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Robust Malware Defense in Industrial IoT
Applications using Machine Learning with Selective

Adversarial Samples
Mahbub E Khoda, Tasadduq Imam, Joarder Kamruzzaman, Iqbal Gondal, and Ashfaqur Rahman

Abstract—Industrial Internet of Things (IIoT) deploys edge
devices to act as intermediaries between sensors and actuators
and application servers or cloud services. Machine learning
models have been widely used to thwart malware attacks in
such edge devices. However, these models are vulnerable to
adversarial attacks where attackers craft adversarial samples by
introducing small perturbations to malware samples to fool a
classifier to misclassify them as benign applications. Literature
on deep learning networks proposes adversarial retraining as
a defense mechanism where adversarial samples are combined
with legitimate samples to retrain the classifier. However, existing
works select such adversarial samples in a random fashion which
degrades the classifier’s performance. This work proposes two
novel approaches for selecting adversarial samples to retrain
a classifier. One, based on the distance from malware cluster
center, and the other, based on a probability measure derived
from a kernel based learning (KBL). Our experiments show
that both of our sample selection methods outperform the
random selection method and the KBL selection method improves
detection accuracy by 6%. Also, while existing works focus on
deep neural networks with respect to adversarial retraining, we
additionally assess the impact of such adversarial samples on
other classifiers and our proposed selective adversarial retraining
approaches show similar performance improvement for these
classifiers as well. The outcomes from the study can assist in
designing robust security systems for IIoT applications.

I. INTRODUCTION

Industrial Internet of Things (IIoT), driven by Industry 4.0,
refers to the use and control of smart sensors and actuators
to enhance manufacturing, data analysis and decision-making
process in an industrial setting [1]. Various industries including
security surveillance, manufacturing, agriculture, and food
processing have adopted IIoT in recent years [2]. Connected
sensors, actuators, and controllers enable industries to ef-
fectively spot inefficiencies and detect operational anomalies
and make intelligent business decisions by gathering a large
volume of data from heterogeneous sensors and analyzing
them, often in a remote server hosted in the cloud. However,
these sensors have limited power and communication capacity.
As a result, edge devices including small servers, desktops,
laptops, routers, smartphones, and hand-held devices are used
as intermediaries between the sensors and the cloud servers.
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These devices can collect data from sensors and temporarily
store them for initial pre-processing before sending them to
the local server or remote cloud.

However, such edge devices can be a point of exploitation
for malware attackers. A compromised device can transmit
false or spoofed information to the cloud server or lead to
inaccurate assessment of data or pose threats to the security of
sensitive industrial documents, business strategy, and corporate
information. This may lead to major financial and reputational
loss and operational inefficiencies, in addition to harming their
customers. Figure 1 shows an Industrial IoT setting where
sensors, actuators, controllers and other equipment communi-
cate with edge devices that, in turn, upload data to the remote
server. The server, on analyzing the data, may send instructions
and control messages back to controllers and actuators through
the edge devices for optimum operation of the industry. The
figure also shows how malware attacks can compromise edge
devices leading to critical information leak and financial loss.

Ensuring cyber security is one of the major challenges
faced in an industrial IoT setting. This includes protecting
edge devices from malware attacks, preventing their unau-
thorized access, and ensuring physical and communication
privacy. Various works in the literature proposed automated
techniques based on machine learning models, including deep
neural networks, to ensure IIoT security regarding malware
detection, fault diagnosis and anomaly detection [3]–[6]. These
models, however, have also been shown to be vulnerable
against adversarial attacks in the detection of image forgery,
computer vision manipulation and computer malware [7]–
[10]. Adversarial attacks are based on samples that are crafted
by introducing small perturbation into original samples (e.g.,
benign computer applications, macros, scripts) so that the
detection system is fooled and consequently failed to classify
a crafted sample as a malicious one. [11].

After Szegedy et al. [11] demonstrated that several machine
learning models, including neural networks, are vulnerable to
adversarial samples, several works proposed different methods
on crafting adversarial sample as well as devising defense
mechanisms against it. A fast gradient sign method was
introduced by Goodfellow et al. [7] that found perturbation
to be added by differentiating the cost function with respect
to the input. An adversarial sample crafting method based
on the Jacobian matrix was proposed by Papernot et al. [9]
that computes the output’s sensitivity to each input feature
to find the most influencing feature. Accordingly, the method
iteratively modifies features so that the sample is misclassi-



2

Sensors

Edge Devices
Data accumulation

Initial Processing

Cloud Server
Big data analytics

Business strategy

Industrial IoT Malware attacks can lead to 
critical information leak and 
financial loss

Actuators

Sensors

Controllers

Fig. 1: Malware Attack in Industrial IoT

fied. To increases resilience of the detection system against
such samples, researchers have proposed adversarial retraining
method that involves first crafting the adversarial samples and
then mixing these samples with the legitimate ones to retrain
the classifier [11]–[13]. Even though adversarial attacks and
defense against them in image processing and computer vision
domain have been studied well, such works in the malware
detection domain are limited and inadequate. On the other
hand, it has been shown that retraining a classifier with too
many adversarial samples can degrade the performance of a
classifier [10], completely defeating the purpose of retraining.
Hence, it is of utmost importance to carefully select the most
appropriate samples to retrain a classifier since choosing the
same number of samples differently can lead to a difference in
classifier performance. However, in the existing works, these
samples are chosen in a randomized fashion which may not
necessarily provide the best performance.

To address this problem, in our work, we have explored
adversarial learning in the malware domain in the IIoT setting,
especially focusing on an intelligent selection of adversarial
samples for retraining. We proposed two novel approaches
for selecting adversarial samples to retrain a classifier. Firstly,
we proposed a method to select adversarial samples based
on their distance from the cluster center of malware and to
compute this distance we experimented with different distance
measures. Secondly, we selected adversarial samples based on
the probability derived from a kernel based learning (KBL).
Experiments with deep neural networks show that both of our
selective strategies perform better than randomized selection.
Though a preliminary version of the approach was proposed
in [14], it was tested with only one distance measure and the
characteristics of the approach was not adequately explored;
while in this paper, multiple distance measures have been
tested with extensive study of various characteristics of the
approach.

In addition, unlike most existing works including [14]
that focus mainly on deep neural networks with regard to
adversarial retraining, in this work, we assessed the impact
of such adversarial samples on other classifiers. Our selective
adversarial training strategy showed comparable performance
improvement for these classifiers as well, demonstrating the

efficacy of our selection strategy across classifiers.
Our work in this paper, hence, makes the following contri-

butions:
• We propose and evaluate two different approaches for ap-

propriate selection of adversarial samples for retraining.
Our approaches of selecting samples make the detection
system far more resilient than the currently used random
selection, yielding a 6% increase in detection accuracy
by the KBL approach.

• We further explore the selective strategies and adversarial
retraining with other well-known classifiers and show
that our strategies increase the robustness of malware
detection irrespective of the classifier used.

• The proposed approach will be highly useful to increase
the robustness of machine learning in other industrial
applications as well.

The rest of the paper is organized as follows: we first
provide a summarized background of malware detection in
IIoT, adversarial examples and adversarial learning in Sec. II.
We then describe the methodology of our work, our adopted
adversarial sample crafting technique and our proposed meth-
ods for selecting samples for adversarial retraining in Sec. III.
Finally, we present the performance evaluation in Sec. IV and
conclude in Sec. V.

II. BACKGROUND AND RELATED WORKS

In this section we briefly discuss the works in malware de-
tection in IIoT, the background of adversarial sample crafting
and adversarial learning in malware detection.

A. Malware Detection in Industrial IoT

In recent works, a lot of efforts have been made to ensure
the security of IoT devices ranging from building secured
IoT architectures to designing detection and prevention mech-
anisms of malicious IoT applications [15]–[17]. Jerald et
al. [16] proposed a security architecture for integrated IoT
smart services. Sun et al. [17] proposed a cloud-based anti-
malware system for resource-constrained IoT devices includ-
ing a scanning agent for the clients. However, in recent
years handheld devices with Android and iOS systems have
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become an integral part of IIoT systems. These types of
handheld devices including specialized mobile devices are
increasingly being commissioned by industry technicians for
inspection, maintenance, alarm generation, work allocations,
and scheduling as well as data collection. As a result, many
recent works have been focused on ensuring security on these
devices. However, the recent large growth in IIoT systems
and the number of applications deployed for those devices in
the market have led manual inspection to be infeasible. As
a result, automated malware detection techniques have been
proposed in the literature based on various machine learning
tools. These tools depend largely on the features extracted
from applications to classify malicious and benign software.
Consequently, several works studied different types of features
for malware detection.

The features of such applications can be of two types: static
and dynamic. Static features are extracted by analyzing the
application code and related files without actually running the
code. On the other hand, extracting dynamic features requires
the application to run, often in a controlled environment (i.e.,
emulator), while its runtime behaviour is logged. Several
earlier works proposed malware detection based on traditional
machine learning tools leveraging simple static features (e.g.,
requested permissions) [18], [19]. Later works considered vari-
ous other features including application programming interface
(API) calls, inter-component communication (ICC) features
and dynamic features to detect more sophisticated malware
[20]–[23]. Several works proposed hybrid approaches where
both static and dynamic features were combined to detect
malicious applications [24]–[26]. Sharmin et al. [6] inspected
the performance of different machine learning classification
models based on static, dynamic and hybrid features of mobile
apps in industrial IoT setting. However, they did not consider
the vulnerability of those models against adversarial attacks.

Researchers have become increasingly interested in mal-
ware detection using deep neural networks due to promising
advancement in this field in the recent past [25], [27]–[29].
However, deep neural networks have been shown to be vul-
nerable to adversarial samples in the computer vision domain
[11]. Subsequently, the possibility of the same is explored by
researchers in malware detection domain as well [10]. Hence,
it is very important to increase the robustness of the detection
system against these adversarial attacks.

B. Adversarial Examples

To craft adversarial samples, a small perturbation is in-
troduced into original ones so that the classifier is misled
to classify them as an incorrect class. Adversarial sample
crafting can be just to mislead the classifier and simply cause
misclassification in general or it can be targeted where the
misclassification is biased towards a specific class. A detailed
taxonomy of adversarial example crafting goals and techniques
can be found in [9]. If a legitimate sample X classified by the
model is represented as M(X) = y, an adversarial example X ′

is a modified version of X that is misclassified as M(X ′) = y′

where y′ 6= y. Formally,

argmin
δx

M(X + δx) = {y′ | y′ 6= y} (1)

where δx is the perturbation introduced to the sample X .
By setting the condition to y′ = yt this can be converted
to targeted attack where yt is the intended target class.
However, in case of only detecting where an application is
malicious or not, this effectively becomes the same since we
are mostly interested in two classes (i.e., malware and benign)
and therefore, crafting adversarial samples from original mal-
ware automatically means the target is benign. This means
through crafting adversarial samples, attackers aim to create
a minimally perturbed version of a malware so that it can be
classified as benign and thereby evade detection.

However, finding a solution to this equation (Eq. (1)) is very
hard due to the complex nature of the deep neural network
functions. In this respect, researchers have explored two types
of attack scenarios: black-box and white-box attack. In black-
box attack scenario, the adversarial attacker does not have any
detailed knowledge about the target; instead it can only query
the model for the output. The attacker in this case is at its
weakest especially when it can only get the output label from
the model rather than the class probability. On the other hand,
in white-box scenario the attacker has all the available infor-
mation i.e., the model architecture, values of the variables and
the parameters, and the training data. Consequently, making a
model robust to the white-box scenario means the model can
defend against the strongest attacks. Most of the approaches in
the literature are white-box in nature and the attacker has the
full knowledge of the network architecture and its parameters
[7], [9]–[11]. Hence, in our work we adopted a white-box
attack scenario.
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The details of the particular methods we adopted are de-
scribed in Sec. III-B.

C. Adversarial Malware Crafting and Defense

There are only limited works in literature that have reported
adversarial example crafting techniques and their impact on the
detection accuracy of malware, while even less attention has
been focused on adversarial malware attack in industrial IoT
setting. Grosse et al. [10] studied adversarial example crafting
and adversarial retraining as a defense mechanism for android
malware detection. The work showed improved performance
with adversarial retraining while considering several networks
trained with varying ratios of malware and benign samples.
The work also reported that retraining the classifier with too
many adversarial samples can degrade classification perfor-
mance due to overfitting. This observation is also verified by
our experiments. A reinforcement learning based approach was
adopted by Anderson et al. [30] for crafting adversarial exam-
ples so that detection of malware in Microsoft Windows-based
portable systems can be evaded. Their method tried to evade a
detection model by modifying a malware file iteratively until
it was misclassified by the target model. Interestingly, in the
black box attack, the model achieved a better evasion rate
than in a more informed white box attack scenario. Dang
et al. [31] also explored crafting adversarial examples for
malware in a black-box scenario. They proposed a morphing
technique to craft adversarial malware based on a hill-climbing
approach where the number of morphing steps was leveraged
as a scoring mechanism. The work reported a 100% evasion
rate of the adversarial malware crafted by their technique.
A malware recomposition variation approach was proposed
by Yang et al. [32] for crafting adversarial malware samples.
Through semantic-feature mutation and phylogenetic analysis
on different malware families, the work performed program
transplantation to automatically mutate malware bytecode to
generate new malware variants. Unlike adversarial retraining,
Papernot et al. [33] proposed a different defense mechanism
based on distillation. In this method, a classification model
M is first trained using the original data and the probability
of the samples to belong to certain classes are recorded. A
second classification model M ′ is then trained using these
probabilities as the label. However, in [10] the authors showed

that this mechanism is not as effective in malware detection as
it was in computer vision. Other defenses against adversarial
attacks include classifying adversarial samples as a separate
class and differentiating them based on their statistical property
[34], [35].

Unlike image processing and computer vision domain, the
effectiveness of adversarial malware attack and its defense
in industrial IoT settings is a relatively unexplored area.
Furthermore, intelligent selection of samples has shown im-
proved performance in different areas of machine learning
applications such as dealing with imbalanced data [36], [37].
However, such selective sampling is yet to be applied for
adversarial retraining in industrial IoT malware detection. The
research presented in this work fills this gap.

III. METHODOLOGY

In this section, we describe the methodology of our work.
Figure 2 shows the workflow of adversarial retraining using
our selective samples strategy. The process of adversarial
sample crafting and retraining is divided into two main phases.
In the first phase, we train a classifier with clean data, ie.,
with the original dataset without adversarial samples included.
This phase includes extracting features from the samples,
representing them as feature vectors and training the classifier.
In the second phase, test samples are used to craft adversarial
samples from the previously trained classifier. Afterwards, a
subset of adversarial samples is selected and combined with
the original samples to retrain the same classifier. For this
purpose, we propose two mechanisms to select adversarial
samples. In the subsequent sections we describe the feature ex-
traction process, the classifier we used (deep neural network),
adversarial sample crafting process and adversarial sample
selection methods in detail.

A. Feature Extraction and Representation

As detailed in Sec. II-A, features of an application can be
static or dynamic. Several works showed that combining both
static and dynamic features (known as the hybrid approach)
leads to the best performance regarding malware detection
[24], [27]. Hence, in our work, we extracted both static and
dynamic features for malware detection. After the features are
extracted, each application is represented by a binary vector,
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X ∈ {0, 1}n, where n is the number of features and Xi = 1
indicates that feature i is present in the application and Xi = 0
indicates that the feature is absent.

B. Crafting Adversarial Malware Samples

Even though the technique of crafting adversarial samples
described in Sec. III-B can be applied to any differentiable
classification function, the most common application of this
is with deep neural networks (DNN) [7], [10], [11]. In our
work also we adopted DNN to craft the adversarial samples.
Note that, once adversarial samples are crafted using DNN,
the extended dataset containing these samples and the original
ones are used to train and test multiple classifiers to investigate
the effectiveness of our selective strategies in adversarial
learning. For this reason, below we present a brief discussion
about the deep neural networks.

A neural network is a machine learning architecture that is
structured with layers of neurons which are the primary com-
puting units of the network. Multiple hidden layers between
the output and input layers make a neural network deep which
allows for more complex relationships among the features to
be modeled by the network.

Figure 3 exemplifies a simple architecture of a deep neural
network. The input layer takes the feature vectors as input.
Each subsequent layer of the network takes input from the
previous layer and transforms it into some abstract represen-
tation which is produced as the output for the next layer.
The network hierarchically extracts the complex relationship
among the features through the learning process. Formally
a deep neural network model M can be represented as the
composition of multi-dimensional and parametric functions
mi (corresponding to each layer i) that maps each input to
a particular output (e.g., class label):

M : x 7−→ mn(...m2(m1(x,θ1),θ2)...,θn) (2)

where x is the input to the model, θi’s are the parameters
for each layer i, i.e., the weights connecting layer i and i− 1
(w’s) and the biases of each neuron in layer i (b’s). These
weights and biases are learned during the training process.

The goal of crafting adversarial samples in malware de-
tection is to craft samples from original malware so that
the classifier outputs them as benign applications. To achieve
this we start with a malware sample X ∈ {0, 1}n and
note the prediction outcomes using the deep neural network.
Using two neurons to represent two classes, the final layer
of the trained DNN model M then outputs two values
M(X) = [M0(X),M1(X)], indicating the probability of X
being a benign application or a malware respectively. As the
prediction, we choose the class that has the highest probability.
For crafting adversarial example, we now want to find a small
perturbation δx so that the output M(X+δx) is different from
the original prediction and matches the attacker’s goal. This
can be done by solving Eq. (1) described in Sec. II-B.

However, the complex functions learned by neural networks
are generally non-linear and non-convex. As a result, finding
a solution to this problem is very hard. Hence, researchers
have proposed heuristic solutions based on forward gradient

[7] and using saliency map based on Jacobian matrix [9] to
find perturbations.

In our work, we adopt adversarial sample crafting based on
the Jacobian matrix since it is more suitable for binary features
[9]. The goal here is to craft adversarial malware samples so
that they are classified as benign applications. The Jacobian
matrix is defined as

JM =
∇M(X)

∇X =

[∇M0(X)
∇X0

... ∇M0(X)
∇Xn∇M1(X)

∇X0
... ∇M1(X)

∇Xn

]
(3)

here ∇ denotes the gradient of a function. After computing
the Jacobian matrix, i.e., the derivatives of the cost function
with respect to the input, we modify the feature that is most
influential towards our target class. Since our target class is 0
(i.e., to fool the classifier to misclassify the adversarial sample
as begin) we find the feature that has the highest value in
∇M0(X) for modification. This process is iterated until the
malicious application is misclassified as benign.

However, modifying the value of such features is not
as straightforward. For example, the method was originally
proposed for image processing where several constraints were
imposed so that the modification of pixel values does not
visually distort the image. An example of such a constraint
can be allowing only a small change in pixel value i.e.,
keeping the change under a certain threshold. However, unlike
image processing, where the values of the image pixels are
continuous, we only have 0 and 1 as feature values in malware
detection. As a result, thresholding for feature values cannot
be applied here. Furthermore, an attacker will make sure that
the malicious functionality of a malicious application is not
hampered while adversarial samples are crafted. For this, we
imposed a different set of constraints for crafting adversarial
malware samples. These are described below.

Constraints for Adversarial Malware Crafting: As crafted
malware need to preserve their malicious functionality, the
features that could potentially hamper the maliciousness of
an application cannot be modified. Taking the malicious be-
haviour of a broad range of malware into account, we impose
the following specific constraints on adversarial malware craft-
ing to preserve its malicious functionality.
• Features are only allowed to be added but not to be

removed since removing a feature could potentially break
down the corresponding code execution. This means we
only allow modification to the features that have value 0.

• Most applications have a resource file associated with it
that lists information such as application metadata, other
used resources, and used packages (e.g. manifest.xml
file in Android apps). We allow the addition of features
in such files since adding features in this way does
not necessitate modification of the original code, hence
original functionality of the code can be preserved.

• Modification of dynamic (i.e., system call) features is not
allowed. This is because adding a dynamic feature (e.g.,
system call) requires modifying the code for executing
the corresponding function which in turn may hamper
the original functionality of the malware.
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To implement the above constraints we first define a vector
ν ∈ {0, 1}n, where νi = 1 if feature i is allowed to
be modified and νi = 0 otherwise. After computing the
derivatives from Eq. (3) we obtain the final score using the
following equation

S(X) = ∇M0(X)× neg(X)× ν (4)

where neg(X) is a negation function on vector X i.e., for
each index it changes the value from 0 to 1 and vice versa.
After this we choose the index i for modification using the
following equation.

i = argmax
j

S(Xj) (5)

C. Proposed Selection Methods for Adversarial Retraining
In the following, we propose two methods for selecting

adversarial samples, one based on the distance from malware
cluster center and another based on the probability derived
from a kernel based learning.

1) Method 1: Based on distance from cluster center: In
this method adversarial samples are selected by computing
the distance of these sample from the malware cluster center.
For this, first a distance score, Sd(X), is calculated for each
adversarial samples X using the following equation:

Sd(X) = min
∀k∈K

Distk(X) (6)

where K is the set of malware clusters, and Distk(X) is a
distance measure between sample X and cluster center k. Note
that malware samples may form multiple clusters depending
on the types of malware in the dataset. Any clustering algo-
rithm, e.g., K-means clustering, can be used for this purpose.
To investigate the impact of distance measure types on the
proposed selection strategy, we experimented with various
distance measures, namely, the Euclidean distance, Hamming
distance, and L1 norm. Thereafter, the samples were sorted
based on the distance score and the first n number of samples
with the least score were selected for retraining. Intuitively,
these are the samples that should have been correctly classified
since they are closer to the cluster center, yet they were able
to fool the classifier.

2) Method 2: Based on probability derived from kernel
based learning (KBL): In this method, adversarial samples
are selected based on the probability derived from a kernel
based learning. We implement this by first training a support
vector machine (SVM) kernel on the dataset that is free
of any adversarial sample. The decision function f(x) is
computed such that sign(f(x)) is used to predict the label of a
sample. Afterwards, in order to compute the class probability
Pr(y = 1|x), i.e., the probability that a sample is a malware,
we consider the following approximation based on Platt [38]

Pr(y = 1|x) ≈ PA,B(f) ≡
1

1 + exp(Af +B)
(7)

where f = f(x). Assuming fi is an estimate of f(xi) the
best value of A,B is determined by minimizing the negative
log likelihood of the training data:

min
A,B

−
[∑

i

tilog(pi) + (1− ti)log(1− pi)
]

(8)

where pi = PA,B(fi) (Eq. (7)) and ti’s are the target label
for the optimization problem defined as:

ti =

{
N++1
N++2 , if yi = +1.

1
N−+2 , if yi = −1.

(9)

where N+ and N− are the number of positive and negative
samples respectively. Using Eq. (7) - (9), the probability of
adversarial samples to be a malware is computed. We chose
the first n adversarial samples that have the least probability of
being a malware. Having lower probability of being a malware
means these samples are more likely to fool a classifier.

IV. EXPERIMENTS AND RESULTS

A. Dataset and Simulation Tools

We used publicly available malware dataset [20] for experi-
ments. A total of 3000 malware and 5000 benign applications
were selected from this dataset for experiments. Permissions,
API calls, and ICC features (activities, android intents, content
providers and broadcast receivers) were extracted as static
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features using Androguard tool [39]. For dynamic feature
extraction, each application was run in genymotion emulator
[40] and the ‘monkey’ tool [41] was used to generate random
events while the application is being executed. System calls of
the applications during the runtime were logged as dynamic
features. The deep neural network and adversarial sample
crafting were implemented using tensorflow and Python library
[42], [43]. All the other classifiers were implemented using the
Python scikit-learn library [44].

B. Performance Metrics

The following metrics were used for performance evalua-
tion:
Accuracy = TP+TN

TP+FP+TN+FN × 100%

Precision = TP
TP+FP × 100%

Recall = TP
TP+FN × 100%

Specificity = TN
TN+FP × 100%

F1-score = 2.Precision×RecallPrecision+Recall

G-mean =
√
Specificity × Sensitivity

where TP is the number of true positives, i.e., malware
accurately predicted; FP is the number of false positives, i.e.,
benign apps that were predicted as malware; TN is the number
of true negatives, i.e., benign apps accurately predicted and
FN is the number of false negatives, i.e., malware that were
predicted as benign apps.

C. Resilience by Retraining with Deep Neural Network

In this section, we present the performance evaluation of
adversarial retraining with deep neural networks when the
samples are chosen using our proposed selection strategy and
compared with the current work in the literature where those
are selected randomly. We first trained a deep neural network
with 3 hidden layers consisting of 2000, 1000, and 500 neurons
respectively. We used 4500 benign and 2700 malware for
training and 500 benign and 300 malware for testing. The

network achieved 98.3% accuracy, which is comparable to the
performance attained in other key works in this area [10],
[20], [45]. This concludes Phase-1 in Fig. 2. By applying the
method and satisfying the constraints outlined in Sec. III-B,
293 adversarial samples were generated by modifying the
malware samples used in the test dataset. The classification
accuracy dropped to 71% when tested on the adversarial data.
Thereafter, a certain number (n) of adversarial samples were
selected for retraining the classifier either randomly or our
proposed strategies. For our first proposed method, i.e., based
on the distance from the malware cluster center, we considered
the malware samples as a single cluster for implementation
simplicity. However, it can easily be extended for multiple
clusters using Eq. (6) and any clustering algorithm. The rest
of the adversarial samples are combined with the clean test
data for evaluation. Once the adversarial samples are selected,
the classifier is retrained using a new training set consisting of
original training samples and the selected adversarial samples
as additional malicious samples. This completes Phase-2 in
Fig. 2. We incremented the value of n for retraining from 100
with an interval of 10. Each of these experiments was run for
10 trials varying random initialization of DNN weights and
biases and the average of these trials is reported in the results
presented below.

Figure 4 shows the comparison of accuracy and recall values
between random selection [10] and selection based on the
Euclidean distance, L1 norm or KBL after a DNN is retrained
with adversarial samples. Results show that our proposed
selection methods outperform the random selection method.
It is also noteworthy that here KBL performs better than other
selective strategies.

We postulate that, the probability function f in Eq. (7) used
in the KBL method essentially reflects a distance from the
hyperplane, separating the samples in the transformed kernel
space. Arguably, the better separation between samples, as
learned by the kernel for the transformed feature space, also
captures better information of the samples leading to better
performance.

A comparison of random selection with our other distance-
based selection methods shows that in only a few cases random
selection performs slightly better. This happens mostly in the
cases where the number of samples for retraining is small (e.g.,
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TABLE I: Accuracy and G-mean of adversarial retraining with different deep neural network architectures using random, the
Euclidean distance based, L1 norm based and KBL selection. 65% adversarial samples were used for retraining.

# of hidden layers (# of neurons) Accuracy (%) G-mean
Random Euclidean L1 KBL Random Euclidean L1 KBL

2([500, 500]) 80.27 83.83 82.45 82.55 0.781 0.8218 0.8056 0.809
2([1000, 500]) 80.27 83.83 83.73 85.25 0.781 0.8229 0.8171 0.8535

3([1000, 1000, 500]) 79.85 83.61 84.04 85.74 0.7777 0.8211 0.8179 0.8616
3([2000, 1000, 500]) 80.69 84.39 84.52 86.08 0.7843 0.8262 0.8202 0.8655

4([2000, 1000, 500, 500]) 80.17 83.24 79.33 81.8 0.7802 0.8148 0.7796 0.8018
4([2000, 1000, 750, 500]) 78.40 79.65 79.65 80.58 0.7763 0.7898 0.7898 0.7997

100, 110 samples) where the probability of randomly selecting
better samples is higher. But the performance difference is not
significant in these cases and this effect diminishes as more
samples are chosen for retraining. The figure shows the results
of KBL using the RBF kernel. In addition, we also explored
the possibility of using a linear kernel, however, it did not
show any performance gain. It has already been shown in the
literature that the linear kernel is a degenerate case of RBF
kernel and hence, a properly tuned RBF kernel gives similar
or better performance in most cases [46].

Figure 4a further shows that a selection of 58% to 65%
adversarial samples for retraining achieves better performance
for all methods. Especially, when compared to random se-
lection, KBL achieves a 6% accuracy improvement when
trained with 65% of adversarial samples. Figure 4b also shows
that KBL attains better recall value which is more prominent
when more than 50% of adversarial samples are selected for
retraining. Higher recall value indicates the misclassification of
fewer malicious samples which is a desired property since the
cost of misclassifying a malicious application is significantly
higher than that of misclassifying a benign application.

We further recorded G-mean and F1-score that represent a
balance between the false positives and false negatives which
are shown in Fig. 5. The figure shows that in most of the
cases the selective sampling, especially KBL, performs better
than the random selection strategy and the highest value for
G-mean (Fig. 5a) and F1-score (Fig. 5b) were obtained when
the DNN model was retrained with 65% of the adversarial
samples.

However, when more than 65% adversarial samples are
selected for retraining, the performance degrades with the
increasing number of samples. If too many adversarial samples
are used for retraining the classifier starts to over-fit towards
malware and starts misclassifying benign samples at a higher
rate. This can further be observed in Fig. 4b that shows
that the recall value keeps increasing as more adversarial
samples are used for retraining indicating that more malicious
applications are being correctly classified i.e., the number of
false negative is decreasing. This occurs at the expense of
increased misclassification of benign samples when adversarial
samples are too many such as above 65%. As a result, a
gradual decrease of precision values was also observed as more
adversarial samples are used for retraining.

A Wilcoxon Signed-Rank Test [47] comparing random
selection and KBL based selective methods yielded a p-value
of 4.4 × 10−4 indicating that the performance improvement
of KBL, as compared to random selection, is statistically
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significant.
We further evaluated the impact of network architecture on

the performance of adversarial retraining. Table I shows the
accuracy and G-mean values of different adversarial retraining
methods with varying network architecture. The table shows
a slight variation in terms of performance depending on the
number of layers and neurons in each layer of the network.
Since networks with less than two hidden layers are considered
shallow, we varied the number of hidden layers from 2 to
4 with a different number of neurons in each layer. Results
show that our proposed selection mechanisms yield better
performance than blind random selection, such as 80.69% and
0.7843 (random) vs 86.08% and 0.8655 (KBL) in terms of
accuracy and G-mean respectively.

A plot of Receiver Operating Characteristic (ROC) curve
and the corresponding Area Under the Curve (AUC) using the
selection methods is shown in Fig. 6. As the figure shows our
selection methods achieve better AUC than random selection
and the best AUC of 0.958 is achieved by the KBL method
vs 0.884 in random selection.

D. Resilience by retraining with Other Classifiers

We further evaluated the selective strategies of adversarial
retraining with three other widely used classifiers, namely,
Random Forest, Support Vector Machine (SVM) and Bayesian
classifier. We first experimented with how effectively the
adversarial samples, that are crafted using deep neural net-
works, can mislead those classifiers. For this, we first trained
a classifier with original samples and tested it with clean
test samples to make sure its performance was good enough.
Afterwards, we mixed adversarial samples with the clean
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Random Forest, Support Vector Machine (SVM) and Bayesian
classifier. We first experimented with how effectively the
adversarial samples, that are crafted using deep neural net-
works, can mislead those classifiers. For this, we first trained
a classifier with original samples and tested it with clean
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test samples to make sure its performance was good enough.
Afterwards, we mixed adversarial samples with the clean
samples and evaluated the classifier’s performance. Table II
shows the accuracy of different classifiers when tested with
clean samples and samples mixed with adversarial ones. The
table shows a significant drop in classifiers’ performance when
tested with adversarial samples. This suggests that adversarial
samples crafted using deep neural networks are similarly
effective in misleading other classifiers as well.

TABLE II: Accuracy of different classifiers when tested on
clean samples and samples mixed with adversarial samples.

Classifier Accuracy (%)
Clean Samples Mixed with adveresarial samples

SVM 98.5 73.19
Random forest 97.75 73.83
Bayesian 97.25 72.82

Thereafter, we retrained these classifiers with the adversarial
samples crafted using DNN and compared the efficacy of
our selective methods with that of random selection. Figure
7 shows the comparison of malware detection accuracy after
adversarial retraining with the classifiers a) SVM, b) Random
forest, and c) Bayesian. It is observed that KBL- and the
Euclidean distance-based selection method clearly outperforms
the random selection method for adversarial retraining in all
the classifiers while L1 norm-based selection performs better
than random selection for SVM and Random forest classifier.
Calculating G-mean and F1-score also showed improved per-
formance by our KBL method. For example, using the SVM
classifier at 65% samples, G-mean and F1-scores are 0.906 and
0.902 respectively for KBL selection, and 0.871 and 0.862 for
random selection.

For these classifiers, a Wilcoxon Signed-Rank Test com-
paring KBL with random selection method yielded a p-value
< 3.8× 10−4, validating the performance improvement being
statistically significant.

V. CONCLUSION

In this work, we studied the vulnerability of machine
learning based malware detection systems against adversarial
attacks in Industrial IoT setting. Rather than selecting random
adversarial samples for retraining a classifier, we proposed
two techniques for selecting adversarial samples. Experimental
results reveal that, compared to the random selection strategy
proposed in current malware literature, our selective sample
selection strategy leads to better performance. In fact, our
KBL selection method achieved 6% performance improvement
over randomized selection. While existing works are mostly
based on deep neural networks, we show that other well-known
classifiers are also vulnerable against adversarial samples in
malware detection. Our selection methods yielded similar
performance improvement for those classifiers as well. For
the IIoT system, the strategies proposed in this study will aid
in designing robust and secured systems which, in turn, will
lead to operational efficiency and financial benefits.
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