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ABSTRACT Motifs have been recognized as basic network blocks and are found to be quite powerful in
modeling certain patterns. Generally speaking, local characteristics of big networks could be reflected in
network motifs. Over the years, motifs have attracted a lot of attention from researchers. However, most
current literature reviews on motifs generally focus on the field of biological science. In contrast, here we
try to present a comprehensive survey on motifs in the context of big networks. We introduce the definition
of motifs and other related concepts. Big networks with motif-based structures are analyzed. Specifically,
we respectively analyze four kinds of networks, including biological networks, social networks, academic
networks, and infrastructure networks. We then examine methods for motif discovery, motif counting,
and motif clustering. The applications of motifs in different areas have also been reviewed. Finally, some
challenges and open issues in this direction are discussed.

INDEX TERMS Network motif, motif counting, motif discovery, motif clustering, network science.

I. INTRODUCTION
In molecular biology science, motifs are defined as frequent
subpatterns that appear more often in a set of data, and are
considered to have specific biological significance [1], [2].
If this pattern is detected in a set of DNAor protein sequences,
it is a sequence motif. Structural motifs are super-secondary
structures with common biological functions. Unlike molec-
ular biology, system biology focuses more on molecular
interactions than on individual molecules [3], [4]. There-
fore, it shows the interaction of molecules by establish-
ing biological networks, and the concept of network motifs
comes into being. However, this concept is not limited to
biological networks but also used in social networks, elec-
tronic line networks, wireless networks among several other
networks.

Network science is a typical interdisciplinary subject,
which focuses on the qualitative and quantitative laws of
complex network systems. The scope of network science
research is extensive. One of the most typical applications
is to mine information in large-scale networks. For example,
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we can mine similarity information of scholars in academic
networks, group or political tendency information of users
in social networks, etc. Network science is to be distin-
guished from graph theory. Although it is a discipline based
on graph theory, in network science, real information will
occupy the main body of research. In a sense, any network
can be abstracted into a graph in the field of mathematics.
Conversely, any graph can be applied to a network in a
real-world situation. In this paper, the two concepts (graphs
and networks) are used interchangeably.

As the scale of the network increases, more recurrent
and statistically significant correlation patterns appear in real
networks. This kind of pattern is regarded as a motif. The
concept of network motifs is theorized by Milo et al. [5]
for the first time. And the network motif is a high-frequency
low-order subgraph. Such subgraphs appear much more fre-
quently in real networks than in random networks. There are
two key points in the motif concept. One is the occurrence
number of subgraphs, which involves the isomorphism of
subgraphs. The subgraph counting problem has been recog-
nized as a non-deterministic polynomial (NP) problem. The
other one is that motifs appear more frequently in real net-
works. In some specific network environments, the number
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of some motifs in a real network may be hundreds of times
larger than that of a corresponding random network.

Motifs have been regarded as the basic structural unit in big
networks. It has been shown that a large amount of informa-
tion has not yet been excavated in the higher-order structure
of big networks.Meanwhile, motifs also play significant roles
in network evolution and optimization. Therefore, the min-
ing of motifs in the network is helpful to make a deeper
understanding of the network pattern. This topic has drawn
researchers’ attentions and developed significantly in recent
years. Some studies focus on the relationships betweenmotifs
and network topology indices. Meanwhile, motif discovery,
motif counting, motif clustering, as well as other related
issues have increasingly drawn scholars’ attentions [6], [7].
At the same time, the research of motifs is integrated with
a large number of other fields, which makes the efficiency
of some tasks more accurate. However, the information on
motifs itself is less enriched and expanded. In other words,
the concept of motifs is more inclined to a set of equivalent
subgraphs.

The expansion of the motif concept can offer a more com-
prehensive and rich perspective for information mining in the
network. Therefore, in recent years, the concept of motifs has
been further expanded, which incentivizes researchers to pay
more attention to the pattern characteristics of the network
neutron map. This weakens the significance of its statistics.
Based on the broad definition of motifs, some scholars have
conducted a deep study on the interaction between agents in
communication networks. Kovanen et al. [8] take the subject
attributes (such as gender, age, etc.) into the structure of
the motifs. There exists abundant studies regarding motifs,
including survey papers of motifs in biological science, net-
work science, etc. However, the current theoretical system
lacks a systematic literature review of motifs. Therefore,
we summarize the current studies and introduce the methods
and applications of motifs. FIGURE 1 shows the structure of
this paper.

In this paper, we first present the definition of motifs
and some related concepts in Section II. Then we introduce
networks with motif-based structures in Section III. Methods
for motif relevant processing are reviewed in Section IV,
including motif discovery, motif counting, and motif clus-
tering. The applications of motifs in big networks are illus-
trated in Section V. We discuss challenges and open issues in
Section VI. Section VII concludes the paper.

II. DEFINITION OF MOTIF
In this section, we will discuss the definition of motifs as
per the traditional field of biology and the network motif
that is used in this paper. In addition, some related concepts,
including subgraph isomorphism, induced subgraphs, and
non-induced subgraphs, are discussed in detail in this section.

A. NETWORK MOTIF
Milo et al. [5] first proposed the concept of network motifs in
the field of networks. A network motif is a special subgraph

FIGURE 1. The structure of this paper.

structure in a network. The formal definition of networkmotif
depends on three constraints, i.e., P, U , and D.
• P is the probability threshold of a subgraph structure,
which is used tomake sure that the occurrence frequency
in the real network is much higher than that in the
random network;

• U is the unique threshold, which ensures the occur-
rence frequency of a subgraph structure in the real net-
work;

• D is the minimum difference threshold which is used
to make sure that the difference between a subgraph’s
occurrence frequency in the real network and that in the
random network is too small.

Based on the above three constraints, the definition of the
network motif is as follows:
Definition 1 (Network Motif): In a graph G = (V ,E)

abstracted by a network, a network motif refers to an induced
subgraph Gk bound by a set of parameters {P,U ,D,N }. P,
U and D are the probability thresholds, the unique N is the
number of random networks satisfying the following three
conditions:

Prob(f̄rand (Gk ) > freal(Gk )) ≤ P,

freal(Gk ) ≤ U ,

freal(Gk )− f̄rand (Gk ) > D× f̄rand (Gk ).

wherein, freal(Gk ) is the occurrence frequency of the sub-
graph in the real network, f̄rand (Gk ) is the average of the
subgraph’s occurrence frequency in a set of random networks.
Prob(f̄rand (Gk ) > freal(Gk )) indicates the probability that the
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FIGURE 2. The low-order homogeneous network motif used in this paper.

occurrence frequency of the subgraph in random networks is
higher than that in real networks.

The network motif is often divided into the low-order
motif and the high-order motif according to the number of
nodes inside it. In general, we often denote a network motif
consisting of three or four nodes as a low-order motif,
and a network motif with five or more nodes is called a
high-ordermotif. Generally, methods involving higher order
motifs are more time-consuming. The reason behind is that
higher order motifs have more complicated structures than
lower order ones. For example, for a directed network, there
are 13 kinds of three-order motif structures, 199 kinds of
four-order motif structures, and 9,366 kinds of five-order
motif structures. It can be observed that the number of motif
types from four-order to five-order has risen dramatically.
And this makes it difficult for researchers to count and ana-
lyze all kinds of high-order motifs.

B. THE CHARACTERISTICS OF NETWORK MOTIFS
Typically, network motifs have the following three character-
istics:
(1) A network motif generally refers to a low-order subgraph

and is usually composed of 3-8 nodes. In FIGURE 2,
we enumerate several typical network motifs consisting
of three and four nodes. For example, the four-order
fully-connected motif can be denoted as M46. Wherein,
4 indicates the order of the motif, that is, the number of
nodes, and 6 indicates a certain structure of four-order
motifs.

(2) The occurrence frequency of different network motifs
can be totally different based on the network properties
and motif structures.

(3) A network motif generally corresponds to a specific pat-
tern in the real network. For example, a three-order motif
in the social network corresponds to a ternary closure in
social relationships..

The generality of the network motif in the real network and
its corresponding practical significance will be introduced
detailedly in Section III.

C. THE RELATED CONCEPTS OF NETWORK MOTIF
There are some common related concepts when dealing with
motifs in the network. In this subsection, we introduce these
related concepts briefly.

FIGURE 3. The figure of isomorphic subgraph.

1) SUBGRAPH ISOMORPHISM
Since a network motif is a kind of high-frequency low-order
subgraph in the network, the subgraph isomorphism problem
is often encountered during detection and counting. Scholars
have studied the subgraph isomorphism problem for a long
period [9]–[11]. This problem refers to the node mapping
relationship between two subgraphs wherein all edges are
also eligible. Specifically, two graphs can be transformed into
two identical graphs by changing the relative positions of the
nodes. For example, the three subfigures shown in FIGURE 3
are mutually isomorphic.

2) INDUCED SUBGRAPHS
The concepts of induced subgraphs and non-induced sub-
graphs are common, especially in the field of motif counting.
An induced subgraph is also known as a derived subgraph,
which refers to a subgraph that is separated from the original
graph directly. An induced subgraph maintains all of the edge
connections from the original graph. Nodes in a non-induced
subgraph do not need to maintain these connections. For
example, for a graph G consisting of nG nodes, we extract
a subgraph S containing nS (nS ≤ nG) nodes inG. If there are
m edges among the nS nodes in G, and all these m edges are
retained in S, then S is an induced subgraph. Otherwise, it is
a non-induced subgraph.

3) MOTIF COMBINATION
Motif combination utilize a combination of lower-order
motifs to represent higher-order motifs. It is used in
many algorithms to improve overall efficiency. Specifi-
cally, the motif combination method converts a high-order
motif with high counting and analyzing complexity into
a combination of low-order motifs. By analyzing these
low-order motifs, the relevant information of the correspond-
ing high-order motif can be obtained. As shown in FIG-
URE 4, (a) indicates that two three-order motifs M32 +
M32 can be used to represent the relevant information about
the four-order motif M46 or M45, and (b) shows that two
three-ordermotifsM31+M32 can be used to represent infor-
mation about the four-order motifM45 orM43. For counting,
the number ofM46,M45, andM43 can be counted based on
the number of any three-order motif. Motif combination is
usually used for issues involving higher-order motifs.

III. BIG NETWORKS WITH MOTIF-BASED STRUCTURES
Network motifs are widely found in various types of real
networks. In this section, we discuss the universality of motifs
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TABLE 1. The specific data of low-order motifs in two biological networks and corresponding random networks.

FIGURE 4. Illustration of a three-order motif combination representing
four-order motif.

in various real networks. Meanwhile, we demonstrate the
practical meaning of different kinds of motifs. On the one
hand, high-order motif calculations are complicated, and
counting in large networks often consumes a lot of time. For
higher order motif counting of the social networks and infras-
tructure networks used in this article, we can hardly predict
the completion time. On the other hand, there are so many
types of high-order motifs that it is difficult to distinguish
which of them are of practical meaning. Some high-order
motifs may represent a certain amino acid complex structure
in a biological network, but may have no practical signif-
icance in an infrastructure network. Also, there exists too
many heterogeneous structures of higher-order motifs, which
make it difficult and time-consuming to detect them all.
Therefore, we mainly discuss the high-frequency appearance
characteristics and practical significance of low-order motifs,
i.e., three-order and four-order motifs.

A. BIOLOGICAL NETWORKS
Generally, biological networks are small in scale but rel-
atively complex. A biological network may be a simple
undirected unweighted homogeneous network, such as some
amino acid networks and protein networks. But it can also
be very complex, such as gene-related networks and protein
compound networks.
• From the perspective of nodes, there are various types of
nodes. The most common nodes of biological networks
are proteins, but still may be genes, RNA or DNA.

• From the perspective of edges, an edge of biological net-
works generally corresponds to the interaction between
two nodes, including interactions in physics, biochem-
istry, or biological functions.

In the current research, scholars mainly focus on
typical biological networks such as protein interaction

networks [12], [13], transcriptional regulatory net-
works [14], [15], and metabolic networks [16].

We selected two typical bioprotein networks,
bio-grid-yeast (http://networkrepository.com/bio-grid-yeast.
php) and bio-HS-CX (http://networkrepository.com/bio-HS-
CX.php) [17]. In addition, we also generate corresponding
random networks for comparison. These random networks
have the same number of nodes and edges as the cor-
responding real networks. For generalization, we created
10 corresponding random networks for each real network.
And the final motif count results are the average values of
the 10 random networks. The network information and the
number of various low-order motifs are shown in TABLE 1.
Wherein, |V | indicates the number of nodes and |E| indicates
the number of edges in the network. The network labelled by
‘‘[R]’’ refers to the corresponding random network. Since the
random networks’ counting results are taken from the average
of 10 networks, we did not count the maximum and average
degree information (i.e., max (d) and d̄ , respectively). Results
are shown in FIGURE 5 (a), (b). It can be seen that the motifs
in the real biological network appear more times than that in
the random network, which proves the conjecture mentioned
above. It is worth noting that M31 and M41 are paths with
three nodes and four nodes. They are only considered in very
special circumstances, and are therefore not counted in the
experiments.

The actual meaning of the motif we find in the biological
network is consistent with the original definition of a motif
in the biological domain. For example, recognized motifs
in protein networks correspond to a specific combination of
proteins that make up a practical role in forming a protein
complex.

B. SOCIAL NETWORKS
There are many family maps and interpersonal diagrams
in real life, which can be regarded as the prototypes of
social networks. In recent years, social communication has
become common. Modern communication tools such as e-
mails, blogs, and instant messaging platforms have brought
new relationship patterns to social networks [18], [19].

In general, social networks have larger scales than biolog-
ical networks. Meanwhile, social networks contain a wealth
of short paths. Generally, social networks have the following
properties.
• From the perspective of node types, the node type of
social networks is relatively simple. Nodes are always
used to represent social users, entities, institutions,
or groups, etc;
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FIGURE 5. The number of low-order motifs in two biological networks and two social networks.

TABLE 2. The specific data of low-order motifs in two social networks and corresponding random networks.

• From the perspective of edges, the connection between
two nodes can represent the social relationship between
users, institutions, etc.Edges in the social networks can
be weighted or unweighted.

Typical social networks include email networks, Facebook
social networks, Google social networks, group relationship
networks, etc.

To explore motifs in social networks, we use two Facebook
social networks in our experiments, which are named socfb-
UGA50 (http://networkrepository.com/socfb-UGA50.php)
and socfb-wosn-friends (http://networkrepository.com/socfb-
wosn-friends.php) [17]. Similar to the experimental process
of the above biological network, we generate 20 correspond-
ing random networks and count the low-order motifs appear-
ing in these networks. The experimental results are shown
in FIGURE 5 (c), (d), and TABLE 2. We can also see that
motifs are ubiquitous in social networks. In random networks,
the four-node fully-connected motifM46 rarely (or even does
not) appears, but there exists a large number of such motifs
in real networks.

C. ACADEMIC NETWORKS
Academic networks and social networks have many simi-
larities in some network features. Academic networks can
be classified into various kinds, including cooperation net-
works, citation networks, etc. Related studies primarily focus
on applying academic networks to solve certain practical
problems, including identifying scientific research teams,
recommending academic entities, analyzing current research
hotspots, predicting knowledge transfer trends, evaluating
scholars’ research directions, etc., [20]–[22].

In general, the structures of academic networks are more
complicated than social networks. Similarly, analyzing aca-
demic networks, the following properties can be observed.

• Nodes in academic networks are mainly researchers,
publications, venues, research institutions, etc. Each
type can be further divided. For example, researchers can
be further divided according to professors and students,
and papers can be divided based on subject, keywords,
disciplines, etc.

• Relationships in academic networks are more com-
plicated and diverse. The edges in a network can
be used to represent the relationships between papers
and researchers, the citing relationships between one
paper and another, the subordination relationships of
researchers and institutions, the co-authorships among
researchers, inter alia.

Consequently, most of the academic networks under inves-
tigation are heterogeneous networks.

We use two academic collaboration networks to ver-
ify the existences of motifs in academic networks.
The names of the two real networks are ca-citeseer
(http://networkrepository.com/ca-citeseer.php) and ca-Cond-
Mat (http://networkrepository.com/ca-CondMat.php) [17].
The experimental results are shown in FIGURE 6 (e), (f),
and TABLE 3. The two academic networks examined in this
paper are relatively sparse. It is obvious that M46, i.e., four-
order fully connected motif and M45, i.e., four-order chord
ring motif rarely exists in random networks. However, in real
networks, suchmotifs widely exist. This illustrates thatmotifs
are indeed universal in academic networks.

D. INFRASTRUCTURE NETWORKS
Infrastructure networks are a special kind of networks. Nor-
mally each infrastructure network is transformed from a set of
physical infrastructures. Many real networks can be consid-
ered as typical infrastructure networks. The aircraft shipping
network employs airports as nodes and aircraft routes as
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FIGURE 6. The number of low-order motifs in two collaboration networks and two infrastructure network.

TABLE 3. The specific data of low-order motifs in these two collaboration networks and corresponding random networks.

TABLE 4. The specific data of low-order motifs in two infrastructure networks and corresponding random networks.

edges. The urban transportation network takes road junctions
in cities as nodes and connected roads as edges. The power
transmission network represents nodes as stations, power
plants or power centers and edges as cable carrying power.
Hence studying infrastructure networks can obtain meaning-
ful information so that the administrators can take immediate
response to emergency events, such as high-risk areas of avia-
tion, traffic jams, and areas with dangerous power loads [23].

The network structure of infrastructure networks is related
to the actual infrastructure. Although it is generally a
sparse network, its network size varies greatly. For example,
the node number of an aircraft route network is generally less
than 10,000. But for a transportation network, in contrast,
it can have millions or even tens of millions of nodes.

Based on the above observation, we select two differ-
ent infrastructure networks for experiments, namely inf-
openflights (http://networkrepository.com/inf-openflights.
php) [17] for the air transport route and inf-roadNet-PA
(http://networkrepository.com/inf-roadNet-PA.php) [17] for
real traffic. The experimental procedure remains the same.
The results obtained are shown in FIGURE 6 (g), (h), and
TABLE 4. Since the original real traffic network inf-roadNet-
PA is too sparse, it is almost impossible to find four-order
motifs except the four-order claw motif M42 in the corre-
sponding random networks obtained by randomization. The
number of M42 is affected by the three-order path M31,
which has almost no practical significance, and it is also

prominent in other random networks. For other four-order
motifs, they appear more frequently in the real traffic net-
work. This is consistent with the feature that motifs have a
higher frequency in real networks than in random networks.

IV. MOTIF PROCESSING METHODS
In this section, we mainly introduce some methods for pro-
cessing motifs in big networks, including three different
issues, i.e. motif detection, motif counting, and motif cluster-
ing. It is worth noting that although the methods have certain
similarities, their outputs and targets are quite different.

A. MOTIF DISCOVERY
Motifs are considered to be special structures with potential
functions in complex networks. However, motif detection is
a time-consuming task, especially in big networks. To reduce
the computational complexity, scholars begin to study how
to improve the efficiency of motif discovery algorithms [24],
[25]. Many scholars have put their efforts into handling this
task from serialized algorithms to parallel algorithms, and
sampling algorithms which might lose accuracy in exchange
for time [26], [27]. Under many circumstances, motifs are
first to be discovered and then counted. Therefore, in the
following two subsections, we introduce motif discovery
algorithms and motif counting algorithms selectively based
on their application scopes.
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1) SERIAL ALGORITHMS
a: MotifCut
This is a motif detection method based on graph theory [28],
and one of the purposes of MotifCut development is the
detection of high-order motifs. MotifCut divides the input
sequence into several long subcolumns, and uses these sub-
columns as vertices to construct a graph. The edges between
the vertices represent the similarity between them. Moreover,
the densest subgraph in this graph consists of a large number
of nodes that are close to each other. The square method does
not assume the structure of modules and requires them to
be in good agreement with the model. In dense subgraphs,
those strongly dependent node pairs can also be found by
MotifCut. In the first step of the algorithm, the input sequence
is divided into subsegments of thousands of lengths, which
contain the possible sequences. These subsegments are used
as vertexes to construct a graph, and the edges of any two
nodes are weighted by a function [29]. Generally, the higher
the similarity between the two nodes is, the greater the edge
weight value between them is. The background distribution
is used to calculate the random occurrence probability of two
subsegments in the input sequence. For a pair of two nodes
that rarely appears in the background sequence, their edges
are weighted upward. Under these conditions, the motif can
be regarded as a set of nodes with high degree of deduction,
which can be clearly seen by the weight of the edge in the
graph. In this way, the problem can be transformed into
finding the densest subgraph.

b: MotifNet
This is an open access website that analyzes motifs [30]. The
user enters the network diagram with a node number or edge
number, and the website can find the motifs consisting of
up to eight nodes. The website can graphically output the
motifs found by the query. At the same time, it can view the
examples of the motifs in the network diagram. Users can
also select a special node to find the subgraph centered on
the node. MotifNet is based on FANMOD, so it is suitable for
the highest eight-order network motif structure. This makes
it possible to solve most of the motif detection problems.

c: G-trie
Ribeiro and Silva [31] proposed a G-trie data structure for
storing subgraph collections. It is regarded as one of the most
efficient motif discovery algorithms known at present. Using
G-trie and other data structures, a set of subgraphs is stored
in a prefix tree. The G-trie structure uses a common prefix of
the subgraph. Each trie node corresponds to a subgraph node.
The connection information between the node and its prefix
node is stored in each tire node, and a path from the root node
of the trie tree to the leaf node represents a single subgraph.
In G-trie algorithm, a method of symmetric burst breaking is
proposed, to avoid the problem of repeated subgraph enumer-
ation caused by automorphism of subgraphs. By adding the
constraint of the size of enumerated subgraph, each subgraph

can only be enumerated once. The concrete step consists
of three procedures. First, G-trie generates all isomorphism
forms of the subgraph. Then, G-trie keeps adding constraints
until there are no remaining isomerism subgraphs that meet
the conditions. Finally, G-trie stores these added constraints
in the nodes corresponding to the G-trie structure. By con-
straining the entire subgraph’s search process, each subgraph
can be enumerated only once. In G-trie algorithm, nauty
algorithm is also used as subgraph isomorphism decision
algorithm [32]. Like other algorithms, G-trie can be applied
in higher order motif discovery. Similarly, the computational
complexity grows as the motif order increases.

2) PARALLEL ALGORITHMS
The computational complexity of subgraph enumeration
grows exponentially when the subgraph size increases.
Though existing algorithms can enumerate small subgraphs
quickly, the execution time can be quite long for large sub-
graphs. An efficient way to speed up themotif discovery algo-
rithm is to raise the enumerating efficiency of the subgraph
in parallel.

a: Parallel G-trie Algorithm
Ribeiro et al. [33] proposed a parallel G-trie algorithm. It has
been proved that parallel G-trie can further improve the
computational efficiency. In this algorithm, each node in the
recurrent search tree is regarded as a unit of work, and each
unit of work is independent. In order to make the algorithm
adapt better to parallel needs, they adopt a distributed parallel
control method. That is, the process has completed its work
task and randomly requests a work task from other processes.
At the same time, the authors proposed a method based on
diagonal segmentation to complete the assignment of initial
work tasks [34], [35]. This is to achieve the effect of load
balancing.

b: ITERATIVE MAPREDUCE ALGORITHM
Vartika et al. [36] proposed an iterative motif discovery algo-
rithm. This algorithm requires three independent MapReduce
iterations, including ESU (Enumerate Subgraphs), calcula-
tion of subgraph labels, and aggregation of results. The first
iteration is to enumerate the scale of the subgraph by ESU.
The second iteration procedure is to calculate the subgraph
label, whichmainly aims at generating a unique label for each
subgraph. Finally, the aggregation of the results mainly cal-
culates the significance of each subgraph type and identifies
the network motifs. Comparing with the modular calculation
of a single node, the acceleration ratio of this method can be
up to 37 times.

c: GPU-BASED PARALLEL MOTIF DISCOVERY
Lin et al. [37] proposed this algorithm to accelerate motif
discovery algorithms. In this algorithm, subgraph matching
in the process of motif discovery is paralleled by GPU, so as
to save calculation time. The experimental results show that
this algorithm is more effective in two magnitudes.
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3) SAMPLING ALGORITHMS
With the increasing scale of subgraphs, the time required
exponentially increases for enumerating subgraphs by accu-
rate statistical analysis. To solve this problem, a sampling
algorithm is proposed [38], [39]. By sacrificing the accuracy
of statistics, the enumeration of subgraphs can save signifi-
cant calculation time.

a: EFFICIENT SAMPLING ALGORITHM
ESA (Efficient Sampling Algorithm) was first proposed by
Kashtan et al. [38], and is a method based on edge sampling.
The main step of the algorithm is to first randomly selecting
an edge from the network. This is to form an initial subgraph.
Secondly, an edge is randomly selected from the edge-set that
is adjacent to the subgraph. This chosen edge is then added
to the constructed subgraph. Finally, the first two procedures
are stopped when the subgraph has reached the specified
size. However, this sampling method has been proved to be
biased in the research by Wernicke [40]. That is, the chosen
probabilities of each subgraph in the network are not equal.
Moreover, the core subgraph is easy to be oversampled, and
the same subgraph may be repeatedly drawn.

b: G-TRIE SAMPLING ALGORITHM
The G-trie sampling algorithm uses a recurrent search pro-
cess [39]. The whole search process can be represented by a
recurrent tree. Themain idea of the G-trie sampling algorithm
is to retrieve the branches of the recurrent tree with a certain
probability. All the subgraphs can be found by the ESA algo-
rithm. Compared with ESA and other algorithms, the G-trie
sampling algorithm has the advantage of sampling subgraph
groups.

B. MOTIF COUNTING
In the process of studying motif properties, the frequency of
motifs is crucial. This is because almost all the metrics and
practical indicators are based on the frequency of motifs in
the network. We use the most classic indicator, Z-Score, and
the more commonly used indicator, Abundance as examples.
Both of these two indicators need to calculate the frequency
of the particular motifs in the real network and in a set
of corresponding random networks. To calculate the exact
motif’s frequency in the network, we must firstly count the
number of motifs in the network. Therefore, determining the
number of motifs (or the frequency of motifs) is one of the
most fundamental tasks. In this subsection, we refer to these
two issues collectively as the motif counting problem.

The motif counting problem refers to the counting of a
particular subgraph. It is one of the important issues studied
by researchers before the concept of ‘‘network motifs’’ was
proposed. Similarly, the motif counting problem is also a
non-deterministic polynomial (NP) problem. The greatest
difficulty in solving this problem is the high computational
complexity. It is well known that the traditional subgraph
counting problem is to traverse all combinations of nodes in

the network and try to find that if the combination constitutes
a target subgraph. Wherein, the node combination that needs
to be traversed has the same size as the target subgraph. If we
want to count a subgraph S consisting of nS nodes in a graph
G consisting of nG nodes, there are CnS

nG node combinations
that need to be traversed (C represents the combinatorial
number). The time cost of this algorithm is obviously too
high. Although the order of the network motif is relativly
low (i.e., the value of nS is small). The counting efficiency
of high-order motifs is still weak in big networks.

A variety of researchers have performed in-depth and
meticulous work on motif counting. In order to cope with
the bottleneck of the subgraph counting problem, researchers
created a variety of pruning algorithms, prediction algo-
rithms, motif-specific counting algorithms, sampling fre-
quency approximation algorithms, etc. These resolution algo-
rithms have evolved with the development of network sci-
ence and network motifs. At the same time, its efficiency
is improving. However, no matter what kind of solution is
adopted, the core solution of the contemporarymotif counting
algorithm is based on whether the researcher needs the exact
number of motifs in the network. The accurate methods can
achieve the exact value with authenticity and uniqueness,
but the time required for calculation is high. Conversely,
the approximate methods run with greater speed, but the
shorter the run, the less accurate the results are. Herein,
we discuss these two kinds of motif counting methods in
detail.

1) ACCURATE MOTIF COUNTING METHODS
When the motif concept was first proposed, the algorithm
proposed by the researchers was optimized on the traditional
subgraph counting algorithm for a long time. They reduced
the number of subgraphs that needed to be traversed by
pruning and predictive operations, thereby reducing the time
complexity of the algorithm.

a: FLEXIBLE PATTERN FINDER
In order to optimize the traditional subgraph counting
method, Schreiber and Schwöbbermeyer [41] proposed the
FPF (Flexible Pattern Finder) algorithm. This is a tree-based
pattern algorithm, in which the tree is comprised of nodes
representing different patterns. The graph represented by the
child nodes of the tree is obtained by adding an edge to
the graph represented by the current node. In other words,
the parent node’s graph must represent a subgraph of the
current node’s graph. If only the pattern tree is used, the time
complexity of the algorithm has no advantage. So in this
paper, the authors define three frequency concepts and deter-
mines whether the frequency of the current pattern is below a
predetermined threshold during the traversal. If it is below
the threshold, the current pattern can be considered as an
infrequent subgraph. The path will be abandoned, and the
algorithm will not continue to traverse that part of the tree.
The FPF algorithm uses this technique to complete the enu-
meration process, which can increase the efficiency of the
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traversal algorithm.Meanwhile, since there are no restrictions
on the subgraph objects it looks for, FPF can count high-order
motifs. However, because the algorithm is related to the size
of the search subgraph, the counting efficiency is low.

b: ENUMERATE SUBGRAPHS
Based on the mfinder algorithm, Wernicke [42] established
the model of precise enumeration algorithm ESU (Enumer-
ate Subgraphs) and frequency estimation algorithm Rand-
ESU. Based on these two algorithms, a visual model tool
FANMOD is established [43]. To this day, FANMOD is still
one of the most famous counting tools. Also, there are still
countless scholars who choose to compare their methods with
FANMOD in the process of researching subgraph counting
and motif counting. The exact enumeration algorithm ESU is
based on enumerating the subgraph of size k , which can be
implemented in a recursive process:

• At initialization, the algorithm adds a node va from the
graph G to a node set �, and finds its neighbor node set
N = Nva ;

• Then, a node vb is extracted from N and added to �
iteratively. We update N and define it as the union of
the neighbor nodes of each node in �;

• If the size of � is k , we stop the algorithm and obtain
the result.

Through the above recursive process, an ESU tree can be
obtained. From the ESU tree, we can retrieve all subgraph
structures of size k in the network efficiently. Since the size k
of the search subgraph is up to eight, the ESU algorithm can
perform counting for both low-order motifs and high-order
motifs. This is the exact enumeration algorithm ESU, and the
frequency estimation algorithm Rand-ESU which modified it
will be introduced later.

c: GROCHOW-KELLIS
Grochow and Kellis [44] proposed the Grochow-Kellis algo-
rithm, which is also an exact algorithm for enumerating
subgraphs. Its enumeration process is based on a given
motif, which is denoted as a query graph. This method is a
motif-centric approach that searches thewhole network for all
possible mappings.Wherein, themappings are from the given
motif of the big network. Although the use ofmapping instead
of enumeration can improve efficiency, it still costs too much
time while analyzing isomorphic relationships. To reduce the
cost of time, the authors created a ‘‘symmetry breaking con-
dition’’. This condition destroys the mapping relationships of
isomorphic subgraph queries, thereby eliminating redundant
isomorphic decisions and greatly improving the efficiency of
the algorithm. The Grochow-Kellis algorithm does not limit
the size of the query graph, which means it is applicable in
high-order motif counting tasks.

d: RAGE
This algorithm is proposed by Marcus and Shavitt [45],
and provides a new approach for the solution of the
motif counting problem. The Rage algorithm utilizes the

structural features of three-order motifs and four-order motifs
to compute the number of such low-order induced subgraphs
and non-induced subgraphs in big networks efficiently. Rage
uses the connection relationship to construct a three-order
motif symbol array NodeArray. Based on this, the algorithm
can calculate the number of non-induced subgraphs of the
four-order type. Moreover, it also illustrates the relationship
between the four-order motif inducing subgraph and the
non-inducing subgraph. This can be used to calculate the
exact number of four-order motifs efficiently, while other
methods require more time. The Rage algorithm has two
main disadvantages, i.e., the discrimination of isomorphic
subgraphs and the counting of low-order motifs. However, its
speedy operation efficiency can cover these deficiencies.

The rage algorithm has been considered to be the most
effective low-order motif counting algorithm for a long time.
However, the human pursuit of efficiency is endless. On one
hand, some scholars have further tried to improve the effi-
ciency of the Rage algorithm. Ahmed et al. [46] proposed
a new perspective, that is, using the combination relation-
ship between motifs to speed up the operation even further.
This algorithm utilizes the combination relationship between
four-order motifs and greatly reduces the computational com-
plexity compared with Rage. Meanwhile, the algorithm itself
can perform parallel optimization, which further improves
the efficiency of motif counting. This idea has been widely
adopted. On the other hand, some scholars want to calculate
the number of motifs above four-order by keeping the effi-
ciency of the Rage algorithm. The algorithm established by
Pinar et al. [47] extended it to five-order motifs.

2) FREQUENCY ESTIMATION METHODS
At times, themost frequentmotif structure is required, instead
of the quantity of eachmotif type. Under these circumstances,
scholars have found that the overall frequency of occurrence
is required. Therefore, estimation methods are proposed by
sacrificing partial accuracy by using sampling methods.

a: MFINDER
The Mfinder algorithm was proposed by Kashtan et al. [48].
It is a method based on edge random sampling, which aims
at estimating the concentration of large subgraphs in a big
network. Mfinder does not consider subgraph isomorphism,
sampling the same subgraph, etc. However, its time complex-
ity is unexpectedly low. The algorithm’s computation time is
asymptotically independent on the size of the network. The
Mfinder approach significantly reduces the computation time
of motif counting. This was a noteworthy achievement at the
time. In summary, although Mfinder can only estimate the
concentration of motifs, and mainly counts low-order motifs,
it provides a more efficient way compared with the traditional
exhaustive search algorithm by edge sampling.

b: RAND-ESU
Asmentioned earlier, the Rand-ESU algorithm is a frequency
estimation algorithm modified on the basis of the exact
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TABLE 5. Typical Accurate Counting Methods and Frequency Estimation Methods.

enumeration algorithm ESU. Although the ESU algorithm
is efficient, this argument is only compared to the tradi-
tional exhaustive algorithm. In practical applications, the time
cost of the ESU algorithm is still unacceptable in the face
of big networks. Therefore, Wernicke [42] established the
Rand-ESU algorithm based on ESU. The core idea of the
Rand-ESU algorithm is to explore only a portion of the ESU
tree. However, the algorithmmust simultaneously ensure that
it reaches every leaf node with the same probability. In order
to meet this condition, the algorithm introduces a probability
pd ∈ [0, 1], which indicates that each node of the ESU tree
is expanded with the probability pd . It can be simply proved
that this method can sample all subgraphs of size k randomly
and uniformly without deviation. When pd = 0, the ESU
tree will not expand and the algorithm will not retrieve any
valid results; and when pd = 1, it is equivalent to the ESU
algorithm. By adjusting the probability pd , we can adjust the
sampling of the algorithm. Since the Rand-ESU method has
been developed from the ESU method, it can also perform
counting for both low-order motifs and high-order motifs.

c: MODA
MODA is an estimation algorithm developed on the basis of
the Grochow-Kellis algorithm, which was first proposed by
Omidi et al. [49]. MODA uses a hierarchical structure called
‘‘extension tree’’, combined with the frequency characteris-
tics of the FPF algorithm and the motif growth method. This
algorithm avoids enumerating subgraphs that are not likely to
constitute a target motif while querying motifs. Based on this,
a special sampling method is used to accelerate the running
time of the algorithm. The advantage of MODA is that it can
more effectively identify high-order motifs including those
above eight nodes. At the same time, in addition to induc-
ing subgraph information, MODA can extract non-induced
subgraph information of motifs in the network. However,
the speed of this algorithm still does not exceed Rand-ESU
algorithm.

In addition to the motif enumeration methods and the
motif frequency sampling estimation methods mentioned
above (as shown in TABLE 5), scholars have combined
many other techniques for the motif counting problem, result-
ing in various solutions. These solutions include the algo-
rithm combined with color-coding techniques [50], MHRW
(Metropolis-Hastings Random Walk) [51], MASS (Multi-
Agent Spatial Simulation) [52], among others.

All the above-mentioned algorithms are proposed for
counting motifs in static networks. However, there exists
various network environments, such as dynamic networks
(e.g., Internet), probability networks (e.g., biological prob-
ability networks), etc. Motif counting algorithms suitable
for specialized networks have also been proposed [53].
Schiller et al. [54] proposed a flow-based algorithm that can
be used to compute undirected four-order motifs in dynamic
graphs efficiently. Todor et al. [55] also proposed an algo-
rithm, which can be used to calculate the expected value and
the variance of the key motif numbers in a biological prob-
ability network. Luo et al. [39] designed an effective mea-
surement method for biological networks based on motifs,
namely, LCNM (Large-scale Co-regulatory NetworkMotifs).

C. MOTIF CLUSTERING
Motif clustering has been regarded as high-order clustering
in big networks. Clustering motifs are significant in vari-
ous areas, especially in biological science. Clustering is the
task of classifying objects according to their features, and
the objects with similar features will be grouped together.
The main process is to extract element characteristics and
put the elements with similar characteristics into the same
category. In general, n attributes or features of samples are
taken, and are then mapped to n-dimensional vectors. In
this way, the original discrete data can be converted into a
graph or matrix that can be further processed by a computer.
Clustering and classification operations are quite different.
Classification utilizes supervised learning to divide objects
into different categories according to some certain train-
ing data. Whereas, clustering simply brings similar objects
together through the attributes and connections between the
data, which is an unsupervised learning method.

At present, clustering generally has the following steps.

• The first step is feature extraction. According to the data
features and clustering purpose, we extract the under-
lying features of the data. These features should be as
independent as possible, and the redundant information
should be minimized;

• Similarity measuring is the second step. The clustering
algorithm provides the standardmeasurement of similar-
ity between sample nodes through a similarity matrix or
other parameters. The similarity is subsequently calcu-
lated using extracted features. This measure determines
the clustering effect and clustering result;
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• The third and most critical step is a clustering process.
A clustering algorithm determines how the samples are
classified during the clustering process;

• The final phase is result testing. The subclass results
obtained by clustering algorithm are judged, and their
correctness is verified;

Though the motif clustering algorithms have some com-
mon properties, different algorithms are suitable in different
circumstances. Herein, we introduce motif clustering accord-
ing to their application scenes, i.e., motif clustering in biolog-
ical science and network science.

1) BIOLOGICAL SCIENCE
There are two significant processes of motif clustering in bio-
logical science, i.e., finding the similarities among biological
sequences and detecting motifs. Obvious advantages can be
gained by adopting the above two clustering methods.

a: AGGLOMERATIVE HIERARCHICAL CLUSTERING
This is a commonly applied algorithm for clustering a group
of elements into subgroups or smaller clusters [56]. It catego-
rizes the elements by joining the top two similar elements and
creates a tree to represent nesting group events. This method
first computes the fully aligned similarity matrix using a
dynamic programming algorithm. Subsequently, the top two
similar elements involved in the same motif with the highest
alignment score are joined recursively. Through this joining
event, the algorithm creates a new motif as an alignment
of two motifs. Meanwhile, the distance matrix scores are
updated according to the average distance between the motif
cluster and the other motifs.

b: CyClus3D
CyClus3D is a motif clustering algorithm which is proposed
for three-order motif clustering [57]. For a given three-order
motif, its edges can be of any type. We assume that all motifs
can be represented by a three-dimensional array T . If there
exists a motif among node i, j, and k , then Ti,j,k = 1.
Otherwise, Ti,j,k = 0. The motif cluster that consists of three
node sets (X1,X2,X3) can be defined by an aggregation score,
which is shown in Equation (1).

S(X1,X2,X3) =

∑
i∈X1,j∈X2,k∈X3 Ti,j,k

|X1|
1
p |X2|

1
p |X3|

1
p

(1)

wherein, |Xi| is the number of nodes in Xi. To maximize
S, we need to find a real vector (x1, x2, x3) that maximizes
Equation (2).

R(x1, x2, x3) =

∑
ijk Tijkx1,ix2,jx3,k
‖x1‖p‖x2‖p‖x3‖p

(2)

wherein, ‖xi‖p = (
∑

i x
p
i )

1
p is the p norm. The optimal value

of R can be calculated by solving Euler-Lagrange equation.
In order to find amotif cluster with a high score, CyClus3D

removes the non-existing motifs repeatedly until no redun-
dant motif exists in the motif set. This algorithm can be

FIGURE 7. The standard suffix tree of the string ‘‘bananas’’.

regarded as generalization form of two-dimensional spectrum
clustering algorithm. However, CyClus3D can only cluster
motifs consisting of three nodes, which greatly limits its
scope of application.

c: SUFFIX TREE
The suffix tree can be used in the motif analysis process [58].
However it has traditionally been used in the text index
method [59]. A suffix tree satisfies the following condi-
tions. Figure 7 illustrates a standard suffix tree for the string
‘‘bananas’’.

(1) There is a one to one correlation from root node to leaf
node for sting s. That is, each path uniquely represents a
suffix of string s;

(2) Each edge represents a non-empty string;
(3) All internal nodes (except root nodes) have at least two

child nodes.

All the sequences form a large class at the root node. Each
time we advance one character, the sequences are divided
once. Therefore, this kind of division is generally divided
by the size of the character set. The path length e reflects
that the length of the prefix string of the current partition
is e. We assume that a horizontal dotted line is drawn at
e, then the number of crossover points is the number of
clusters. When the path length reaches w from this node,
it is shown that the prefix sequence traversed at this time is
all possible motifs. Different paths represent different sub-
sequences, which means the number of sequences in each
set is one. At this time, it is possible to continue travers-
ing to multiple leaf nodes. One leaf node represents a suf-
fix sequence. If there are multiple leaf nodes, these suffix
sequences contain multiple identical modular instances. The-
oretically, this division process can go on until some sets
are empty. In fact, the goal of this clustering algorithm is to
obtain a class of the right size, so this traversing can be ended
quickly.

2) NETWORK SCIENCE
The purpose of local graph clustering methods is to find a
cluster of nodes by exploring a small region of the graph.
These methods are generally advanced in clustering around a
given seed node. However, the current local graph clustering
methods are not designed to explain the critical high-order
structures in the network, and they cannot effectively deal
with directional networks. In network science, clustering can
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be divided into two classifications, i.e., node clustering and
graph clustering.

a: MOTIF-BASED RANDOM WALK
This is a motif clustering method that is based on Markov
process. If we visit a graph randomly, we may probably get
a loop rather than go out of the graph. This loop area is a
group and the route that visits the graph is always generated
by a Markov process. Based on motif structures, the random
walk can be guided with bias. According to the above ideas,
the access to the nodes in the graph is often more likely to
be concentrated in a dense area of the graph. In other words,
the paths within the cluster are often abundant, but the paths
between the clusters are very few. As a result, the probability
of accessing other nodes in the cluster is very small. Even so,
we can still access other clusters of the graph [60]. Similarly,
for weighted graphs, this tendency is reflected in the weight
processing of the edge. The edge weight between the nodes in
the same cluster is much higher than that between the nodes in
a different cluster. The edge weight should be included as the
communication between weight distribution and clustering.

b: MOTIF-BASED MARKOV CLUSTERING ALGORITHM
TheMarkov clustering algorithm terminates access by block-
ing a part of the path in the Markov chain. The algorithm
will adjust the transfer value so that the closer nodes can
achieve higher access probability. For each node, this algo-
rithm changes its transmission value to improve its probabil-
ity to reach a closer neighborhood. This adjustment is to raise
a single-row index to a non-negative high value, then set it to a
normal value. It can be called ‘‘inflated’’. In a Markov chain,
this process is also called ‘‘extension’’. Since the calculation
of the probability depends on the number motifs that the node
is included in, the probability of use is biased. There are two
probability adjustment methods for the expansion: one is to
enhance the current value, the other is to weaken the current
value. In other words, the algorithm makes the current strong
value stronger and makes the current weak value weaker.
The above process is generally controlled by a parameter that
ultimately affects the granularity of the group itself.

c: MOTIF-BASED APPROXIMATE PERSONALIZED PAGERANK
This is a new class of local graph clustering methods, which
can solve some problems in the field of motif clustering
by integrating higher-order network information [61]. The
general process of this algorithm is as follows: given a graph
G and a certain motifM , the algorithm aims at finding a set of
nodes�with suitable motif conductance. Wherein, the motif
conductance is extended by the traditional definition of edge
conductance. It is also defined as the ratio of the cutting
motifs number to the total motifs number in the graph G.
The motif that is often used to calculate motif conductance is
M32. In addition, a theory based on the node neighborhood
is also developed to discover the set containing low motif
conductance in this paper. Moreover, the results of these
sets are used to find a good seed node to be used as the

input of Motif-based Approximate Personalized PageRank
algorithm.

Network motifs are widely used as structural features for
biased random walks, PageRank, unsupervised learning, etc.
Therefore, the order of the network motif is often not limited.
Low-order motifs are more employed instead of high-order
motifs in a motif cluster. This is due to the fact that in real
networks, the number of high-order motifs is often scarce
when compared to low-order motifs, and high-order motifs
are of relatively less correspondence to specific practical
meanings.

V. APPLICATIONS OF MOTIFS
With the development of motif research, the concept of
motifs has been widely used in empirical networks, includ-
ing international trade, Internet, transportation, inter-social
virus transmission, biological systems, to name a few. These
studies have proved that the application of motifs in different
fields can provide an effective research perspective for the
pattern characteristics of subjects in a network. Meanwhile,
these applications also pay attention to the proportion of
different morphological motifs in the network, and the par-
ticipation of subjects in multi-morphological motifs. In this
section, we will introduce the applications of motifs in differ-
ent kinds of big networks, including social networks, biologi-
cal networks, world trade networks, network protocols, traffic
networks, Bayesian networks, Support Vector Machine and
graph learning.

A. SOCIAL NETWORK ANALYSIS
When researchers study topology and complex network rela-
tionships, networkmotifs can reflect an intrinsic link between
network nodes [62]. For some tasks, such as network-centric
measurements, or time-consuming network cluster searches,
combining motifs as an efficient way to analyze social
networks has become a critical breakthrough. Researchers
believe that using small or medium-sized networks to inves-
tigate social networks will be more effective and reliable.
In fact, they have already applied networkmotifs to social net-
work analysis for some time. For instance, some researchers
use motifs to analyze email communication in social net-
works. Z-score is employed as an indicator to analyze the
distribution of motifs, which is shown in Equation (3).

Zm =
nM − 〈nrandM 〉

σ randM

(3)

wherein, nM is the occurrence number of motifM in the real
network, nrandM is the mean ofM ’s occurrence and σ randM is the
standard deviation ofM ’s occurrence in some corresponding
random networks.
Z-score is a key parameter that reflects the importance of

motifs, and it firstly requires researchers to determine the
number of random networks needed to be detected. A typical
application is implemented in an email-based social network.
Wherein, the weight of the edge in an email-based social
network is the intensity of communication. We enumerate
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FIGURE 8. The distribution of colored network motifs in e-mail-based
social network.

FIGURE 9. Some examples of the colored motifs.

all the colored network motifs of the email-based social
network, whose distributions are shown in FIGURE 8. There
are 13 groups of motifs and each fan-shaped part represents
a different kind.

In FIGURE 8, the outermost layer represents the distribu-
tion of the 3-black motif, the second outer layer represents
that of the 1-white 2-black motif, the third layer represents
that of the 2-white 1-black motif, and the innermost layer
represents that of the 3-white motif. We list four examples
of the four kinds of motifs mentioned above in FIGURE 9.
Wherein, ‘‘W’’ indicates that several nodes in the motif are
white, and ‘‘B’’ indicates that several nodes in the motif are
black.

B. BIOLOGICAL APPLICATIONS
Motifs were first proposed in biological science. As such,
network motifs are widely used in the biological field.
Xu et al. [63] previously reconstructed various protein com-
plexes in biological networks by analyzing network strucutre.
Kim et al. [64] used motifs to find the essential protein in
the network by a centrality algorithm called MCGO (Motif
Centrality edGegO), which can measure the centrality of a
subgraph.

Meier et al. [65] studied the features of brain networks,
and used the entropy of directed phase transfers to search for
the motif of effective connections in the network. Compared
with random networks, they found the four-order motif, bidi-
rectional two-hop path, and the three-order motif, occur fre-
quently in the analyzed network. Moreover, they also divided
the effective connectivity network into two main clusters.
It was found that there exists closer connections in the poste-
rior and the anterior region.

Sporns and Kötter [66] also studied motifs in brain net-
works. They found that the brain network structure is simple
to figure out by network motifs. So, they compared the motif
properties of real brain networks and identified the maximum
number of functional motifs. Additionally, they obtained
the motif frequency spectra for the matrix of C.elegans.
Wherein the motif size does not exceed four. They also
implemented similar experiments in other brain networks,
including macaque visual cortex, macaque cortex, cat cortex,
etc.

Friedman et al. [67] used the directed network motif to
study AD (Alzheimer’s Disease) and MCI (Mild Cognitive
Impairment) in human networks for the first time. Wherein,
the frequency of specific directed network motifs could be
used to distinguish between the brain network with AD and
the normal brain network. It has been proved that low-order
motifs provide a useful function to distinguish the two types
of patients. That is, the normal AD patients and the AD
patients converted from MCI.

Motifs are applied in gene regulatory networks as well.
In order to effectively select a binding sequence from a
high-dimensional position, Middendorf et al. [68] used a
modern large-margin machine learning method. Rather than
over-expressed in promoter sequences, they learned func-
tional motifs and predictive motifs. Finally, they used this
model to address specific biological questions, such as
restricting attention to a particular target gene.

C. WORLD TRADE NETWORK
The topological structure of World Trade Network (WTN)
depends heavily on the Gross Domestic Product (GDP) of
countries in the world. Thus, it is interesting to acknowl-
edgeWTN’s topological properties. On one hand, researchers
employed a triadic motif and analyzed its occurrence in
WTN [69]. Based on the maximum-likelihood estimation of
maximum-entropy models of the network, they found that
reciprocity has a great influence on the motif structure, and
the value is significantly high in WTN. On the other hand,
some researchers also focused on analyzing the subnetworks
of WTN. The evolution of WTN is also studied, including
degree distribution, center coefficient, and topological struc-
ture [70], [71]. Sliding windows as a classical method can be
used to find the core motif of a WTN.

Network motifs are applied in preventing a world trade
crisis as well. Considering a global economic crisis, vast
majority of work is focusing on the whole financial sys-
tem. On the contrary, theoretical works are lightly performed
regarding specifics which effectively describe the financial
crisis. Saracco et al. [72] use motifs of bipartite networks to
research the countries’ product network. A part of bipartite
networks represent the countries layer, and the other part
represents the product layer. Wherein, various kinds of motifs
are introduced, including V -motifs, 3-motifs, X -motifs,
W -motifs, and M -motifs. Saracco et al. find that the infor-
mation of V -, 3-motif is rather limited, but X -, W -, and
M - motifs appear with a high frequency.
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D. NETWORK PROTOCOLS
Some scholars use visual motifs to classify encrypted traffic.
Wright et al. [73] used dynamic time warping of the motifs to
classify encrypted traffic, and gained the heatmap for HTTP,
SMTP, AIM, and SSH. On this basis, they identified the
non-linear behaviors of those graphs, and the sorted graphs
in order of similarity to the template connection. Finally
they distinguished unauthorized servers and identified traffic
generated by different processes, such as video, email, game,
etc. With visual motifs in the processed heatmap, various
application protocols can be identified.

E. TRANSPORTATION NETWORK
A transportation network is formed by a large number of
traffic stations and lines, through the interaction of mate-
rial information and energy. It plays a significant role in
national economic development. Motifs are employed in ana-
lyzing the transportation network, because motifs are found
to be general in this type of networks [74]. Jin et al [75]
studied Chinese airline networks constructed by 37 airline
companies. They found that motifs can reflect the structural
and functional characteristics of airline networks. Moreover,
the adjustment of the motif number can be applied in opti-
mizing the overall structure of airline networks.

In an urban public transportation system network, motifs
also appear frequently and can be used as a feature to study
the network. Ping et al. [76] used the Urban Public Trans-
portation Network (UPTN) of China to discuss the efficiency
and topological nature of China’s urban public transportation
system. After investigating the traffic networks of the ten
largest cities in China, they found that all of the topological
structure of UPTN are characterized by the small-world phe-
nomenon. Finally, they found that topological features and
motifs are related to the dynamics of UPTN.

F. BAYESIAN NETWORK AND SUPPORT VECTOR MACHINE
Motifs are also applied in the classification of time series with
BayesianNetwork (BN) and Support VectorMachine (SVM).
The task of classifying time series is crucial [77], [78]. Buza
and Schmidt-Thieme [79] used motifs to improve the accu-
racy of classification, and they created a new motif class
called generalized semi-continuous motifs. Their experimen-
tal results show that the use of motif classification models can
greatly improve the performance of SVM and BN. Moreover,
the machine learning algorithm realizes the fast and efficient
discovery of motifs in the network [80]. For example, Kova-
nen et al. [8] combined this concept with temporal networks
for mining dynamic evolution characteristics. Motifs are also
well suited for network embedding tasks and achieve better
performance than traditional methods [81].

G. GRAPH LEARNING
In network representation learning, network motifs can be
used to depict higher-order similarities among nodes in a
multivariate structure [81], [82]. This is because a network

motif can capture the complex relationship of multivari-
ate structures in real networks. Network motifs have been
increasingly employed in network representation learning
approaches. Pal et al. [83] proposed that the network motif
can be applied as a structural feature to the learning process
of graph convolutional networks. Likewise, Ktena et al. [84]
presented a motif-based concept of graph similarity as well
as an approach for training better motif-related variants. Lat-
terly, network motifs have been proved to be efficient in
network representation learning. Monti et al. [85] proposed
a motif-based graph convolutional network learning method,
i.e., MotifNet, which integrates the information of local net-
work motifs within the graph convolutional network training
process. MotifNet has been proved to outperform state-of-
the-art graph convolutional network methods.

VI. CHALLENGES AND OPEN ISSUES
Network motifs play an important role in network science,
biology science, etc. It has been proved that network motifs
are the basic blocks of networks. Meanwhile, motifs provide
mesoscopic thinking in big networks. Though motifs have
been applied in various scenes, there still exists many chal-
lenges.

• Computational Complexity. The algorithms of motifs
are generally time-consuming, especially when the tar-
get motifs grow larger. With the increase of vertices
in motifs, related algorithms will become more com-
plicated. As mentioned before, there are 13 kinds of
directed subgraphs of 3 vertices, 199 kinds of subgraphs
of 4 vertices, and 9,366 kinds of subgraphs of 5 vertices.
Moreover, when these subgraphs are superimposed on
a network in more potential ways, there will be more
possible motifs. GPU methods have been employed to
accelerate the algorithms. However, the speciality of
motifs makes it difficult to implement parallel algo-
rithms.

• Higher-order Motifs. Higher-order motifs are proved
to have real applications in various fields. Most previous
algorithms focus on small scale motifs, i.e., three-order
motif and four-ordermotif. However, with the increasing
scale of networks, higher-order motifs generally appear
with a higher frequency. Therefore, greater effort should
be put into developing algorithms of higher-order motif
discovery, counting, profiling, and other related algo-
rithms.

• Heterogeneous Motifs. In reality, real-world networks
are mostly heterogeneous. Existing methods of motifs
mainly focus on homogeneous motifs. This is mainly
because homogeneous motifs are relatively simpler
than heterogeneous motifs. Meanwhile, heterogeneous
motifs are difficult to detect or cluster due to complexity
and heterogeneity. Further studies may need to focus on
heterogeneous motifs more.

• Visualization Tools. There exists abundant visualiza-
tion tools for analyzing motifs such as, R package
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seqLogo, MotifStack, STAMP [86], etc. However, most
of the existing visualization tools are developed for bio-
logical science. Besides, there is a lack of visualization
tools in other research areas, such as social relationship
research, academic partner recommendation, and trans-
portation system optimization. Therefore, motif visual-
ization tools should be developed for more disciplines.

VII. CONCLUSION
Network motifs were widely applied in various scenes. In this
paper, we focused on the relevant algorithms and applications
of motifs. Firstly, we present the formal definition of motifs.
Secondly, we illustrate the generality of motifs in many
networks, including biological networks, social networks,
academic networks, and infrastructure networks. We find that
motif-based structures exist in including but not limited to
these networks. Thirdly, we introduce some motif algorithms
such as motif discovery, motif counting, and motif clustering.
The applications of motifs in big networks have been detailed
from the network perspective. Furthermore, we introduce
the various applications that motifs are applied in. Finally,
we discuss the challenges and open issues regarding motif
applications and relevant methods. This work summarizes the
current studies systematically and provides some potential
directions for future work.
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