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THE GENERALIZED BREGMAN DISTANCE\ast 

REGINA S. BURACHIK\dagger , MINH N. DAO\ddagger , AND SCOTT B. LINDSTROM\S 

Abstract. Recently, a new kind of distance has been introduced for the graphs of two point-to-
set operators, one of which is maximally monotone. When both operators are the subdifferential of a
proper lower semicontinuous convex function, this kind of distance specializes under modest assump-
tions to the classical Bregman distance. We name this new kind of distance the generalized Bregman
distance, and we shed light on it with examples that utilize the other two most natural representative
functions: the Fitzpatrick function and its conjugate. We provide sufficient conditions for convexity,
coercivity, and supercoercivity: properties which are essential for implementation in proximal point
type algorithms. We establish these results for both the left and right variants of this new kind of
distance. We construct examples closely related to the Kullback--Leibler divergence, which was previ-
ously considered in the context of Bregman distances and whose importance in information theory is
well known. In so doing, we demonstrate how to compute a difficult Fitzpatrick conjugate function,
and we discover natural occurrences of the Lambert \scrW function, whose importance in optimization
is of growing interest.
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distance, Fitzpatrick function, representative function, regularization
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1. Introduction. Throughout, unless stated otherwise, (X, \| \cdot \| ) is a real Banach
space with dual (X\ast , \| \cdot \| \ast ), and \Gamma 0(X) is the set of all proper lower semicontinuous
convex functions from X to \BbbR \infty := ] - \infty ,\infty ].

In 1967, Bregman introduced the distance constructed for a differentiable convex
function f ,

\scrD f : X \times X \rightarrow [0,\infty ] : (x, y) \mapsto \rightarrow 

\Biggl\{ 
f(x) - f(y) - \langle \nabla f(y), x - y\rangle if y \in int dom f,

\infty otherwise,

(1)

which now bears his name [14] and whose corresponding envelopes and proximity
operators specify to the Moreau proximity operator [1, 2, 36] and envelope when f is

the energy \| \cdot \| 2 /2. The study of Bregman distances has become popular, following
their 1981 reintroduction by Censor and Lent [27]. Bregman functions were introduced
to solve feasibility problems and then used for producing more general versions of the
classical proximal-point algorithm, both for convex minimization and for monotone
variational inequality problems. The use of Bregman distances in prox-like methods
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THE GENERALIZED BREGMAN DISTANCE 405

for convex minimization is found in [15, 6, 24, 25, 28, 29, 30, 35, 38, 39], while the
use for monotone variational inequalities can be found in [16, 17, 18, 20, 22, 32].
Properties of Bregman functions have been the focus of research since the late 1990s;
see [3, 4, 26]. A good, brief bibliographic overview of their history is found in [33, page
1233], and the book of Censor and Zenios is also instructive [29]. When f is not the
energy, the distance may fail to be symmetric, and so one is led to consider the left and
right versions of envelopes and their associated proximity operators. The asymptotic
properties of Bregman envelopes with respect to a parameter were explored in [7].

From [3, Proposition 3.2], we have a dual characterization of the Bregman distance
for a differentiable convex function f :

\scrD f (x, y) = f(x) - f(y) - \langle \nabla f(y), x - y\rangle (2a)

= f(x) + f\ast (\nabla f(y)) - \langle \nabla f(y), x\rangle .(2b)

Here (2a) is the definition of the Bregman distance and (2b) uses the Fenchel--Young
equality: (\forall v \in \nabla f(y)) f(y) + f\ast (v) = \langle y, v\rangle . From (2b), an observation is that

\scrD f (x, y) = 0 \Leftarrow \Rightarrow \nabla f(x) = \nabla f(y),(3)

and so \scrD f has the dual characterization of serving as a distance between gradients.1

Based on this characterization, Burachik and Mart\'{\i}nez-Legaz [21] introduced a new
kind of distance based on the representative function h of a monotone operator:

\scrD \flat ,h
T (x, y) := inf

v\in Ty
(h(x, v) - \langle x, v\rangle ) ,(4a)

\scrD \sharp ,h
T (x, y) := sup

v\in Ty
(h(x, v) - \langle x, v\rangle ) .(4b)

This kind of distance generalizes the Bregman distance, specializing---under the mild
domain conditions in section 2.2---thereto when h is the Fenchel--Young representative
for T = \nabla f , which is defined by f \oplus f\ast (x, y) := f(x) + f\ast (y).

Naturally, we name this more general distance the generalized Bregman distance
(GBD). In lieu of the Fenchel--Young representative, the Fitzpatrick function and its
conjugate are the two other functions that are most natural to consider. As with the
Bregman distance, we obtain left and right variants; these admit new left and right
coercivity and supercoercivity properties, along with envelopes and corresponding
proximity operators, when the GBD replaces the Bregman distance in the construction
of envelopes.

1.1. Outline and contributions. This article is outlined as follows. In sec-
tion 2, we recall the GBD as introduced in [21]. We provide its basic properties and
clarify the domain conditions under which the Fenchel--Young representative case spe-
cializes to the Bregman distance. We also introduce the closed variant, which may
specialize to the Bregman distance at more points on the boundary of the domain.

In section 3, we show how to compute the new GBDs. We first illustrate with the
energy, which specifies to the Moreau case when the Fenchel--Young representative
is used. We also illustrate with the Boltzmann--Shannon entropy, whose derivative

1To show \Leftarrow = , simply substitute \nabla f(x) for \nabla f(y) and apply Fenchel--Young once more, this
time for the variable x instead of y.
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406 R. S. BURACHIK, M. N. DAO, AND S. B. LINDSTROM

is the logarithm and whose Bregman distance, the Kullback--Leibler divergence, is
commonly used as a measure of the difference between positive vectors in information
theory and elsewhere. We compare the Kullback--Leibler divergence with the similar
Fenchel--Young representative GBD for the logarithm, and also with its closed version.
We also illustrate how to compute with the two other most natural representatives to
consider: the book-end cases for the representative function set. These are the smallest
representative, named the Fitzpatrick function, and the biggest representative, which
is obtained using the conjugate of the Fitzpatrick function.

Interestingly, while the Fitzpatrick function for the logarithm was discovered in
[9], the present work contains the first computation of its conjugate. The discovery
and proof rely upon the graphical characterizations of representative functions, and
the special function Lambert \scrW plays an important role in the computational aspects
of discovery. The way that we tackle this problem is very prototypical of the approach
that one might need to use when computing other representative functions and GBDs.
We furnish a full discussion of the process in section 3.1 so that it may serve as a
tutorial for other researchers.

Section 4 contains our most important results. We provide a framework of suffi-
cient conditions for coercivity and supercoercivity of the left and right GBDs. This
framework uses the fact that the GBDs majorize a set distance. We illustrate with
figures in 2 dimensions, and we provide examples of what may go wrong when the
sufficient conditions provided by our framework are not satisfied. In section 4.3, we
explain how these coercivity and supercoercivity conditions may be used to guarantee
the coercivity of the sum of the distance together with a Legendre function.

Such sums are the basis of the corresponding envelope functions and their prox-
imity operators. In the Bregman case, these coercivity conditions admit the further
analysis of the envelopes and proximity operators, including their asymptotic behav-
ior as the scalar parameter varies [7]. Our work lays the necessary foundation for
such an analysis in the case of envelopes built from GBDs. The study of envelopes
is important, because many optimization algorithms may be viewed as special cases
of gradient descent applied to envelopes; see, for example, [37, 41]. We conclude in
section 5.

2. Preliminaries on GBDs. Given A \subset X, we denote by A the closure of A
with respect to the strong topology. Given a function f : X \rightarrow \BbbR \infty , its domain (or
effective domain) is defined by dom f := \{ x \in X : f(x) < \infty \} and its lower level set
at height \xi \in \BbbR by lev\leq \xi f := \{ x \in X : f(x) \leq \xi \} . The function f is said to be proper
if dom f \not = \varnothing ; lower semicontinuous (lsc) at \=x if f(\=x) \leq lim infx\rightarrow \=x f(x); convex if

\forall x, y \in X, \forall \lambda \in [0, 1], f((1 - \lambda )x+ \lambda y) \leq (1 - \lambda )f(x) + \lambda f(y);(5)

coercive if lim\| x\| \rightarrow \infty f(x) = \infty ; and supercoercive if lim\| x\| \rightarrow \infty f(x)/\| x\| = \infty .
Let f : X \rightarrow \BbbR \infty be proper. The subdifferential of f is the point-to-set mapping

\partial f : X \rightrightarrows X\ast defined by

\partial f(x) :=

\Biggl\{ 
\{ v \in X\ast : \forall y \in X, \langle y  - x, v\rangle + f(x) \leq f(y)\} if x \in dom f,

\varnothing otherwise.
(6)

The Fenchel conjugate of f is the mapping

f\ast : X\ast \rightarrow \BbbR \infty : v \mapsto \rightarrow sup
x\in X

\{ \langle x, v\rangle  - f(x)\} .(7)
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THE GENERALIZED BREGMAN DISTANCE 407

From the definition, we have the Fenchel--Young inequality

\forall (x, v) \in X \times X\ast , f(x) + f\ast (v) \geq \langle x, v\rangle ,(8)

and if f is convex, then

f(x) + f\ast (v) = \langle x, v\rangle \Leftarrow \Rightarrow v \in \partial f(x).(9)

Given a point-to-set operator T : X \rightrightarrows X\ast , its domain is domT := \{ x \in X : Tx \not =
\varnothing \} , its range is ranT := T (X), and its graph is \scrG (T ) := \{ (x, x\ast ) \in X\times X\ast : x\ast \in Tx\} .
Additionally, T is said to be maximally monotone if

(x, u) \in \scrG (T ) \Leftarrow \Rightarrow (\forall (y, v) \in \scrG (T )) \langle x - y, u - v\rangle \geq 0.(10)

A detailed study of maximally monotone operators can be found in [5, Chapters 20
and 21] for Hilbert spaces and in [19, Chapter 4] for the Banach space case.

2.1. Representative functions. Let S : X \rightrightarrows X\ast be a maximally monotone
operator. We recall from [21, Definition 2.3] that h : X \times X\ast \rightarrow \BbbR \infty represents S and
denote h \in \scrH (S) if the following three conditions hold:

(a) h is convex and norm \times weak\ast lsc in X \times X\ast .
(b) \forall (x, v) \in X \times X\ast , h(x, v) \geq \langle x, v\rangle .
(c) h(x, v) = \langle x, v\rangle \Leftarrow \Rightarrow (x, v) \in \scrG (S).
We will make use, in particular, of several representative functions. These are as

follows.
(i) The Fitzpatrick function FS : (x, y) \mapsto \rightarrow sup(z,w)\in \scrG (S) (\langle z  - x, y  - w\rangle + \langle x, y\rangle )

is the smallest member of \scrH (S); see Fitzpatrick's 1998 paper [34, Theo-
rem 3.7].

(ii) The largest member of \scrH (S) we denote by \sigma S ; it may be computed using the
identities in Fact 2.1(iii).

(iii) The Fenchel--Young representative f \oplus f\ast \in \scrH (\partial f), where f \in \Gamma 0(X) and
f \oplus f\ast : X \times X\ast \rightarrow \BbbR \infty is defined by

\forall (x, v) \in X \times X\ast , f \oplus f\ast (x, v) := f(x) + f\ast (v).(11)

The Fitzpatrick function has proven quite useful in monotone operator theory;
see, for example, [5, 12].

Fact 2.1. Let S : X \rightrightarrows X\ast be a maximally monotone operator and X a real
Banach space. We have the following characterizations of \sigma S and F \ast 

S .
(i) From [23, equation (33)], we have that

epi\sigma S = co
\bigl( 
epi
\bigl( 
\pi + \iota G(S)

\bigr) \bigr) 
, where \pi : (p, p\ast ) \mapsto \rightarrow \langle p, p\ast \rangle (12)

is the duality product defined in X \times X\ast and co(A) is an abbreviation for the
closure of the convex hull of a set A.

(ii) From [5, Proposition 10.56]2, we have that FS =
\bigl( 
\iota G(S - 1) + \pi 

\bigr) \ast 
.

(iii) From [23, equation (39)], we have that \sigma S(x, y) = F \ast 
S(y, x).

(iv) From [23, Corollary 4.2], if h is convex and lsc on X \times X\ast and FS \leq h \leq \sigma S,
then h \in \scrH (S).

2Note that the setting in the exposition [5] is a Hilbert space, although the veracity of (ii) in a
Banach space follows from (i) and (iii). The setting of [23] is a Banach space.
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The astute reader will notice that (iii) may be obtained by combining (i) and (ii), since

\bigl( 
\iota \scrG (S) + \pi 

\bigr) 
(y, x) =

\Biggl\{ 
\infty if (y, x) /\in \scrG (S),
\langle y, x\rangle otherwise

=

\Biggl\{ 
\infty if (x, y) /\in \scrG (S - 1),

\langle x, y\rangle otherwise

=
\bigl( 
\iota \scrG (S - 1) + \pi 

\bigr) 
(x, y).

Additionally, (iv) is quite pleasing, because it admits as representative functions the
convex combinations of other representative functions.

2.2. A new GBD between point-to-set operators. From now on, we assume
that S : X \rightrightarrows X\ast is a maximally monotone operator, h \in \scrH (S), and T : X \rightrightarrows X\ast .
Following [21, Definition 3.1], for fixed (x, y) \in domS \times domT , we define

\scrD \flat ,h
T (x, y) := inf

v\in Ty
(h(x, v) - \langle x, v\rangle ) ,(13a)

\scrD \sharp ,h
T (x, y) := sup

v\in Ty
(h(x, v) - \langle x, v\rangle ) .(13b)

If y \not \in domT , then \scrD \flat ,h
T (x, y) = \scrD \sharp ,h

T (x, y) := \infty for every x \in X. If x \not \in domS, then

\scrD \flat ,h
T (x, y) = \scrD \sharp ,h

T (x, y) := \infty for every y \in X. When T is point-to-point, we simply

write \scrD h
T := \scrD \flat ,h

T = \scrD \sharp ,h
T .

For our examples, T = S = \partial f is point-to-point on int dom f in which case we
simply write \scrD h. Additionally, when employing a specific representative function, we
will use the name of the representative function used in place of h. If a distance is
of the form (13b) or (13a) we call it a GBD. The GBD specializes to the Bregman
distance under certain circumstances, which we now recall. To a proper and convex
function f : X \rightarrow \BbbR \infty , we associate two Bregman distances (see [35]) defined by

\scrD \flat 
f (x, y) :=f(x) - f(y) + inf

v\in \partial f(y)
\langle y  - x, v\rangle (14a)

and \scrD \sharp 
f (x, y) :=f(x) - f(y) + sup

v\in \partial f(y)

\langle y  - x, v\rangle .(14b)

Burachik and Mart\'{\i}nez-Legaz observed that the GBD specializes to the Bregman
distance in the case where the Fenchel--Young representative is used as h. The fol-
lowing proposition fills a minor omission from [21, Proposition 3.5], namely, that the
Fitzpatrick distance specializes to the Bregman distance under the mild condition
that (x, y) /\in (dom f \setminus dom \partial f)\times dom \partial f . In the case when dom f \setminus dom \partial f = \varnothing , they
are everywhere equal. We will see later in an example that when f is the Boltzmann--
Shannon entropy (21), we have dom f \setminus dom \partial f = \{ 0\} , and the two distances fail to
be equal on the set \{ (0, y)| y > 0\} .

Proposition 2.2 (the GBD generalizes the Bregman distance). Let f \in \Gamma 0(X).
Then

\scrD \flat 
f\oplus f\ast (x, y) = \scrD \flat 

f (x, y) and \scrD \sharp 
f\oplus f\ast (x, y) = \scrD \sharp 

f (x, y)(15)

whenever (x, y) /\in (dom f \setminus dom \partial f)\times dom \partial f .
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Proof. If y /\in dom \partial f , then \scrD \flat 
f\oplus f\ast (x, y) = \scrD \flat 

f (x, y) = \infty . If y \in dom \partial f and

x /\in dom f , we also have that \scrD \flat 
f\oplus f\ast (x, y) = \scrD \flat 

f (x, y) = \infty .
It suffices to assume that y \in dom \partial f and x \in dom \partial f \subseteq dom f . Then, since

f(y) + f\ast (v) = \langle y, v\rangle for all v \in \partial f(y), we derive that

\scrD \flat 
f\oplus f\ast (x, y) = inf

v\in \partial f(y)
(f(x) + f\ast (v) - \langle x, v\rangle )(16a)

= inf
v\in \partial f(y)

(f(x) - f(y) + \langle y, v\rangle  - \langle x, v\rangle )(16b)

= f(x) - f(y) + inf
v\in \partial f(y)

\langle y  - x, v\rangle = \scrD \flat 
f (x, y).(16c)

Similarly, \scrD \sharp 
f\oplus f\ast (x, y) = \scrD \sharp 

f (x, y). The conclusion follows.

We recall now the following results regarding the lower semicontinuity of the left
and right distances; these apply to each of our computed examples.

Lemma 2.3 (see [21, Lemma 3.17]). Let y \in domT . Then the following hold:

(i) The function \scrD \flat ,h
T (\cdot , y) : X \rightarrow \BbbR \infty is lsc at every x \in int dom(S) with respect

to the strong topology in X provided that Tz is weakly closed for any z in its
domain.

(ii) The function \scrD \sharp ,h
T (\cdot , y) : X \rightarrow \BbbR \infty is lsc at every x \in dom(S) with respect to

the strong topology in X.

Lemma 2.4 (see [21, Lemma 3.18]). Supose that T is locally bounded in the
interior of its domain and that the graph of T is closed with respect to the strong-weak
topology. Fix y \in int domT and x \in domS. Then the function \scrD \flat ,h

T (x, \cdot ) : X \rightarrow \BbbR \infty 
is lsc at y with respect to the strong topology in X.

Remark 2.5 (The lower closed distance). Notice that in Lemma 2.3(ii), \scrD  \star ,h
T (\cdot , y)

may not be lsc at x \in dom\partial f \setminus dom \partial f , a case we will encounter in our examples.
Notice also that in Lemma 2.4, for y /\in int domT , the distance may not be lsc with
respect to the second variable, a phenomenon we will encounter in our examples.

For these two reasons, we also introduce the notion of the lower closed GBD,

denoted by \scrD  \star ,h

T , which satisfies

epi\scrD  \star ,h

T = epi\scrD  \star ,h
T ,(17)

where  \star may be either \flat or \sharp . The lower closed GBD is the lsc regularization of the
function \scrD  \star ,h

T , as described in [40]; its direct formula is given by

\scrD  \star ,h

T (x, y) := lim inf
(x\prime ,y\prime )\rightarrow (x,y)

\scrD  \star ,h
T (x\prime , y\prime ).

The lower closed distances \scrD FS
, \scrD \sigma S

, and \scrD f\oplus f\ast are defined analogously.

3. How to compute GBDs.

Example 3.1 (energy). Let f : x \mapsto \rightarrow 1
2x

2 be the energy. If we have hId as the
Fitzpatrick function for \partial f = Id, then our GBD distance is

\scrD FId
(x, y) =

1

4
(x - y)2,(18)

which is equivalent to a scaled version of the usual Moreau distance. On the other
hand, the largest element of \scrH (Id) is just

\sigma Id(x, y) =

\Biggl\{ 
x2 x = y,

\infty otherwise.
(19)
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One can obtain this result by computing F \ast 
Id straight from the definition of the con-

jugate and using Fact 2.1(iii). One can also obtain this result by using Fact 2.1(i),
because the graph of Id is simply the diagonal. The corresponding distance is

\scrD \sigma Id
(x, y) =

\Biggl\{ 
0 x = y,

\infty otherwise.
(20)

In [7], the asymptotic properties of Bregman envelopes are illustrated using Breg-
man distances constructed from three functions. One of these was the energy from
Example 3.1, for which the Bregman proximity operator and envelope specialize to
the Moreau case. While the choice of representative function FId is equivalent to the
Moreau case up to a change in parameter, notice that the example \scrD \sigma Id

illustrates
that this is not the case for any choice of representative function. This is an important
distinction in our context.

3.1. Boltzmann--Shannon entropy. Another function whose translated ver-
sion was early considered by Censor and Lent [27], and whose Bregman envelopes are
studied in [7], is the (negative) Boltzmann--Shannon entropy:

ent : \BbbR \rightarrow \BbbR : x \mapsto \rightarrow 

\left\{     
x log x - x if x > 0,

0 if x = 0,

\infty otherwise.

(21)

The Boltzmann--Shannon entropy is particularly important and natural to con-
sider, because its derivative is log, its conjugate is ent\ast = exp, and its associated
Bregman distance is the Kullback--Leibler divergence,

\scrD ent : (x, y) \mapsto \rightarrow 

\left\{     
x(log(x) - log(y)) - x+ y if y > 0,

y if y > 0 and x = 0,

\infty otherwise,

(22)

which is frequently used as a measure of distance between positive vectors in in-
formation theory, statistics, and portfolio selection. The GBD associated with the
Fenchel--Young representative ent\oplus ent\ast \in \scrH (log) is

\scrD ent\oplus ent\ast : (x, y) \mapsto \rightarrow 

\Biggl\{ 
x(log(x) - log(y)) - x+ y if x, y > 0,

\infty otherwise.
(23)

Thus it may be seen that the Bregman distance of the Boltzmann--Shannon entropy
is the special case of the GBD for the Fenchel--Young representative of the logarithm
function, except on the set (dom f \setminus dom \partial f) \times dom \partial f = \{ 0\} \times ]0,\infty [ (see Proposi-
tion 2.2 and Remark 2.5). Its lower closure is given by3

\scrD ent\oplus ent\ast : (x, y) \mapsto \rightarrow 

\left\{         
x(log(x) - log(y)) - x+ y if y > 0, x > 0,

y if y > 0, x = 0,

0 if y = x = 0,

\infty otherwise

(24)

and is shown in Figure 1(b), while the Fenchel--Young representative ent\oplus ent\ast is
shown in Figure 2(b).

3One may rewrite the first case as y > 0, x \geq 0 and omit writing the separate case x = 0, y > 0
in (24), as long as one remembers to use the convention that 0 log(0) = 0.
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(a) \scrD Flog
(b) \scrD ent\oplus ent\ast (c) \scrD \sigma log

Fig. 1. Distances constructed from \scrH (log).

(a) Flog (b) ent\oplus ent\ast (c) \sigma log

Fig. 2. Constructing representative functions for the logarithm.

We will consider new distances built from the maximally monotone operator
log and compare these to the known special case of the Bregman distance for the
Boltzmann-Shannon entropy. The corresponding Fitzpatrick function (as computed
in [9]) and shown in Figure 2(a) is

Flog : (x, y) \mapsto \rightarrow 

\left\{       
\infty if x < 0,

exp(y  - 1) if x = 0,

xy + x
\Bigl( 
\scrW (xe1 - y) + 1

\scrW (xe1 - y)  - 2
\Bigr) 

if x > 0,

(25)

where \scrW is the real principal branch of the Lambert \scrW function that satisfies
\scrW (x)eW (x) = x on [ - 1/e,\infty [. See, for example, [31]. Its occurrences in convex
analysis and its relationship to the Boltzmann--Shannon entropy have been discussed
in, for example, [8, 10, 11].

Example 3.2 (GBD \scrD Flog
). The corresponding (closed) GBD is

\scrD Flog
: \BbbR + \times \BbbR + \rightarrow \BbbR + \cup \{ \infty \} (26)

(x, y) \mapsto \rightarrow 

\left\{         
\infty if x < 0 or y < 0 or (x > 0 and y = 0),

ye - 1 if x = 0 and y \geq 0,

x

\biggl( 
\scrW 
\Bigl( 

xe
y

\Bigr) 
+ 1

\scrW ( xe
y )

 - 2

\biggr) 
otherwise.

This distance is shown in Figure 1(a).
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Proof. Combining Definitions 13 and 26 with the fact that dom log = ]0,\infty [, we
have

\scrD Flog
(x, y) =

\Biggl\{ 
Flog(x, log(y)) - \langle x, log(y)\rangle if x, y \in dom log,

\infty otherwise

(27a)

=

\Biggl\{ 
\infty if x \leq 0 or y \leq 0,

x log(y) + x
\Bigl( 
\scrW (xe1 - log(y)) + 1

\scrW (xe1 - log(y))
 - 2
\Bigr) 
 - x log(y) otherwise.

(27b)

This simplifies, by a bit of arithmetic, to the form in (26), except on the set \{ 0\} \times 
[0,\infty [. Taking the closure of the epigraph admits \scrD Flog

(0, y) = ye - 1. This example
is particularly interesting, because we see the loss of the left lower semicontinuity
property at 0 because 0 \in dom f \setminus dom log, and we also see the loss of the right lower
semicontinuity property because 0 /\in int dom log; see Remark 2.5.

3.2. Computation of a difficult representative function and the conju-
gate of a Fitzpatrick function. Next we consider the case where S = log is the
logarithm function on ]0,\infty [. Even though we know the form of Flog, it is not straight-
forward to compute \sigma log using the equality \sigma log(x, y) = F \ast 

log(y, x) from Fact 2.1(iii)
by subdifferentiating with the latter and solving. Instead, we use the characterization
from Fact 2.1(i).

Recall that, for an arbitrary function g and its convex hull function co(g), the lsc
regularization or lower closure, denoted as co(g), has the property

epi(co(g)) = co(epi(g)).(28)

See, for example, [40, Chapter 1].

Theorem 3.3 (The representative \sigma log). Let T = S = log. Then

\sigma log : (x, y) \mapsto \rightarrow 

\Biggl\{ 
x log(x) if y \leq log(x),

\infty otherwise,
(29)

whose graph is shown in Figure 2(c).

Proof. Using Fact 2.1 together with the fact that \scrG (S) = \{ (z1, log(z1))| z1 \in ]0,\infty [\} 
and the fact that log is a concave function, we have that z2 > log(z1) implies
\sigma \partial f (z1, z2) = \infty . Indeed, let g : \BbbR 2 \rightarrow \BbbR \infty be defined as g := \pi + \iota \scrG (S); the graph
of g is shown as the dark curve at the boundary of the surface in Figure 2(c). By
Fact 2.1 we have that \sigma \partial f = co(g). If co(g)(z1, z2) < \infty , then there exists a \in \BbbR such
that (z1, z2, a) \in epi co(g). By (28) this is equivalent to (z1, z2, a) \in co epi(g). The
last inclusion means that there exists a sequence wn := (zn1 , z

n
2 , an) \in conv epi(g) such

that (z1, z2, a) = limn\rightarrow \infty (zn1 , z
n
2 , an). Note that we can assume that

(zn1 , z
n
2 , an) =

4\sum 
i=1

\lambda n,i(z
n
1,i, z

n
2,i, ai,n), with (zn1,i, z

n
2,i, ai,n) \in epi(g),

thanks to Carath\'eodory's theorem. Using the fact that (zn1,i, z
n
2,i, ai,n) \in epi(g), we

have that
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\sum 4
i=1 \lambda n,i = 1, \lambda n,i \geq 0 \forall i = 1, . . . , 4,

zn1 =
\sum 4

i=1 \lambda n,iz
n
1,i , zn2 =

\sum 4
i=1 \lambda n,iz

n
2,i ,

zn1,i > 0, zn2,i = log zn1,i \forall i = 1, . . . , 4,

Using the above expression for zn2 and the fact that zn2,i = log zn1,i , we can write

zn2 =

4\sum 
i=1

\lambda n,iz
n
2,i =

4\sum 
i=1

\lambda n,i log z
n
1,i \leq log

\Biggl( 
4\sum 

i=1

\lambda n,iz
n
1,i

\Biggr) 
= log zn1 ,

where we used the fact that log(\cdot ) is concave. Taking limits and using the continuity
of the log(\cdot ) we deduce that z2 \leq log(z1). This implies that, when z2 > log(z1)
we must have \sigma \partial f (z1, z2) = \infty . This shows the second part of the definition in the
statement of the theorem. We proceed now to prove the first part of the definition
of \sigma \partial f . Let z \in \BbbR 2 be such that z1 > 0 and z2 \leq log(z1). For any x, y \in \scrG (S) that
satisfy \lambda x+(1 - \lambda )y = z for some \lambda \in [0, 1], we have that g(x) = \langle x1, x2\rangle = x1x2 and
that g(y) = \langle y1, y2\rangle = y1y2. Thus

(x1, x2, \langle x1x2\rangle ) = (x1, x2, x1x2) \in epi g(30a)

and (y1, y2, \langle y1y2\rangle ) = (y1, y2, y1y2) \in epi g.(30b)

From the definition of convexity,

\lambda (x1, x2, x1x2) + (1 - \lambda )(y1, y2, y1y2) \in conv (epi g) .(31)

This is just

(z1, z2, \lambda x1x2 + (1 - \lambda )y1y2) \in conv (epi g) .(32)

Using the fact that x, y \in \scrG (S), this is just

(z1, z2, \lambda x1 log(x1) + (1 - \lambda )y1 log(y1)) \in conv (epi g) .(33)

Let (\varphi n)n\in \BbbN \subset ]0, \pi /2[ be a sequence that satisfies limn\rightarrow \infty \varphi n = \pi /2. For any \varphi n, we
may find a line in \BbbR 2 that goes through z and has slope tan(\varphi n), which is given by

Ln := \{ u \in \BbbR 2 | u2 = tan(\varphi n)(u1  - z1) + z2\} .(34)

Now \varphi n \in ]0, \pi /2[ and z2 \leq log(z1) guarantees that Ln\cap \scrG (S) is a doubleton \{ xn, yn\} 
where xn

1 < z1 and yn1 > z1 and z = pnx
n+qny

n with qn+pn = 1, pn, qn \in [0, 1]. The
construction of this sequence is shown in Figure 3. As \varphi n \rightarrow \pi /2, the slope tan(\varphi n)
of Ln goes to infinity, and so we have that

lim
n\rightarrow \infty 

yn = (z1, log(z1)) and lim
n\rightarrow \infty 

xn = (0, - \infty ),(35a)

and so lim
n\rightarrow \infty 

xn log(xn) = 0 and lim
n\rightarrow \infty 

pn = 0 and lim
n\rightarrow \infty 

qn = 1.(35b)

Thus we have that

lim
n\rightarrow \infty 

(z1, z2, pnx
n log(xn) + qny

n log(yn)) = (z1, z2, z1 log(z1)) \in co(epi g) = epi\sigma log.
(36)
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Thus z1 log(z1) \geq \sigma \partial f (z) for every (z1, z2) such that z1 > 0 and z2 \leq log(z1). For the
converse inequality, define the function

w(t1, t2) :=

\biggl\{ 
t1 log t1 if t1 > 0,
0 if t1 = 0.

(37)

The function w is convex and lsc. It is easy to check that w \leq g in \BbbR 2. Therefore,

epiw \supset epi g.(38)

Using the fact that w is convex and lsc we deduce that

epiw = co(epiw) \supset co(epi g) = epi\sigma log;(39)

equivalently, w \leq \sigma log. This implies that z1 log(z1) \leq \sigma log(z) for every (z1, z2) such
that z1 > 0 and z2 \leq log(z1). Consequently, we showed that

\sigma log(z) = z1 log(z1) \forall (z1, z2) such that z1 > 0 and z2 \leq log(z1),(40)

which is the claim of the theorem.

x1

y1

L1

x2

y2

L2L3

y3

x3

z

(z1, log(z1)) = limn\rightarrow \infty yn

limn\rightarrow \infty xn = (0, - \infty )

\scrG (S)

Fig. 3. Construction of sequence in proof of Theorem 3.3.

Corollary 3.4 (the conjugate of the Fitzpatrick function Flog ). We have that

F \ast 
log : (x, y) \mapsto \rightarrow 

\Biggl\{ 
y log(y) if x \leq log(y),

\infty otherwise.
(41)

Proof. This immediately follows from Theorem 3.3 together with Fact 2.1(iii).

Remark 3.5. In the proof of Theorem 3.3, the sequences xn, yn may be given
explicitly by

xn
1 = exp ( - \scrW 0 ( - tan(\varphi n) exp ( - z1 tan(\varphi n) + z2))) ,(42a)

yn1 = exp ( - \scrW  - 1 ( - tan(\varphi n) exp ( - z1 tan(\varphi n) + z2))) ,(42b)

where \scrW 0 and \scrW  - 1 are the principal and secondary real branches of the Lambert \scrW 
function.
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Most of the analysis of Lambert \scrW in the context of convex optimization has
focused on its principal branch. However, in order to experimentally discover the true
form for \sigma \partial f from Theorem 3.3, we had to make use of both real branches. The reason
for this is that our attempts to explicitly solve the systems

sup
y\in \BbbR 2

\{ \langle x, y\rangle  - F\partial f (y)\} (43a)

or inf
z=\lambda x+(1 - \lambda )y

x,y\in G(\partial f), \lambda \in [0,1]

\{ \lambda x1x2 + (1 - \lambda )y1y2\} (43b)

were not successful. Seeking to compute \sigma log numerically, we constructed a numerical
procedure that evaluated \lambda xn

1x
n
2 +(1 - \lambda )yn1 y

n
2 for a finite sequence (\varphi n)

N
n=1 and chose

the smallest value to represent \sigma log(z). The fast evaluation of Lambert \scrW obviated
the implementation of slower numerical routines to solve the equation system

log(\eta ) = tan(\varphi n)(\eta  - z1) + z2.(44)

We observed that the smallest value was always the last value, corresponding to \varphi n

nearest to \pi /2. Once we observed that the values were consistently approaching
z1 log(z1) for any z chosen, we ``knew"" the true form. Upon further scrutiny of the
geometry, we realized that the sequences that led to the discovery also yielded the
proof.

Corollary 3.6 (GBD for \sigma log). The corresponding (closed) conjugate Fitzpatrick
distance is

\scrD \sigma log
: (x, y) \mapsto \rightarrow 

\left\{     
x log(x) - x log(y) if 0 < y \leq x,

0 if x = y = 0,

\infty otherwise,

(45)

which is shown in Figure 1(c).

Proof. From the definition and Theorem 3.3,

\scrD \sigma log
: (x, y) \mapsto \rightarrow \sigma log(x, log(y)) - \langle x, log(y)\rangle (46a)

=  - x log(y) +

\Biggl\{ 
x log(x) if log(y) \leq log(x),

\infty otherwise,
(46b)

which may be recognized as the form in (45) except at the point (0, 0). Taking the
closure of the epigraph of \scrD \sigma log

, we obtain \scrD \sigma log
(0, 0) = 0. This example is illustrative

because lower semicontinuity is lost, but only at the point (0, 0), since 0 /\in dom log;
see Remark 2.5.

4. A coercivity framework for the GBD. In this section, we will establish
important properties of the GBD. From now on, X is a reflexive real Banach space.
For the sake of simplicity, when we make use of the norms \| \cdot \| X\oplus X\ast , \| \cdot \| X , and
\| \cdot \| X\ast , we allow context to make clear which norm is being used.

4.1. Convexity.

Proposition 4.1. Let x \in domS and y \in domT . Then the following hold:
(i) \scrD \sharp ,h

T (\cdot , y) is convex.
(ii) If T is an affine mapping, then \scrD h

T (x, \cdot ) is convex.
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Proof. We first note that h is convex on X \times X\ast by definition.
(i): As h(\cdot , v)  - \langle \cdot , v\rangle is convex for all v \in Ty, it follows from [19, Proposi-

tion 3.4.3(iii)] that \scrD \sharp ,h
T (\cdot , y) is convex.

(ii): Since T is single-valued, we have for all y \in domT that

\scrD h
T (x, y) = \scrD \flat ,h

T (x, y) = \scrD \sharp ,h
T (x, y) = h(x, Ty) - \langle x, Ty\rangle .(47)

Therefore, \scrD h
T (x, \cdot ) = (h(x, \cdot ) - \langle x, \cdot \rangle ) \circ T is convex because it is the composition of a

convex function with an affine function; see, e.g., [13, Lemma 2.1.8(b)].

4.2. Coercivity and supercoercivity. We now turn our attention to coercivity
and supercoercivity. These properties of distances are important, because they are
essential to the analysis of associated envelopes and proximity operators. After first
providing a framework for verifying these properties of the GBDs, we will show in
section 4.3 how these properties admit corresponding coercivity properties for the
sum of the GBDs together with Legendre functions. These results on sums are the
key to analysing the envelopes; see [6, Lemma 2.12] and [7].

From now on, as mentioned, we assume our spaces to be reflexive so that we may
make use of the following fact from [21, Remark 3.12].

Fact 4.2 (see [21, Remark 3.12]). When X is a reflexive space, it holds that

\forall x, y \in X, \scrD \flat ,h
T (x, y) \geq 1

4
inf

v\in Ty
d2 ((x, v),\scrG (S)) = 1

4
d2 (\{ x\} \times Ty,\scrG (S)) ,(48)

where d denotes the distance on X \times X\ast defined by

d((x, v), (y, w)) :=
\sqrt{} 

\| x - y\| 2 + \| v  - w\| 2.

Consequently, we can see \scrD \flat ,h
T (x, y) as providing us with an upper estimate of the

distance between the sets \{ x\} \times Ty and \scrG (S).
Throughout this section, we exploit the fact that the GBD is minorized by the

distance between the sets \{ x\} \times Ty and \scrG (S) in order to establish left and right
coercivity and supercoercivity of the distance. The intuition behind the results is
shown in Figure 4.

The following elementary lemma will be useful for our analysis.

Lemma 4.3. Let (xn)n\in \BbbN , (yn)n\in \BbbN , and (zn)n\in \BbbN be sequences in X such that
\| xn\| \rightarrow \infty as n \rightarrow \infty . Then the following hold:

(i) Suppose that \| zkn
\| \rightarrow \infty whenever (ykn

)n\in \BbbN is a subsequence of (yn)n\in \BbbN with
\| ykn

\| \rightarrow \infty . Then, for all \alpha \in \BbbR ++,

\| xn  - yn\| \alpha + \| zn\| \alpha \rightarrow \infty as n \rightarrow \infty .(49)

(ii) Suppose that \| zkn
\| 2/\| ykn

\| \rightarrow \infty whenever (ykn
)n\in \BbbN is a subsequence of

(yn)n\in \BbbN with \| ykn
\| \rightarrow \infty . Then

\| xn  - yn\| 2 + \| zn\| 2

\| xn\| 
\rightarrow \infty as n \rightarrow \infty .(50)

Proof. (i): Suppose, to the contrary, that there exist subsequences (xkn
)n\in \BbbN ,

(ykn
)n\in \BbbN , and (zkn

)n\in \BbbN such that the sequence (\| xkn
 - ykn

\| \alpha +\| zkn
\| \alpha )n\in \BbbN is bounded.

Then both (xkn
 - ykn

)n\in \BbbN and (zkn
)n\in \BbbN are bounded. By assumption, passing to an-

other subsequence if necessary, we obtain that the sequence (ykn)n\in \BbbN is also bounded,
and so is (xkn)n\in \BbbN since
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\{ (z, z1/2+\varepsilon ),
z \in \BbbR \} \scrG (S) = \scrG (T )

y \times Ty

(y, 0)

xn \times Ty

(xn, 0)

(xn, vn)

d(xn \times Ty,\scrG (S))

(an, bn)

\{ (z, z), z \in \BbbR \} 

\scrG (S) =
\scrG (T )

(x, 0) (yn, 0)

an \times San

(an, bn)

yn \times Tyn

(yn, vn)

x\times Tyn

(x, vn)

| yn  - an| 

| vn  - bn| 

d(x\times Tyn,\scrG (S))

Fig. 4. Top: the motivation for Theorem 4.5 is exemplified by Example 4.9. Bottom: the
motivation for Theorem 4.6 is exemplified by Example 4.11.

\forall n \in \BbbN , \| xkn
\| \leq \| xkn

 - ykn
\| + \| ykn

\| .(51)

This contradicts the assumption that \| xn\| \rightarrow \infty .
(ii): Suppose that there exist subsequences (xkn

)n\in \BbbN , (ykn
)n\in \BbbN , (zkn

)n\in \BbbN and a
constant \mu > 0 such that

\forall n \in \BbbN ,
\| xkn

 - ykn
\| 2 + \| zkn

\| 2

\| xkn\| 
< \mu .(52)

Then, by the Cauchy--Schwarz inequality,

2\| ykn
\| \geq 2\langle xkn

, ykn
\rangle 

\| xkn
\| 

=
\| xkn

\| 2 + \| ykn
\| 2  - \| xkn

 - ykn
\| 2

\| xkn
\| 

(53a)

\geq \| xkn
\|  - \| xkn

 - ykn
\| 2

\| xkn
\| 

> \| xkn
\|  - \mu .(53b)

As n \rightarrow \infty , since \| xn\| \rightarrow \infty , it follows from (53) that \| ykn
\| \rightarrow \infty and, by assumption,

\| zkn\| 2/\| ykn\| \rightarrow \infty . On the other hand, combining (52) with (53) yields
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\| zkn
\| 2

\| ykn
\| 

< \mu 
\| xkn

\| 
\| ykn

\| 
\leq \mu 

2\| ykn
\| + \mu 

\| ykn
\| 

= 2\mu +
\mu 2

\| ykn
\| 
\rightarrow 2\mu .(54)

A contradiction is thus obtained, and we complete the proof.

Remark 4.4. (i) Since \scrD \sharp ,h
T (x, y) \geq \scrD \flat ,h

T (x, y) for all (x, y) \in domS\times domT ,

if \scrD \flat ,h
T is coercive or supercoercive with respect to the first or second variable,

then so is \scrD \sharp ,h
T . We will thus focus on the coercivity and supercoercivity of

\scrD \flat ,h
T .

(ii) Assume that Ty is compact with respect to the strong topology. Then \{ x\} \times 
Ty is also compact. This, together with Fact 4.2 and the fact that \scrG (S) is
closed, allows us to choose v \in Ty and (a, b) \in \scrG (S) such that

\| x - a\| 2 + \| v  - b\| 2 = d2
\bigl( 
(x, v), (a, b)

\bigr) 
= d2(\{ x\} \times Ty,\scrG (S)) \leq 4\scrD \flat ,h

T (x, y).

(55)

Theorem 4.5 (left coercivity and left supercoercivity of \scrD \flat ,h
T ). Let y \in domT .

Then
(i) If domS is bounded, then \scrD \flat ,h

T (\cdot , y) is supercoercive and hence coercive.
Suppose further that Ty is compact with respect to the strong topology. Then the
following hold:

(ii) If S is coercive in the sense that (an, bn) \in \scrG (S) and \| an\| \rightarrow \infty imply

\| bn\| \rightarrow \infty , then \scrD \flat ,h
T (\cdot , y) is coercive.

(iii) If (an, bn) \in \scrG (S) and \| an\| \rightarrow \infty imply \| bn\| 2/\| an\| \rightarrow \infty , then \scrD \flat ,h
T (\cdot , y) is

supercoercive.

Proof. Let (xn)n\in \BbbN satisfy \| xn\| \rightarrow \infty as n \rightarrow \infty .
(i): As domS is bounded, there exists N \in \BbbN such that for n \geq N we have

xn /\in domS. Fixing an arbitrary n \geq N , by definition, \scrD \flat ,h
T (xn, y) = \infty , so

\scrD \flat ,h
T (xn, y)/\| xn\| = \infty , and we are done.

To prove (ii) and (iii), we derive from Remark 4.4(ii) that, since Ty is compact,
there exist vn \in Ty and (an, bn) \in \scrG (S) such that

\forall n \in \BbbN , 4\scrD \flat ,h
T (xn, y) \geq \| xn  - an\| 2 + \| vn  - bn\| 2.(56)

Here, we note that \| xn\| \rightarrow \infty as n \rightarrow \infty and that (vn)n\in \BbbN is bounded due to
compactness of Ty.

(ii): If (akn
)n\in \BbbN is a subsequence of (an)n\in \BbbN with \| akn

\| \rightarrow \infty , then by assump-
tion, \| bkn

\| \rightarrow \infty , which implies that \| vkn
 - bkn

\| \rightarrow \infty . Applying Lemma 4.3(i) to the
sequences (xn)n\in \BbbN , (an)n\in \BbbN , and (vn - bn)n\in \BbbN , we obtain that \| xn - an\| 2+\| vn - bn\| 2 \rightarrow 
\infty and, by (56), \scrD \flat ,h

T (xn, y) \rightarrow \infty as n \rightarrow \infty .
(iii): If (akn

)n\in \BbbN is a subsequence of (an)n\in \BbbN with \| akn
\| \rightarrow \infty , then by assump-

tion, \| bkn\| 2/\| akn\| \rightarrow \infty , so \| bkn\| \rightarrow \infty and

\| vkn  - bkn\| 2

\| akn
\| 

\geq \| bkn\| 2  - 2\| vkn\| \| bkn\| 
\| akn

\| 
=

\| bkn\| 2

\| akn
\| 

\biggl( 
1 - 2\| vkn\| 

\| akn
\| \| bkn

\| 

\biggr) 
\rightarrow \infty .(57)

Now, using Lemma 4.3(ii) yields

\| xn  - an\| 2 + \| vn  - bn\| 2

\| xn\| 
\rightarrow \infty as n \rightarrow \infty ,(58)

which together with (56) completes the proof.
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Theorem 4.6 (right coercivity and right supercoercivity of \scrD \flat ,h
T ). Let x \in 

domS. Then
(i) If domT is bounded, then \scrD \flat ,h

T (x, \cdot ) is supercoercive and hence coercive.
Suppose further that T has strongly compact images. Then the following hold:

(ii) If (an, bn) \in \scrG (S), (yn, vn) \in \scrG (T ), and \| yn - an\| \rightarrow \infty imply \| vn - bn\| \rightarrow \infty ,

then \scrD \flat ,h
T (x, \cdot ) is coercive.

(iii) If (an, bn) \in \scrG (S), (yn, vn) \in \scrG (T ), and \| yn  - an\| \rightarrow \infty imply \| vn  - 
bn\| 2/\| yn  - an\| \rightarrow \infty , then \scrD \flat ,h

T (x, \cdot ) is supercoercive.

Proof. Let (yn)n\in \BbbN satisfy \| yn\| \rightarrow \infty as n \rightarrow \infty .
(i): By the boundedness of domT , there exists N \in \BbbN such that for n \geq N ,

yn /\in domT . Fixing n \geq N , the definition of \scrD \flat ,h
T yields \scrD \flat ,h

T (x, yn) = \infty , which

implies that \scrD \flat ,h
T (x, yn)/\| yn\| = \infty , and we are done.

(ii) and (iii): Since T has strongly compact images, Tyn is compact with respect
to the strong topology. By Remark 4.4(ii), there exist vn \in Tyn and (an, bn) \in \scrG (S)
such that

\forall n \in \BbbN , 4\scrD \flat ,h
T (x, yn) \geq \| x - an\| 2 + \| vn  - bn\| 2 = \| (yn  - x) - (yn  - an)\| 2 + \| vn  - bn\| 2.

(59)

As n \rightarrow \infty , \| yn  - x\| \rightarrow \infty since \| yn\| \rightarrow \infty .
Now we show (ii). Suppose that (an, bn) \in \scrG (S), (yn, vn) \in \scrG (T ), and \| yn - an\| \rightarrow 

\infty imply \| vn  - bn\| \rightarrow \infty . We have that if (ykn
 - akn

)n\in \BbbN is a subsequence of
(yn  - an)n\in \BbbN with \| ykn

 - akn
\| \rightarrow \infty , then \| vkn

 - bkn
\| \rightarrow \infty . Applying Lemma 4.3(i)

to the sequences (yn  - x)n\in \BbbN , (yn  - an)n\in \BbbN , and (vn  - bn)n\in \BbbN , we obtain that \| (yn  - 
x) - (yn  - an)\| 2 + \| vn  - bn\| 2 \rightarrow \infty , and so \scrD \flat ,h

T (x, yn) \rightarrow \infty as n \rightarrow \infty . This shows
(ii).

Now we show (iii). Suppose that (an, bn) \in \scrG (S), (yn, vn) \in \scrG (T ), and \| yn  - 
an\| \rightarrow \infty imply \| vn  - bn\| 2/\| yn  - an\| \rightarrow \infty . We derive that if (ykn

 - akn
)n\in \BbbN is a

subsequence of (yn - an)n\in \BbbN with \| ykn
 - akn

\| \rightarrow \infty , then \| vkn
 - bkn

\| 2/\| ykn
 - akn

\| \rightarrow 
\infty . Now, Lemma 4.3(ii) completes the proof. This shows (iii).

As we will see in the following example, the conditions in Theorem 4.5 (resp.,
Theorem 4.6) are not necessary conditions for the left (resp., right) coercivity or

supercoercivity of \scrD \flat ,h
T .

Example 4.7. Suppose that X = \BbbR . Let f = Id: \BbbR \rightarrow \BbbR , S = \nabla f = 1, and
h : \BbbR \times \BbbR \rightarrow \BbbR \infty given by

h(x, v) = f(x) + f\ast (v) = x+ \iota \{ 1\} (v).(60)

Let also T = 0. Then

\forall (x, y) \in \BbbR 2, \scrD h
T (x, y) = h(x, 0) - \langle x, 0\rangle = h(x, 0) = \infty .(61)

Therefore, both \scrD h
T (\cdot , y) and \scrD h

T (x, \cdot ) are supercoercive and hence coercive (for all
x, y \in \BbbR ), while S and T do not satisfy the assumptions in Theorem 4.5 or Theo-
rem 4.6.

Corollary 4.8 (left supercoercivity of \scrD h). Let f \in \Gamma 0(X) be such that \partial f is
point-to-point, T = S = \partial f , h \in \scrH (S), and y \in domS. Then the following hold:

(i) If domS is bounded, \scrD h(\cdot , y) is supercoercive and hence coercive.
(ii) If S satisfies the property that (an, bn) \in \scrG (S) and \| an\| \rightarrow \infty implies \| bn\| \rightarrow 

\infty , then \scrD h(\cdot , y) is coercive.
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(iii) If (an, bn) \in \scrG (S) and \| an\| \rightarrow \infty imply \| bn\| 2/\| an\| \rightarrow \infty , then \scrD h(\cdot , y) is
supercoercive.

Proof. Apply Theorem 4.5 with T = S = \partial f . Because f \in \Gamma 0(\scrH ), we have that
\partial f is maximally monotone. The compactness of \partial f(y) comes from the fact that \partial f
is point-to-point.

Example 4.9 (left supercoercive distances on \BbbR ). Let X = \BbbR and f := x \mapsto \rightarrow 
| x| 3/2+\varepsilon for some \varepsilon > 0, and let h \in \scrH (\nabla f). Then \scrD h is left supercoercive.

To check, we need only show that f satisfies the criteria for Corollary 4.8.
Since \nabla f : x \mapsto \rightarrow (3/2 + \varepsilon )sign(x)| x| 1/2+\varepsilon , we have that

\| \nabla f(x)\| 2

\| x\| 
\geq | x| 1+2\varepsilon 

| x| 
= | x| 2\varepsilon \rightarrow \infty as | x| \rightarrow \infty ,(62)

showing the sufficient conditions for Corollary 4.8. This example is illustrated in
Figure 4, which shows the geometric intuition underpinning Theorem 4.5.

Corollary 4.10 (right supercoercivity of \scrD h). Let f \in \Gamma 0(X) be such that \partial f
is point-to-point, T = S = \partial f , h \in \scrH (\partial f), and x \in dom \partial f . Then the following hold:

(i) If \partial f is bounded, then \scrD h is supercoercive and hence coercive.
(ii) If (an, bn), (yn, vn) \in \scrG (\partial f) and \| yn  - an\| \rightarrow \infty imply \| vn  - bn\| \rightarrow \infty , then

\scrD h is coercive.
(iii) If (an, bn), (yn, vn) \in \scrG (\partial f) and \| yn - an\| \rightarrow \infty imply \| vn - bn\| 2/\| yn - an\| \rightarrow 

\infty , then \scrD h is supercoercive.

Proof. Apply Theorem 4.6 with T = S = \partial f . Here \partial f automatically has compact
images because it is point-to-point.

Example 4.11 (right supercoercive distances on \BbbR ). Let X = \BbbR and f := x \mapsto \rightarrow | x| p
for some p \geq 2 and h \in \scrH (\partial f). Then \scrD h is right supercoercive.

To check, we need only show that f satisfies the criteria for Corollary 4.10.
Since \nabla f : x \rightarrow sign(x)p| x| p - 1 and p \geq 2 we have that (| x  - y| \geq 2) =\Rightarrow 

\| \nabla f(x) - \nabla f(y)\| \geq | x - y| . Thus, for | x - y| \geq 2,

\| \nabla f(x) - \nabla f(y)\| 2

\| y  - x\| 
\geq | y  - x| 2

| y  - x| 
= | y  - x| \rightarrow \infty as | y  - x| \rightarrow \infty ,(63)

showing the sufficient conditions for Corollary 4.10. This example is illustrated at
bottom in Figure 4.

Example 4.12 (functions on \BbbR which fail the assumptions of Theorems 4.5 and
4.6). Let X = \BbbR and f := x \mapsto \rightarrow | x| 3/2.

Let xn := n and yn := 0. Then, since \nabla f : x \mapsto \rightarrow sign(x)| x| 1/2, we have that

d((xn,\nabla f(yn)),\scrG (\nabla f)) = d((n, 0),\scrG (\nabla f)) \leq d((n, 0), (n, n1/2)) = n1/2 = x1/2
n ,(64)

and so d((xn,\nabla f(yn),\scrG (\nabla f))2 = xn for all n.

Example 4.13 (theorem conditions sufficient but not necessary). The conditions
of Theorem 4.5 are sufficient but not necessary. Let f be the Boltzmann--Shannon
entropy, and we have that for x > 1,

\| \nabla f(x)\| 2

\| x\| 
=

log(x)2

x
\leq x

x
= 1 \rightarrow 1 as x \rightarrow \infty ,(65)

so the sufficient conditions from Theorem 4.5 fail.
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The form of \scrD \sigma log
is given in (45). If x or y is less than or equal zero, \scrD \sigma log

(x, y) =
\infty . Fixing y > 0, we have that for x > 1,

\scrD \sigma \partial f
(x, y)

\| x\| 
=

x(log(x) - log(y))

x
= log(x) - log(y) \rightarrow \infty as x \rightarrow \infty ,(66)

and so \scrD \sigma log
is left supercoercive.

4.3. Coercivity of the sum of \bfscrD and a convex function. The follow-
ing propositions and their accompanying proofs extend and follow the template of
Bauschke, Combettes, and Noll in [6, Lemma 2.12], with modifications necessary in

order to handle the greater generality of \scrD \flat ,h
T . In the following, X is assumed to be a

real Hilbert space, US := int domS, and UT := int domT .

Proposition 4.14 (left coercivity of the sum of \scrD \flat ,h
T and a convex function).

Let \theta \in \Gamma 0(X) be such that US \cap dom \theta \not = \varnothing , and let \gamma \in \BbbR ++. Suppose that one of
the following holds:

(a) US \cap dom \theta is bounded, and for all y \in UT , \scrD \flat ,h
T (\cdot , y) is coercive.

(b) inf \theta (US) >  - \infty , and for all y \in UT , \scrD \flat ,h
T (\cdot , y) is coercive.

(c) For all y \in UT , \scrD \flat ,h
T (\cdot , y) is supercoercive.

Then

\forall y \in UT , \theta (\cdot ) + 1

\gamma 
\scrD \flat ,h

T (\cdot , y) is coercive.(67)

Proof. We will show that (a) =\Rightarrow (b) =\Rightarrow (67) and that (c) =\Rightarrow (67). First,
we have from [5, Theorem 9.20] that there exists (u, \alpha ) \in X \times \BbbR such that

\theta \geq \langle u, \cdot \rangle + \alpha .(68)

(a) =\Rightarrow (b): By the Cauchy--Schwarz inequality,

\forall x \in X, \theta (x) \geq \langle u, x\rangle + \alpha \geq  - \| u\| \| x\| + \alpha ,(69)

which yields

inf \theta (US) = inf \theta (US \cap dom \theta ) \geq  - \| u\| sup
x\in US\cap dom \theta 

\| x\| + \alpha >  - \infty (70)

since US \cap dom \theta is bounded. Hence, (a) =\Rightarrow (b).
(b) =\Rightarrow (67): Let y \in UT . Suppose for a contradiction that there exist a

sequence (xn)n\in N in X and a constant \mu \in \BbbR ++ such that \| xn\| \rightarrow \infty and

\forall n \in \BbbN , \theta (xn) +
1

\gamma 
\scrD \flat ,h

T (xn, y) \leq \mu .(71)

For each n \in \BbbN , since \theta (xn) >  - \infty , it follows that \scrD \flat ,h
T (xn, y) < \infty , and so xn \in 

domS. Next, according to [5, Proposition 11.1(iv)], inf \theta (domS) = inf \theta (US), which
implies that \theta (xn) \geq inf \theta (US) >  - \infty for all n \in \BbbN . Combining with (71), we obtain
that

\forall n \in \BbbN , \scrD \flat ,h
T (xn, y) \leq \gamma (\mu  - inf \theta (US)) < \infty ,(72)

which contradicts the coercivity of \scrD \flat ,h
T (\cdot , y).
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(c) =\Rightarrow (67): Notice that

\theta (\cdot ) + 1

\gamma 
\scrD \flat ,h

T (\cdot , y) \geq \langle u, \cdot \rangle + \alpha +
1

\gamma 
\scrD \flat ,h

T (\cdot , y).(73)

The right-hand side is the sum of a supercoercive function and an affine function,
and hence a coercive function due to [5, Corollary 16.21]. Since \theta (\cdot ) + 1

\gamma \scrD 
\flat ,h
T (\cdot , y) is

bounded from below by a coercive function, it is coercive.

Proposition 4.15 (right coercivity of the sum of \scrD \flat ,h
T and a convex function).

Let \theta \in \Gamma 0(X) be such that UT \cap dom \theta \not = \varnothing and let \gamma \in \BbbR ++. Suppose that one of
the following holds:

(a) UT \cap dom \theta is bounded, and for all x \in US, \scrD \flat ,h
T (x, \cdot ) is coercive.

(b) inf \theta (UT ) >  - \infty , and for all x \in US, \scrD \flat ,h
T (x, \cdot ) is coercive.

(c) For all x \in US, \scrD \flat ,h
T (x, \cdot ) is supercoercive.

Then

\forall x \in US , \theta (\cdot ) + 1

\gamma 
\scrD \flat ,h

T (x, \cdot ) is coercive.(74)

Proof. This is analogous to the proof of Proposition 4.14.

5. Conclusion. In section 2, we illuminated the similarities between Bregman
distances and the new GBDs, explaining the domain conditions under which they are
equal when the Fenchel--Young representative is employed. We also introduced the
lower closed GBD, a variant whose advantages we motivated in sections 3 and 4.

In section 3, we provided detailed examples of how to compute the new GBDs,
illustrating with the energy and the Boltzmann--Shannon entropy, whose Bregman
distances, respectively, correspond to the classical Moreau case and the Kullback--
Leibler divergence. We compared the Fenchel--Young representative case with the
two cases of the Fitzpatrick representative and its conjugate. These are the two other
most natural representative functions to consider because they serve as book-ends for
the representative set \scrH (S), as motivated in section 2.

In section 3.2 we answered the open question of finding the conjugate for the
Fitzpatrick function of the logarithm. In so doing, we demonstrated how to use the
graphical characterizations of representative functions in order to compute GBDs, and
we illustrated the role that special functions like Lambert \scrW play in computational
discovery. The method of computational discovery that we used is prototypical of
what one might employ in similar situations where the symbolic computation poses a
challenge.

Section 4 contains the most important theoretical contribution of this work: a
framework for verifying the coercivity and supercoercivity of the left and right dis-
tances, as well as the coercivity of the sum of these distances together with a Legendre
function. We have also illustrated how this framework for sufficiency possesses a use-
ful geometric interpretation, because the GBDs provide an upper estimate on a set
distance. In our examples, we illustrated what might go wrong when sufficient criteria
do not hold. These coercivity properties are important because of the role they play
in establishing asymptotic properties for envelopes and proximity operators in the
classical Bregman case, and also in establishing existence of minimizers of regularized
problems; see, for example, [7, 16, 17, 18, 22]. Such properties are important because
many optimization algorithms may be viewed as special cases of gradient descent
applied to envelope functions.
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Future work. The coercivity framework we have established makes possible
several new avenues of inquiry. While the conditions we provide for verifying coer-
civity and supercoercivity in section 4 are sufficient, they are not always necessary.
An important future work is to catalog useful (computable) distances for which the
coercivity results hold. In particular, by establishing the aforementioned coercivity
framework, we have set the table for a study of the left and right envelopes, along
with their corresponding proximity operators. A much more interesting question is
whether certain optimization algorithms might be viewed as gradient descent applied
to GBD envelopes other than already known Fenchel--Young cases. Another natural
question is, What do the dual characterizations of such algorithms look like?
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