of an image using thresholded edge information as a finite-state Markov
chain and characterized it using one-step transition probability matrix. Their detection accuracy was
higher (95.6%) than that of [12,13] for CASIA 2 [20]. However, to achieve better output from SVM
classifier, they randomly selected 5123 authentic images (out of 7491) from CASIA 2 to make a balance
with given 5123 forged images, which in real life application is not practical. Besides, the effectiveness
of this technique also depends on intuitively selected value for thresholding edges [21] explored pixel
correlation anomalies and coherence introduced by splicing operation in a host image. They proposed
a mechanism adopting the run-length and edge statistics of an image. Since splicing adds extra edges
to an image, instead of run-length image pixels, this model was later improved by He et al. [9] using
an approximate run-length (the run-length of edges). First, the authors derived run-lengths on edge
pixels to reduce computational cost of calculating run-lengths of the entire image. Then, unlike [21]
(who calculated run-lengths along 0, 45, 90 and 135 degree orientation), they only considered run-length
computation along the respective gradient direction of individual edge pixel. Finally, a threshold
was selected to obtain approximate run-lengths and hence, they improved the method of [21] in
terms of feature dimensionality, computational cost and detection accuracy (80.58%). Zhao et al. [22]
proposed a method by extracting features from gray level run-length number (RLRN) vectors having
different directions and de-correlated chrominance channels. Their investigation revealed that RLRN
performed better in chrominance channel than in luminance channel or RGB space for image tampering
detection. They attained 85% and 94.7% detection accuracy on two benchmark image forgery datasets,
namely Columbia Color [17] and CASIA 1 [20] respectively. Some researchers adopted different
texture descriptors like LBP and WLD (Weber Local Descriptor) to detect image tampering. Since
WLD appears to be an robust texture descriptor, Hussain et al. [23] adopted multi-resolution WLD
on chroma component to extract features and reported detection accuracy of 91.52% and 93.33% for
copy–move and splicing attack respectively on CASIA 1. Another work [24] by the same authors
compared multiscale LBP with multiscale WLD and attained superior result using WLD (90.97% for
copy–move, 94.29% for splicing) than LBP (85.83% for copy–move, 90.48% for splicing) on CASIA 1.
However, they gained slight improvement of detection accuracy for splicing attack and decrement
for copy–move attack on the same dataset. The main problem of multiscale WLD is that the feature
dimension is very high as dimensionality increases proportionally to the number of scales considered.
As a consequence, multiscale WLD becomes computationally expensive and may be trapped by the
curse of feature dimensionality [25]. Since image forgery not only changes the pixel values but also the
edges of an image, the frequency domain can represent these changes in a more quantitative way than
the spatial domain. For this reason, over time, many techniques have been evolved that are presented
in the following section.

2.2. Frequency Domain Based Techniques

Alahmadi et al. [10] adopted both LBP and DCT to detect image forgery and attained promising
result. The authors first applied LBP on blocks of image chroma channels followed by 2D-DCT on those
individual blocks. For each DCT coefficient, they estimated a feature as the standard deviations of that
specifically positioned DCT coefficients containing in all blocks. Many studies [10,22,26–28] show the
improved performance of splicing and copy–move attacks detection using the chrominance channels
than the luminance channel and gray scale image. The main drawback of the approach introduced
in [10] is the application of LBP operator before applying DCT transformation as LBP eliminates
some of the subtle artifacts introduced by an image forgery. To address this issue and enhance the
performance, Islam et al. [11,14] proposed a new forgery detection system based on applying DCT
first, and then, LBP. Islam et al.’s method performs better than existing methods in respect of detection
accuracy, however, the study lacks extensive evaluation and comparison with other competing methods
and particularly experimentation with IoT data. In this method, the computational complexity analysis
has also not been performed. A recent work introduced by Kanwal et al. [29] presents three different
models for image forgery detection based on LBP, local ternary pattern (LTP), enhanced LTP (ELTP)

Electronics 2020, 9, 1500 5 of 22

and fast fourier transform (FFT). They applied these techniques on 3 by 3 overlapped blocks of different
chrominance channels and compared the results among their suggested three models. They concluded
that the model where they integrated FFT with ELTP operator yields best detection accuracy (88.62%
on CASIA 1) and thus, more suitable for forgery detection. Furthermore, up to our knowledge, no
existing forgery detection techniques available in the literature including [10,11,14] report how well
their method performs when only a low number of forgery samples are available to train the classifier.

Each image domain has its ability to capture specific information. For example, pixel intensity
changes (e.g., edges) created by splicing can be captured in a better way in the frequency domain than
the spatial domain. On the other hand, statistical artifacts introduced by splicing can be identified more
explicitly by exploiting statistical measures (e.g., second order statistics) of spatial domain information
than that of frequency domain. For leveraging the merits of other domain information, a few
approaches have been developed considering features extracted from multiple domains. Those works
are discussed in the following section.

2.3. Hybrid Techniques

In [12], Shi et al. proposed a natural image model where intra-block DCT Markov random process
based features, and statistical moment features in both frequency and spatial domains are extracted.
The main strength of the proposed approach is the utilization of Markov features along with the
statistical moment features. In general, forgery increases high-frequency components. Therefore,
for calculating the transition probability matrix, the use of the same intuitive threshold for all DCT
coefficients limits its effectiveness. Besides, some of the subtle changes occurred by image forgery can
heavily influence the coefficients of certain frequency components. The threshold used in the Markov
transition probability calculation cannot capture these coefficient changes well. For capturing the
residual correlation (the correlation cannot the captured by [12]) of image pixels and exploiting the
benefits of multi-resolution analysis of DWT, He et al. [13] presented a splicing detection model by
using both intra-block and inter-block Markov features in both DWT and DCT domains. The main
differences of this model compared with [12] are: (i) Besides, intra-block, inter-block Markov features
are used, (ii) along with DCT, DWT is also used, and (iii) moment-based features are not utilized.
Its main drawbacks are: (i) Markov features between DCT and DWT are correlated, (ii) the number
of subbands needed appears to be high to obtain the wavelet coefficients in different positions,
orientations, and scales, yielding very large feature dimension, and (iii) the requirement of feature
selection also bounds its performance. Using only wavelet transformation information, a color image
forgery technique has been articulated in [30]. Since Steerable Pyramid Transform (SPT) is a superior
wavelet decomposition technique, SPT is used to derive a number of wavelet subbands of different
scales having different orientations for both Cb and Cr color spaces. LBP operator is applied to the
coefficients of each subband and then, LBP histogram features are used for the SVM classification.
However, how many scales and how many orientations of each scale are appropriate for detecting
all types of forgeries in all images still remain unanswered. Using LBP and DWT with Haar wavelet,
another color image splicing detection technique has been introduced [15]. In contrast to [30], LBP is
applied to the image before DWT, which suppresses many important pixel values required for detecting
subtle changes for splicing. For effective feature selection at reduced computational complexity, they
employed Principle Component Analysis (PCA).

Current literature indicates that color and grayscale image forgery techniques have evolved
independently over time. This is because, for the effective forgery detection, the feature set has
to be more sensitive to subtle changes for Cb and Cr color spaces than that for grayscale images.
This demands an approach that is equally effective for both color and grayscale images. So far, none of
the existing techniques is evaluated using IoT or Industrial IoT (IIoT) sensor data. It is essential
to protect IoT/IIoT based systems driving industrial automation from cyber attacks. As expected,
the performance of a forgery detection technique heavily depends on domain(s) information and
image manipulation operator(s), and their usage sequence order. Finally, since, feature selection is a

Electronics 2020, 9, 1500 6 of 22

challenging research issue, an image forgery technique should adopt an approach that inherently limits
the number of features and thus avoids it. For addressing all of these issues, in this paper, we introduce
an innovative method that is presented in the following section.

3. Proposed Method

The image forgery detection system is usually a binary decision problem i.e., identifying whether
an image is authentic or forged. The system requires a pre-processing step to extract features that
are followed by a classification step. The statistical and structural changes because of tampering are
reflected by the features of an image. Therefore, an effective feature extraction technique is highly
important, which is the main focus of our proposed system. The extracted features are fed into a binary
classifier (e.g., machine learning model) to identify authentic and forged images. Figure 2 portrays the
different key components and their operational sequence of our proposed method.

Figure 2. Proposed system for detecting image splicing and copy–move attacks.

As shown in Figure 3, we apply DCT before LBP (in short DCT-LBP). The reason behind selecting
DCT-LBP is explained here. LBP considers only neighbouring pixels whose values are greater than or
equal to the candidate pixel value and thus suppresses other pixels. As a consequence, LBP reduces the
pixel intensity variations to a certain extent. If we use standard deviation-based features introduced
in [10], applying LBP before DCT (in short LBP-DCT) outperforms DCT-LBP (refer to 88.50% vs. 79.50%
detection accuracy in Figure 3). This can be explained by the fact that removing some pixel values by
LBP and its magnification makes standard deviation-based features more discriminating than those for
DCT-LBP. In contrast, since LBP removes some of the forgery artifacts that could be captured by DCT,
using our mean-based features for FBDDF dataset (see details in Section 4.1.2), applying LBP-DCT in
forgery detection leads to lower detection accuracy compared with utilizing DCT-LBP. For this reason,
using our mean-based features, Figure 3 shows the image forgery detection accuracy of DCT-LBP
(95.84%) is higher than that of LBP-DCT (92.18%). This is because subtle changes are captured by DCT
and later some of them are enhanced by LBP. Consequently, this enhancement considerably impacts
the mean-based features and make them more distinctive. This fact motivates us to apply DCT-LBP
in our proposed method. Figure 3 also shows our mean-based features are more effective than the
standard deviation-based features. Our proposed method is presented in the following section.

Electronics 2020, 9, 1500 7 of 22

Figure 3. Comparison between application order of Local Binary Pattern (LBP) and Discrete Cosine
Transformation (DCT).

3.1. Converting Color Images into Grayscale and YCbCr Color Space Images

Image forgery detection methods have been evolved separately for color and grayscale images.
Unlike existing methods available in the current literature, our proposed image forgery detection
approach is equally applicable to both color and grayscale images. However, for evaluating image
forgery detection, so far, only one benchmark dataset is available for the grayscale images. On the
other hand, there are a few datasets for color images. For this reason, for assessing the efficacy of our
proposed approach for both color and grayscale images, we convert the color images into grayscale
images and YCbCr color space images as required. In this paper, we specifically choose YCbCr
color space because existing forgery detection techniques produce superior results for this over other
color models.

3.2. Block Division of Grayscale Image and YCbCr Color Space Components

Dividing an image into some fixed size square blocks appears to be the most effective way adopted
in image forgery detection methods. Because this allows us to propagate the impact of changes, even a
small change made by copy–move and splicing operations, into all features, which makes features
being more discriminating and thus effective [10]. The smaller the block, the higher the chance to
detect the subtle changes and less the number of features are. Besides, this block division also enables
us to identify a fixed number (size of a block) of features. Less number of features cannot represent all
different changes in a large number of images. In contrast, a very high dimensional feature space suffers
from the curse of dimensionality, losing the discriminating capability for a very large dimensional
feature set [25]. For capturing changes effectively and a suitable feature dimension selection, in the
first phase, we divide the grayscale images and YCbCr components into different blocks (4 × 4, 8 × 8,
16 × 16 and combining all these blocks). The second phase of block division is applied to the resultant
image after applying DCT and LBP operations, which is discussed in Section 3.5. The block division of
an image is performed using the following procedure.

Let Iwb×hb be an image of size wb× hb pixels. We divide Iwb×hb into w× h non-overlapping blocks
of size b× b pixels. The resultant two dimensional block array is given by,

Iwb×hb =

Ib×b
0,0 · · · Ib×b

0,w−1
...

. . .
...

Ib×b
h−1,0 · · · Ib×b

h−1,w−1

 (1)

Electronics 2020, 9, 1500 8 of 22

3.3. Block Discrete Cosine Transformation (BDCT)

Splicing and copy–move operations introduce unexpected changes as well as micro patterns
along the fine boundary of the tampered region. As a result, the local frequency distribution of
the tampered area changes. The natural correlation among image pixels are also disrupted as these
operations modify the smoothness, regularity and continuity of host image pixels, specially around
the edges of the tampered region [12]. To aid forgery identification, the diversity of image contents
needs to be reduced and the tampering artifacts enhanced, before deriving discriminating feature set.
An image is converted from the pixel domain to the frequency domain using block DCT (BDCT) to
capture the level of image content change. BDCT is well known for its excellent capability of energy
compaction and image pixel decorrelation which, in turn, captures pixel domain changes in local
frequency distribution [31].

We apply 2D-DCT on the blocks of Iwb×hb to generate DCT coefficients. Let Ywb×hb be the resultant
transform domain coefficient after applying 2D-DCT on each block and it is given by,

Ywb×hb =

Yb×b

0,0 · · · Yb×b
0,w−1

...
. . .

...
Yb×b

h−1,0 · · · Yb×b
h−1,w−1

 (2)

where, Yb×b
i,j = 2D-DCT(Ib×b

i,j), 0 ≤ i ≤ w− 1, 0 ≤ j ≤ h− 1. The 2D-DCT of an input block Ib×b
i,j and

output block Yb×b
i,j is given by,

Yb×b
i,j = αpαq

b−1

∑
m=0

b−1

∑
n=0

Ib×b
i,j (m, n)× cos

π(2m + 1)p
2b

× cos
π(2n + 1)q

2b

, (3)

where, 0 ≤ p ≤ b− 1, 0 ≤ q ≤ b− 1 and

αp =

√

1
b

, if p = 0√
2
b

, otherwise

, (4)

αq =

√

1
b

, if q = 0√
2
b

, otherwise

. (5)

3.4. Local Binary Pattern (LBP) Operator

To enhance and identify forgery artifacts on images, we apply LBP, a computationally inexpensive
and robust texture descriptor, on the magnitude components of the BDCT array derived in (2). Note,
the consideration of DCT reduces the impact of translation, while magnitude of its coefficients makes
it less sensitive to rotation. The main reason behind adopting LBP is to identify the occurrences of new
micro-patterns arising from tampering. LBP highlights these forgery artifacts and augment them in
the host image. LBP operation compares every DCT value with its eight neighbouring DCT values and
generates LBP code for that value. The LBP codes are derived as below.

Electronics 2020, 9, 1500 9 of 22

For the central DCT coefficient pc, let Lr(pc) be an LBP operator applied to all DCT coefficients
within a neighbourhood having radius r. Lr(pc) is defined as,

Lr(pc) =
N−1

∑
n=0

g(pn − pc)2n. (6)

where for a rectangular neighbourhood, N = (r + 1)2 for r = 1 and N = (r + 1)2 − 1 otherwise [32].
The neighbouring DCT coefficient is defined as pn where n = 0, 1, · · · , N − 1. The function g(pn − pc)

is defined as,

g(pn − pc) =

{
1, pn − pc ≥ 0

0, pn − pc < 0
. (7)

A rectangular window for calculating LBP has been adopted in our method where we choose the
number of neighbours N = 8 with radius r = 2. If the central value pc is greater than its neighbouring
value, then 0 is recorded; otherwise 1. Thus, the central DCT value pc receives an eight bit binary code
which is converted into the corresponding decimal value, and this value is stored as the LBP code of
the considered central DCT value. Figure 4 depicts the process with an example. The eight bit binary
code is assembled from the Least Significant Bit (LSB) to the Most Significant Bit (MSB). The decimal
value then replaces the central DCT coefficient pc. The process continues for all the DCT values and
respective LBP codes are being generated for the entire image.

Figure 4. LBP code generation procedure.

Let L wb×hb be the resultant LBP array generated by applying LBP operator, Lr() defined in (6),
on magnitude components (|Ywb×hb|) of Ywb×hb. It is given by,

L wb×hb(x, y) = Lr(|Ywb×hb(x, y)|), (8)

where, 0 ≤ x ≤ wb− 1 and 0 ≤ y ≤ hb− 1.

3.5. Block Division of LBP Array

In the second phase of block division, we divide the LBP 2D array L wb×hb into same size of
blocks, similar to the block division operation performed in Section 3.2. We divide L wb×hb into w× h
non-overlapping blocks of size b× b LBP codes. The resultant block 2D array of LBP is represented as

L wb×hb =

L b×b

0,0 · · · L b×b
0,w−1

...
. . .

...
L b×b

h−1,0 · · · L b×b
h−1,w−1

 (9)

3.6. Mean-Based Feature Extraction

The performance of a classifier is heavily dependent on the capability of a feature set to separate
the classes. This fact motivates us to identify data points to approximate features that can apprehend
an image forgery more accurately. For such identification, as mentioned before, we choose a similar

Electronics 2020, 9, 1500 10 of 22

technique adopted by Alahmadi et al. [10] which calculates the standard deviation-based feature set.
Since this technique propagates the change in a block to all features, it appears to be a promising
approach for image forgery detection. However, instead of the standard deviation, we aim to use the
mean-based features. The justification of selecting the mean-based features can be attributed to the
fact that DCT transforms an image component from spatial domain to frequency domain to identify
changes among different pixel values of that input. Because of alien micro patters introduced by
forgery, higher and more non-zero values in high frequency DCT coefficients are observed in the
tampered image based on the quality and quantity of image content modification. As justified before,
to preserve these micro patterns, our method adopts first DCT and then LBP as DCT coefficients capture
the unnatural changes in forged image blocks while LBP enhances those forgery artifacts. Since image
tampering by splicing and copy move attacks introduces subtle local changes in host images, those
changes can be identified as outliers. It is a well-known fact that mean is most affected by outlier
more than any other statistical operator. Besides, for a fixed number of data points, the computational
time for calculating mean is much less than that for standard deviation. This is why, we adopt mean
operation for calculating our feature set. As mentioned before, a block contains b2 number of cells
that represent the number of features derived by our proposed method. For each cell, we calculate
the mean of all LBP codes of all blocks containing in a 2D LBP array. The feature extraction process is
detailed in the following equations.

The mean-based feature F(x, y) for the cells indexed by xth row and yth column in all blocks is
derived as,

F(x, y) =
∑w−1

u=0 ∑h−1
v=0 L b×b

u,v (x, y)
w× h

. (10)

where, 0 ≤ x, y ≤ b − 1 and L b×b
u,v () represents uth row and vth column block of the 2D LBP

array (L wb×hb). Note, as mentioned before, using (10), we calculate b2 features over w× h blocks.
Mean-based feature usage makes our method independent of image size.

For n data points, the computational complexity of both mean and sample standard deviation
calculation is O(n). Mean computation requires n additions and one division operations. Besides mean
calculation, sample standard deviation requires extra n additions and squares, n + 1 subtractions,
and one square root and division operations. Therefore, extracting the mean-based feature is
computationally faster than standard deviation-based feature calculation.

4. Experiments and Results

4.1. Description of Datasets

The following subsections discuss the datasets used to evaluate our proposed system:

4.1.1. Existing Datasets

We have evaluated our proposed splicing and copy–move attack detection system on four publicly
available well recognized image forgery detection datasets: (i) Columbia Gray [33], (ii) Columbia
Color [17], (iii) CASIA 1 and (iv) CASIA 2 [20]. We agree with [13,19] that among all of the publicly
available datasets, CASIA 2 is the latest state-of-the-art splicing and copy–move attack dataset having
a large number of color image samples in varying pixel dimensions which portray natural and realistic
image forgery and thus, a robust forgery detection method should have higher detection accuracy
on this dataset. Table 1 summarizes the key features of these datasets along with our newly created
FBDDF dataset detailed below.

Electronics 2020, 9, 1500 11 of 22

Table 1. Desription of datasets.

Dataset Image Size Image Type
No. of Images

Tampering
Authentic Tampered Total

Columbia

Gray
128 × 128 BMP 933 912 1845

Simple crop-and-paste in small block of gray

image , no post processing or color image

Columbia

Color
757 × 568–1152 × 768 TIFF 183 180 363

Simple crop-and-paste using Photoshop,

high resolution uncompressed images

CASIA 1 384 × 256, 256 × 384 JPEG 800 921 1721
Photoshop with pre-processing,

no post-processing

CASIA 2 240 × 160–900 × 600 JPEG, TIFF, BMP 7491 5123 12,614
Photoshop with pre-processing and/or

post-processing

FBDDF

(New)
1280 × 720 JPEG, TIFF 200 200 400

Uncompressed Splicing and copy–move using

Photoshop, suitable for self driving vision forensics

4.1.2. Our Developed Dataset—FBDDF

We have built a new splicing and copy–move detection dataset called FBDDF
(Federation–Berkeley Deep Drive Forgery), using the BDD (Berkely Deep Drive) dataset [16].
BDD dataset is currently world’s largest open and crowd sourced driving dataset of video and images
(over 100 k videos and 100 k images extracted at 10th second of each video) covering different time of
day, road conditions and weather conditions (e.g., day, night, sunny, foggy, rain, snow). This dataset
is widely used for IoT based self-driving vehicular vision research. Advances in intelligent traffic
system (ITS) and self-driving cars must implement strong security mechanism which should thwart
image forgery attacks. Therefore, a splicing and copy–move dataset using BDD will fill-in the gap for
a test dataset around IoT based ITS imagery. We have randomly selected 200 original images from
BDD and performed deliberate splicing and copy–move attacks to generate 200 fake images using
Photoshop CC 2018. All original images are in jpeg format whereas, the forged images are saved in
uncompressed tiff format to reduce the effects of jpeg image compression issues in forgery detection.
This is because if the spliced region on the host image is derived from a foreign image having different
resolution, and image compression (e.g. jpeg compression) is performed to generate the forged image
after splicing operation, then there could be a mismatch in image compression which would be easier
to identify. Hence, to make FBDDF more challenging in image forgery detection, we have saved all
forged images into uncompressed tiff format. FBDDF is publicly available for the research community
at https://bit.ly/2ZrKe8Q. Figure 5 displays some samples from FBDDF and Table 1 summarizes the
key features of the dataset.

4.2. SVM Classifier and Model Validation

SVM, a machine learning algorithm, has been widely adopted in many well recognized spicing and
copy–move attack detection methods as it shows encouraging performance in classifying authentic and
forged image [9–11,13–15,17–24,26,28–30]. We selected LIBSVM [34] implementation as the classifier
to evaluate overall accuracy and related performance metrics for our proposed architecture. We used
radial basis function (RBF) as the SVM kernel. Since SVM’s learning parameters influence classification
performance, we utilized Bayesian Optimization [35] to find the best values for regularization
parameter and the width of the RBF kernel. We used ten-fold cross-validation which is the most
suitable and widely used method to divide a dataset into training and test sets [36]. In ten-fold
cross validation, the whole dataset is divided into 10 nearly equal-sized mutually exclusive folds
and the ratio of the real and forged images in each fold was kept roughly the same as in the total
dataset. Each time nine folds were used for training and validation, and one fold was used as the
test set. The process was repeated 10 times, each time with a different test set (test sets are disjoint).
This constituted one trial and the average of ten fold’s performance was recorded as the overall
performance of the model in that trial. We conducted 20 such trials and in the following subsection

https://bit.ly/2ZrKe8Q

Electronics 2020, 9, 1500 12 of 22

we report the average value of each of the four widely used performance metrics along with their
standard deviations of these 20 trials. We identify the best block which yeilds best detection accuracy
for a particular dataset and report in Section 4.4. We used MATLAB R2019a for data pre-processing,
feature extraction and classification.

(a) Authentic image (first image of each pair) and their corresponding splicing forgery (second image of each pair)

(b) Authentic image (first image of each pair) and their corresponding copy–move forgery (second image of each pair)

(c) Authentic image (first image of each pair) and their corresponding splicing & copy–move forgery (second
image of each pair)

Figure 5. Samples from the FBDDF (Federation–Berkeley Deep Drive Forgery) image dataset:
(a) Splicing, (b) copy–move and (c) splicing and copy–move combined.

4.3. Performance Metrics

We evaluate our proposed method using the following performance measures:

4.3.1. Accuracy

Accuracy is defined as,

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%, (11)

where TP (true positive) is the number of tampered images that are correctly detected as tampered,
TN (true negative) is the number of authentic images that are correctly classified as authentic, FP (False
positive) is the number of authentic images that are incorrectly classified as tampered and FN (false
negative) is the number of tampered images that are incorrectly identified as authentic image.

4.3.2. False Negative Rate (FNR)

Any forensic analytic system should be capable enough to produce low False Negative Rate (FNR)
to make the system secure and trustworthy. FNR is given by,

FNR =
FN

TP + FN
× 100%. (12)

4.3.3. Sensitivity

Sensitivity is the measure of actual portion of forged image being correctly identified as forged
image. It is given by,

Sensitivity =
TP

TP + FN
× 100%. (13)

Electronics 2020, 9, 1500 13 of 22

4.3.4. Specificity

Specificity is the percentage of authentic image being correctly identified as authentic. It is given by,

Speci f icity =
TN

TN + FP
× 100%. (14)

4.4. Results and Discussion

The detection accuracy, FNR, specificity and sensitivity along with their standard deviations (SD)
for features extracted from gray scale image as well as different color channels of an image (Y, Cb, Cr,
Cb+Cr) are reported in Tables 2 and 3. All of them were tested for block size of 4 × 4, 8 × 8, 16 × 16
as well as combining all blocks (4 × 4 + 8 × 8 + 16 × 16). As different datasets consist of images
with different resolution and different sized forgery operations, a fixed block size is not sufficient for
every dataset. Hence, we identify the best block which yields best detection accuracy for a particular
dataset and report them in this paper. Note, all the reported results are in percentage. For gray
scale image, our forgery detection approach achieves detection accuracy of 85.56± 0.24, 96.10± 0.43,
98.61± 0.11, 99.29± 0.03 and 95.84± 0.37 over Columbia Gray, Columbia Color, CASIA 1, CASIA 2
and FBDDF datasets respectively. For color images, the detection accuracies for corresponding datasets
are 98.20± 0.28, 99.55± 0.08, 99.88± 0.01 and 100.00± 0.00.

Table 2. Overall detection accuracy and False Negative Rate (FNR) in our proposed method with
varying block size and different image channels.

Datasets Block Size

Accuracy FNR

Gray
Color Components

Gray
Color Components

Y Cb Cr CbCr Y Cb Cr CbCr

Columbia

Gray

4 × 4 78.82± 0.23 - - - - 23.02± 0.46 - - - -

8 × 8 85.56± 0.24 - - - - 14.47± 0.48 - - - -

16 × 16 81.44± 0.36 - - - - 18.11± 0.70 - - - -

Combined 85.54± 0.32 - - - - 13.24± 0.84 - - - -

Columbia

Color

4 × 4 92.51± 0.34 93.46± 0.49 89.66± 0.90 90.67± 0.57 91.45± 0.42 6.03± 0.73 5.81± 0.66 12.56± 2.58 12.28± 1.42 8.14± 0.63

8 × 8 96.10± 0.43 96.20± 0.43 97.73± 0.32 96.58± 0.33 98.20± 0.28 4.00± 0.64 4.47± 0.82 3.560± 0.58 4.580± 0.59 2.56± 0.58

16 × 16 95.22± 0.41 95.41± 0.26 96.17± 0.32 94.77± 0.46 95.33± 0.32 5.03± 0.64 4.86± 0.57 5.171± 0.04 7.831± 0.44 6.92± 1.45

Combined 95.99± 0.45 96.85± 0.38 97.41± 0.29 96.23± 0.25 96.39± 0.27 4.39± 0.70 3.33± 0.54 3.670± 0.71 4.720± 0.58 5.17± 0.70

CASIA

1

4 × 4 87.33± 0.29 87.51± 0.34 92.86± 0.25 94.76± 0.23 95.28± 0.27 12.79± 0.36 12.45± 0.37 5.93± 0.37 4.33± 0.29 3.97± 0.37

8 × 8 98.24± 0.11 98.07± 0.13 98.77± 0.09 99.03± 0.10 99.00± 0.05 2.00± 0.38 2.37± 0.31 1.18± 0.15 0.80± 0.15 0.93± 0.16

16 × 16 96.14± 0.16 96.14± 0.18 99.11± 0.09 99.51± 0.05 99.44± 0.08 4.64± 0.40 4.60± 0.34 1.19± 0.14 0.48± 0.08 0.66± 0.12

Combined 98.61± 0.11 98.57± 0.08 99.28± 0.12 99.55± 0.08 99.33± 0.06 1.56± 0.16 1.63± 0.12 0.59± 0.21 0.43± 0.09 0.66± 0.12

CASIA

2

4 × 4 93.86± 0.08 93.64± 0.08 98.72± 0.03 98.50± 0.04 98.81± 0.04 6.15± 0.25 6.38± 0.24 1.64± 0.06 1.84± 0.06 1.38± 0.07

8 × 8 97.70± 0.05 98.33± 0.05 99.65± 0.02 99.60± 0.02 99.65± 0.02 2.40± 0.08 1.79± 0.10 0.40± 0.04 0.40± 0.05 0.33± 0.04

16 × 16 99.06± 0.05 99.47± 0.03 99.85± 0.02 99.79± 0.01 99.88± 0.01 0.87± 0.07 0.55± 0.05 0.16± 0.03 0.24± 0.03 0.16± 0.02

Combined 99.29± 0.03 99.36± 0.03 99.74± 0.03 99.71± 0.03 99.74± 0.02 0.71± 0.05 0.57± 0.06 0.27± 0.04 0.33± 0.04 0.27± 0.03

FBDDF

4 × 4 89.58± 0.58 89.38± 0.65 99.94± 0.11 100.00± 0.00 99.95± 0.10 10.83± 0.86 11.13± 0.89 0.00± 0.00 0.00± 0.00 0.00± 0.00

8 × 8 95.84± 0.37 95.86± 0.34 99.75± 0.00 99.58± 0.12 99.74± 0.06 4.85± 0.59 4.25± 0.68 0.00± 0.00 0.08± 0.18 0.00± 0.00

16 × 16 85.60± 0.70 84.91± 0.73 99.95± 0.10 99.98± 0.08 99.98± 0.08 14.03± 1.19 14.05± 1.39 0.00± 0.00 0.00± 0.00 0.00± 0.00

Combined 94.45± 0.42 94.63± 0.42 99.75± 0.00 99.75± 0.00 99.75± 0.00 5.65± 0.59 5.30± 0.73 0.00± 0.00 0.00± 0.00 0.00± 0.00

Electronics 2020, 9, 1500 14 of 22

Table 3. Sensitivity and specificity in our proposed method with varying block size and different
image channels.

Datasets Block Size

Sensitivity Specificity

Gray
Color Components

Gray
Color Components

Y Cb Cr CbCr Y Cb Cr CbCr

Columbia

Gray

4 × 4 76.98± 0.46 - - - - 80.61± 0.56 - - - -

8 × 8 85.53± 0.48 - - - - 85.59± 0.43 - - - -

16 × 16 81.89± 0.70 - - - - 81.01± 0.72 - - - -

Combined 86.76± 0.84 - - - - 84.35± 0.66 - - - -

Columbia

Color

4 × 4 93.97± 0.73 94.19± 0.66 87.44± 2.58 87.72± 1.42 91.86± 0.63 91.07± 0.60 92.73± 0.75 91.83± 1.93 93.58± 1.55 91.04± 0.99

8 × 8 96.00± 0.64 95.53± 0.82 96.44± 0.58 95.42± 0.59 97.44± 0.58 96.20± 0.57 96.86± 0.46 98.99± 0.44 97.73± 0.67 98.93± 0.38

16 × 16 94.97± 0.64 95.14± 0.57 94.83± 1.04 92.17± 1.44 93.08± 1.45 95.46± 0.59 95.68± 0.47 97.49± 0.84 97.32± 1.37 97.54± 1.43

Combined 95.61± 0.70 96.67± 0.54 96.33± 0.71 95.28± 0.58 94.83± 0.70 96.37± 0.60 97.02± 0.57 98.47± 0.58 97.16± 0.46 97.92± 0.70

CASIA

1

4 × 4 87.22± 0.36 87.55± 0.37 94.07± 0.37 95.67± 0.29 96.03± 0.37 87.47± 0.45 87.47± 0.58 91.48± 0.41 93.72± 0.39 94.43± 0.45

8 × 8 98.00± 0.38 97.63± 0.31 98.82± 0.15 99.20± 0.15 99.07± 0.16 98.51± 0.35 98.59± 0.25 98.71± 0.14 98.84± 0.23 98.92± 0.15

16 × 16 95.36± 0.40 95.40± 0.34 98.81± 0.14 99.52± 0.08 99.34± 0.12 97.04± 0.48 97.00± 0.31 99.46± 0.14 99.50± 0.07 99.54± 0.11

Combined 98.44± 0.16 98.37± 0.12 99.41± 0.21 99.57± 0.09 99.34± 0.12 98.80± 0.20 98.81± 0.19 99.12± 0.15 99.53± 0.12 99.33± 0.13

CASIA

2

4 × 4 93.85± 0.25 93.62± 0.24 98.36± 0.06 98.16± 0.06 98.62± 0.07 93.87± 0.15 93.66± 0.15 98.96± 0.04 98.73± 0.06 98.94± 0.05

8 × 8 97.60± 0.08 98.21± 0.10 99.60± 0.04 99.60± 0.05 99.67± 0.04 97.77± 0.08 98.41± 0.06 99.69± 0.03 99.59± 0.03 99.63± 0.03

16 × 16 99.13± 0.07 99.45± 0.05 99.84± 0.03 99.76± 0.03 99.84± 0.02 99.01± 0.08 99.48± 0.05 99.85± 0.02 99.80± 0.02 99.90± 0.02

Combined 99.29± 0.05 99.43± 0.06 99.73± 0.04 99.67± 0.04 99.73± 0.03 99.29± 0.05 99.31± 0.05 99.75± 0.03 99.74± 0.04 99.74± 0.03

FBDDF

4 × 4 89.18± 0.86 88.88± 0.89 100.00± 0.00 100.00± 0.00 100.00± 0.00 89.98± 0.60 89.88± 0.97 99.88± 0.22 100.00± 0.00 99.90± 0.21

8 × 8 95.15± 0.59 95.75± 0.68 100.00± 0.00 99.93± 0.18 100.00± 0.00 96.53± 0.75 95.98± 0.60 99.50± 0.00 99.23± 0.26 99.48± 0.11

16 × 16 85.98± 1.19 85.95± 1.39 100.00± 0.00 100.00± 0.00 100.00± 0.00 85.23± 0.92 83.88± 1.09 99.90± 0.21 99.95± 0.15 99.95± 0.15

Combined 94.35± 0.59 94.70± 0.73 100.00± 0.00 100.00± 0.00 100.00± 0.00 94.55± 0.67 94.55± 0.54 99.50± 0.00 99.50± 0.00 99.50± 0.00

In general, we found the best detection accuracy for Cr component and the combination of Cb
and Cr (CbCr) components. In the same way, we found better FNR, sensitivity and specificity for
color components. The variations of detection accuracy in different chroma channels are observed in
different datasets because of the nature of images [10]. For example, images in Columbia Color dataset
were mostly taken in indoor conditions with exactly four specific models of cameras, whereas CASIA 1
and CASIA 2 contain images that were taken in both indoor and outdoor environments using different
sources (e.g., Corel image dataset, websites, own camera sources). The detection accuracy using Cb
component, Cr component and their combination for each dataset varies between 1∼2% approximately
which indicates that our proposed method is quite robust. Selecting either of the chroma channels can
result in satisfactory outcome.

In any forgery detection technique, achieving a low FNR indicates a more secure system.
FNR indicates how many positive samples (forged images) are identified erroneously as negative
(authentic image). From the forensic and security viewpoint, missing a tampered image has more
severe consequences and thus a reliable detection system must produce FNR as low as possible.
If an original image is identified as forgery (i.e., false alarm), then further investigation can lead to a
safer solution. In contrast, if a forged image is identified as original image, it may compromise the
integrity of the entire system. Our proposed system produces FNR between 0∼2.56% for chroma
channels when evaluated with color datasets. Similar trend is also observed for sensitivity and
specificity. We found encouraging results for sensitivity (97.44± 0.58∼100.00± 0.00) and specificity
(98.99± 0.44∼100.00± 0.00) in either of the chroma channels or their combinations when tested with
color datasets.

4.4.1. Effects of Number of Positive Samples in Training Set

In machine learning, sufficient number of training samples helps to build reliable models.
Moreover, classifiers like SVM, neural networks work well for balanced class distribution, i.e., when
the number of training samples in the classes are balanced. However, recent trend in heterogeneous
IoT network introduces applications where sufficient samples may not be available. For example, a self

Electronics 2020, 9, 1500 15 of 22

driving car and its image training dataset may not have sufficient real life tampered image samples as
these occurrences are not yet common. A robust forgery detection method should still perform better
despite low number of forgery samples. We tested our method for low number of positive samples
in the training set and compared its performance with method in [10]. Here, we used CASIA 1 to
evaluate how our system performs when different amount of forgery samples were used to train the
SVM classifier. To make the experiment simple, we converted the images of CASIA 1 into gray scale.
We included all the authentic images (800) in the training sets and added a certain number of forgery
images (out of 921 forgery images) in the training set, and test the classifier with all the remaining
tampered images. Table 4 summarises the results. It is observed that our method performs consistently
better for different number of positive samples in the training set than the method in [10]. The existing
method performs good only when there are sufficient number of positive training samples (accuracy
78.99% with 30% forgery data) while they fail to perform when there are few samples (accuracy 61.17%
with 3% forgery data). In contrast, our method consistently works better for both sufficient (30%
forgery) and and low number of positive samples (3% forgery) with accuracy of 93.90% and 77.01%,
respectively in the above cases. Experiemnts with other datasets with low number of forgery samples
for training also revealed similar improvement by our method. This demonstrates the robustness of
our method which is capable of attaining acceptable detection accuracy even when available forgery
samples are very low.

Table 4. Low number of forgery in training set: Proposed method vs. method in [10] using CASIA 1
dataset for gray scale images.

Train Set Block Size

CASIA 1

Proposed Method Method in [10]

Accuracy FNR Accuracy FNR

3% Forgery

4 × 4 19.83 80.17 00.50 99.50

8 × 8 72.88 27.12 52.18 47.82

16 × 16 77.01 22.99 61.17 38.83

5% Forgery

4 × 4 20.51 79.49 01.10 98.90

8 × 8 85.54 14.46 53.20 46.80

16 × 16 80.53 19.47 63.17 36.83

7% Forgery

4 × 4 46.35 53.65 03.94 96.06

8 × 8 86.41 13.59 58.00 42.00

16 × 16 79.92 20.08 65.63 34.37

9% Forgery

4 × 4 46.66 53.34 13.34 86.66

8 × 8 89.12 10.88 62.17 37.83

16 × 16 82.06 17.94 66.12 33.88

10% Forgery

4 × 4 54.35 45.65 05.49 94.51

8 × 8 89.95 10.05 63.50 36.50

16 × 16 82.43 17.57 62.30 37.70

20% Forgery

4 × 4 69.48 30.52 38.87 61.13

8 × 8 91.79 08.21 70.55 29.45

16 × 16 83.88 16.12 68.16 31.84

30% Forgery

4 × 4 69.60 30.40 48.19 51.81

8 × 8 93.90 06.10 77.66 22.34

16 × 16 85.14 14.86 78.99 21.01

Electronics 2020, 9, 1500 16 of 22

4.4.2. Effects of IoT Image Rotation, Scaling and Compression

In different application domains such as IoT based smart vehicles, wildlife monitoring,
and underwater monitoring, the captured image may be rotated or scaled depending on different
external events and environments. For example, a strong wind, storm, or strong underwater current
may rotate and change the location of the tiny IoT camera nodes which can change the orientation
of capturing images (rotate) as well as their focal distances affecting the scale of images, respectively.
While existing literature has reported the effect of rotation and scaling of the tampered region in a
forged image, which is very common in image tampering operation and inherently applied in all
publicly available datasets [10,23], to the best of our knowledge, no existing image forgery method has
experimented the impact of rotation or scaling of a whole image. We evaluate the performance of our
proposed method with different rotations and scalings of the images of all reported datasets. Again,
there are many types of IoT networks such as LoRa, Sigfox and NBIoT having different transmission
rate. For example, their respective transmission rates are 0.3–50 kbps, 100/600 bps and 106/158.5 kbps
which show that Sigfox has the lowest and NBIoT has highest transmission rate. However, transmission
power consumption (28 mA) of Lora is the lowest [37]. In general, remote IoT sensors (e.g., used in
wildlife monitoring) are constrained by power, data transmission rate, and processing capabilities
whereas, stationary IoT sensors (e.g., home surveillance system) connected with mainstream power
lines have higher data transfer rate and processing power [37]. This leads to the options of storing an
IoT acquired image in either compressed or uncompressed form depending on the application systems
and requirements to be detailed later. Hence, compression of images captured by IoT devices should
be carefully selected. To check the effect of image compression in forgery detection, we have added an
extra set of forged images for our developed FBDDF using jpeg compression. The effects of rotation,
scaling, and compression on images are discussed below:

Compressed and uncompressed image domains: In block based compression such as JPEG,
deblocking filters are used to smooth the block edges to avoid blocking artefacts. This effectively
increases difference of pre-distortion in the image with the newly introduced distortion by splicing.
As a result, out technique performs better with compressed images. To verify this concept, we used
FBDDF (JPEG) and FBDDF (TIFF) datasets with the same images having different compressions.
Table 5 shows forgery detection accuracy is higher for FBDDF (compressed—JPEG) than FBDDF
(uncompressed—TIFF) across all block sizes (94.25% vs. 89.58%, 99.44% vs. 95.84%, 99.63% vs. 85.60%,
99.58% vs. 94.45% for block sizes 4 × 4, 8 × 8, 16 × 16 and combined blocks respectively). Again,
the average accuracy of image tampering on different datasets for compressed images is also higher
(96.65% vs. 89.72%) than that of uncompressed image-based datasets when there are no rotation or
scaling attacks. In the next section, we discuss the effect of rotation and scaling on tampered images,
which introduces new artifacts on tampered images. For this effect, our proposed method exhibits
different performances for compressed and uncompressed image domains.

Rotation and compression: We conducted an experiment on images of different datasets used in
this article. In Industrial IoT based monitoring system, image sensors may be deployed to monitor
mechanical variables such as rotation, the number of cycles, position, the direction of travel for different
components of machinery (e.g., motors, actuators) which result in rotated images of the same object of
interest [38]. Again, natural and external environmental incidents may also lead to a rotated image
due to image sensor disorientation. Even if the orientation of the deployed image sensor may change
due to natural, accidental or operational incidents, for IoT applications, a good forgery detection
system should still be able to identify forgery on these types of image data. Hence, for a given image
dataset, we randomly rotated the images with the angles of 0 (no rotation), 90, 180, and 270 degrees
and conducted an experiment with our proposed forgery detection system. While our proposed
method is not perfectly rotation invariant, Table 5 shows that it is robust enough (for rotated images)
to identify forgery with the average detection accuracy being 95.50%, 91.39%, 98.84% and differences
of detection accuracy between original and rotated image sets having 1.63%, 3.27% and 1.37% for
compressed, uncompressed and mixed image compression based datasets, respectively. For our

Electronics 2020, 9, 1500 17 of 22

proposed method, these results vindicate that any natural, system inherent, external, or environmental
events that may change the orientation of IoT image sensors or rotation of an object of interest occur
during image capture will have very little effect in detecting image forgery even with different ratio of
image compression.

Table 5. Effects of rotation, scaling and compression on images.

Dataset Block

Proposed
Method Rotation Scaling

Accuracy Accuracy Accuracy

C
om

pr
es

se
d

CASIA 1
(JPEG)

4 × 4 87.33 87.94 77.68

8 × 8 98.24 97.55 79.88

16 × 16 96.14 97.48 84.85

Combined 98.61 97.59 84.02

FBDDF
(JPEG)

4 × 4 94.25 86.79 65.48

8 × 8 99.44 97.91 71.75

16 × 16 99.63 99.31 82.35

Combined 99.58 99.45 80.73

Average (compressed image datasets) 96.65 95.50 78.34

U
nc

om
pr

es
se

d

FBDDF
(TIFF)

4 × 4 89.58 96.74 98.64

8 × 8 95.84 99.45 99.50

16 × 16 85.60 98.95 99.50

Combined 94.45 99.50 99.51

Columbia
Gray

(BMP)

4 × 4 78.82 77.44 75.25

8 × 8 85.56 84.66 79.23

16 × 16 81.44 80.76 85.30

Combined 85.54 85.18 85.46

Columbia
Color
(TIFF)

4 × 4 92.51 90.14 95.10

8 × 8 96.10 93.65 96.98

16 × 16 95.22 95.70 97.15

Combined 95.99 94.52 97.38

Average (uncompressed image datasets) 89.72 91.39 92.42

M
ix

ed

CASIA 2
(JPEG,
TIFF,
BMP)

4 × 4 93.86 96.78 96.68

8 × 8 97.70 99.26 99.69

16 × 16 99.06 99.72 99.91

Combined 99.29 99.61 99.89

Average (mixed compression image datasets) 97.48 98.84 99.04

Scaling and compression: As alluded before, because of image sensor movement or disorientation,
the focal distance of a sensor can change which results in image scaling. Moreover, a malicious user
may scale an image to achieve the intended forgery. To simulate image scaling operation, we used
the imresize function of Matlab [39] with the default interpolation method (i.e., bicubic interpolation).
This scaling operation introduces rounding error which modifies the sharp edges caused by image
forgery [40]. To test the robustness of scaling operation in images, any of the following operations
were randomly applied on individual images within a dataset: (a) Scale at 5%, 10% or 15% larger
than the original image, (b) scale at 5%, 10% or 15% smaller than the original image, or (c) no change

Electronics 2020, 9, 1500 18 of 22

in the original image. Therefore, the scaled dataset has a good mixture of upscaled, downscaled,
and unchanged images. Table 5 shows that on average, the detection accuracy of scaled datasets drops
to 18.31% than the original non-scaled datasets where the images in the datasets are in compressed
(jpeg) form. However, if the images are in uncompressed form (tiff or bmp) or having a mix of
compressed and uncompressed images (jpeg, tiff, bmp) in the dataset, our forgery detection method
can identify image tampering having an average detection accuracy of 92.42% and 99.04% respectively
for scaled datasets which is almost similar to the non-scaled original version of the datasets. Based on
these experimental results, we suggest using the uncompressed form of images in mission-critical IoT
based applications where the images are likely to suffer image scaling and tampering attacks.

4.4.3. Comparison with Recent Methods

There exist different methods for detecting splicing and copy–move attacks in current literature
as described in Section 2. Among them, a recent work by Alahmadi et al. [10] adopted both LBP and
DCT in their system and reported good detection accuracy. Though they used both LBP and DCT,
but the application order and feature extraction method are different from ours. We implemented this
method to compare thoroughly with our proposed system. Table 6 compares our proposed method
with Alahmadi et al.’s method using newly proposed FBDDF dataset. For simplicity, we performed the
test by converting the images into gray scale for FBDDF. It is observed that our method outperforms
Alahmadi et al.’s method for all the performance metrics (accuracy 95.84% vs. 88.50%, FNR 4.85%
vs. 11.50%, sensitivity 95.15% vs. 88.50% and specificity 96.53% vs. 88.50%) irrespective of block size.
In addition to [10], we compared our method with other notable works on splicing and copy–move
attacks and the results are presented in Table 7. Results show that our method increases the accuracy
across all datasets by a margin of up to 13.20%.

Table 6. Comparison between proposed method and method in [10] using FBDDF dataset for gray
scale images.

Evaluation Proposed Method Alahmadi’s Method [10]

Accuracy 95.84 88.50

FNR 4.85 11.50

Sensitivity 95.15 88.50

Specificity 96.53 88.50

Table 7. Comparison of forgery detection accuracy of proposed method with existing methods.

Methods Columbia
Gray

Columbia
Color CASIA 1 CASIA 2

Proposed 85.56 98.20 99.55 99.88

Alahmadi et al. [10] - 97.77 97.00 97.50

Muhammad et al. [30] - 96.39 94.89 97.33

Hakimi et al. [15] - 95.13 97.21 -

Hussain et al. [24] - 94.29 - -

Hsu and Chang [17] - 87.00 - -

Zhao et al. [22] - 85.00 94.70 -

Wang et al. [19] - - - 95.60

He et al. [13] - - - 89.76

He et al. [9] 80.58 - - -

Dong et al. [21] 76.52 - - -

Kanwal et al. [29] - - 88.62 -

Electronics 2020, 9, 1500 19 of 22

4.4.4. Comparison of CPU Processing Time

We recorded the CPU processing time to extract features between our method and Alahmadi’s [10]
method using the same hardware and software configurations. Note, as alluded before, data points
used to calculate the mean and standard deviation-based features are directly proportional to the
number of blocks. As discussed in Section 3.6, since the calculation of standard deviation involves
more computational processes (operations), the higher the number of blocks, the higher the difference
between the CPU processing time of mean and standard deviation is. Table 8 summarizes the CPU
processing time of our proposed method and Alahmadi’s method [10]. As expected, Table 8 shows
our method is 14.54∼62.29% faster in feature extraction than Alahmadi’s method over different block
sizes and datasets. Our technique was able to extract features in as low as 0.004 seconds (which is
equivalent to 4 ms) for a single image. This means that the technique can process 250 frames per
second which is much higher than real-time video processing (e.g., 25 frames per second for PAL
televisions). This vindicates our method is capable of handling real-time forgery detection in images.
Additionally, if there is any edge device in an IoT environment, using GPU and parallel processing
would increase the processing time.

Table 8. Comparison of mean CPU time (in second) for a single image.

Dataset
(Gray) Block Size

Mean CPU Time (in second) for a Single Image

Alahmadi’s
Method

Proposed
Method

Percentage
Decrease

FBDDF

4 × 4 1.157 0.862 34.23

8 × 8 0.385 0.309 24.49

16 × 16 0.183 0.159 15.25

Columbia Gray

4 × 4 0.027 0.017 62.29

8 × 8 0.009 0.007 27.55

16 × 16 0.005 0.004 21.48

Columbia Color

4 × 4 0.870 0.651 33.57

8 × 8 0.288 0.229 25.72

16 × 16 0.137 0.119 14.54

CAISA 1

4 × 4 0.130 0.092 40.82

8 × 8 0.043 0.034 28.94

16 × 16 0.022 0.018 19.41

CASIA 2

4 × 4 0.179 0.138 29.99

8 × 8 0.062 0.048 28.33

16 × 16 0.031 0.025 22.47

5. Conclusions

In this paper, we introduced an efficient and robust model for detecting splicing and copy–move
attacks in both grayscale and color images using traditional machine learning technique (SVM) and
hand-crafted features. First, we applied block DCT on image components to capture the changes in
frequency domain due to tampering operation and then LBP of the magnitude component of resultant
DCT coefficients are computed to enhance those tampering artifacts in pixel domain and also to
identify the occurrences of micro pattern footprints left by image forgery. The LBP image was again
divided into non-overlapping blocks and the mean of inter-cell LBP values are computed to extract
unique features. SVM with RBF kernel was used for classification and the kernel parameters were
tuned using Bayesian optimization. Experimental results in terms of detection accuracy and CPU time
on different publicly available datasets and our newly developed IoT based forgery dataset confirm the
superiority and robustness of our proposed method over existing methods found in current literature.
Results also show that our proposed method is more effective and consistent in detecting splicing

Electronics 2020, 9, 1500 20 of 22

and copy–move image forgery attacks even for a very low amount (3%) of forgery images in the
training set. Furthermore, our method achieved encouraging performance when images were being
rotated but struggled to cope with image scaling when the target images were in compressed (jpeg)
format. However, when the images were in uncompressed format, the forgery detection accuracy of
our method was similar to non-scaled images. Hence, we suggest to capture and store uncompressed
images for any system where target images are more sensitive to scaling and tampering attacks. In the
future, we will explore the performance of deep learning-based techniques for forgery detection.
Since barrel distortion introduced by fisheye wide-angle lenses is one of the common issues of IoT
vision, the forgery detection accuracy of our method may slightly vary for such distortion. We will
also investigate the impact of barrel distortion on forgery detection in our further research.

Author Contributions: M.M.I. contributed to theoretical formulation, design methodology, dataset development,
experiment design and implementation, result interpretation, original draft preparation and revision. The rest
of the authors (G.K., J.K., and M.M.) contributed to supervising the project, theoretical formulation,
result interpretation, and revising the initial draft. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Research Priority Area (RPA) scholarship of Federation
University Australia.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this article:

IoT Internet of Things
DCT Discrete Cosine Transformation
LBP Local Binary Pattern
SVM Support Vector Machine
FBDDF Federation–Berkeley Deep Drive Forgery
DWT Discrete Wavelet Transformation
RLRN Run-Length Run Number
WLD Weber Local Descriptor
LTP Local Ternary Pattern
ELTP Enhanced Local Ternary Pattern
FFT Fast Fourier Transform
SPT Steerable Pyramid Transform
PCA Principle Component Analysis
IIoT Industrial Internet of Things
BDCT Block Discrete Cosine Transformation
LSB Least Significant Bit
MSB Most Significant Bit
BDD Berkely Deep Drive
ITS Intelligent Traffic System
JPEG Joint Photographic Experts Group
RBF Radial Basis Function
TP True Positive
TN True Negative
FP False Positive
FN False Negative
FNR False Negative Rate
SD Standard Deviations
TIFF Tagged Image File Format

References

1. Jonsson, P.; Carson, S. Ericsson Mobility Report; Ericsson: Stockholm, Sweden, 2018.
2. Redi, J.A.; Taktak, W.; Dugelay, J.L. Digital image forensics: A booklet for beginners. Multimed. Tools Appl.

2011, 51, 133–162. [CrossRef]

http://dx.doi.org/10.1007/s11042-010-0620-1

Electronics 2020, 9, 1500 21 of 22

3. Mallonee, L. Infamously Altered Photos, Before and After Their Edits. Wired. 2015. Available online:
https://bit.ly/2Ia8zqf (accessed on 15 March 2020).

4. Wikipedia contributors. List of Photo Manipulation Controversies. Wikipedia. 2019. Available online:
https://bit.ly/2wcweBB (accessed on 15 March 2020).

5. Allbeson, T.; Allan, S. The War of Images in the Age of Trump. In Trump’s Media War; Happer, C., Hoskins, A.,
Merrin, W., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 69–84.

6. Schreiber, M. APTOPIX TRUMP GERMANY G20; Associated Press: New York, NY, USA, 2017.
7. Novak, M. That Viral Photo of Putin and Trump Is Totally Fake. GIZMODO. 2017. Available online:

https://bit.ly/3bL6PQo (accessed on 7 July 2020).
8. Johnson, M.K.; Farid, H. Exposing digital forgeries in complex lighting environments. IEEE Trans. Inf.

Forensics Secur. 2007, 2, 450–461. [CrossRef]
9. He, Z.; Sun, W.; Lu, W.; Lu, H. Digital image splicing detection based on approximate run length.

Pattern Recognit. Lett. 2011, 32, 1591–1597. [CrossRef]
10. Alahmadi, A.; Hussain, M.; Aboalsamh, H.; Muhammad, G.; Bebis, G.; Mathkour, H. Passive detection of

image forgery using DCT and local binary pattern. Signal Image Video Process. 2017, 11, 81–88. [CrossRef]
11. Islam, M.M.; Kamruzzaman, J.; Karmakar, G.; Murshed, M.; Kahandawa, G. Passive Detection of Splicing and

Copy–Move Attacks in Image Forgery. In Proceedings of the International Conference on Neural Information
Processing, Siem Reap, Cambodia, 13–16 December 2018; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 555–567.

12. Shi, Y.Q.; Chen, C.; Chen, W. A natural image model approach to splicing detection. In Proceedings of the
9th workshop on Multimedia & Security, Dallas, TX, USA, 20–21 September 2007; ACM: New York, NY,
USA, 2007; pp. 51–62.

13. He, Z.; Lu, W.; Sun, W.; Huang, J. Digital image splicing detection based on Markov features in DCT and
DWT domain. Pattern Recognit. 2012, 45, 4292–4299. [CrossRef]

14. Islam, M.M.; Karmakar, G.; Kamruzzaman, J.; Murshed, M.; Kahandawa, G.; Parvin, N. Detecting Splicing
and Copy–Move Attacks in Color Images. In Proceedings of the 2018 Digital Image Computing: Techniques
and Applications (DICTA), Canberra, Australia, 10–13 December 2018; pp. 1–7.

15. Hakimi, F.; Hariri, M.; GharehBaghi, F. Image splicing forgery detection using local binary pattern and
discrete wavelet transform. In Proceedings of the 2015 2nd International Conference on Knowledge-Based
Engineering and Innovation (KBEI), Tehran, Iran, 5–6 November 2015; pp. 1074–1077.

16. Yu, F.; Xian, W.; Chen, Y.; Liu, F.; Liao, M.; Madhavan, V.; Darrell, T. Bdd100k: A diverse driving video
database with scalable annotation tooling. arXiv 2018, arXiv:1805.04687.

17. Hsu, Y.F.; Chang, S.F. Detecting image splicing using geometry invariants and camera characteristics
consistency. In Proceedings of the 2006 IEEE International Conference on Multimedia and Expo, Toronto,
ON, Canada, 9–12 July 2006; pp. 549–552.

18. Hsu, Y.-F.; Chang, S.-F. Image splicing detection using camera response function consistency and automatic
segmentation. In Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, Beijing,
China, 2–5 July 2007; pp. 28–31.

19. Wang, W.; Dong, J.; Tan, T. Image tampering detection based on stationary distribution of Markov
chain. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China,
25 January 2010; pp. 2101–2104.

20. Dong, J.; Wang, W.; Tan, T. CASIA image tampering detection evaluation database. In Proceedings of the
2013 IEEE China Summit and International Conference on Signal and Information Processing, Beijing, China,
6–10 July 2013; pp. 422–426.

21. Dong, J.; Wang, W.; Tan, T.; Shi, Y.Q. Run-length and edge statistics based approach for image splicing
detection. In Proceedings of the International Workshop on Digital Watermarking, Jeju Island, Korea,
8–10 November 2008; Springer: Berlin/Heidelberg, Germany; pp. 76–87.

22. Zhao, X.; Li, J.; Li, S.; Wang, S. Detecting digital image splicing in chroma spaces. In Proceedings of the
International Workshop on Digital Watermarking, Atlantic City, NJ, USA, 23–26 October 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 12–22.

23. Hussain, M.; Muhammad, G.; Saleh, S.Q.; Mirza, A.M.; Bebis, G. Image forgery detection using
multi-resolution Weber local descriptors. In Proceedings of the Eurocon 2013, Zagreb, Croatia, 1–4 July 2013;
pp. 1570–1577.

https://bit.ly/2Ia8zqf
https://bit.ly/2wcweBB
https://bit.ly/3bL6PQo
http://dx.doi.org/10.1109/TIFS.2007.903848
http://dx.doi.org/10.1016/j.patrec.2011.05.013
http://dx.doi.org/10.1007/s11760-016-0899-0
http://dx.doi.org/10.1016/j.patcog.2012.05.014

Electronics 2020, 9, 1500 22 of 22

24. Hussain, M.; Saleh, S.Q.; Aboalsamh, H.; Muhammad, G.; Bebis, G. Comparison between WLD
and LBP descriptors for non-intrusive image forgery detection. In Proceedings of the 2014 IEEE
International Symposium on Innovations in Intelligent Systems and Applications (INISTA), Alberobello,
Italy, 23–25 June 2014.

25. Friedman, J.H. On bias, variance, 0/1—Loss, and the curse-of-dimensionality. Data Min. Knowl. Discov.
1997, 1, 55–77. [CrossRef]

26. Alahmadi, A.A.; Hussain, M.; Aboalsamh, H.; Muhammad, G.; Bebis, G. Splicing image forgery detection
based on DCT and Local Binary Pattern. In Proceedings of the 2013 IEEE Global Conference on Signal and
Information Processing, Austin, TX, USA, 3–5 December 2013; pp. 253–256.

27. Johnson, M.K.; Farid, H. Exposing digital forgeries through chromatic aberration. In Proceedings of the 8th
Workshop on Multimedia and Security, Geneva, Switzerland, 26–27 September 2006; ACM: New York, NY,
USA, 2006; pp. 48–55.

28. Wang, W.; Dong, J.; Tan, T. Effective image splicing detection based on image chroma. In Proceedings of the
2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009;
pp. 1257–1260.

29. Kanwal, N.; Girdhar, A.; Kaur, L.; Bhullar, J.S. Detection of Digital Image Forgery using Fast Fourier
Transform and Local Features. In Proceedings of the 2019 International Conference on Automation,
Computational and Technology Management (ICACTM), London, UK, 24–26 April 2019; pp. 262–267.

30. Muhammad, G.; Al-Hammadi, M.H.; Hussain, M.; Bebis, G. Image forgery detection using steerable pyramid
transform and local binary pattern. Mach. Vis. Appl. 2014, 25, 985–995. [CrossRef]

31. Khayam, S.A. The discrete cosine transform (DCT): Theory and application. Mich. State Univ. 2003, 114, 1–31.
32. Karmakar, G.C. An Integrated Fuzzy Rule-Based Image Segmentation Framework. Ph.D. Thesis,

Monash University, Melbourne, Australia, 2002.
33. Ng, T.T.; Chang, S.F. A model for image splicing. In Proceedings of the 2004 International Conference on

Image Processing, ICIP’04, Singapore, 24–27 October 2004; Volume 2, pp. 1169–1172.
34. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST)

2011, 2, 27. [CrossRef]
35. Martinez-Cantin, R. Bayesopt: A bayesian optimization library for nonlinear optimization, experimental

design and bandits. J. Mach. Learn. Res. 2014, 15, 3735–3739.
36. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation And Model Selection; Ijcai: Montreal,

QC, Canada, 1995; Volume 14, pp. 1137–1145.
37. Buurman, B.; Kamruzzaman, J.; Karmakar, G.; Islam, S. Low-Power Wide-Area Networks: Design Goals,

Architecture, Suitability to Use Cases and Research Challenges. IEEE Access 2020, 8, 17179–17220. [CrossRef]
38. RYS, R. Smart Sensors Increasingly Important in the Industrial IoT Age. ARC Advisory Group. 2018.

Available online: https://bit.ly/2W0et3f (accessed on 22 June 2020).
39. MATLAB. Version 9.6.0.1072779 (R2019a); The MathWorks Inc.: Natick, MA, USA, 2019.
40. Wikipedia contributors. Image Scaling. Wikipedia. 2020. Available online: https://bit.ly/3fivvkO

(accessed on 19 August 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1009778005914
http://dx.doi.org/10.1007/s00138-013-0547-4
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1109/ACCESS.2020.2968057
https://bit.ly/2W0et3f
https://bit.ly/3fivvkO
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Spatial Domain Based Techniques
	Frequency Domain Based Techniques
	Hybrid Techniques

	Proposed Method
	Converting Color Images into Grayscale and YCbCr Color Space Images
	Block Division of Grayscale Image and YCbCr Color Space Components
	Block Discrete Cosine Transformation (BDCT)
	Local Binary Pattern (LBP) Operator
	Block Division of LBP Array
	Mean-Based Feature Extraction

	Experiments and Results
	Description of Datasets
	Existing Datasets
	Our Developed Dataset—FBDDF

	SVM Classifier and Model Validation
	Performance Metrics
	Accuracy
	False Negative Rate (FNR)
	Sensitivity
	Specificity

	Results and Discussion
	Effects of Number of Positive Samples in Training Set
	Effects of IoT Image Rotation, Scaling and Compression
	Comparison with Recent Methods
	Comparison of CPU Processing Time

	Conclusions
	References
	Creative commons licence by 4.pdf
	FedUni ResearchOnline
	https://researchonline.federation.edu.au

