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Canonical Duality Theory and Algorithm for
Solving Bilevel Knapsack Problems

With Applications
David Yang Gao

Abstract—A novel canonical duality theory (CDT) is presented
for solving general bilevel mixed integer nonlinear optimization
governed by linear and quadratic knapsack problems. It shows
that the challenging knapsack problems can be solved analyti-
cally in term of their canonical dual solutions. The existence and
uniqueness of these analytical solutions are proved. NP-hardness
of the knapsack problems is discussed. A powerful CDT algo-
rithm combined with an alternative iteration and a volume
reduction method is proposed for solving the NP-hard bilevel
knapsack problems. Application is illustrated by benchmark
problems in optimal topology design. The performance and nov-
elty of the proposed method are compared with the popular
commercial codes.

Index Terms—Bilevel optimization, canonical duality theory
(CDT), CDT algorithm, knapsack problems, NP-hardness, topol-
ogy design.

I. PROBLEMS AND MOTIVATION

B ILEVEL optimization is a special kind of optimization
where an (upper-level) optimization problem contains

another (lower-level) optimization problem as a constraint. The
first bilevel optimization problem was realized in the field of
game theory by a German economist Stackelberg in 1934 [51].
Since then, these problems have been found in many real-
world applications, including artificial intelligence, cryptog-
raphy, decision science, defensive force structure design,
game theory, topology design of structures and communi-
cation networks, etc. (see [4], [6], [38], [58], and [60]). It
was discovered recently by Gao [24] that the well-studied
topology optimization in computational mechanics should be
formulated as a bilevel knapsack problem (BKP), i.e., the
upper-level optimization is a knapsack problem, while the
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lower-level optimization is governed by the well-known min-
imum total potential energy principle. The knapsack problem
is one of the most fundamental problems in combinatorial
optimization. It has been studied extensively for more than
a century in multidisciplinary fields (see [39]). The quadratic
knapsack problem (QKP) is an extension of knapsack problem
that allows for quadratic terms in the target function. QKP
was first introduced in 19th century (see [57]), which has a
wide range of applications including telecommunication, trans-
portation network, computer science and economics. In fact,
Witzgall [57] first discussed QKP when selecting sites for
satellite stations in order to maximize the global traffic with
respect to a budget constraint. Similar model applies to prob-
lems like considering the location of airports, railway stations,
or freight handling terminals [47]. Applications of QKP in the
field of computer science is more common after the early days:
compiler design problem [36], clique problem [46], very large-
scale integration (VLSI) design, and manufacturing [14]. In
bilevel optimization of multiscale complex systems, both lin-
ear and QKPs can appear in either upper or lower optimization.
Indeed, over the last 20 years, a variety of BKPs has been
proposed (see [5] and [7]).

Generally speaking, BKPs are extremely difficult from the
computational point of view and cannot be expressed in terms
of classical integer programs (which can only handle a sin-
gle level of optimization). Due to the integer constraint and
bilevel coupling, BKPs are nondifferentiable and nonconvex.
It has been proven in [53] that merely evaluating a solution for
optimality is also an NP-hard task. In fact, it was shown in [35]
that even the linear bilevel problems are strongly NP-hard. The
proof for the nonexistence of a polynomial time algorithm for
linear bilevel problems can be found in [13]. Classical theo-
ries and methods cannot be used directly for solving this type
of problems. Therefore, the general BKP could be one of the
most challenging problems in computer science and global
optimization.

During the past 40 years many approximation methods have
been proposed for numerically solving bilevel optimization
problems. Impressive collections of these methods and appli-
cations can be found in the books [3], [11], and [61] as well
as the review article [12]. Evolutionary method [50], [54]
is a popular approach, where the lower level optimization
problem is solved corresponding to each and every upper
level member. One of the first evolutionary algorithms for
solving bilevel optimization problems was proposed in the
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early 1990s. Mathieu et al. [44] used a nested approach with
genetic algorithm at the upper level, and linear programming
at the lower level. One of the early works on discrete bilevel
optimization was by Vicente et al. [53], which focused on dis-
crete linear bilevel programs, and analyzed the properties and
existence of the optimal solution for different kinds of dis-
cretization arising from the upper and lower level variables.
The authors have shown in this paper that certain compact-
ness conditions guarantee the existence of optimal solution
in continuous linear bilevel programs, discrete–continuous
linear bilevel programs, and discrete–discrete linear bilevel
programs. The conditions are equivalent to stating that the
inducible region is nonempty. However, the existence condi-
tions in the case of continuous-discrete linear bilevel programs
are not straightforward. In the classical literature, branch-and-
bound and branch-and-cut are some of the commonly used
deterministic methods to handle discreteness in variables. But
these well-studied methods can be computational expensive,
and can be used only for solving very small-sized problems.
Therefore, global optimization problems with 200 variables
are referred to as “medium scale,” problems with 1000 vari-
ables as “large scale,” and the so-called “extra-large scale”
is only around 4000 variables. However, any simple problem
in topology design can easily have millions of variables [25].
Although there are some fully polynomial time approximation
schemes for discrete optimization, they are not always appli-
cable in practice due to memory requirements [56]. Also these
algorithms are based on heuristic techniques, the obtained
solutions come with no guarantee of global optimality and
may get stuck in local minima. Therefore, it is truly impor-
tant to develop a powerful deterministic method for solving
large-scale general BKPs.

Canonical duality theory (CDT) is a precise method-
ological theory, which can be used not only for modeling
complex systems within a unified framework, but also for
solving a large class of challenging problems in noncon-
vex analysis and global optimization [17]. This theory is
particularly powerful for solving integer constrained prob-
lems. In 2007, Gao [20] discovered that by simply using a
standard canonical measure �(z) = z2 − z, the 0-1 con-
strained problems can be equivalently converted to a unified
continuous concave maximization dual problem in a con-
vex feasible space, which can be solved deterministically via
well-developed convex optimization techniques. This method
has been generalized for solving general discrete optimization
problems [21], [34], [48], [55]. Applications of the CDT to
multidisciplinary study was given recently [27] and an ana-
lytic solution to linear knapsack problem (LKP) has been
obtained [24], [25].

This paper deals with a general BKP, in which, the upper-
level optimization is a QKP coupled with continuous follower
variables, while the lower-level optimization is a mixed inte-
ger nonlinear minimization problem involves both leader and
follower variables (since an alternative iteration method is
used in this paper, this order of upper and lower levels can
reversed). The main contributions of this paper include the
following:

1) canonical dual solutions to QKPs;

2) improved analytic solutions to knapsack problems and
criteria for NP-hardness;

3) a volume reduction method (VRM) combined with an
alternative iteration for solving general BKP;

4) a powerful CDT algorithm for solving general BKP with
an application to topology design.

The rest of this paper is organized as follows. The next sec-
tion provides the mathematical formulation of the BKP and its
special linear case. A decoupled alternative iteration (DAI) is
suggested. The theoretical results of this paper are presented
in Section III, including a canonical penalty-duality method,
a general analytic solution form, as well as the existence and
uniqueness of this solution to the QKP. In Section IV, the NP-
hardness of the knapsack problems is addressed. Improved
analytic solutions are provided for both QKP and LKP.
Section V proposes a VRM and a CPD algorithm for solving
BKP. In Section VI, applications are illustrated by both two-
dimensional (2-D) and three-dimensional (3-D) benchmark
problems in topology design. The performance and novelty
of the CPD algorithm are verified by computational results.
Finally, Section VII presents the conclusion and open problems
for future research.

II. BILEVEL OPTIMIZATION MODELING AND

KNAPSACK PROBLEMS

The bilevel optimization problem proposed to solve is
given as

(P) : min
x∈Xa,z∈Za

{
P(x, z) = 1

2
zTQ(x)z − zTc(x)

}
(1)

s.t. x ∈ arg min
χ∈Xa

{
�(χ , z) = G(Dχ , z) − χT f

}
(2)

where P : Xa × Za ⊂ R
m × R

n → R is the upper-level
target function, � : Xa × Za → R is the lower-level target
function, Q(x) and c(x) are two pregiven matrix-valued and
vector-valued functions of x ∈ Xa, respectively; f ∈ R

m is a
given vector; D : Xa → Ga ⊂ R

p is a linear operator, and
G : Ga × Za → R is a given function, which is usually a
nonconvex objective function of g = Dx, but linearly depends
on z ∈ Za. The upper-level (or leader) variable z is a discrete
vector, whose domain is a subset of Boolean space (i.e., a
knapsack)

Za = {
z = {zi} ∈ {0, 1}n|vTz ≤ Vc

}
(3)

where Vc > 0 is a given size of the knapsack, v = {vi} ∈ R
n+

is a given positive vector. The lower-level (or the follower)
variable x is a continuous vector, whose domain Xa is a con-
vex set of R

m, in which, only linear equality constraints are
included.

Clearly, the problem (P) is a BKP. Due to the integer
constraint, the nonlinearity/nonconvexity of �(x, z), and the
strong coupling between the upper and lower level problems,
the proposed problem (P) could be one of the most challeng-
ing problems in global optimization and computer science.
It is fundamentally difficult to solve this problem directly.
Therefore, a DAI method will be adopted in this paper, i.e.,
the coupled bilevel optimization is split into two decoupled
subproblems by alternative iteration.
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1) For a given initial zk−1 ∈ Za, to solve the lower-level
problem (2) first for

xk = arg min{�(x, zk−1)|x ∈ Xa}. (4)

2) For the fixed xk ∈ Xa, to solve the upper-level knapsack
problem (1) for

zk = arg min{P(xk, z)|z ∈ Za}. (5)

The upper-level minimization (5) is the well-known QKP.
The binary variable z = {zi} represents whether item i
is included in the knapsack Za. The given vector c(x) =
{ci(x)} ∈ R

n+ must be positive for any given x ∈ Xa such that
ci is the profit earned by selecting item i. The given matrix
Q(x) ∈ R

n×n must be symmetrical, its diagonal elements are
usually Qii = 0, i = 1, . . . , n and −Qij is the profit achieved
if both item i and j are added. An important special case is
the following LKP:

(P�) : min
{
P�(z) = −cTz|vTz ≤ Vc, z ∈ {0, 1}n}. (6)

A 1998 study of the Stony Brook University Algorithm
Repository showed that, out of 75 algorithmic problems, the
knapsack problem was the 19th most popular and the 3rd most
needed after suffix trees and the bin packing problem. It is
well-known that the knapsack problem is NP-hard and there
is no known algorithm that can solve the problem in polyno-
mial time. Actually, even the LKP is listed as one of Karp [37]
21 NP-complete problems. In this paper, the canonical duality
method will be addressed for solving this challenging problem.

For a given design variable zk−1, the lower-level
minimization (4) is the general nonlinear/nonconvex
optimization problem proposed by the author for multiscale
systems [22], [26].

Remark 1 (Objectivity, Modeling, and Canonical Duality):
Objectivity is a central concept in our daily life, related to
reality and truth. In science, the objectivity is often attributed
to the property of scientific measurement, as the accuracy
of a measurement can be tested independent from the indi-
vidual scientist who first reports it. In continuum physics, a
real-valued function G : Ga → R is called objective if and
only if it is an invariant under orthonormal transformation
(see [17, Definition 6.1.2]), i.e.,

G(R g) = G(g) ∀g ∈ Ga ∀R ∈ SO(p) (7)

where SO(p) = {R ∈ R
p×p|R T = R T , det R = 1} is a

special orthogonal group in R
p. Physically speaking, an objec-

tive function is governed by the intrinsic physical law of the
system, which does not depend on observers. Therefore, the
objectivity is essential for any real-world mathematical mod-
els. In continuum physics, it is also called the principle of
material frame indifference [45]. Geometrically, an objective
function does not depend on rigid rotation of the system con-
sidered, but only on certain measure of its variable. In the
Euclidean space Ga ⊂ R

p, the simplest objective function is
the �2-norm ‖g‖ since ‖R g‖2 = gTR TR g = ‖g‖2 ∀R ∈
SO(p). Therefore, an objective function must be nonlinear.

Correspondingly, the linear term F(x) = xT f in the lower-
level problem (2) is called a subjective function [22], [25],

where the given input f and the constraints in Xa depend only
on each given problem. Thus, if the operator “−” is consid-
ered as the predicate, the difference �(x) = G(Dx) − F(x)

between object and subject forms a complete and grammati-
cally correct mathematical formulation. In continuum physics,
if G(g) is the free (or internal) energy and F(x) is the input (or
external) energy, then �(x) is the total potential energy and
the minimum total potential energy principle leads to a general
variational/optimization problem in mathematical physics [33].
By the fact that Ga ⊂ R

p and Xa ⊂ R
m can be in different

dimensional spaces with different measures, the lower-level
minimization min �(x) presented in this paper covers gen-
eral constrained nonconvex/nonsmooth optimization problems
in multiscale complex systems [17], [26], [27].

According to [10], G(g) is an objective function if and only
if there exists an objective measure ε = gTg and a real-valued
function �(ε) such that G(g) = �(gTg). In continuum physics
and differential geometry, if g = Dx is the deformation gra-
dient, then the objective measure ε = gTg is the well-known
right Cauchy–Green tensor. By the fact that the free energy
�(ε) is usually convex (say the St Venant–Kirchhoff mate-
rial [17]), the duality relation ε∗ = ∇�(ε) is invertible. This
one-to-one constitutive relation is called the canonical dual-
ity and �(ε) is called the canonical function. These basic
truths in continuum physics laid a foundation for the CDT,
in which, the key idea of the canonical transformation is to
choose a nonlinear operator (not necessary to be objective)
ε = �(x) and a canonical function �(ε) such that the given
nonconvex function G(Dx) can be written in the canonical
form G(Dx) = �(�(x)). By the fact that the objectivity plays
a fundamental role in mathematical modeling, the CDT can
be powerfully used for solving many challenging problems in
multidisciplinary fields [27].

However, this important concept of the objectivity has been
extensively misused in optimization literature such that the
general problem in nonlinear optimization (or programming)
has been formulated as

min f (x) s.t. g(x) = 0, h(x) ≤ 0 (8)

where f (x) is called the “objective function,”1 which is allowed
to be any arbitrarily given function, even a linear function.
Clearly, this mathematical problem is too abstract. Although
it enables one to model a very wide range of problems, it
comes at a price: many global optimization problems are con-
sidered to be NP-hard. Without detailed information on these
arbitrarily given functions, it is impossible to have a powerful
theory for solving the artificially given constrained problem.
Also, due to this conceptual mistake, the CDT has been mis-
takenly challenged in several publications.2 The conceptual
mistake in these false challenges revealed a big gap between
physics and optimization. Interested readers are recommended
to read the recent papers [23], [29] for details.

1This terminology is used mainly in English literature. The function f (x) is
correctly called the target function in all Chinese and Japanese literature, or the
goal function in some Russian and German literature by serious researchers.

2See M. D. Voisei and C. Zalinescu, “Some remarks concern-
ing Gao-Strangs complementary gap function,” Appl. Anal., vol. 90,
pp. 1111–1121, 2011.
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The CDT for solving the lower-level nonconvex continuous
optimization problem (4) has been studied extensively during
the past 15 years (see [18], [21], and [27]). As long as the
nonconvex function G(Dx, z) in �(x, z) can be written in the
canonical form �(�(x), z), this problem can be solved easily
by the CDT to obtain both global and local optimal solutions
(see many real-world applications in [27]). This paper will
show how to use the CDT for solving the challenging upper-
level knapsack problem (5).

III. CANONICAL DUAL SOLUTION TO UPPER-LEVEL

KNAPSACK PROBLEM

For a fixed x ∈ Xa, the upper-level optimization (5) can be
written in the typical QKP

(Pq) : min
z∈{0,1}n

{
Pq(z) = 1

2
zTQz − cTz|vTz ≤ Vc

}
. (9)

According to the CDT for mathematical
modeling [23], [24], the inequality z · v ≤ Vc is a geometrical
constraint, while the integer constraint z ∈ {0, 1}n in (Pq) is
a constitutive condition [25], [26], which can be equivalently
replaced by the canonical constraint z2 −z = 0 ∈ R

n ∀z ∈ R
n,

where z2 = z ◦ z = {z2
i } ∈ R

n. Therefore, by introducing a
penalty parameter β > 0 and let Zb = {z ∈ R

n|vTz ≤ Vc},
the problem (Pq) can be relaxed by the canonical penalty
function

(Pβ) : min
z∈Zb

{
Pβ(z) = 1

2
zTQz + 1

2
β‖z2 − z‖2 − cTz

}
.

(10)
Clearly, we have{

Pq(z)|z ∈ Za
} = lim

β→∞
{
Pβ(z)|z ∈ Zb

}
. (11)

Although the integer constraint is relaxed by the penalty
function

�β(z) = 1

2
β‖z2 − z‖2 (12)

the problem (10) is a nonconvex minimization in R
n, which is

still considered to be NP-hard by traditional methods. This is
the reason why the traditional external penalty method can be
used mainly for linear constrained problems [40]. To solve this
problem by the CDT, we need first to introduce the following
canonical transformation:

�β(z) = �β(�(z))

�β(ε) = 1

2
β‖ε‖2, ε = �(z) = z2 − z ∈ R

n.

Clearly, �β : R
n → R is a convex quadratic function.

Its canonical dual can be simply given by the Legendre
transformation

�∗
β(σ ) = max

ε∈E
{
εTσ − �β(ε)

} = 1

2
β−1‖σ‖2. (13)

Thus, replacing �β(z) in Pβ(z) by the Fenchel–Young equal-
ity �β(�(z) = �(z)Tσ −�∗

β(σ ), and introducing a Lagrange
multiplier τ ≥ 0, the canonical penalty function Pβ(z) can be
reformed as the Gao–Strang total complementary function

	β(z, σ , τ ) = 1

2
zTG(σ )z − 1

2
β−1‖σ‖2 − zTψ(σ , τ ) − τVc

(14)

where

G(σ ) = Q + 2Diag(σ ),ψ(σ , τ ) = c − τv + σ . (15)

By introducing a canonical dual feasible space

S+
a =

{
ζ = (σ , τ ) ∈ R

n+1|G(σ ) � 0, τ > 0
}

(16)

the function 	β(z, ζ ) is convex in z ∈ R
n for any given ζ ∈

S+
a . The canonical penalty-duality function Pd

β : S+
a → R can

be defined by

Pd
β(ζ ) = min

z∈Rn

{
	β(z, ζ )|ζ ∈ S+

a

}

= −1

2
ψ(ζ )TG(σ )−1ψ(ζ ) − 1

2
β−1‖σ‖2 − τVc.

Thus, the canonical penalty-duality problem can be proposed
in the following:

(Pd
β) : max

{
Pd

β(ζ )|ζ ∈ S+
a

}
. (17)

Theorem 1 (Complementary-Dual Principle): For
any given β > 0, if (zβ, ζ β) ∈ R

n × S+
a is a

KKT (Karush–Kuhn–Tucker) point of 	β(z, ζ ), then zβ

is a global minimum solution to the canonical penalty
problem (Pβ), ζ β is a solution to (Pd

β), and

Pβ(zβ) = min
z∈Zb

Pβ(z) = 	β(z̄, ζ̄ ) = max
ζ∈S+

a

Pd
β(ζ ) = Pd

β(ζ β).

(18)

Proof: By the fact that 	β : R
n × S+

a → R is a saddle
function, if (zβ, ζ β) ∈ R

n × S+
a is a KKT point of 	β(z, ζ ),

it must be a saddle point of 	β(z, ζ ). Then by the definition
of Pd

β(ζ ), we have

	β

(
zβ, ζ β

) = min
z∈Rn

max
ζ∈S+

a

	(z, ζ ) = max
ζ∈S+

a

min
z∈Rn

	(z, ζ )

= max
ζ∈S+

a

Pd
β(ζ ) = Pd

β

(
ζ β

)
. (19)

By the KKT conditions

vTzβ ≤ Vc, τβ ≥ 0, τβ

(
vTzβ − Vc

) = 0

and the condition ζ β = (σ β, τβ) ∈ S+
a , we have τβ > 0

and vTzβ − Vc = 0. By the convexity of the penalty function
�β(ε), we have �∗∗

β (ε) = �β(ε). Thus, for any given β > 0

Pβ(zβ) = min
z∈Zb

Pβ(z) = min
z∈Zb

max
ζ∈S+

a

	β(z, ζ ) = 	β(zβ, ζ β).

(20)

Thus, zβ is a global optimal solution to (Pβ).
Theorem 1 shows that the nonconvex minimization problem

(Pβ) is canonically dual to a concave maximization problem
(Pd

β) in a convex space S+
a , which can be solved easily by

well-developed convex minimization methods.
Remark 2 (Canonical Penalty-Duality and β-Perturbation):

By the facts that

�(ε) = lim
β→∞ �β(ε) =

{
0 if ε = 0 ∈ R

n

+∞ otherwise
(21)

and

�∗(σ ) = sup
ε∈Rn

{εTσ − �(ε)} = 0 ∀σ ∈ R
n (22)

we have

Pd
q(ζ ) = lim

β→+∞ Pd
β(ζ )

= −1

2
ψ(ζ )TG(σ )−1ψ(ζ ) − τVc − �∗(σ )
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which is exactly the canonical dual function to the pri-
mal function Pq(z). Therefore, (Pd

β) is actually the so-called
β-perturbation of the canonical dual problem (Pd

q )

(Pd
q ) : max

{
Pd

q(ζ )|ζ ∈ S+
a

}
. (23)

The penalty-duality method was first proposed by
Gao [15], [16] for solving convex variational problems.
The β-perturbation method for nonconvex integer constrained
problems was first proposed in [24] and [28]. It was proved
by [28, Th. 7] that there exists a βc > 0 such that for any
given β ≥ βc, both β-perturbed canonical dual problem (Pd

β)

and problem (Pd
q ) have the same solution set. This shows

the relation between the canonical penalty-duality method
proposed in this paper and the β-perturbation method proposed
in [28].

Theorem 2 (Analytic Solution to Knapsack Problem): For
any given β > 0, if ζ β = (σ β, τβ) ∈ S+

a is a solution to
(Pd

β), then the vector defined by

zβ = G(σ β)−1ψ(ζ β) (24)

is a global minimum solution to the canonical penalty
problem (Pβ).

Moreover, there exists βc � 0 such that β ≥ βc and
zβ ∈ Za, then zβ is a global optimal solution to the knapsack
problem (Pq) and

Pq(zβ) = min
z∈Zb

Pβ(z) = 	β(z̄, ζ̄ ) = max
ζ∈S+

a

Pd
β(ζ ) = Pd

q(ζ β).

(25)

Proof: It is easy to verify that if (zβ, ζ β) is a KKT point of
	β(z, ζ ), the criticality condition ∇z	β(zβ, ζ β) = 0 leads to
zβ = G(σ β)−1ψ(ζ β). By Theorem 1 we know that if ζ β =
(σ β, τβ) ∈ S+

a is a solution to (Pd
β), the vector defined by (24)

must be a solution to (Pβ). Since the penalty function �β(z) ≥
0 ∀z ∈ R

n, there must exists a sufficiently big βc � 0 such
that �β(zβ) = 0 ∀β ≥ βc, i.e., zβ ∈ Za. Thus, Pq(ζ β) =
Pβ(zβ) = min{Pq(z)|z ∈ Za}.

Since S+
a is a convex open set, its boundary is

∂S+
a =

{
ζ = (σ , τ ) ∈ R

n+1| det G(σ ) = 0, τ = 0
}
. (26)

The following theorem is important for understanding the NP-
hardness of the knapsack problem.

Theorem 3 [Existence and Uniqueness for (Pq)]: For any
given c ∈ R

n, v ∈ R
n+, and Q ∈ R

n×n, if S+
a has a nonempty

interior ζ o ∈ S+
a such that Pd

q(ζ o) > −∞ and

lim
ζ→∂S+

a

Pd
q(ζ ) = −∞ ∀ζ ∈ S+

a (27)

then the problem (Pd
q ) has a unique solution ζ c ∈ S+

a and zc =
G(σ c)

−1ψ(ζ c) is a unique global optimal solution to (Pq).
Proof: This theorem is a direct application of the CDT

(see [21, Th. 4].)3 By the facts that Pd
q(ζ ) is concave and its

feasible set S+
a is convex and nonempty, if the condition (27)

holds, then the canonical penalty-dual function Pd
q:S+

a → R

3The condition Pd(σ o) < −∞ in [21] is a typo. It should be
Pd(σ o) > − ∞.

is strictly concave, bounded up and −Pd
q(ζ ) is coercive on

S+
a . Therefore, (Pd

q ) has a unique solution ζ c. By Theorem 2,
we know that the associated zc = G(σ c)

−1ψ(ζ c) is a unique
global optimal solution to (Pq).

As an important application, let us recall the LKP

(P�) : min
z∈Za

{
P�(z) = −cTz

}
. (28)

The associated canonical penalty problem is

(P�β) : min
z∈Zb

{
P�β(z) = 1

2
β‖z2 − z‖2 − cTz

}
. (29)

Since the matrix Q vanished in this case, the canonical penalty-
dual function has the following simple form:

Pd
�β(ζ ) = −1

2

n∑
i=1

(
1

2
σ−1

i (σi + ci − τvi)
2 + β−1σ 2

i

)
− τVc.

(30)

Let σ−1 = Diag(σ )−1 = {σ−1
i } and

S+
a =

{
ζ = (σ , τ ) ∈ R

n+1|σ > 0, τ > 0
}
.

The canonical penalty-dual problem for the LKP is(
Pd

�β

)
: max

{
Pd

�β(ζ )|ζ ∈ S+
a

}
. (31)

Corollary 1 (Analytic Solution to Knapsack Problem [25]):
For any given c, v ∈ R

n+ and Vc, β > 0, if ζ β = (σ β, τβ) ∈
S+

a is a solution to (Pd
�β) and τβv − c �= 0, then the penalty

problem (P�β) has a unique global minimum solution which
is given analytically by

zβ = 1

2
σ−1

β ◦ (σ β + c − τβv). (32)

Moreover, there exists a βc � 0 such that β ≥ βc and zβ ∈ Za,
then zβ is a global optimal solution to the LKP (P�).

This special result for LKP was obtained recently in [25].
For β = 0, the canonical dual problem (Pd

� ) of (P�) is

max
ζ∈S+

a

{
Pd

�(ζ ) = −1

2

n∑
i=1

(
1

2
σ−1

i (σi + ci − τvi)
2
)

− τVc

}
.

(33)

It is easy to prove that if τβv − c �= 0, the condition (27) is
reduced by

lim
σ→0+ Pd

�(σ , τβ) = −∞. (34)

Thus, by Theorem 3 we know that the vector (32) is a unique
solution to the problem (P�β) and it is a solution to the LKP
(P�) if β ≥ βc � 0 such that zβ ∈ Za.

Actually, for any given β > 0, the criticality condition
∇Pd

�β = 0 leads to the following algebraic equations:

β−1σ 3
i + σ 2

i = (τvi − ci)
2, i = 1, . . . , n (35)

n∑
i=1

1

2

vi

σi
(σi − viτ + ci) − Vc = 0. (36)

It was proved in [17] and [20] that for any given β > 0, τ ≥ 0
and c ∈ R

n such that θi = τvi − ci �= 0 ∀i = 1, . . . , n, the
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canonical dual algebraic equation (35) has a unique positive
real solution

σi = 1

6
β
[−1 + φi(τ ) + φc

i (τ )
]

> 0, i = 1, . . . , n (37)

where

φi(ς) = η−1/3
[

2θ2
i − η + 2θi

√
θ2

i − η

]1/3

, η = 4β2

27

and φc
i is the complex conjugate of φi, i.e., φiφ

c
i = 1.

On the other hand, for a given σ ∈ R
n+, the Lagrange

multiplier τ can be uniquely obtained by

τ =
∑n

i=1 vi(1 + ci/σi) − 2Vc∑n
i=1 v2

i /σi
. (38)

It is easy to prove that for any given β > 0 and τk−1 > 0,
the solution σ k produced by (37) satisfies σ k < c. Thus,
for a given initial τ0 > 0, an alternative iteration can be
used for solving (37) and (38) and the sequence (σ k, τk) ∈
S+

a approaches to the global optimal solution of (Pd
� ) in

polynomial time.
Theorem 1 shows that although the canonical dual problem

is a concave maximization in continuous space, it produces the
analytical solution (24) to the well-known integer Knapsack
problem (Pq). This truth was first discovered by Gao in
2007 for general quadratic integer programming problems
(see [20, Th. 3]).

IV. IMPROVED SOLUTIONS AND NP-HARDNESS

By the fact that α ◦ z2 = α ◦ z ∀z ∈ {0, 1}n ∀α ∈ R
n,

for any given symmetrical Q ∈ R
n×n we can choose an α

such that Qα = Q + 2Diag(α) � 0. Thus, by cα = c + α,
the problem (Pq) can be equivalently written in the so-called
α-perturbation form [21]

(Pα) : min
z∈{0,1}n

{
Pα(z) = 1

2
zTQαz − cT

αz|vTz ≤ Vc

}
.

Since rankQα = r ≤ n, there must exist (see [52]) a L ∈ R
r×n

and H ∈ R
r×r with rankL = rankH = r and H � 0 such that

Qα = 4L THL . Similar to the α-perturbed canonical dual
problem (Pg

ip) given in [21], the canonical dual function in
(Pd

q ) can be reformulated as [26]

Pg
α(σ , τ ) = −1

2
Abs[φ(σ , τ )] − 1

2
σ TH−1σ − τVb + d

where Vb = Vc − (1/2)
∑n

i=1 vi, d = (1/8)
∑n

i=1(2αi +∑n
j=1 Qij) − (1/2)

∑n
i=1(ci + αi) are two constants, and

φ(ζ ) = c − τv − 2L Tσ − 1

2
Qe, e = {1}n. (39)

The notation Abs[φ(σ , τ )] denotes Abs[φ(σ , τ )] =∑n
i=1 |φi(σ , τ )|. Let

S+
c =

{
ζ = (σ , τ ) ∈ R

r+1|τ > 0
}
.

Then the improved canonical dual problem to (Pα) can be
proposed as

(Pg
α) : max

{
Pg

α(σ , τ )|ζ ∈ S+
c

}
. (40)

In many real-world applications, we have r � n, thus the
problem (Pg

α) is much easier than (Pd
q ). Similar to [21, Th.

7], we have the following improved result.
Theorem 4 [Improved Analytic Solution to (Pq)]: For any

given Vc > 0, v, c ∈ R
n+, Q ∈ R

n×n and an α ∈ R
n such that

Qα = Q+2Diag(α) = 4L THL , and H � 0, if ζ c = {σ c, τc}
is a solution to (Pg

α) and

φi(ζ c) �= 0 ∀i ∈ {1, . . . , n} (41)

then the QKP (Pq) has a unique global optimal solution

zc = 1

2

{
φi(ζ c)

|φi(ζ c)|
+ 1

}n

(42)

and

Pq(zc) = min
z∈Za

Pq(z) = max
ζ∈S+

c

Pg
α(ζ ) = Pg

α(ζ c). (43)

Otherwise, if φi(ζ c) = 0 for at least one i ∈ {1, . . . , n}, then
(Pq) has at least two solutions.

It is easy to prove that Pg
α(ζ ) is strictly concave on the

convex feasible set S+
c . If ζ c ∈ S+

c is a solution to (Pg
α),

this solution must be unique. Since dimS+
c = r + 1 ≤ n + 1,

the problem (Pg
α) is easier than (Pd

β). In the case that (Pg
α)

does not have a solution to satisfy (41), we can oppositely
chose α ∈ R

n such that H ≺ 0. But in this case, Pg
α(ζ ) is

a difference of convex (d.c.) function and the corresponding
problem should be [21], [34]

(Pg
α

)
: min sta

{
Pg

α(ζ )|ζ ∈ S+
c

}
(44)

where min sta{f (x)} means to find the minimum stationary
point of f (x). This is a nonsmooth d.c. programming problem.
A so-called VTDIRECT parallel algorithm has been used
successfully by Gao et al. [34] for finding global optimum
solutions to quadratic integer programming problems, but not
in polynomial time.

For the LKP, the improved canonical dual has a very simple
form

(Pg
�

)
: max

τ≥0

{
Pg

�(τ ) = −1

2

n∑
i=1

(|ci − τvi| − τvi) − τVc

}
.

(45)

Corollary 2 [Improved Analytic Solution to (P�)]: For any
given Vc > 0, v, c ∈ R

n+, if τc > 0 is a solution to (Pg
� ) and

θi = τcvi − ci �= 0 ∀i ∈ {1, . . . , n}, then the LKP (P�) has a
unique global optimal solution

zc = 1

2

{
ci − τcvi

|ci − τcvi| + 1

}n

(46)

and P�(zc) = Pg
�(τc).

Actually, from the proof of Corollary 1 we know that if there
exists a τβ > 0 such that θi = τβvi−ci �= 0 ∀i ∈ {1, . . . , n}, the
canonical dual algebraic equation (35) has a unique positive
solution σ β [17], [19], [20]. For a sufficiently big β � 0
we have σ β = σ c and the solution τβ by (38) is exactly the
solution τc of the problem (Pd

�α) (see [25]). Therefore, (P�)

has a unique solution defined by either (24) or (46).
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Remark 3 (Criteria for Nonuniqueness and NP-Hardness):
Theoretical results presented so far show that if the condi-
tion (27) holds, the canonical dual problem (Pd

q ) has a unique
solution ζ c = (σ c, τc) ∈ S+

a , which can be obtained deter-
ministically in polynomial time since (Pd

q ) is equivalent to
a convex minimization problem. In this case, both QKP and
LKP are not NP-hard and their solutions zc can be analytically
given by Theorem 2 and Corollary 1, respectively. Also, we
must have zT

c v = Vc since τc > 0. For the LKP (P�), the
condition (27) is simply τcv �= c.

On the other hand, if the canonical dual problem (Pd
q ) has

no solution in S+
a , the primal problem (Pq) could be NP-hard,

which is a conjecture first proposed by Gao [20] in 2007, i.e.,

Conjecture of NP-Hardness: A global optimization
problem is NP-hard only if its canonical dual has
no solution in S+

a .

It is also an open problem left in [21] and [28]. The reason
for NP-hard problems and possible solutions were discussed
recently in [22] and [25]. For the LKP (P�), as long as τcvi =
ci for any one i ∈ {1, . . . , n}, the canonical dual algebraic
equation (35) has at least two repeated solutions σ c located
on the boundary of S+

a . In this case, the primal problem (P�)

has multiple solutions, i.e., it is not well-posed [22], [25]. A
linear perturbation method for solving this case was proposed
recently in [9], [25], and [55].

V. VOLUME REDUCTION METHOD AND CANONICAL

DUALITY ALGORITHM

Theoretically speaking, for any given Vc < V0 = ∑n
i=1 vi,

the canonical penalty-duality method can produce global
optimal solution to the bilevel minimization problem (P).
However, if μc = Vc/V0 � 1, any iteration method could
lead to unreasonable numerical solutions. In order to resolve
this problem, a VRM method can be proposed.

Introduce a volume reduction control parameter μ ∈
(μc, 1) to produce a volume reduction sequence
{Vγ = μVγ−1} (γ = 1, . . . , γc) such that Vγc =
Vc, Zγ = {z ∈ {0, 1}n|vTz ≤ Vγ }.

For a given Vγ ∈ [Vc, V0] and initial values
(xγ−1, zγ−1) ∈ Xa × Za, to find (xγ , zγ ) such
that

(P)γ :
(
xγ , zγ

) = arg min
{
P(x, z)|x ∈ Xa, z ∈ Zγ

}
s.t. x = arg min{�(χ , z)|χ ∈ Xa}.

Generally speaking, for any given sequence {Vγ } we should
have

(P) = lim
γ→γc

(P)γ . (47)

Numerically, different volume sequence {Vγ } may produce
totally different numerical results as long as the DAI is used.
This is an intrinsic difficulty for all coupled bilevel optimal
design problems. Based on the DAI and the VRM, the canon-
ical duality algorithm (CDT) for solving the general bilevel
optimization problem (P) can be proposed.

Algorithm 1 Canonical Dual Algorithm for BKP (CDT)

1: Input parameters: μ, error allowances ω > 0, z0 = {1} ∈
R

n, and V0 = ∑n
i=1 vi. Let γ = 1.

2: Solve the lower-level optimization problem (4):

xγ = arg min{�(x, zγ−1) | x ∈ Xa}. (48)

3: Compute Q = Q(xγ ), c = c(xγ ), and Vγ =
max{Vc, μVγ−1}.

4: Solve the canonical dual problem (Pd
q )γ to obtain

ζ γ = (σ γ , τ γ ) = arg min{Pd
q(ζ )| ζ ∈ S+

a }. (49)

5: Compute the upper-level solution zγ by

zγ = G(σ γ )−1ψ(ζ γ ).

6: If |Pq(zγ ) − Pq(zγ−1)| ≤ ω and Vγ ≤ Vc , then stop;
otherwise, continue.

7: Let γ = γ + 1. Go to Step 2.

The canonical dual problem (Pd
q )γ in this algorithm could

be either (Pg
α)γ or (Pd

β)γ for QKP (Pq). For LKP (P�)
γ , its

canonical dual could be either (Pg
� )γ or (Pd

�β)γ .

VI. APPLICATION TO OPTIMAL TOPOLOGY DESIGN

Topology design is the arrangement of the various ele-
ments (links, nodes, volumes, etc.) of a complex network or
a discretized continuous system in multidisciplinary fields of
communication, electronics, optics, structural, bio- and nano-
mechanics (see [4], [6], [24], and [38]). It was discovered
recently by Gao [24] that the optimal topology design for
general elastic structures should be formulated as a BKP

(Pto) : min
{
P(x, z) = −c(x)Tz|x ∈ Xa, z ∈ Za

}
(50)

s.t. x ∈ arg min{�(χ , z)|χ ∈ Xa}. (51)

The leader design variable z = {0, 1}n in this problem is the
so-called density distribution such that if ze = 1, then the eth
element of the elastic structure is solid, otherwise, this ele-
ment is void. The follower variable x ∈ Xa ⊂ R

m represents
the displacement vector, whose domain Xa is a convex set,
in which the boundary condition is given (i.e., certain com-
ponents of x are fixed). The vector c(x) = {ce(xe)} and its
component represents the strain energy stored in the eth ele-
ment. For linear elastic structural, the total potential energy
�(x, z) is a quadratic function of x

�(x, z) = 1

2
xTK(z)x − xT f =

n∑
e=1

ze

2
xT

e Kexe − xT f (52)

where Ke and xe are, respectively, the stiffness matrix and the
nodal displacement vector of the eth element; v = {ve} ∈ R

n+
and ve ≥ 0 represents the volume of the eth element; and Vc

is a desired volume. Since Ke is positive definite, we have
c(x) = (1/2){xT

e Kexe}n ∈ R
n+ and the global stiffness matrix

K(z) = {zeKe} ∈ R
m×m is also positive definite for any given

z ∈ Za. The given vector f ∈ R
m is the external force.

Clearly, for a given displacement vector x ∈ Xa, the
upper-level problem is a typical LKP, which can be solved ana-
lytically by the CDT. While for a fixed design variable z ∈ Za,
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(a)

(b)

Fig. 1. Design domains for long cantilever beams with external load. (a) 2-D
beam. (b) 3-D beam.

the lower-level minimization is the well-known minimum total
potential energy principle for linear elastic structures. Since the
total potential energy �(x, z) is a quadratic function of x, the
lower-level solution can be given analytically by x = K(z)−1f.
Thus, this challenging topology design problem can be solved
by the combination of the DAI-VRM and the canonical duality
method. Since the LKP can be solved analytically by Corollary
1 or 2, the computational complexity for solving the lower-
level solution x = K(z)−1f is about O(m3), the CDT is a
polynomial time algorithm.

The proposed CDT algorithm for topology design has been
implemented in MATLAB. The test examples are the 2-D and
3-D benchmark cantilever beams in optimal topology design
of elastic structure (see Fig. 1). Performance of the CDT
method is first tasted for different mesh resolutions. Results
in Fig. 2 show that for any given mesh resolutions, the CDT
method produces precise integer solutions. Clearly, the finer
the resolution, the smaller the stored energy C = zTc(x) with
better material distributions. This means that the fine structure
has more capacity for external load. For the mesh resolution
180 × 60 elements, we have n = 180 × 60 = 10 800 discrete
variables and m = 2 × (180 + 1) × (60 + 1) = 21 960 contin-
uous variables, but the total computing time by an HP laptop
computer (with Processor Intel Core I7-4810, CPU @ 2.80
GHz and memory 2.80 GB) is only t = 7.69 s.

To compare with the commercial codes TOP88 (i.e., SIMP)
and BESO [59], we use the same mesh resolution of 180 ×
60. The volume reduction rate μ = 0.97 for both BESO and
CDT. Computational results are reported in Fig. 3, which show
clearly that the CDT method produces geometrically simple
and mechanically sound structure. Since the SIMP method is a
continuous relaxation approach, which cannot produce integer
solutions, the structure obtained by the SIMP code is ugly
with a large area of grayscaling checkerboard patterns. By the

(a)

(b)

(c)

Fig. 2. Optimal topology by different mesh resolutions with μc = Vc/V0 =
0.5 and μ = 0.975. Discrete variables n =mesh, continuous variables m =
2(nex + 1)(ney + 1). (a) Mesh = 40 × 10, C = 416.577, Time = 1.2165 s.
(b) Mesh = 100 × 30, C = 232.6, Time = 2.96 s. (c) Mesh = 180 × 60,
C = 171.77, Time = 7.69 s.

(a)

(b)

(c)

Fig. 3. 2-D beam structures by (a) SIMP, (b) BESO, and (c) CDT with
n = 180 × 60 and m = 2(180 + 1) × (60 + 1). The CDT is twice faster
than the SIMP, and about 47 times faster than BESO. Computational result
by (a) SIMP, (b) BESO, and (c) CDT.

fact that the BESO code is an evolutionary method for solving
the LKP by simply using comparison algorithm, although it
can produce integer solution similar to that by CDT, it is not
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Topology evolutions for 2-D beam by CDT (top), BESO (middle), and SIMP (bottom) with Vc = 0.5 and mesh resolution 150 × 50. The CDT
is about four times faster than both BESO and SIMP. The SIMP can produce only grayscale topology since it is a continuous approach, i.e., z ∈ (0, 1)n.
(a) CDT: V5 = 0.8587, Time = 4.97. (b) BESO: V5 = 0.8585, Time = 23.66. (c) SIMP: Iteration = 5, Time = 3.07. (d) V15 = 0.63325, Time = 14.1421.
(e) V15 = 0.63343, Time = 73.812. (f) Iteration = 15, Time = 11.1871. (g) Vc = 0.5, Time = 25.4657. (h) Vc = 0.5, Time = 116.332. (i) Final Iteration,
Time = 104.0837.

a polynomial time algorithm [25], therefore, it takes much
longer time (more than 30 times) than the CDT method.

In order to see the structures’ evolution during the itera-
tions, we tested the 2-D beam with Vc = 0.5, nex = 150, and
ney = 50. Fig. 4 shows the outputs of the structures by all
methods at the fifth, 15th, and the final iterations. Since the
initial volume is V0 = 1, the volume reduction rate is μ = 0.97
for both CDT and BESO, therefore, the volumes at the fifth
and the 15th iteration should be V5 = 0.859 and V15 = 0.633,
respectively. Results in Fig. 4 (a) and (b) shows clearly that
the structures produced by CDT algorithm are final knapsack
solutions if the desired knapsacks Vc are V5 and V15, respec-
tively. However, the structures produced by BESO are broken
with disconnected branches Fig. 4(b), the structures by SIMP
are uncertain with large areas of grayscales.

In order to look the energy density distribution c = {ce(x)}
in the optimal structures, we use the mesh resolution nex ×
ney = 80×30. Fig. 5 shows clearly that the CDT can produce
mechanically sound structure with homogeneous distribution
of strain energy density. Since the material distribution pro-
duced by SIMP is not mechanically reasonable, the overall
strain energy stored in each element is about five times higher
than that by CDT (see the color bars in Fig. 5). If we consider
the dark-red level (= 1) is the elastic limit, then the structure
produced by SIMP is far beyond this limit. This shows that
the optimal structure by CDT has much potential to support
even more external load. Although the BESO can produce bet-
ter result than the SIMP, it can be used only for small-sized
problems since it is not a polynomial time algorithm.

For the 3-D beam, we only compare the CDT with the SIMP
since the BESO is computationally expensive. First, we use the
mesh resolution 40 × 15 × 4 and volume fraction Vc = 0.2.
Fig. 6 shows that the optimal topology produced by CDT is
not only geometrically elegant, but also mechanically sound

(a)

(b)

(c)

Fig. 5. Structures and energy density distributions by (a) SIMP, (b) BESO,
and (c) CDT with Vc = 0.4.

with homogeneous distribution of energy density and very few
red elements. From the color bar we can see that the red-level
is only at scale of 26.34. However, the topology produced by
SIMP is overstaffed with many red elements at scale of 69.4.
This shows that the structure produced by the CDT can support
external load three times than the structure by SIMP.
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(a)

(b)

(c)

(d)

Fig. 6. Structures for 3-D beam with mesh = 40×15×4 and Vc = 0.2. The
SIMP beam is overstaffed with many red elements at scale = 69.4 (highly
stressed). The CDT beam is geometrically elegant with very few red elements
at scale = 26.34, so it can support more external load. (a) SIMP solution:
C = 4465.3. (b) SIMP solution: front view. (c) CDT solution: C = 2792.
(d) Front view of CDT solution.

Now we increase the mesh resolution to 60 × 20 × 10 and
reduce the volume fraction to Vc = 0.1. Fig. 7 shows results
obtained by the commercial code TOP3D (SIMP) and CDT3D
(with μ = 0.93). Since the 0-1 density distribution produced
by the CDT is much more mechanically reasonable than the
one by SIMP, most of elements in Fig. 7(a) are in blue color
with only a few red elements at the scale = 88. The beam by
SIMP has more red elements at the scale = 117. The structure
shown in Fig. 7(c) is the out put of TOP3D at the It = 50th

(a)

(b)

(c)

(d)

Fig. 7. 3-D beam structures by CDT and SIMP with Vc = 0.1 and
mesh resolution 60 × 20 × 10. Since the strain energy stored in the CDT
beam (C = 13192.7) is only about a half of that stored in the SIMP beam
(C = 21960), the CDT beam has much more potential to support more
external load. (a) CDT solution: C = 13192.7, Time = 1.56 min. (b) Front
view of CDT solution. (c) SIMP solution at the 50th iteration: C = 21960,
Time = 12.2 min. (d) Front view of SIMP solution.

iteration, which is almost the same as the final result (It = 199)
shown in Fig. 7(e). This result shows that the SIMP has a very
slow rate of convergence. Also the CDT is more than 10 times
faster than the TOP3D. The uncolored Fig. 8 shows that most
elements are grayscale (i.e., 0 < zi < 1) since the SIMP is a
continuous approximation.
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(a)

(b)

Fig. 8. 3-D beam structures by SIMP with Vc = 0.1 and mesh resolution
60 × 20 × 10. (a) SIMP solution (It = 199): C = 21426, Time = 19.8 min.
(b) Front view of SIMP solution.

Detailed study on the CDT for solving topology design
problems and a 66-line MATLAB code of the CDT algorithm
will be given in [30].

VII. CONCLUSION

Based on a combination of an alternative iteration, a vol-
ume reduction and the novel CDT, a new powerful method
is proposed for solving bilevel optimization governed by
knapsack problems. The main theoretical contributions are
presented in Sections III and IV, i.e., by using the canoni-
cal duality method, the well-known knapsack problems can
be solved analytically in terms of their canonical dual solu-
tions. The existence and uniqueness of this general analytical
solution are proved for both QKP and LKP. It shows that for
any given c, v ∈ R

n, if there exists a canonical dual solution
τc > 0 such that τcc �= v, the LKP can be solved uniquely in
polynomial time. Therefore, a polynomial algorithm CDT is
proposed for solving the BKPs. Its novelty is demonstrated by
solving a benchmark problem in topology design. Numerical
results indicated that the VRM is essential for solving bilevel
optimization governed by knapsack problems. Both theoreti-
cal and numerical results verified that the CDT is a powerful
method for studying general bilevel optimization problems.

Due to the intrinsic coupling effect in the bilevel
optimization problem (P), although for each given lower
level variable xk ∈ Xa, the upper level knapsack problem
zk = arg min{P(xk, z)|z ∈ Za} can be solved analytically
by the CDT, the solution sequence {xk, zk} may not converge
to the global optimal solution of (P) since the DAI method
is adopted in Algorithm 1. This is the main reason that the
numerical solutions produced by the CDT depend sensitively
on the volume reduction rate μ. This is an open problem and
deserves theoretical study in the future.
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