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ABSTRACT

Sustained customisation of digital health intervention (DHI) programs, in the context
of community health engagement, requires strong integration of multi-sourced in-
terdisciplinary biopsychosocial health data. The biopsychosocial model is built upon

the idea that biological, psychological and social processes are integrally and interactively
involved in physical health and illness.

One of the longstanding challenges of dealing with healthcare data is the wide variety of
data generated from different sources and the increasing need to learn actionable insights
that drive performance improvement. The growth of information and communication tech-
nology has led to the increased use of DHI programs. These programs use an observational
methodology that helps researchers to study the everyday behaviour of participants during
the course of the program by analysing data generated from digital tools such as wearables,
online surveys and ecological momentary assessment (EMA). Combined with data reported
from biological and psychological tests, this provides rich and unique biopsychosocial data.

There is a strong need to review and apply novel approaches to combining biopsychosocial
data from a methodological perspective. Although some studies have used data analytics
in research on clinical trial data generated from digital interventions, data analytics on
biopsychosocial data generated from DHI programs is limited. The study in this thesis
develops and implements innovative approaches for analysing the existing unique and
rich biopsychosocial data generated from the wellness study, a DHI program conducted
by the School of Science, Psychology and Sport at Federation University. The character-
istics of variety, value and veracity that usually describe big data are also relevant to
the biopsychosocial data handled in this thesis. These historical, retrospective real-life
biopsychosocial data provide fertile ground for research through the use of data analytics
to discover patterns hidden in the data and to obtain new knowledge.

This thesis presents the studies carried out on three aspects of biopsychosocial research.
First, we present the salient traits of the three components - biological, psychological and
social - of biopsychosocial research. Next, we investigate the challenges of pre-processing
biopsychosocial data, placing special emphasis on the time-series data generated from
wearable sensor devices. Finally, we present the application of statistical and machine
learning (ML) tools to integrate variables from the biopsychosocial disciplines to build a
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predictive model. The first chapter presents the salient features of the biopsychosocial
data for each discipline. The second chapter presents the challenges of pre-processing
biopsychosocial data, focusing on the time-series data generated from wearable sensor
devices. The third chapter uses statistical and ML tools to integrate variables from the
biopsychosocial disciplines to build a predictive model. Among its other important analyses
and results, the key contributions of the research described in this thesis include the
following:

1. using gamma distribution to model neurocognitive reaction time data that presents
interesting properties (skewness and kurtosis for the data distribution)

2. using novel ‘peak heart-rate’ count metric to quantify ‘biological’ stress

3. using the ML approach to evaluate DHIs

4. using a recurrent neural network (RNN) and long short-term memory (LSTM) data
prediction model to predict Difficulties in Emotion Regulation Scale (DERS) and
primary emotion (PE) using wearable sensor data.
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1
INTRODUCTION

Holistic health is an approach to life. It considers a person as a whole being and how

they interact with the environment. It accentuates the connection between body,

mind and mood. Its goal is to achieve maximum wellbeing. ‘High-level wellness is

defined as an integrated method of functioning which is oriented towards maximising the

potential of which the individual is capable, within the environment where the individual

is functioning’ [1]. This approach encourages individuals to recognise their responsibility

for their wellbeing and the everyday decisions that affect their health.

1.1 Biopsychosocial model - a holistic approach

In the broad domain of healthcare, for a very long time, wellbeing conditions have been

explained in accordance with normative models that are standards for evaluation [2].

Such normative models have given rise to health models that are consistent with the

biomedical model and are very reductive in nature. Such models contend that all diseases

can be attributed to biological causes in the body. Hence, their treatments are typically

biological in nature (such as surgery or medications) [3]. In recent times, health psychology

researchers have started implementing the holistic approach using the biopsychosocial

model [4]. The biopsychosocial model is an expanded view that attributes disease outcomes

to the intricate, variable interactions between different biological factors (genetic, biometric,

biochemical), psychological factors (mood, experience, neurocognitive) and social factors

(cultural, familial, socio-economic). In this way, the biopsychosocial model advocates a

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Biopsychosocial model of health

more comprehensive investigation of the health relationships between mind and body [5].

Since this model is based on the basic premise that any health or disease condition results

from the interaction between biological, psychological, and social factors, it has helped us

move beyond the old dualism that separated the body from the mind [2]. This approach

towards the biopsychosocial model has marked a shift from a traditional biomedical model

centred only on the body to a medicine centred on the person [2, 5, 6]. Figure 1.1 depicts

the interdisciplinary biopsychosocial model of health.

In healthcare, there is growing awareness that biopsychosocial screening of patients

can assist in planning for more effective treatment in case of illness [7]. Biopsychosocial

screening has already proven effective for supportive care and research related to can-

cer [8]. Overall, there is a wider understanding in the supportive care community that

greater levels of interdisciplinary integration between the biological, psychological and
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social disciplines are needed. Biopsychosocial screening programs have the potential to

bridge the gap between these patient-centred and family-centred systems. In the health

domain, biopsychosocial screenings take the form of biopsychosocial interviews. These

are assessments typically conducted by therapists and counsellors at the beginning of

therapy or a health intervention to assess for biological, psychological and social factors

that can contribute to a patient’s problem. In this way, patient-centred interview methods

transform the general biopsychosocial model, initially formulated by Engel [5], into a

specific model for each clinical encounter, translating it into an evidence-based, consis-

tently defined model. The biopsychosocial model implies that for optimal management of

conditions, healthcare providers must recognise that patients’ participation in health and

disease management is affected by their existing medical conditions, psychological factors

and socio-cultural barriers in the environment [9]. A significant number of published

papers [10–12] have raised concerns that the existing biopsychosocial model has unclear

boundaries between the biology, psychology and social disciplines. In the light of these

unclear boundaries, the biopsychosocial model vaguely tends to suggest that biology and

psychology are two separate fields in medicine and this has led to errors in identifying

and categorising patient symptoms as biological or psychological, masking the underlying

biomedical approach [13]. In more recent years, digital health technologies have been

transforming the healthcare landscape [14–16]. These technologies have facilitated, in-

creased access to data and provided scalable and comprehensive data from varied sources

[17]. In the context of the biopsychosocial model of health, these advancements in various

digital health technologies help capture biological, psychological and social information;

they thus provide a non-dichotomous understanding of an individual’s medical condition

and contribute to unmasking the biomedical focus of the original model [18].

1.2 Integrating healthcare using digital health data

As discussed earlier, digital health makes use of information and communication technol-

ogy (ICT) to advance human health, healthcare services, and wellness for individuals and

across populations [19–23]. The positive impact of technology on the health and wellbeing

of individuals, communities and populations is unprecedented [14–16]. Recent techno-

logical achievements [24, 25] have revolutionised clinical practice, from prevention to

diagnosis [26, 27] and from monitoring to disease management [28–32], and have enabled

unprecedented public interest and engagement in self-management and wellbeing [33–36].

Successfully developing, integrating and implementing new technologies and methods in

digital health requires a shift from the single disciplinary approach followed by healthcare
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professionals, medical scientists and computer scientists/engineers to a joint multidisci-

plinary approach between the various groups [36]. Digital health is a multidisciplinary

domain and spans disciplines including computer science, engineering, information science,

journalism, economy, clinical medicine, public health, epidemiology, and others [33, 36, 37].

A joint multidisciplinary collaboration between technology specialists and healthcare

experts to conduct collaborative research at all levels, will accelerate access to the best

evidence and healthcare services [36]. There have been rapid changes in healthcare caused

by embracing digital health technologies in different aspects of health and disease [18].

These changes have been driven by several factors, including the following:

• the increased availability of digital biological data generated on different platforms

and its easy accessibility to healthcare providers and patients. For example, deoxyri-

bonucleic acid as a digital molecule has become the cornerstone of digital genomics

services [38, 39]

• the usefulness of portable biosensors in providing information to support and manage

their own health and to enable affordable access to people living in low socio-economic

conditions and for people in remote geographical environments [40, 41]

• the growing trend of increased personal health surveillance and monitoring by

integrating personal self-tracking data with electronic medical records [42]

• the increased use of artificial intelligence (AI) in healthcare to provide better patient

outcomes and reduce costs

• the growing use of health-related social media data, at both the individual and group

levels, to improve quality of care [43].

With advancements in digital health, healthcare screening that aligns with the biopsy-

chosocial model [44–46] has helped health practitioners to evaluate the potential benefits

of a health solution at the individual, population or organisational level using digital tools.

Treatments and health solutions are driven by health information which is a crucial factor

in improving health conditions, wellbeing and quality of life. Digital health programs

have used a range of ICT healthcare strategies, such as creating websites, portals, social

networks, and synchronous and asynchronous communication, among others, to facilitate

participation from individuals seeking healthcare solutions [47, 48].
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The use of mobile and wireless digital health interventions (DHI) has allowed healthcare

practitioners and researchers in the healthcare domain to develop and implement different

kinds of DHI programs. Some of these programs focus on preventing ill health, while others

focus on delivering early intervention and mental health treatment [49, 50]. The broad

range of DHI programs addresses mental and physical health concerns and allows wider

choice of healthcare management for both the healthcare practitioners and the patients

involved. Broad types of digital health programs include but are not limited to:

1. self-help DHI programs

2. therapist assisted digital programs.

All digital health programs generally involve working through many interactive interven-

tion modules over a period. DHI program frameworks in clinical and non-clinical practice

increasingly use patient-centric interviews, such that clinicians and healthcare practi-

tioners can identify a scientific biopsychosocial model specific to each patient [51]. The

openness to and demand for biopsychosocial interventions is also driven by developments

in behavioural health and medicine that focus on behaviour and health, which contribute

significantly to the maintenance of overall wellbeing and quality of life [52].

The influence of digital, electronic and mobile technologies (such as mobile health

[mHealth]) is improving physical and mental health behaviours and outcomes [53]. The

implications of ubiquitous and pervasive digital technologies for healthcare and public

health are profound. Many such technologies are now explicitly designed for medical and

health purposes, contributing to the digital health phenomenon that has recently emerged.

Mobile digital devices, applications (‘apps’), websites and platforms to which they connect

offer not only ready access to medical and health information on the internet, but also

offer new ways of monitoring, measuring and visualising the human body and sharing

personal information and experiences with others. Randomised controlled trials (RCT)

are used to evaluate DHI programs, which are carried out in clinical settings or various

other everyday contexts—for example, healthcare facilities, communities, neighbourhoods,

workplaces, schools and universities. Many interventions of the ‘Wellness study’ DHI

program mentioned in this research (see Section 2.9) were accessed in the ‘real world’;

however, they were tested artificially via research protocols. The participants provided

saliva and blood samples and undertook three computerised cognitive tests when they

met with the researcher on site. They wore the BASIS wristwatch during the course of

the DHI program that monitored their biometrics. It must be noted that the design for

5



CHAPTER 1. INTRODUCTION

data collection is not part of the research study presented in this thesis. The design for

data collection was predetermined prior to the rollout and implementation of the ‘Wellness

study’. All aspects of the ‘Wellness study’ and its interventions were digital, as all the data

captured, used and stored took the form of digital signals involving the use of computer

technology. The digital nature of health intervention programs offers the potential to

leverage technological innovations to develop proactive connected health [54].

1.3 Extracting knowledge from digital health data

More than a decade ago, Sir Muir Gray [55] forecast that 'Knowledge is the enemy of

disease – the application of what we know already will have a bigger impact on health

and disease than any drug or technology likely to be introduced in the next decade.’ Using

technology efficiently to collect, understand and disseminate knowledge is of the utmost

importance to fulfilling this vision. Many recent research achievements in the areas of

web science, data mining and analytics, medical ontologies and recommender systems

have created immense opportunities for better evidence dissemination, medical advice

and development of personalised persuasive intelligent systems [36]. As the different

fields of medicine continue to leverage digital tools to improve the reach and effectiveness

of digital health programs, a huge opportunity arises to mine the large quantity of big

data produced by these digital tools. Digital health data encapsulate the richness and

granularity of individuals’ behaviour. The health data record the confluence of elements

that affect an individual’s behaviour in the current moment and the within-individual

evolution of behaviour over time [56].

Digital health uses data captured via digital technology to measure individuals’ health

behaviour in everyday life and provides access to digital therapeutic tools anytime and

anywhere [25, 57]. Smartphones and wearable devices have a range of inbuilt sensors, such

as accelerometers, wearable electrodes, temperature sensors, Bluetooth, GPS, light sensors,

microphones and proximity sensors, as well as systems logs of calls and short-message

service use [58]. These smart devices enable passive, ecological sensing of behavioural and

physiological features, such as one’s sleep, physical activity, social interactions, electroder-

mal activity and cardiac activity [59]. Ecological momentary assessment (EMA) surveys

facilitated by mobile apps capture an individual’s responses to questions and provide

snapshots of social interactions, stress, pain, mood, eating, physical activity, mental health

symptoms and substance use. Social media data provide information about individuals’

behaviour, preferences and social networks. This kind of digital data is also referred to as
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‘digital exhaust’ [60] and enables the continuous measurement of individuals’ behaviour

and physiology in naturalistic settings [58].

Digital health research is important and must be carried out by building upon what

is already known. This ensures that the investments in digital health in our healthcare

systems are informed by the strongest possible evidence base [17, 61]. Although the

aim of digital health research is to improve or advance health, this depends heavily on

the research methods and tools that are available in ICT disciplines such as computer

science and information systems [62, 63]. Data mining models and machine learning

(ML) methods are increasingly being used for analytics on healthcare data generated

from different sources [64–66]. Data mining explores a large existing dataset to unearth

previously unknown patterns, relationships and anomalies that are present in the data.

ML, a subset of AI, is used to examine large datasets and then ‘learn’ patterns that can

enable predictions to be made about new datasets [67]. ML has attracted considerable

research interest in developing smart DHIs [68, 69]. ML is increasingly used in data

analytics to advance the pace of digital health evidence generation [70] and to establish a

data-rich research infrastructure that enables continuous learning and evaluation [68].

1.4 Motivation

Applying analytics to data produced by digital health technologies has emerged as an

efficient approach for evaluating DHIs. DHIs incorporating ML algorithms in real-life

studies are useful and effective. However, given the low number of identified studies and

the low rigour of ML evaluation methodology used therein, there is a vast need for the

research community to conduct further studies in intervention settings to demonstrate

the potential of ML and AI in clinical practice as well as in evaluating DHIs in real-life

settings [68].

Most prior studies have evaluated interventions in clinical settings; these studies are

retrospective validations of ML algorithms and models wherein one or more datasets are

available [68]. Moreover, these studies, which have evaluated RCT interventions in clinical

settings, have focused primarily on data from a single discipline centred only on the body,

thus treating illness as a purely biological event [71–73]. To date, limited research has been

conducted to evaluate or analyse DHIs by following the biopsychosocial model in a real-

life setting [74]. The research reported in this thesis analyses the retrospective wellness

dataset generated from the ‘Wellness study’ DHI program. The framework of this program

7



CHAPTER 1. INTRODUCTION

is described in Section 2.9. The DHI program produces a complex set of biopsychosocial data

collected from disparate data sources. The existing real-life biopsychosocial data provide

fertile ground from which to apply the analytics process model and thereby discover

patterns hidden in the data. Different statistical methods and ML methods are used to

pre-process, analyse and discover new knowledge from the data analysis.

1.5 Aims and objectives

The primary aim of this research is to explore and discover relevant insights by conducting

a retrospective study and analysis of the biopsychosocial data generated from the DHI

program. The focus is on developing new approaches and computational tools for the

various phases: Obtain, Scrub, Explore, Model and iNterpret (OSEMN) of the data analytics

process. The data analytics work in this thesis lies at the intersection of the information

technology (IT), statistics and healthcare domains. The research on biopsychosocial data

analysis has been broken down into several key objectives:

• explore the salient features of the transdisciplinary biopsychosocial data generated

from the ‘Wellness study’ DHI program

• examine the challenges involved in data pre-processing, with a focus on missing data

and on imputation methods

• explore the use of predictive analytics to predict aspects of biopsychosocial wellbeing

by analysing patterns in the biopsychosocial data.

1.6 Contributions

The key contributions of the thesis are summarised below.

1. modelled neurocognitive reaction time using gamma distribution (Chapter - 3). Anal-

ysis of participants’ reaction time in the Psychology Experiment Building Language

(PEBL) Go/No-Go test showed that the reaction time data are more compatible with

a gamma distribution. This is because gamma distribution considers higher order

moments of data, such as skewness and kurtosis, using shape and scale parameters

rather than the commonly applied Gaussian distribution, which is defined using

mean and variance.

2. used novel ‘peak heart-rate’ count metric to quantify level of ‘biological’ stress (Chap-

ter - 3). Heart-rate data are one key biophysiological indicator of stress. A new metric,
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‘peak heart-rate count’, was proposed to measure ‘biological’ stress. Further, a new

approach using the median and interquartile range (IQR) of daily heart-rate data

was used to define maximum threshold. The proposed new metric, ‘heart-rate peak

count’, and the associated new MedIQR method was used to analyse the distribution

of the heart-rate peaks between the two interventions, mindfulness and physical

activity, to determine which intervention was more beneficial to participants during

the DHI program.

3. repurposed the formula AUCG for cortisol score computation (Chapter - 3). The

formula AUCG was used on the biological saliva data to compute a single cortisol

score from four cortisol readings that were recorded on a single day and changed

over the course of that day.

4. comparatively evaluated nonlinear classifiers to identify features that can predict

mental ill-health represented by the Depression Anxiety Stress Scale (DASS) (Chap-

ter - 5). ML and nonlinear classifiers were explored in existing biopsychosocial data.

Real-life biopsychosocial features were input to nonlinear classifiers to predict the

mental illness state (mental ill-health) represented by the DASS score.

5. conducted wearable data analysis using a recurrent neural network (RNN) and

long short-term memory (LSTM) data sequence classification model (Chapter - 5).

Developed an RNN-LSTM model using a sequence classification algorithm to predict

negative affective variable Difficulties in Emotion Regulation Scale (DERS) and to

predict primary emotion (PE) based input time-series wearable data.

1.7 Organisation of thesis

The research reported here was conducted to achieve the stated research objectives, and

the thesis chapters outline the various phases of the data analytics process model that

were undertaken to achieve the overall objective. Chapters 3 and 4 reports on the work

carried out as part of the Obtain, Scrub and Explore data phases of the OSEMN data

mining process model [75]. Chapter 5 reports the work carried out as part of the Explore,

Model and iNterpret data phases of the OSEMN data mining process model. Since different

phases of the data analytics process model overlap, the chapters reflect this nature when

subsets of biopsychosocial data are investigated in chapters 3, 4 and 5. A brief outline of

the chapters is given below.
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This chapter details the preparatory concepts of this research, including motivation,

aims and objectives, contributions, and the thesis outline. Chapter 2 presents a detailed

review of the literature on the DHI programs that align with the biopsychosocial model of

health and discusses the use of analytics on digital health evidence data using supportive

data mining and ML methods. The chapter concludes by examining the characteristics of

biopsychosocial data.

Chapter 3 explores the salient features of the transdisciplinary biopsychosocial data

as a first step. This chapter is divided into different sections for the three disciplines of

the biopsychosocial model: a. analysis of biological data (3.1) and analysis of physiological

data (3.2), b. analysis of psychological data (3.3) and c. analysis of social data (3.4). The

biological and physiological data are separated within the subsection, as the biological

data strictly refer to the blood and cortisol data, whereas the physiological data refer to

the time-series wearable data, also known as the biometric data. The work done on the

subsets of biopsychosocial data and the contents of this chapter follow the Obtain, Scrub

and Explore data stages of the OSEMN data mining framework.

Chapter 4 focuses on the challenges of using real-time biopsychosocial data to prepare

it for statistical analysis using statistical procedures or ML methods. It addresses the

challenge of handling missing wearable data and investigates the missingness patterns in

the data to choose an appropriate imputation strategy. This chapter follows the Obtain,

Scrub and Explore data stages for the time-series wearable sensor data collected using

BASIS wristwatches.

Chapter 5 details the statistical and ML methods to examine possible contributory

connections between participants’ different biopsychosocial features of participants in the

DHI program. The first part of the chapter (5.1), explores building the prediction model

using nonlinear classifiers to compare and evaluate the two DHIs. The second part of the

chapter (5.2), further explores building the prediction model using the ML method.

Chapter 6.1 summarises the study conclusions and proposes directions for further work.
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LITERATURE REVIEW

The biopsychosocial model in healthcare and research is gaining momentum. Health-

care providers and researchers have started appreciating the psychological and

social factors that can mediate health outcomes, as opposed to using the biomedical

model alone [76]. Despite recurrent criticisms and uneven uptake, the biopsychosocial

model has influenced core aspects of medical practice, education and research across

many areas of health and science. Over time, emerging evidence has been associated with

adopting the biopsychosocial model of health in relation to specific conditions, such as

chronic pain management [77] or mental health problems [78, 79]. Slowly but steadily,

the biopsychosocial model is being incorporated into the design of research programs that

involve analysing major aspects of biopsychosocial data [80].

This chapter reviews the research carried out in the broad domain of biopsychosocial

data analysis and DHIs. It reviews various papers that apply analytics to digital health

evidence data and examine ways to apply data analytics to biopsychosocial data generated

from DHI programs. The rest of this chapter is organised as follows:

• Section 2.1 briefly discusses the perspective of the biopsychosocial model of health;

• Section 2.2 provides a synopsis of using DHI to promote biopsychosocial health;

• Section 2.3 studies the benefits and scope of digital health analytics for the data

generated from DHI programs.
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• Section 2.4 discusses different approaches to data mining;

• Section 2.5 outlines the different ML methods that can be used as part of data

mining;

• Section 2.6 examines the need for predictive models to integrate biopsychosocial

data;

• Sections 2.7 and 2.8 describe the characteristics of the digital health interventions

and the typical characteristics of highly dimensional biopsychosocial data produced

as part of the ‘Wellness study’ DHI program;

• Section 2.9 describes the framework of the ‘Wellness study’ DHI program; and

• Section 2.10 summarises the chapter.

2.1 Perspective of the biopsychosocial model

The perspective of the biopsychosocial model holds to the idea that biological, psychological

and social processes are integrally and interactively involved in health and wellbeing

[5, 81–84]. The premise that these subsystems are nested and inextricably connected has

stimulated innovations in the design and implementation of interventions to promote

health. As a guiding framework, the biopsychosocial model has proven remarkably success-

ful, as it has enabled healthcare providers to forge a multi-level, multi-systems approach

to human functioning [85].

Over the years, applied research across a range of substantive areas has affirmed the

values of the biopsychosocial perspective and demonstrated how biological, psychological

and social processes operate together to affect physical and mental health outcomes. Kus-

nanto et al. [86] review the implementation of the biopsychosocial model in clinical practice

and its contribution to clinical outcomes. They describe the biopsychosocial model as par-

ticularly helpful for addressing chronic diseases and ill-defined illnesses to which patients

experience unique responses. Wijma et al. [87] recommend using the clinical biopsychoso-

cial assessment prior to providing physical therapy to patients with chronic pain. The use

of the biopsychosocial approach in clinical practice, allows healthcare providers to provide

proper explanations of the neurophysiology of pain and biopsychosocial interactions in an

interactive and patient-centred manner. The biopsychosocial approach has also facilitated

the recovery of people with chronic illness [88–90].
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Apart from chronic illness and pain management, the biopsychosocial model has also

been successful in other fields of healthcare, such as psychiatric rehabilitation and work-

place injury management. In their recent study, Tong et al. [91], discuss the importance

of sense of community (SOC) for people with serious mental illness. The study provides a

detailed understanding of the predictors of SOC by using the biopsychosocial model as a

conceptual framework. Managing emotions, social support and stress have been shown to

play important roles in the progression and management of cardiac disease and cancer

[88, 92]. By introducing behavioural interventions, physicians have demonstrated success

in promoting smoking cessation [93]. In Australia, the Queensland Government has suc-

cessfully applied the biopsychosocial approach to workplace injury management [94]. A

range of rehabilitation interventions have been developed that align with the biopsychoso-

cial model; these are based on the principle that effective injury management relies on

understanding the whole person, including their biological, psychological and social needs

and the challenges that arise therein.

Studies in the domain of health psychology have considered social factors in the form of

self-report measures and marital satisfaction [95–98] in an effort to embrace and examine

the multiple systems [76] that underlie the biopsychosocial model. Other studies [99, 100]

in this domain have assessed biological variables, including physiological reactivity to

proposed health interventions. Some studies have assessed macro-variables, also known

as demographic variables, such as ethnicity, income and age [4, 101]. Overall, the review

of literature on adopting the biopsychosocial model in the domain of health psychology

shows that investigators focus on the interplay between psychological and social factors or

between biological and psychological factors. This shows that immense opportunity exists

to explore interconnections between the biological and social disciplines within the domain

of research and practice in health psychology.

Although advances have been made in specifying connections between biological, psy-

chological and social processes, the full potential of the biopsychosocial model remains

untapped in many domains of medicine. In their review paper, Farre et al. [102], study the

interplay between the biopsychosocial disciplines and note that the understanding of this

interplay can shape the nature of medical work both philosophically and in practice. The

paper outlines some key controversies and criticisms raised by other authors related to the

biopsychosocial model in medicine and includes solutions to overcome these shortcomings.

A major criticism it raises is that the biopsychosocial model does not include a method to

identify relevant biopsychosocial data [103]. There is no methodological guidance on the

13



CHAPTER 2. LITERATURE REVIEW

level of analysis needed in each discipline of the biopsychosocial model, since it is often

not known which factor might be responsible for a given condition [10, 12, 104]. Suls et al.

[85], explain the challenges of integrating the biopsychosocial model into health research

and recommend ways to fix this. For instance, the authors note that in the field of health

psychology, only 26% of studies have examined measures from all the disciplines of the

biopsychosocial model. This view can be extended to health researchers in other fields,

who most assuredly have given much less consideration to the psychological and social

influences that affect wellbeing.

The biopsychosocial model is the basis of World Health Organisation’s (WHO) Inter-

national Classification of Functioning [105]. This has provided an impetus for using this

model clinically and structuring clinical guidelines. Smith et al. [103], suggest using

patient-centred interview methods in practice so that clinicians can identify a scientific

biopsychosocial model specific to each patient. Hence, there is a strong focus on psychologi-

cal interviews, which are the most important source of biopsychosocial data during each

clinical encounter. These interviews can generate highly relevant biopsychosocial informa-

tion for healthcare providers. In an effort to simplify the adoption of the biopsychosocial

model, Karunamuni et al. [106] introduce an updated theoretical model to examine the

interrelationship between the different disciplines of the biopsychosocial model of health

and present a framework that could have important implications for clinical practice and

research.

Despite the criticisms, the biopsychosocial model has influenced core aspects of medical

practice, education and research. More optimal use of existing bodies of evidence, bringing

together evidence-based methodological advances of the biopsychosocial model and existing

evidence on the psychosocial needs associated with specific conditions or populations

can help bridge the gap between philosophy and practice. Digital health technologies

can address the limitations of the biopsychosocial model by providing more accessible,

scalable and comprehensive data from various aspects of health and disease. Further, the

availability of various technologies that can continue to capture biological, psychological

and social information provide a non-dichotomised understanding of an individual’s medical

condition and help unmask the biomedical focus of the original model. With digitisation,

the adoption of the biopsychosocial model has increased in the areas of chronic illness and

monitoring general wellbeing and affective experiences [107–112]. In the next section, we

review the role of DHIs in promoting biopsychosocial health.
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2.2 Digital health intervention

Digital health is an advancing phenomenon in modern healthcare systems [113]. Currently,

numerous stakeholders across the world are continuously exploring and evaluating the po-

tential benefits of digital health solutions at the individual, population and organisational

levels [114]. The notion of ‘the digitally engaged patient’ is emerging across healthcare

policy, service provision and research domains [33, 108]. Using IT to deliver health inter-

ventions is a promising approach, as it has wide reach and low cost, is readily accessible

and provides for scalable interventions for large populations, thus addressing time and

resource constraints [107, 115, 116].

DHI is closely related to the notion of mHealth, telemedicine, telecare and health

IT [117, 118]. The use of technology has the potential to transform the face of health

service delivery across the globe, and the driving factors for this are the rapid advances

in mobile technologies, the rise in new opportunities to integrate mHealth into existing

eHealth services and the continued growth in coverage of mobile cellular networks. DHI

describes the action of intervening with ‘tools and services that use information and

communication technologies (ICT) to improve prevention, diagnosis, treatment, monitoring

and management of health and lifestyle’ [118]. DHIs are programs that are delivered

via digital technologies such as smartphones, websites and text messages [61, 119]. DHI

programs [120] have an enormous potential as scalable tools to enhance health and

healthcare delivery by improving effectiveness, accessibility, safety and personalisation

[121].

DHI programs are increasingly being used to promote mindfulness and physical activity

based approaches in health and lifestyle as part of public health campaigns [122]. In

the practice of psychological therapies, standard mindfulness-based interventions use

digital technology tools to engage participants in mindfulness assignments [123]. Digital

technologies deliver mindfulness-based interventions to support older, informal carers with

managing stress and sleep [124]. Computer scientists, interaction designers and other

inventive practitioners and researchers have undertaken a wide variety of experiments

using digital tools to support social wellbeing. In this space, the innovations in technologies

range from responsive architecture, installations and dynamic furniture to handheld

gadgets and wearables [125].
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Researchers have focused on using DHI in a therapeutic capacity for musculoskeletal

conditions, bringing moderate benefits to the area of reducing pain and stronger benefits to

the area of improving functional disability [107]. Findings show that chronic musculoskele-

tal conditions, particularly lower back pain, are optimally managed using a biopsychosocial

approach [126] that incorporates both physical and psychosocial elements in the rehabili-

tation program. Studies in which a DHI includes an exercise/physical activity component

alongside a psychosocial approach have achieved statistically significant improvements in

functional disability [127–129]. DHI using the biopsychosocial approach can contribute pos-

itively towards diminishing the personal, societal and economic impact of musculoskeletal

conditions, which, as our population ages, is only set to grow.

Other areas in which significant achievements have been made using eHealth/mHealth

are for tuberculosis treatment control, smoking cessation [130]], remote pulmonary re-

habilitation, physical activity telecoaching [131] and self-management support [132]. Im-

plementing DHIs in respiratory medicine is another area of great focus, as it promotes

eHealth research on novel methodologies to evaluate digital interventions in respiratory

diseases [133].

Although there is increasing evidence that digital interventions can successfully effect

meaningful changes in health-related behaviour, there are key challenges in the delivery

of DHI programs [134]. These challenges relate to participation in DHI programs namely:

low usage, high attrition and small effect sizes [135–137]. The impact of the challenge

regarding effect size varies depending on what condition or illness is being treated. Effect

sizes are typically large for DHIs that measure conditions such as anxiety, depression and

insomnia. In the prevention space, effect sizes are far smaller. In the context of comparing

interventions, there is less room for change between pre- and post-intervention results and

people show lower illness scores. Therefore, when evaluating DHIs in the prevention space,

it is necessary to work with a large number of samples (N) to detect small changes over

time. The issues of low samples and small effect sizes limit the delivery and evaluation

of DHIs. Morrison [135] recommends using psychological theories and models alongside

conceptual frameworks that guide intervention planning and development to address the

challenges of low usage, high attrition and small effect sizes to a large extent.

The framework of DHI programs enables the easy collection and consolidation of biopsy-

chosocial data. DHIs provide opportunities to tackle health system challenges and offer

the potential to enhance the quality and sustainability of general wellbeing. The WHO has
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published guidelines that classify DHIs in an attempt to standardise the vocabulary used

within the diverse communities working in digital health [138]. Arigo et al. [139] highlight

key areas of opportunity and recommend steps to advance intervention development,

evaluation and commercialisation using digital technologies such as wearable devices

and mobile apps. Online programs to advance DHI development are popular compared

to mobile apps, as they provide for a larger evidence base. With recent advancements in

technology and the just-in-time rule becoming more commonplace, mobile apps should

also become more effective [140]. In the field of behavioural medicine, the future of digital

health behavioural science research lies in finding ways to promote and strengthen more

robust academic industry partnerships [139].

The WHO is addressing digital health as a global strategy in 2020–24 [141]. It defines

digital health as ‘the field of knowledge and practice associated with the development and

use of digital technologies to improve health’ [141]. Digital health is a rapidly growing

industry, and demand is increasing for remote monitoring services caused by rising inci-

dences of chronic diseases. This is a major factor propelling global market growth. Digital

health is an accessible and affordable solution for people who do not have access to the

traditional health system.

Advances in IT have enabled easy access to varied forms of healthcare data. Advances

in data sensing and acquisition technologies have led hospitals and healthcare institutions

to collect enormous amounts of healthcare data about their patients. Advanced analytical

techniques are required to effectively understand and build knowledge from the collected

healthcare data so that these data can be effectively transformed into meaningful and

actionable information.
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2.3 Digital health analytics

Digital health analytics can be defined as the discovery and communication of patterns in

health data [142]. It has emerged as an efficient approach to evaluating DHIs [143]. Pham

et al. [142] ] discuss in detail the practice of analytics as an efficient and effective means of

supporting digital health evidence generation. Their study aimed to generate transferable

insights into the process of implementing analytics to evaluate DHIs. The study concluded

that continued implementation of analytics can help accelerate the rate of digital health

evidence generation to build a data-rich research infrastructure that, in turn, can enable

continuous learning and evaluation.

It has become easier to extend the benefits of healthcare to the wider community because

of the increasing use of new technologies such as big data analytics, AI and ML. These

digital technologies are effective tools to improve clinical practices and operations and

support public health management and medical research. Compared to other industries,

the healthcare industry’s adoption of digital technology lags behind, and this is due to

technological challenges, data privacy obstacles, lack of healthcare system integration

and health data quality issues. To overcome these challenges, research should focus on

using AI and analytics to explore and harness digital health data and support evidence-

based medicine. Further, research must investigate ways in which healthcare information

systems can work together in a cohesive way to deliver effective care to patients and

address privacy issues regarding the use of digital technologies in healthcare.

The broad availability of data has led to growing interest in methods for extracting

useful information and knowledge from data [144]. One of the longstanding challenges in

healthcare informatics has been the ability to deal with healthcare data and the increasing

need to glean actionable insights that drive performance improvement [145]. Some studies

have mined the rich log data generated by users engaged in digital interventions and have

successfully generated evidence of their impact on health outcomes [146]. Although many

studies have used analytics to examine clinical trial data generated from interventions,

the use of analytics on biopsychosocial data generated from DHI programs in a real-life

setting is not available.

The work done in this thesis endeavours to analyse real-world complex biopsychosocial

data generated from a well structured DHI program rolled out by the School of Science,

Psychology and Sport at Federation University. The unique biopsychosocial data are
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analysed using statistical methods and ML tools. The different studies and experiments in

this thesis use the existing biopsychosocial data to measure the participants’ wellbeing

using different representative features. The digital technologies used in the intervention

programs helped to collect the participants’ neurocognitive, physiological, biological and

social data. Data analytics on the transdisciplinary biopsychosocial data uncovered the

challenges of data quality and data integration along with the challenges exposed by the

interplay of the underlying complex data’s variety, value and veracity. A data mining

approach was used to efficiently analyse the large complex data that were gathered from

different data sources. In the next section, we review some well-known models for data

mining used in different industry domains and describe the suitability of the OSEMN

process model for the study conducted in this thesis.

2.4 Models for data mining

Data mining is the process of learning from data, whereas ML is learning from the data.

That is, data mining is the process of extracting useful information from a vast quantity

of data; ML is the process of becoming trained on a ‘training’ dataset. At the end of the

training, ML teaches the computer how to make sense of data to make predictions about

new datasets [67]. There are different approaches to analysing data, and the methods used

can vary for different domains.

2.4.1 Cross-industry standard process for data mining

The cross-industry standard process for data mining (CRISP-DM) [147] is noted to be

the default time-tested methodology for data science. It has been widely used for a long

time, not only for data mining but also for predictive analytics and big data projects [148].

CRISP-DM breaks down the process of data mining into six different phases [149], as

shown in Figure 2.1.
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Figure 2.1: A CRISP-DM process model

With using CRISP-DM data mining mode, there are no strict ways of moving between

the different phases of the processes. Moving back and forth between the phases is encour-

aged and may be required. The outcome of every phase determines if one should move

to the next step or instead repeat the previous step(s). The outer circle (see Figure 2.1)

describes the cyclic nature of data mining. This implies that even when a solution has been

deployed, the process can continue to create a better version [150]. CRISP-DM is built on

an analytics-focused process framework called Knowledge Discovery in Databases and is

predominantly used for enterprise data science projects [151]. A notable limitation of this

method is that it lacks a standardised framework to guide the customisation process that

would allow the method to be adopted by organisations whose capabilities are not mature

enough [152].

2.4.2 Sample, Explore, Modify, Model and Assess

Another popular methodology, SEMMA [153], takes its name from the different stages

that comprise the process: Information Exploitation, Sample, Explore, Modify, Model and

Assess. SAS Institute, which developed the model, describes it as a toolset for carrying out

the core tasks of data mining [149]. The methodology is itself a cycle (see Figure 2.2), the

internal steps of which can be performed iteratively according to needs [154].
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Figure 2.2: SEMMA process model

The SEMMA model processes are easy to understand, and this model is often used to

develop and maintain information exploitation projects [154]. Structurally, both CRISP-DM

and SEMMA methodologies have similarities, but they differ in several aspects, including

tasks, activities and phases. The CRISP-DM model has a phase dedicated to problem

understanding, with reference to business, defining objectives, resources, roles and other

factors to set data mining goals. Conversely, SEMMA proposes to access the data to

be analysed directly. It defines a sample and applies data mining techniques without

considering the business objectives [154].

2.4.3 Agile methods

Agile methods for data analysis, such as Agile Knowledge Discovery Database [155] and

Analytics Solutions Unified Method for Data Mining [152], have been used for projects

with smaller scope, less complexity and fewer security issues. Agile methods are more often

used within organisations that encourage more freedom [156].
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2.4.4 Technology driven method

Technology used for data science has a great impact on performance, and one such

technology-driven methodology is Microsoft Team Data Science Process (TDSP), which

was introduced in 2016. It incorporates specific tools to make exploratory data analysis

more efficient. TDSP can be customised for ML or AI projects. These tools are free and

can be easily integrated into any workflow that uses Python or R. However, TDSP uses a

specific set of Microsoft tools and infrastructure and is platform-dependent. Foundational

Methodology for Data Science is similar to TDSP but has more detailed steps and is

platform-independent [157].

2.4.5 Obtain, Scrub, Explore, Model and iNterpret

Hilary Mason and Chris Wiggins [75] introduced the OSEMN process framework. This

framework represents the general workflow that data scientists typically perform, as shown

in Figure 2.3. OSEMN was developed as a process for independent research [158], and,

therefore, business-focused project phases, such as business understanding, deployment,

operations and optimisation, are omitted. This makes the OSEMN model ideal for use

in exploratory research projects that prioritise data analysis. The OSEMN process has

five phases: Obtain data, Scrub data, Explore data, Model data, and iNterpret data. The

first two phases, Obtain data and Scrub data, often consume between 50% to 80% of

the time in a complex data analysis pipeline. This is justified, as any analytical model is

only as good as input data. In the third phase, Explore data, users try to understand the

patterns and values of their data and use different types of visualisations and statistical

testings to support their findings. The next phase is Model data, which involves generating

a model from the acquired data. The last and most important phase in the OSEMN

model is iNterpret data, which interprets the data. In this phase, users primarily answer

the questions that provoked the data modelling processes and needs. The phases in

the OSEMN model can iterate until a satisfactory condition is met. Dineva et al. [159]

discuss the OSEMN approach, which is used for working with data acquired by Internet

of Things devices and their integration into beekeeping. The paper by Guhr et al. [160]

describe the many tools that can be used for the different steps of the OSEMN process.

The paper implements a proof of concept to demonstrate the feasibility of IT operations

by combining common data science tools with enterprise architecture. CRISP-DM and

OSEMN methodologies are process-focused, as they work regardless of the technology they

use.
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Figure 2.3: An OSEMN process model

In analysing the biopsychosocial data in this study, we closely followed the OSEMN

process model because it can be represented as a scientific process that comprises different

steps in a data science pipeline and is well suited to research focused on data analytics.

Python and R predominantly served as query languages for the Obtain and Scrub data

steps. Application suites such as SPSS were used to Explore and transform the data. ML

methods supported by specialised Python libraries were used to build the Model, iNterpret

the data and evaluate the generalisation of the algorithm. In the next section, we review

some broad categories of ML methods and their applications.

2.5 Machine learning methods

ML arose as a subfield of AI, which dealt with methods for improving the knowledge or

performance of an intelligent system over time based on the system’s learning experience.

The system gains its learning experience by analysing data from the environment and

making predictions about unknown quantities. Over the years, this data analysis aspect

of ML has come to play a very large role in the field of AI. ML examines patterns and

can predict future behaviour by learning from those patterns. Data mining is often used

as an information source on which ML is based. As ML algorithms are data-driven, the

data determine the system’s response. For example, when developing an application to

detect photos, a traditional algorithm would first define what a face is. By contrast, an

ML algorithm would not have such a predetermined definition but would instead learn by

examples by getting trained via several photos containing faces (i.e., learn by example).
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Most data mining frameworks discussed in Section 2.4 have a Model step that can be

mapped to the ML stage in the data mining process. In the Model step, the predictive

models are applied and the models’ predictive accuracy is evaluated. In the iNterpret step,

the model is evaluated to ensure that it satisfies the original business goals. Broadly ML

algorithms can be of three types.

2.5.1 Supervised learning

Supervised learning finds an unknown function that connects known inputs to unknown

outputs [161]. A given set of predictors predict the target variable in a supervised ML

algorithm. We generate a function that maps inputs to desired outputs using this set of

predictors In this way, the training process continues until the model achieves a desired

level of accuracy for the training data. The supervised ML algorithms use the features

and annotations in the training set to induce a model to predict the annotations of the

instances in the testing set [162]. Biologists have used supervised ML algorithms such as

classification and regression to understand the complex aging process that affects nearly all

animal species [162]. Decision trees, Naive Bayes and Support Vector Machines (SVM) are

commonly used algorithms in supervised learning [163–167]. Classification and regression

algorithms are two kinds of supervised learning algorithms [168].

2.5.2 Unsupervised learning

Unsupervised learning involves pattern recognition without the use of an output label

[162]. The unsupervised learning algorithm uses all input variables to predict the outcome.

Clustering and association mining techniques are suitable for unsupervised learning.

Clustering algorithms used in unsupervised learning can identify inherent groupings

within unlabelled data. Labels can be subsequently be assigned to each data value [163,

169, 170]. Association mining algorithms in unsupervised learning are used to identify

association rules that describe the relationships between the features that are suitable for

clustering [162]. K-means, hierarchical clustering and principal component analysis are

the most commonly used unsupervised learning algorithms, among others [171–173]. Even

though unsupervised learning uses all input variables, it extracts limited attributes from

the data and relies on previously learned patterns to recognise likely classes within the

dataset [174, 175]. Unsupervised learning is well suited to feature reduction problems in

large datasets and clustering tasks that lead to the creation of new classes in the unlabelled

data [176, 177].
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2.5.3 Reinforcement learning

Reinforcement learning occurs when the machine trains itself continually using trial and

error and when it is exposed to an environment [178]. In such a condition, the machine

learns from past experience and tries to capture the best possible knowledge to make

accurate decisions. The application of reinforcement learning is limited to areas where

a vast amount of data can be generated. Games offer an excellent environment for a

reinforcement learning agent wherein the agent can explore different trials in a virtual

world, since the cost of exploration is affordable [179, 180]. This type of learning is less

useful for business applications compared to supervised or unsupervised learning.

Supervised ML algorithms for predictive modelling are described as learning a target

function f that best maps input variables X to an output variable Y; Y = f (X). The widely

used ML method is to learn the mapping Y = f (X) to make predictions of Y for new X.

This form of ML method is referred to as predictive modelling or predictive analytics. ML

algorithms are ever evolving and have been used in various domains, such as data mining,

image recognition [181], speech recognition [182], self-driving cars [183], email and spam

filtering [184], online fraud detection [185] and many more. Schmidt et al. [161] provide a

comprehensive overview and analysis of the most recent research that has used ML. They

critique the interpretability of ML algorithms in detail and introduce different concepts

of interpretability, such as simulatability, decomposability, algorithmic transparency and

post-hoc knowledge extraction. In this context, the authors describe the ML algorithms as

black-box algorithms that do not explicitly represent the connection between features and

prediction. They are not transparent, so they cannot describe the causality between the

model inputs and the outputs. Despite these interpretability challenges, ML algorithms

are successful in several different fields.

Linear ML algorithms are represented by linear functions that describe the relationship

between two variables by producing a straight line when graphed. Nonlinear function has

a shape that is not a straight line when graphed. Linear regression, logistic regression

and linear discriminant analysis are examples of linear algorithms. Nonlinear algorithms

include classification and regression trees (CARTs), Naive Bayes, k-nearest neighbours,

learning vector quantisation and SVM. Ensemble methods create multiple models and

then combine them to produce improved results. Algorithms that use ensemble methods

include Random Forest and AdaBoost. There are many different ways to represent the

patterns that can ML can discover; some are described below.
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1. Dimensionality reduction. This refers to methods that reduce the number of input

variables in a dataset.

2. Decision trees. This method applies a ‘divide and conquer’ approach to the problem

of learning from a set of independent instances.

3. Classification rules. The precondition of a classification rule is a series of tests similar

to the tests on nodes in decision trees, and the conclusion gives the class or classes

that apply to the observations covered by that rule or the probability distribution

over the classes. Classification rules are popular because each rule represents an

independent chunk of knowledge. With classification rules, it is easy to add new rules

to an existing rule set without disturbing ones already there, whereas adding to a

tree structure may require reshaping the whole tree [186].

4. Association rules. Association rules can predict probability of relationships between

attributes. Different association rules express different regularities that underlie the

dataset, and they generally predict different things [187]. The methods for decision

trees and rules work most naturally with nominal attributes. They can also be

used for numeric attributes by using numeric value tests in the decision tree or

rule induction algorithm. Alternatively, the numeric attributes can be changed into

nominal attributes.

5. Linear regression. This regression technique is used when the outcome or class is

numeric and all the attributes are numeric. The class for the attributes is represented

as a linear combination of attributes with predetermined weights. The membership

function is 1 for instances that belong to that class and 0 for other instances [188].

Although linear regression achieves good results in practice, the membership values

it produces are not proper probabilities because they can fall outside the range of 0

to 1 [189].

6. Logistic regression. This is a predictive analysis algorithm based on the concept of

probability. It is a linear model that draws linear decision boundaries between data

points and is used for classification problems.

7. Clustering. Clustering techniques are used when the instances are to be divided into

natural groups. No classes are predicted in this technique. The classic clustering

technique is called k-means.
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The growth of advanced analytics and ML and AI techniques has opened up numerous

possibilities for transforming complex data into meaningful and actionable insights to

support decision-making [190, 191]. All healthcare stakeholders can harness the power of

data, using analytical techniques not only to analyse existing data (descriptive analytics),

but also to predict future outcomes (predictive analytics) and determine the best action for

the current situation (prescriptive analytics) [192, 193].

2.6 Predictive models for integrating biopsychosocial data

With the advent of the digital age, many experts have advocated for greater adaptation

of digital health solutions [194]. Digital transformation creates numerous opportunities

to improve health outcomes and increase the efficiency of healthcare systems [195]. The

advancement of digital technology in healthcare has led to an abundance of information

collected for each individual at a micromolecular level. DHI programs enable collecting a

myriad of biological, psychological and social data that shed light on an individual’s state

of wellbeing. Recent studies [196, 197], have hypothesised that most complex diseases are

caused by the combined effects of many diverse factors, including different genetic, genomic,

behavioural and environmental factors. Therefore, it is essential to build integrative

models that consider variables from multiple disciplines simultaneously and combine

the information present for an integrative study for biopsychosocial marker discovery. To

achieve this, information present in each dataset is assessed by its capabilities to predict a

disease’s endpoint. Such integrative studies aim to build a predictive model by combining

datasets.

Prediction models are widely used in the analysis of healthcare data. Basic statistical

prediction models use linear regression, the generalised additive model (GAM), logistic

regression, Bayesian models and Markov random fields. The dependent variable in linear

regression is assumed to be a linear combination of the features with corresponding

estimated regression parameters [198]. Linear regression is widely used for clinical cost

predictions [199, 200] and estimation of medical inspections [201] in the area of clinical data

analysis. The GAM is used to model continuous outcomes in regression [202] and can be

described as a linear combination of smooth functions [203]. Logistic regression is another

popular binary classification method widely used for prediction tasks [204–206]. Logistic

regression predicts the output based on the assumption that there is a linear relationship

between the features and the log odds of the probabilities [203]. Implementations of
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the Bayesian model, such as Naive Bayes and Bayesian networks, are used for clinical

predictions [207, 208].

In addition to basic prediction models, recent developments in ML and data mining

literature show other prediction models being used by biomedical researchers for clinical

applications. These models include decision trees and artificial neural networks. Decision

trees are the most widely used clinical prediction models [209], wherein predictions are

made by asking a series of well-defined questions (splitting criteria) about a test record.

Depending on the answers to these questions, the test record hierarchically falls into a

smaller subgroup where the contained individuals are similar to one another with respect

to the predicted outcome. The splitting criteria help find the locally optimum decisions that

can minimise the within-node homogeneity or maximise the between-node heterogeneity

[203]. Other tree-based models, such as C4.5 [210] and ID3 [211], use information entropy

to determine the best splits. A CART [212] can only produce binary splits, and the best split

is selected where the Gini index is minimised. Compared to other methods, decision trees

are straightforward and constructing them does not require knowledge of the underlying

distribution. Moreover, decision trees can easily handle all kinds of data types for the

input data [203]. The challenge lies in finding an optimal decision tree. Usually, a tree

induction algorithm is a heuristic-based approach that can make decision tree unstable

[213]. A wide range of applications have used decision trees for medical decision-making

problems [214, 215]. Another widely used prediction model is an artificial neural network

(ANN). ANNs are inspired by biological neural systems [216], in which simple artificial

nodes called ‘neurons’ are combined via a weighted link to form a network that stimulates

a biological neural network. As a result of the ANN’s ability to model complex mapping

functions and because of the rich literature in the ML community, ANNs have been widely

used in various biomedical applications [217, 218]. Some noteworthy applications include

decision support systems [219], medical intervention [220] and medical decision-making

[221].

Integration of diverse biopsychosocial data using predictive models is a vast research

topic. Most of the studies scattered throughout the literature were developed from a clinical

perspective and were not based on real-life biopsychosocial data collected for the person.

To the best of our knowledge, there are currently no studies that aim to review integrative

approaches, combining biopsychosocial data from a methodological perspective. There

are many technical challenges in integrating biopsychosocial data generated from DHI

programs. Some of these challenges are listed below.
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1. Difference in nature of data

As the data being integrated are collected from multiple disciplines, the nature of

the data from each discipline can vary significantly. Physiological data collected from

wearable devices have a strong temporal aspect, whereas biological data collected as

part blood and saliva tests are not. Self-reported social data collected in the form of

surveys can be unstructured and have missing values. Integrating variables with

such different formats, types, structures, dimensionalities and missing values is

challenging in the data mining and ML domain.

2. Statistical significance

The high dimensionality of biopsychosocial data generated from DHI programs

combined with low sample size poses challenges for finding statistically significant

biopsychosocial markers (classical statistical n < p problem) [222]. Selecting the most

useful features for building the prediction model is challenging and requires support

from domain experts.

3. Different biases and assumptions

Each discipline of the biopsychosocial data can have its own set of biases and as-

sumptions. Depending on the design framework of the DHI program, the data being

integrated may be different because of the difference in experimental designs and

protocols.

4. Interpretability

Another generic challenge of integrating the biopsychosocial data is that the obtained

model has to be interpretable. This means that the effect of individual biopsychosocial

markers on the wellbeing of the individual must be clearly identified by the prediction

model; otherwise, the prediction model from the integrative study cannot be used

efficiently.

Though these challenges exist, the growing availability of systems analytics, statistical

tools, big data, ML and mixed-model trajectory analyses have facilitated research on

integrative study of the biopsychosocial data in both clinical and non-clinical environments.
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2.7 Characteristics of digital health interventions

The biopsychosocial data generated from the ‘Wellness study’ DHI program were used for

this research. The DHI program sought to compare the effectiveness of the mindfulness and

the physical activity interventions. Mindfulness is widely described as purposefully paying

attention to unfolding moment-by-moment experiences with an open, non-judging and

accepting attitude [223]. Mindfulness training enhances self-regulation abilities, including

attention mechanisms, behaviour flexibility and emotion regulation [224, 225]. Part of

the ‘Wellness study’, the mindfulness intervention measured dispositional mindfulness,

which is often defined as a ‘basic human quality’ [226] that everyone possesses to a varying

extent. Self-report questionnaires, such as the Difficulty in Emotion Regulation Scale

[227, 228], the DASS [229, 230], the Mental Health Continuum (MHC) [231, 232], the

Revised Life Orientation Test (LOT-R) [233, 234] and the six-item Kessler Psychological

Distress Scale (K-6) [235, 236], are widely used to measure human conditions and traits

such as depression, anxiety, stress and optimism. The Mindful Attention Awareness Scale

(MAAS) measures mindfulness. The other intervention as part of the ‘Wellness study’

DHI program was physical activity. Physical activity refers to any movement made by

the body or produced by skeletal muscles that resulting in energy expenditure [237].

Physical activity broadly encompasses exercise, sports and activities performed as part

of daily living, occupation, leisure and active transportation [238]. The health benefits

of regular physical activity are well established and convincing [239, 240]. The physical

activity intervention program as part of the ‘Wellness study’ helped participants make

small changes to the amount of physical activity they did, helped them find an activity

they enjoyed, identified barriers and set achievable goals.

The selection criteria and sample size of participants in a DHI program strongly influence

the power of the statistical tests conducted on the data. A precise statistical preparation of

a DHI program framework must consider the selection criteria and the power needed to

obtain valuable results. The participant selection criteria (inclusion and exclusion) must be

carefully chosen to avoid possible confounding factors and to exclude participants for whom

the intervention is useless or dangerous [241]. Moreover, the selection criteria should be

not too severe; the risk is to conduct the DHI in an overly selected population and to obtain

results not generalisable for actual clinical practice. In the context of the DHI program

‘Wellness study’ conducted by the School of Science, Psychology and Sport at Federation

University, participants excluded from the study were pregnant women and people with

a documented life-threatening illness (e.g., cancer), traumatic brain injury, debilitating
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physical mobility issues, cardiovascular disease or current untreated severe (psychotic)

mental illness. Another recurrent problem in most DHI programs is a low recruitment rate.

This is due to recruitment difficulties, inadequate selection criteria or a small number of

participants willing to join. Moreover, some participants leave the DHI program in the

middle, and to define the outcome for such participants is not possible.

The biopsychosocial data are quite unique. Many questions can be explored with these

data. They present a very interesting source for various data mining, pre-processing and

visualisation techniques which can be applied to this dataset.

2.8 Characteristics of the biopsychosocial data

The characteristics of variety, value and veracity that usually describe big data are also

relevant to the biopsychosocial data handled in this thesis. We now examine this interplay

of variety, value and veracity [242, 243] and the challenges they pose in processing data.

2.8.1 Heterogeneity

The biopsychosocial data used in this research were heterogeneous in nature due to the

diversity of data sources from which these data were collected and the diverse data types.

The biopsychosocial data is divided into the following main categories:

1. Demographic data comprised features such as age and gender that were obtained

during screening and demographic survey. The features of employment area and

income were excluded from the study.

2. Self-reported levels included features such as social support, religiousness, physical

health, mental health and quality of life. Each of these features was a self-reported

value supplied by the participants using a Likert scale prior to the start of the DHI.

The self-reported measure of medication was excluded from study.

3. Test scale levels consisted of features such as the following:

a) The DASS level measured distress along three axes, depression, anxiety and

stress, and equated them to clinical levels. DASS describes the measure of the

negative emotional states of depression, anxiety and stress (mental ill-health).

b) The K-6 level measured general psychological distress.

c) The DERS level measured how participants managed their emotions.
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d) The MAAS level measured how mindful the participants were.

e) The MHC and LOT-R levels measured wellbeing and optimism.

4. Ecological momentary assessment data (EMA) consisted of emotion and experience

data such as primary and secondary emotions and intensity of emotions experienced.

5. Psychological test levels consisted of features such as PEBL [244] Go/No-Go test

mean accuracy, trail test total time and Stroop test total errors for each participant.

These features were derived from the computerised neurocognitive tests that were

conducted to measure cognitive flexibility, selective attention and response inhibition.

6. Biological test levels comprised the cortisol levels (cortisol is a hormone that is mainly

released at times of stress and manages many essential bodily functions) and blood

proteins level (BDNF, iL-6) recorded at the start of the intervention during Week 1.

Blood proteins data were not used because of missing data values.

Increasing digitisation in healthcare had led to more variety than the transactional sources

used within the four walls of a clinical facility. The emergence of new data sources, such as

smartphones and wearable devices, coupled with the need to integrate data within essential

business transactional systems for example, electronic health record which creates an

urgent need to recognise and address variety as one of the most critical factors in healthcare

[245]. The biopsychosocial data in this study were generated from different data sources,

including biological, neurocognitive tests, self-reported assessment by participants in the

form of online questionnaires, EMA survey results and time-series data generated from

wearable sensor devices during the DHI program. The data types were a mix of structured,

semi-structured and unstructured data, including Likert values, text data and wearable

reported time-series data. This heterogeneity in data sources and data types accounted for

the large variety and required extensive data analysis and profiling (see Figure 2.4).
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Figure 2.4: Biopsychosocial data mapped to the biopsychosocial model of health

2.8.2 Accuracy

The accuracy or value of data refers to their usefulness for the intended purpose. The end

goal of the data analytic system is to extract value from the data. The value of the data

is also related to the veracity of the data. The biopsychosocial data used in this research

were unique, as they were real-world data collected from participants in the DHI program

under real-world conditions. Blonde et al. [246] discuss the interpretation and impact of

real-world clinical data and their limitations. They note that real-world data can be subject

to bias and confounding factors. Missing data values in inconsistently collected real-world

data can reduce the statistical validity of tests conducted. The biopsychosocial data in this

study had missing values for different measures of interest - this was particularly the case

for the physiological data collected via the wearable device. Since participation in the DHI

program was voluntary, participants were not obligated to hold on to the wearable all the

time during the experiment. Different imputation methods were reviewed and selected to

deal with missing values to improve the value and veracity of the data.
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2.8.3 Fitness of use

The data collected must be fit for use. Fitness of use or data veracity count for more than

data quality and it must be examined in light of data fidelity. Data fidelity is defined as

data quality in the context and appropriateness of its use. In practice, veracity depends

on the participants’ ability to report high-quality data, especially in the context of data

collected using surveys and self-reported assessments of affective experiences [247–249].

Various data preparation tasks, such as data wrangling, normalisation, sampling and

filtering, were used on the biopsychosocial data in this study to improve their veracity.

2.9 The Wellness study program framework

The DHI program was called the ‘Wellness study’. For the remainder of this thesis, the

resultant biopsychosocial dataset is referred to as the wellness dataset. This program was

open to Australian residents aged 18 years and older who had access to the internet, owned

a mobile phone and were willing to travel to one of Federation University’s campuses

on two separate occasions for the pre- and post-biological and psychological tests. The

goal of the ‘Wellness study’ was to compare the effectiveness of the mindfulness and the

physical activity interventions. These were online programs designed to improve wellbeing.

To evaluate this, participants were randomly allocated to one of the three conditions:

either the mindfulness program or the physical activity program for an immediate start

(these participants belonged to the immediate start intervention group) or a waitlist

control group. Those randomly allocated to the waitlist control group were required to wait

eight weeks before commencing one of the interventions; however, they were allowed to

choose the program they wanted to participate in. The mindfulness intervention was about

learning how to become more aware of moment-to-moment experiences (e.g., thoughts,

feelings, images and sensations). The physical activity interventions was about making

a small change to the amount of physical activity the person did, helping them find an

activity they would enjoy, identifying barriers and setting achievable goals. Both the

intervention approaches were found to be mentally and physically beneficial and, to the

best of our knowledge, no other online study has compared these two approaches as part of

a randomised control trial in a real-life setting.

There were four main assessment phases as well as some ‘during’ intervention assess-

ments/monitoring activities that involved collecting psychological (online questionnaires),

biological (i.e., salivary cortisol samples, 15 ml blood sample), physiological (e.g., resting
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Figure 2.5: Structure of DHI program rolled out by School of Science, Psychology and
Sport at Federation University

heart-rate variability) and cognitive (three short computerised cognitive tests measuring

attention, inhibition and cognitive flexibility) wellbeing measures. All participants were

asked to wear a BASIS wristwatch for seven weeks. The BASIS watches monitored the

participants’ heart-rate, skin temperature, number of steps taken and sleep. During this

time, the participants also had access to BASIS biometrics data to track their measures.

The framework of the DHI program is described in Figure 2.5.

2.10 Summary

This chapter has discussed the perspective of the biopsychosocial model and its success in

clinical applications in the areas of chronic illness, pain management, psychiatric rehabilita-

tion and workplace injury management. The efforts of health researchers and investigators

to specify interconnections between classes of variables in the biology, psychology and social

domains are optimistic. It demonstrates these researchers’ and investigators’ motivation to

design studies that embrace all the variables of the holistic model and to analyse how these

variables, including feedback loops, reciprocal influences, correlated variables and others,

interplay. Although advances have been made in specifying connections between biological,

psychological and social processes, the full potential of the biopsychosocial model remains

untapped in many domains of medicine. A key reason for this is the insufficient emphasis

on transdisciplinary collaboration that strives for theoretical and research developments

to cultivate the multi-level, multi-system and multivariate nature of health processes.
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With digitisation, adoption of the biopsychosocial model to deliver DHIs has increased.

DHI programs generate large quantities of rich granular data, which is also called digital

health evidence data. Mining digital health evidence data has led to a growing interest in

investigating methods to extract useful information from these data and make data-driven

decisions [144]. Data mining models provide the process framework for discovering action-

able information from large digital health evidence data sets. As mentioned earlier, many

studies have used analytics to examine clinical trial data generated from interventions.

The use of analytics on the wellness dataset generated from the ‘Wellness study’ DHI

program in a real-life setting, as presented in this thesis, is new and has not been done

before. Data mining models provide the process framework for discovering actionable

information from large digital health evidence data sets. The data mining process model

makes use of a plethora of ML methods that help build predictive models. Predictive

models are needed to integrate the diverse data generated from the ‘Wellness study’ DHIs.

The technical challenges of integrating diverse data are examined in this thesis. Though

these challenges exist, the use of advanced computational tools and methods facilitate

the integrative study of the wellness dataset. The first step towards the integrative study

of the transdisciplinary data was examining the characteristics of the unique wellness

dataset in light of the intervention that produced these data. In the following chapter, we

study the salient features of the wellness dataset in more detail using exploratory data

analysis.
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SALIENT FEATURES OF WELLNESS DATASET

The current research project uses the wellness dataset generated from the ‘digital

health’ intervention programs to engage in new knowledge-building discoveries. Bi-

ological, physiological (biometric tests), psychological (mood state, neuro-cognitive

tests) and social/environmental (Ecological Momentary Assessment[EMA]) tests, were

conducted and results collected for participants within the experimental group (the group

that was exposed to the conditions of the experiment; mindfulness or physical activity

digital health interventions) and the control group (group not exposed to the conditions of

the experiment; no mindfulness or physical activity digital health interventions) during

the program run period. All the experiment results were together labelled as wellness

dataset. The design for data collection is not included as part of the work presented in this

thesis. The data collection design was predetermined before implementing and rolling out

the ‘Wellness study’ DHI program. In addition to the ‘Wellness dataset’, the participants’

demographic data were also collected such as age, sex, and profession. These activities

carried out in this chapter can be mapped to the Obtain, Scrub and Explore phases of the

OSEMN data mining process model.

The study of the ‘Wellness dataset’ for the proposed research is mapped to the biopsy-

chosocial model of health as illustrated in Figure 2.4. In this chapter, we will explore the

salient features of the wellness dataset.

• Section 3.1 explores the data produced from the biological tests that were conducted
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twice, once during pre-intervention and next during post-intervention;

• Section 3.2 explores the salient features of the biometric data that was generated

from the wearable device;

• Section 3.3 explores the neurocognitive reaction time data produced from the PEBL

Go/No Go tests;

• Section 3.4 explores the different kinds of social data collected as part of the EMA

surveys and surveys using online questionnaires during the DHI program; and

• Section 3.6 summarises the chapter.

3.1 Analysing the biological data

The biological domain data consists of biological data and biometric data (also known

as physiological data), as described in Figure 2.4. The biological data was collected from

the blood and saliva tests conducted at the beginning and the end of the DHI program.

The biometric data, henceforth referred to as physiological data, was collected from the

wearable device worn by the participants during the DHI program. In this section, we will

focus on the blood and saliva data and examine their salient features.

The blood tests measured the levels of Brain-derived neurotrophic factor (BDNF), Fibrob-

last Growth Factor (FGF2) and IL-6 (Interleukin-6). BDNF is a protein found in humans

and is also called abrineurin. The BDNF gene encodes this protein. BDNF protein is related

to brain development and promotes the survival of nerve cells (neurons) by playing a role

in the growth, maturation (differentiation), and maintenance of these cells. FGF2 is related

to fibroblast growth and is a growth factor as well as a signaling protein, encoded by the

FGF2 gene in humans. FGF2 helps in the ‘promotion of endothelial cell proliferation and

the physical organisation of endothelial cells into the tubelike structure and thus promote

angiogenesis, the growth of new blood vessels from the pre-existing vasculature’ [250]. IL-6

is a protein produced by various cells in humans and helps regulate immune responses,

making the IL-6 test potentially useful as a marker of immune system activation. There

were two types of experiments conducted to test for BDNF:

1. qPCR (quantitative Polymerase Chain Reaction) test was used in the type-1 experi-

ment to measure gene expression in total blood

38



CHAPTER 3. SALIENT FEATURES OF WELLNESS DATASET

2. ELISA (Enzyme-Linked ImmunoAssay) test was used in the type-2 experiment to

measure protein levels in plasma (mean concentration data).

The ‘Wellness study’ DHI program predicted improvements after engaging in interventions

such as mindfulness. BDNF and FGF2 levels are expected to be high after the health

interventions, whereas IL-6, an inflammation marker, is expected to be low after the DHI

program. Lower BDNF and FGF2 levels at the end of the DHI program ideally predict

higher negative affective variables and vice versa, although not necessary. The negative

affective variables described earlier are represented by the DERS (Difficulty in Emotion

Regulation Scale) and DASS (Depression Anxiety Stress Scale) scores. These scores are

deduced from participants’ answers in response to self-report questionnaires during the

start, middle and end of the DHI program.

The DHI program’s goal was to improve the levels of BDNF and FGF2, and it was

hypothesised that the mindfulness intervention would lead to stronger changes in ANS

(Autonomous Nervous System) activity markers like cortisol and IL-6. The physical activity

intervention would show stronger changes in BDNF. The goal of the DHI program was

to improve the levels of BDNF and FGF2 and it was hypothesised that the mindfulness

intervention would lead to stronger changes in ANS (Autonomous Nervous System) activity

markers like cortisol and IL-6 and physical activity intervention would show stronger

changes in BDNF. BDNF readings from qPCR experiments are analysed for the partici-

pants to determine which intervention is likely to show improvement in BDNF values at

the end of the DHI program. The findings of this study are detailed in Section 3.1.1. There

are many missing values for FGF2 and IL-6 in the post interventions tests carried out at

the end of the DHI program. This reduced the number of samples, and hence no significant

statistical tests could be carried out on this set of data.

The saliva tests were conducted on the participants to measure the cortisol levels.

Cortisol is a hormone that is mainly released at times of stress and manages many

important body functions alongside regulating a wide range of processes throughout the

body, including metabolism, immune response, and the body’s response to stress. The

participants were provided with a saliva sample testing kit before the start of the DHI.

They were asked to drool into a small tube marked with the date and time, and samples

were frozen. These samples were then forwarded to the health-scope pathology by the

Federation University biomedical lab for further analysis. Section 3.1.2, examines and

investigates methods to pre-process the raw saliva sample data and adopt a suitable

method to reduce dimensionality prior to data analysis.
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3.1.1 Correlation of interventions and BDNF readings

Exploratory data analysis is carried out on the BDNF values for the participants in the DHI

program. The BDNF readings at the end of the DHI program between the mindfulness and

physical activity sub-groups determine which intervention helped participants increase

BDNF values. A total of 12 participants were allocated to the Mindfulness intervention and

6 participants were allocated to the physical activity intervention. Table 3.1 describes the

pre and post-intervention BDNF readings for the mindfulness intervention (condition-1)

and physical activity intervention (condition-2). Static analysis of the BDNF values pre

and post interventions reveals that 83% of participants have increased BDNF readings

at the end of the physical activity intervention compared to a 33% increase in BDNF for

the mindfulness intervention. The physical activity intervention shows stronger changes

in BDNF compared to mindfulness intervention at the end of the DHI program, as was

hypothesised earlier. The findings also reveal that, within the physical activity sub-group,

for 66.67 % of participants, an increase in levels of BDNF shows a strong correlation with

higher LOT-R (measures optimism) test scores recorded during week eight at the end of

the DHI program. This is depicted in Table 3.2.

Intervention
condition

BDNF Abundance extra
Pre

BDNF Abundance extra
Post

Delta change in BDNF

1 9.910787 3.255774 decrease
1 4.525258 0.525559 decrease
1 4.366568 0.024248 decrease
1 3.35195 2.009728 decrease
1 2.738715 0.0277 decrease
1 1.481441 0.115023 decrease
1 0.748461 0.798575 increase
1 0.72749 1.36462 increase
1 0.409802 10.50133 increase
1 0.013471 0.205613 increase
1 3.036692 1.642053 decrease
1 2.407441 0.028637 decrease
2 0.992748 2.955702 increase
2 0.197784 1.515717 increase
2 0.091379 1.631275 increase
2 6.200997 2.441047 decrease
2 0.299889 1.326846 increase
2 0.636839 3.936738 increase

Table 3.1: Exploratory data analysis of BDNF readings and correlation to LOT-R levels for
the intervention groups 1 and 2 (1-mindfulness sub-group, 2-physical activity sub-group).

(Text in bold indicate significant changes)
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Delta change in BDNF
Change in

level of optimism
at the end of DHI

increase not improved
increase improved
increase no change

decrease not improved
increase improved
increase improved

Table 3.2: Strong correlation of BDNF readings to improved LOT-R levels at end of the
DHI program. (Text in bold indicate significant changes)

3.1.2 Computation of single cortisol score

The drool method used to collect oral fluid for biological testing was used to collect cortisol

levels. Four cortisol level readings were recorded during the saliva test conducted at the

start and the end of the DHI. The four cortisol readings were recorded on a single day at

spaced-out time intervals. The four readings were denoted by S1 (20 mins after wake), S2

(60 mins after wake), S3 (midday) and S4 (evening). Two methods [251], namely AUCG

and AUCI are compared to compute a single cortisol score from the set of four readings.

1. AUCG : This method describes the area under the curve with respect to the ground.

The following formula is used for the calculation of AUCG :

AUCG =∑n−1
i=1

(mi+1+mi)ti
2

2. AUCI : This method describes the area under the curve with respect to increase and is

calculated from repeated measurements. The area under the curve is calculated with

reference to the first value and ignores the distance from zero for all measurements,

thereby emphasizing the changes over time.

The comparative study of both these methods shows that the AUCG method calculates

the total area under the curve of all the four cortisol readings; as the area of interest. It

thus considers the difference between the single measurements from each other (i.e., the

change over time) and the distance of these measures from ground to zero. In contrast to

AUCG , AUCI ignores the distance from zero for all measurements, thereby emphasizing

the changes over time. The AUCG [251] method is proposed to compute the single cortisol

score from the set of 4 readings at the start and the DHI end.
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Table 3.3 describes the values chosen for t0, t1, t2, t3 and t4 based on the AUCG method.

The readings are named S1, S2, S3 and S4. Table 3.4 lists the cortisol level computed for a

sample of 10 participants based on this method.

Time
variable

Minutes
after wake-up

when cortisol reading
was recorded

Time and
description

Time variable
to

calculate AUCG

Interval
between measures

(AUCG )

Cortisol
reading

to
calculate AUCG

t0 0 At wakeup (e.g., 6 AM) t0 0 -
t1 20 20 mins after first reading t1 0 S1
t2 40 40 mins after first reading t2 0 S2
t3 360 At mid-day t3 0 S3
t4 720 In evening t4 0 S4

Table 3.3: Description of time and cortisol measure variables used in the AUCG method.

S1 S2 S3 S4 t0 t1 t2 t3 t4 AUCG computed cortisol level

34 39 15 7 0 20 20 320 360 4790
12 21 4 2 0 20 20 320 360 1540
27 28 14 6 0 20 20 320 360 4170
7 4 2 2 0 20 20 320 360 810
17 20 12 19 0 20 20 320 360 5650
9 17 4 2 0 20 20 320 360 1430
41 32 16 7 0 20 20 320 360 4910
21 14 11 7 0 20 20 320 360 3480
13 13 4 2 0 20 20 320 360 1390
7 10 2 2 0 20 20 320 360 930

Table 3.4: Computation of cortisol level for 10 sample participants from 4 readings using
the AUCG method.

Using the AUCG method, we can apply a single biological score to a set of four cortisol

level readings recorded on a single day that change over time. Cortisol and blood protein

data collected as part of the biological tests were cross-sectional, and they were collected

once at the start of the DHI and once at the end of the DHI program. On the other hand,

the physiological data collected from wearable sensor devices were continuous. In the

next section, we will explore the salient features of the physiological data, a subset of the

‘Wellness dataset’.
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3.2 Analysing the physiological data

As part of our broader effort to examine possible connections between the different biopsy-

chosocial features, we study the bio-physiological factors revealed by the biometric data.

The physiological data comprises features: heart-rate, accelerator magnitude, galvanic skin

response, skin temperature, steps and is classified by activity type. In this study, we aim to

measure the bio-physiological indicator of stress using heart-rate data. To achieve this, it

is necessary to identify and utilise an effective measure of heart-rate data that can capture

the magnitude of stress. We propose using ‘peak heart-rate count’ to measure heart-rate

data to indicate stress.

Stress [252] can be defined as a ‘response to change to maintain the state of stability

or homology that the body has maintained against the stimulus to break the mental and

physical balance and the stability of the body’. Stress can be used to indicate different

things, depending on the context in which it is examined. We measure ‘biological’ stress,

which refers to the participants’ ability to cope with the frequency of high heart-rate values

marked by peak(s).

In a clinical setting, heart-rate variability (HRV) data collected from electrocardiogram

(ECG) records have been a very popular measure to indicate stress [253–257]. The gold

standard for clinical experiments has been to use HRV, and the best practice is to use ECG

machines to capture HRV. Some prior studies [253, 256] show the effectiveness of using

peak(s) in ECG as a measure to indicate stress. However, the use of ECG limits the analysis

to controlled clinical settings. It cannot be easily used in uncontrolled ‘real-world’ settings.

With the digital revolution in wearable technology, users can now monitor their bio-

metrics daily in a ‘real-world’ uncontrolled setting. Such wearable technologies generate

biometric big data. Wearables such as heart-rate monitors offer the potential to leverage the

biopsychosocial model’s strengths [258] of health. Prior work, reported so far, has focused

predominantly on well-controlled clinical environments. Reviewing available literature

[259–261], it is noticed that there is work that examines the heart-rate variability data,

collected from wearable devices, to indicate stress. However, these studies have been done

in an experimental setting and are validated using self-reported stress levels. Hao et al.

[259] present the practical challenges associated with measuring stress in real-life situa-

tions. To the best of our knowledge, there has been no study that has previously examined

43



CHAPTER 3. SALIENT FEATURES OF WELLNESS DATASET

the heart-rate data from wearable devices in a ‘real-world’ setting to indicate ‘biological’

stress.

We propose using the novel ‘peak heart-rate count’ metric to quantify the level of

‘biological’ stress to compare the stress level between the experimental and control groups

and between the mindfulness and physical activity sub-groups; within the experimental

group. For each sample participants, ‘heart-rate peak count’ is computed for each day.

The daily ‘heart-rate peak count’ is aggregated, and the median ‘heart-rate peak count’

is computed for each participant in the two groups during the trial period. The spread

of ‘heart-rate peak count’ is compared between the experimental and control groups’

participants and between the mindfulness and physical activity subgroups; within the

experimental group. This is done using measures such as range and IQR (Inter Quartile

Range). Analysing this kind of ‘real-world’ heart-rate data from wearable sensor devices

presents a practical set of limitations and challenges. We also include evaluating the

significance and challenges of using heart-rate data obtained in a ‘real-world’ setting from

wearable devices; as a measure of ‘biological’ stress. The study proposes a novel ‘peak

heart-rate count’ as a metric to quantify the level of ‘biological’ stress. We apply this metric

to investigate real-life biopsychosocial data for experimental studies.

3.2.1 Data set-up

The biometric data used for the present study is a subset of the biopsychosocial data. This

study focuses on the heart-rate data collected as part of biometrics, using the heart-rate

monitor device that the participants wore. The participants were divided into two groups:

1. Experimental group: participants in this group were randomly allocated to one

of the two active ‘digital health’ intervention conditions, i.e., (physical activity or

mindfulness), during the trial period

2. Wait-list control group: participants in this group did not participate in any interven-

tion during the trial period of the first eight weeks.

The participants in both experimental and control groups were asked to wear a BASIS

smart-watch during the trial. The biometrics such as heart-rate, skin temperature, galvanic

skin response and steps were collected. The wearable was equipped with an optical heart-

rate sensor that continually tracked beats per second throughout the day, irrespective

of what activity the participant was engaged in; i.e., inactive, light activity, moderate

activity, off or sleep. The activities and activity levels were set-up on the participants’
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wearable devices aligned to the experiment requirements. However, the control group

participants did not receive access to the ‘digital health’ intervention programs (i.e., access

to mindfulness or physical activity exercises) during the trial. The duration of the trial was

for eight weeks. The control group had a delayed start in week nine and could then pick

one of the two interventions. There was a one-month follow up which the control group

participants did not go through. A sample of 20 participants’ heart-rate data is used for this

study; 10 from the experimental group and 10 from the control group. The experimental

group samples include 5 samples from the mindfulness subgroup and 5 samples from the

physical activity subgroup.

3.2.2 Heart-rate count as ‘biological’ stress measure

In this section, we describe the limitations of using HRV derived from wearable ‘heart-rate’

data, a measure to indicate ‘biological’ stress. We also describe the different biometric data

that was collected by the BASIS smart-watch wearable device. While we propose to use

heart-rate data in our studies, we present a brief discussion on HRV which is commonly

used to measure stress. We describe the limitations of using HRV when examining ‘real-

world’ heart-rate data collected by wearable sensor devices and the need for a different

measure to address this. HRV, also known as the heart period, is defined as the length

of the R-R interval. HRV is measured in cardiac time units (beat-by-beat) [262]. On the

other hand, heart-rate is defined as the inverse of the heart period usually measured by the

length of the ‘R-R interval’ in the ECG. Heart-rate is measured in real-time units such as

seconds and standardised in beats per minute [262]. While heart-rate focuses on average

beats per minute, HRV measures the specific changes between successive heart-rate(s).

Generally, a low HRV (or less variability in the heartbeats) indicates that the body is

under stress from exercise, psychological events, or other internal or external stressors. A

high heart-rate value could indicate that the body is ‘biologically’ stressed. In the context

of ‘real-world’ biometric data collected from wearable devices, we observe the following

limitations in applying HRV to determine the level of ‘biological’ stress.

1. Although HRV can be extracted from time-series heart-rate data, conditions such as

missing lengths of biometric data when the wearable was switched off or removed

from the hand diminish data quality. The heart-rate data collected for the study was

from a real-world setting. Participation in the ‘digital health’ intervention program

was voluntary. This implies that participants were not obligated to hold on to the

wearable all the time during the experiment. This could have compromised the

quality of HRV data if extracted from existing heart-rate data.
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2. Imputing missing heart-rate data to compute HRV is not considered favorable for

this study due to its various imputation challenges. The wearable device collected

the biometric heart-rate data in real-time when the participants were engaged in

different activities. Imputing this kind of real-time biometric data is complex and

challenging to achieve.

Owing to the above-stated limitations, ‘heart-rate’ is the choice of measure instead of HRV.

Over the last few years, the world has seen wearable technology cover a sizable segment of

the technology industry [263]. Smart watches are wrist-worn devices that have ‘real-time’

fitness and activity tracking capabilities. Wearables accessories such as wrist bands and

smart watches are in a unique position to evolve and carry forward the more integrative,

holistic, biopsychosocial model. The data collected from wearable has the potential to

indicate various biometric measures to the user. They can appropriately take actions to

regulate them, steering the person towards elevated wellbeing.

The biometric data for the present study was generated from the BASIS smart-watch

wearable that was worn by the participants during the DHI program. The technology in

this wearable device includes wrist sensors that collect biometric data from human vital

signs and activities. The biometrics monitored by the BASIS watch include heart-rate, skin

temperature, galvanic skin response (GSR) and other derived statistics such as the number

of hours of sleep. The wearable activity sensors measured gross user activity attributes,

different from narrowly focused vital signs sensors such as either accelerator magnitude

(for the sensor) or acceleration (for the number of steps).

3.2.3 Proposed method to measure ‘biological’ stress levels

We propose to explore the ‘heart-rate peak count’ as a metric on heart-rate data to measure

‘biological’ stress levels. The following sub-sections provide the details of the proposed

method to define and measure heart-rate peaks.

3.2.3.1 Defining peaks

We consider two design parameters to define peak(s) in the heart-rate time-series data.

The first parameter is the interval of peak. In our definition, this has been set to a 5 minute

limit. By setting the peak interval to 5 minutes, we treat the recurring peak(s) within a

5-minute time span, as one single peak for that period. Considering to set such a time

interval allows us to eliminate instances of counting separate recurring peak(s), that may

arise when a participant removes their wearable device and puts them back within a short
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span of 5 minutes. The second parameter used is maximum threshold to define a peak. A

heart-rate data point is defined as a peak if the magnitude of the data point is >maximum

threshold and the interval of the identified peak is >5 minutes. We have the following two

approaches for defining the maximum threshold.

1. Sum Of Mean and SD (MSD): maximum threshold is the sum of mean daily heart-rate

and standard deviation computed on this mean

2. Sum of Median and IQR (MedIQR): maximum threshold is the sum of median heart-

rate for the day and IQR of heart-rate data for the day.

MSD approach is not suitable since the computation of mean and standard deviation

values assumes that the distribution of heart-rate time-series data is normal, whereas in

reality the data distribution is skewed and not continuous. Hence, we propose to use the

MedIQR approach, which is robust yet straightforward to the out-lier data.

3.2.3.2 Reference for measuring peak

Resting heart-rate is defined as the number of heart contractions per minute while at

rest[264]. In our work, the resting heart-rate is used to define peak(s) in the heart-rate

distribution. The heart-rate data for the 20 sample participants are filtered for the activities

Sleep and Inactive, to compute the resting heart-rate. Studies indicate that resting heart-

rate measurements in a sitting position tend to be 1-2 beats per minute, higher than in

a supine position [264]. Physical exercise or any external intervention such as intake of

some kinds of medication to lower blood pressure can affect the resting heart-rate [265]. As

part of this study’s data setup, the task is to investigate if the wearable reported heart-rate

for activities Sleep and Inactive, truly describes the heart-rate when the participant is at

rest. If they did, this allows us to use the resting heart-rate as the mean heart-rate. The

accelerator magnitude is a good reference measure to validate the resting heart-rate. It is

used to check this correlation of data collected by the wearable device during activities. A

sample of 5 participants is chosen randomly for whom heart-rate values and accelerator

magnitude values are available for different activity conditions.

47



CHAPTER 3. SALIENT FEATURES OF WELLNESS DATASET

3.2.4 Analysis of ‘heart-rate peak count’ as a measure of ‘biological’
stress

In this section, we present the biopsychosocial data analysis using ‘heart-rate peak count’ as

the measure of ‘biological’ stress. Participation in the ’digital health program was voluntary.

The participants were not obligated to keep the wearables on throughout the experiment.

The heart-rate time-series data collected was not continuous. The interruptions in the

heart-rate data ranged from a few seconds to sometimes days when no biometric heart-rate

data was collected. This affected the quality of heart-rate data collected and reduced

the number of good quality samples that could be used for the study. The nature of the

data distribution and the low quality of data limits the statistical tests such as ANOVA

(Analysis of variance) that can be applied to the data set. The IQR describes H spread

(mid-spread) and is the measure of the statistical dispersion between the 75th percentile

(also denoted as quartile 3 or Q3) and the 25th percentile (also denoted as quartile 1 or

Q1). It is a measure of variability based on dividing the range of heart-rate data points

into quartiles.

3.2.4.1 Variations in accelerator magnitude

Analysing the heart-rate and accelerator magnitude data reveals the following.

1. The maximum value of accelerator magnitude dropped when the activity was Sleep

2. Average values for accelerator magnitude drops during activities Sleep or Inactive

compared to conditions of Light activity or Moderate activity.

Based on the above results, we conclude that heart-rate values during activity conditions

Sleep and Inactive describe heart-rate during rest and can be used as mean heart-rate to

define peak(s).

3.2.4.2 ‘Peak heart-rate count’ metric

The distribution of the heart-rate data used for the study is not normal. The distribution of

heart-rate data for a sample participant is illustrated in Figure 3.1. In this study, peak

heart-rate is defined as the data point, which is greater than the maximum_threshold value.

The maximum_threshold value is the sum of median heart-rate and IQR for the participant

for the given day. The magnitude of stress is set to 5 minutes. The interruptions in the

heart-rate time-series data and the poor quality of ‘real-world’ heart-rate data limits the
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Figure 3.1: Distribution of heart-rate data for sample participant on a random day, during
Sleep and Inactive conditions. X-axis: heart- rate and Y-axis: frequency of the heart-rate.

use of statistical tests to compare the levels of ‘biological’ stress between the experimental

and the control groups and between the mindfulness and physical activity subgroups.

We conduct quantitative analysis using other attributes of the distribution, i.e., the IQR

and range, to establish the suitability of ‘peak heart-rate count’ as a measure to indicate

‘biological’ stress. Table 3.5 describes the minimum, maximum, Q1, Q3, mean and range

data values computed from the ‘peak heart-rate count’ distribution. It can be seen that the

maximum value of ‘peak heart-rate count’ (49) causes the control group to have a wider

range compared to the experimental group. The H spread of data in the control group is

dispersed less consistently due to the wider range, reflecting the high IQR value of 17.25.

Within the experimental-physical activity sub-group, we can see that the ‘peak heart-rate

count’ are distributed more consistently within a narrower range of 4 and IQR of 2.5.
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Figure 3.2: Plot of peak heart-rate (generated per second) for a sample participant for a
single day. The periods with no fluctuating peaks and valleys represent timestamps where

no heart-rate was plotted owing to the absence of activity: Sleep and No Activity. The
x-axis on the graph describes the time date: 2015-04-20, hours range 13:00:00 to 23:00:00.

A large number of peak(s) in heart-rate distribution indicates that the participant is
experiencing stress.

Table 3.5: Summary of computed Range and IQR values

Variables Mindfulness group Physical activity group Control group
Minimum 16 24 14.5

Q1 20.5 25 19.375
Median 26 27 26.75

Q3 27 27.5 36.625
Maximum 28 28 49

Mean 23.5 26.3 28.35
IQR 6.5 2.5 17.25

Range 12 4 34.5

The experimental-mindfulness subgroup has a larger range of 12 and IQR of 6.5, which

reflects the wider spread between the data points. The box and whiskers plot depicts the

shape of the data distribution, median and variability. The ‘peak heart-rate count’ for the

experimental-physical activity sub-group participants lies within a smaller range between

24 and 28, whereas the ‘peak heart-rate count’ for the experimental- mindfulness sub-group

participants lies within a wider range of 16 to 28. The IQR is depicted by the shaded area
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(see Figure 3.3), which shows a relatively consistent distribution of ‘peak heart-rate count’

for the experimental-physical activity sub-group as against the experimental-mindfulness

sub-group.

Figure 3.3: Box plot describes spread of median ‘peak heart-rate count’ within IQR for
different groups. Whiskers describe the spread of outlier median ‘peak heart-rate count’

values.

The proposed new metric, ‘heart-rate peak count’ and the associated new MedIQR

method is seen to be useful in analysing the distribution of the heart-rate peaks, using

range and IQR values. Its application on ‘real-world’ heart-rate data collected from wear-

able devices presents several challenges related to diminished data quality and limits

the application of statistical tests. The observations made from the real-world biometric

data are limited by measurement errors. Based on the readings of the IQR measure and

range, the participants in the experimental-physical activity sub-group were observed to

have ‘peak heart-rate count’ within a smaller range of 4 with recording a maximum ‘peak

heart-rate count’ of 28 and a minimum ‘peak heart-rate count’ of 24. On the other hand,
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the participants in the experimental-mindfulness activity sub-group were observed to have

a ‘peak heart-rate count’ within a broader range of 12 with recording a maximum ‘peak

heart-rate count’ of 28 and a minimum ‘peak heart-rate count’ of 16. The IQR and range of

the control group participants were larger than the experimental group which indicates

that the ‘digital health’ intervention has a higher probability of positive impact on the

experimental-physical activity sub-group participants. The ‘heart-rate peak count’ has been

used to indicate ‘biological’ stress, experienced by the participant during the intervention.

The results from the study can support the hypothesis that the ‘digital health’ intervention

program benefited the experimental group participants, particularly the physical activity

sub-group.

The biopsychosocial approach to health-care data, emphasises the importance of un-

derstanding human health and illness considering the biological, psychological and social

factors and their complex interactions in understanding health, illness and health care

delivery [266]. The work in this study opens up avenues for further research in the area of

real-world data mining from other domains such as psychological and social data on the

same longitudinal time line as the biometric data, to provide correlations and validate a

composite measure as an indicator of ‘biological’ stress.

3.3 Analysing the psychological data

In this section, we will focus on the psychological discipline of the Biopsychosocial model

by analysing the real-life neurocognitive data generated from the neurocognitive tests

conducted at the start and end of the DHI program. Three kinds of psychological tests

were conducted for participants who participated in the DHI program. They were the

PEBL(Psychology Experiment Building Language) based Go/No-Go test, Stroop test and

the trail test. We mainly focus on the distribution of reaction time data obtained from

participants undertaking the PEBL based Go/No-Go test, using EDA(Exploratory Data

Analysis). The neurocognitive tests are used to evaluate a persons’ cognitive status such as

memory, attention, reaction time, response inhibition along with other cognitive functions.

(PEBL) [244] is an open-source software system for designing and running psychological

experiments. In these experiments, participants are presented with a series of binary

visual stimuli — the letter R or P. The participants must press a key to indicate when

they see the letter P which is configured as the target stimuli for the experiment. The

distribution of P versus R is adjusted to be P in 80% of trials for the first round (Round
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1) and 20% of trials for the second round (Round 2). The PEBL Go/No-Go test is used

to measure a participants’ capacity for sustained attention and response control under

different experimental conditions or using interventions [267]. The PEBL Go/No-Go test

results are analysed in terms of accuracy and reaction time.

‘The Go/No-Go task is a response inhibition task where the motor response must either

be executed or inhibited’ [268]. In this test, the participants are presented with a sequence

of letters on a visual tool and are asked to respond to a single target letter by clicking

a button. During the test, a 2*2 array is presented which displayed 4 stars one in each

square of the array. The single letter P or R is displayed in any one of the squares for a

timed duration of 500 milliseconds. The inter-stimulus interval between each letter being

displayed is 1500 milliseconds. For the first condition P-Go, participants were asked to

respond by clicking a button when they spotted the target letter P and at the same time

they were asked to hold back their response to the non-target variable R [267]. The ratio

proportion of letter P to R, described under the P-Go condition was 80:20 and the total

number of trials for this condition was 160. The second condition was a reversal condition

called R-Go, where the participants were asked to respond by clicking a button when they

spotted the target letter R and withhold their response to the non-target letter P. The

ratio of targets to non-targets stayed the same as in condition P-Go. The P-Go and the

R-Go conditions together were made up of 320 trials (160*2). Before taking the Go/No-Go

test, the participants were allowed to take a brief practice session to ensure everyone

understood how the test worked and what they were required to do. The behavioural

performance of the test was evaluated by calculating 4 metrics in each condition: a. Correct

responses to target b. Errors of omission c. Errors of commission d. Correct rejections to

the No-Go letter. These typically represent sensitivity, specificity, F-score and precision. In

addition to these metrics, reaction time (RT) to the Go letter was assessed and computed

for the participants. RT stores the reaction time to the stimuli, irrespective of it being a

correct response or an incorrect response. Where the reaction time is 1452 ms, it shows

that this is the largest response time which identifies participants’ inaction (No Response

cases). The minimum and maximum reaction of Go/No Go test reaction time data can be

analysed with omission and commission errors (see Figure 3.4). In this section, we focus on

analysing the distribution of participants’ reaction time. We examine some widely used

existing methods to describe the distribution of reaction time data. We propose the use of

Gamma distribution to describe neurocognitive reaction time data.
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Figure 3.4: Minimum and Maximum Reaction time and relation to error types

3.3.1 Existing methods and their limitations

In this section, we present some of the well-known methods which are widely used to

describe the distribution of reaction time data. We also discuss and highlight the limitations

of these methods in representing neurocognitive data sets.

3.3.1.1 Mean based ANOVA analysis

Analysis of reaction time data is usually carried out using statistical methods such as

Analysis of Variance (ANOVA) on the sample mean which assumes that the distribution of

the reaction time data is normal. Recently, Moniz et al. [269]. aimed to present the results of

normative data to study Executive Functions (EF), to identify the influence of variable age

in reaction time concerning response inhibition and attention, using ANOVA. However, the

approach is limited since reaction time data as generated by Psychological Go/No-Go tests

usually cannot be considered as normally distributed and hence, using statistical methods

such as ANOVA, can produce results that are not truly representative of the problem

conditions. Using hypothesis tests on data that are skewed or heteroscedastic, reduces

the power of these tests and can fail to detect a real difference between experimental

conditions [270].

In our study, the PEBL Go/No-Go tasks’ recognition reaction time data, for a typical

participant who undertook the ’Mindfulness’ program was examined. The Kolmogorov-

Smirnov test (KS-test) and Shapiro-Wilk test were done to test the normality of the collected

reaction time data for the 137 trials, using SPSS statistical software. The alpha level of

significance was set at 0.05. Probabilities > 0.05 mean the data are normal. Probabilities <

0.05 mean the data are not normal. Figure 3.5 illustrates the typical density distribution in

the form of a histogram of PEBL Go/No-Go test generated reaction time data for a sample
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Figure 3.5: Sample density distribution of PEBL Go/No-Go test reaction time data

participant. Figure 3.6 describes the SPSS output for test statistics. Two tests for normality

are run. If the dataset is small then we can use the Shapiro-Wilk test. For large datasets,

the Kolmogorov-Smirnov test is used. We have used the results of the Shapiro-Wilk test as

our data set contains just 137 trials.
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Figure 3.6: Results of Normality test

W is the test statistic and is given by W = (
∑n

i=1 aix(i))2∑n
i=1(xi − x̄)2

'Statistic' is the test statistic W for the Shapiro-Wilk test. 'Significance' is the significance

for the test, i.e., the p-value. The p value is <0.0 for the Shapiro-Wilk test, which is less

than 0.05 (the alpha significance level set prior to the test). Hence we conclude that

the sample data are significantly different from a normal distribution. From Figure 3.5,

it can be seen that reaction time data are not normally distributed but rises rapidly

on the left and typically has a long positive tail on the right. Reaction times of other

participants also mostly follow this shape, with a highly-skewed uni-modal distribution.

This is characteristic of the psychological reaction time task responses, such as in PEBL

Go/No-Go tasks, where participant’s reaction to a target is gathered within a range, e.g.,

between 350 MS to 600 MS, after which there are delayed reactions, that stagger the data

to have a long right tail. Reaction time can vary across trials for the same participant

under the same condition. Small values for reaction time could be a result of fast guesses

and very high values of reaction time could be because the participant was inattentive.

These reaction times can strongly influence the outcome of hypothesis tests. Reaction time

data has been commonly analysed using the mean and standard deviation. The mean

and variance in a normal distribution are not interdependent. When using ANOVA to

compare distributions between two experimental conditions, it would be hard to conclude,

whether a statistically significant difference arose from a real change in the means or in

the variances. In the context of reaction time generated from psychological tests, the mean

and standard deviations are not robust measures for analysing variations of reaction time

data of participants between experimental conditions, for the following reasons.

• Mean is not reflective of typical response if the distribution is skewed, because the

mean is distorted in the direction of the skewness
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• Standard deviation can be greatly increased by a relatively low number of slow

reaction time(s)

• when analysing reaction time between two or more experimental conditions, the

mean reaction time can be the same even if two populations are genuinely different.

This has been described in a scenario where the modal part of the distribution

can decrease in value while the number of data in the tails can increase, thereby

producing a null effect of the condition [270].

Hence, examining the mean alone could obscure interesting details, such as the behaviour

of fast and slow reaction times, across the conditions of an experiment.

3.3.1.2 Applying transformations

Where the reaction time data is not normally distributed, statistical methods such as

ANOVA cannot be applied directly even though these tools come with their limitations

as discussed in the previous section. One approach commonly applied by researchers is

to transform the reaction time data to follow a normal distribution such that statistical

methods such as ANOVA can be applied. With skewed data such as reaction time, data

transformations have the potential to lessen the impacts of skew by reducing the larger

values to a greater extent than smaller values. Care must be taken when transforming

reaction time data because it is possible to eliminate significant effects by transformation

and this, in turn, could lead to issues of interpretation after transformation [271]. Lo and

Andrews [272] have discussed the theoretical implications of applying transformation

on reaction time data generated from psychological studies. The study indicates that by

routinely applying transformations to yield the normal distribution required for Linear

Mixed Models (LMM), the researcher may ultimately fail to test their hypothesis, using the

dependent variable that underpinned their theoretical predictions. It also indicates how, to

interpret the results and compare with earlier published ANOVA data, the estimates are

often 'back transformed' to raw reaction time metric, which can be unreliable.

3.3.1.3 Ex-Gaussian distribution

The exploratory data analysis must be conducted on the whole distribution of reaction time

data to identify a parsimonious approximate description [270]. Some of these approaches

have been examined earlier with other kinds of data distributions that are not normal but

have not been specifically applied to reaction time data generated from the psychological

PEBL Go/No-Go tests under an experimental condition. Heathcote et al. [273] examine
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how analysis based on mean reaction time does not take distributions’ shape into account,

leading to obscure aspects of performance. In this study, the author has referenced the

work done by Hohle [274], where response time distribution has been described using a 3-

parameter model consisting of the convolution of the normal and exponential distributions,

the Ex-Gaussian. The use of Ex-Gaussian distribution was supported by the argument

that the duration of the decision process might be exponentially distributed and suggested

that the residual latency of the decision process might be approximately Gaussian. This

explanation appears valid in the given context where the reaction can be described as an

output that is generated when a system receives input and grinds it through a series of

discrete processing stages. In order to react, one needs to make a decision first which is

representative of one or more discrete processing stages. This process of decision making

can be viewed as exponential in nature. The residual latency of the decision process

is indicative of the output reaction time at the end of the decision-making stage. The

studies reported in [275] and [276] have applied Ex-Gaussian distributions and have

shown these to fit response time distributions well. The implementation of Ex-Gaussian

distribution using maximum likelihood estimation has been described in detail using

MATLAB in [277]. However, the reaction times being measured in the studies using the

Ex-Gaussian distribution are not necessarily from Psychology based tests but could pertain

to the analysis of reaction time in other domains. Sternberg [278] argues that this method

of modeling reaction time using Ex-Gaussian distributions may not be suitable for all

processes where reaction time is monitored. The author further explains that although

such a model can describe waiting times between initiation of independent telephone

calls in large parallel networks, or the times between decays among the innumerable

atoms in a lump of radioactive material, this model cannot be applied to describe the

mental process that accomplishes something using and building upon prior knowledge or

information stored in memory, unless all the work is done in an instant. This limitation is

attributed to the 'no-memory' property unique to the exponential distribution. Although

the Ex-Gaussian distributions cannot model all forms of reaction time, the Ex-Gaussian

distribution has two excellent properties; (i) it is well parameterised with location (shift)

parameter, a separate skew parameter as well as a scale parameter and (ii) it fits some

kinds of reaction times very well. However, the method is limited by the need to examine

the nature and context of reaction time data that needs to be analysed before applying this

distribution method.
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3.3.2 Proposed method to model neurocognitive reaction time

In order to analyse different other properties of reaction time distributions, different from

arithmetic means, Generalised Linear Models (GLMs) models were examined. The use of

GLMs allows statistical assessment on original reaction time metric and also helps to meet

the mathematical constraints set by the statistical model. The assumptions for GLM are

more relaxed compared to the strict assumptions laid out for LMM, which incorporates

ANOVA. For instance, by using GLM, response variables can follow error distribution

models other than a normal distribution. In a GLM model, each outcome Y of the dependent

variable is assumed to be generated from a particular distribution in the exponential family,

which includes the Gamma probability distribution.

As stated earlier, although GLM based on a family of exponential distributions including

Gamma distribution is used to analyse reaction time in other domains, they are not used

in psychology to analyse participants’ reaction time on neurocognitive tests. We propose

Gamma distribution for representing the distribution of recognition reaction time data,

produced from the PEBL Go/No-Go tests. As elaborated earlier, the primary motivation

to choose Gamma distribution to describe reaction time data is that it is more favorable

to describe reaction time data compare to the traditional Gaussian distribution or trans-

formations to Gaussian because mean and variance are both calculated from the same

shape and scale parameters whereas the mean and variance in Gaussian distribution

are not inter-dependent. This implies that as the means of the Gamma random variable

increases, its variance also increases. This property of a Gamma distribution provides

more confidence and power to use the distribution, to represent probability distributions of

reaction time data. We can further extend the analysis to compare the Gamma distribution

parameters between experimental conditions to tell whether the statistic test was signif-

icant enough. The Gamma distribution is defined as the sum of a series of exponential

processes. Each exponential process may have a different scale but the average scale of

the processes is captured by the scale parameter β. The shape parameter α reflects the

approximate number of exponentials contributing to the function [279].
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A random variable X that is Gamma-distributed with shape α and scale β is denoted

by:

X ∼Γ(α,β)

The density function [280] of the Gamma distribution is given by:

(3.1) f (x|α,β)= βαxα−1e−βx

Γα

for x > 0 and α,β > 0 , where Γ(α) is a complete Gamma function. The shape and scale

parameters are related to each other through the mean and variance of the Gamma

distribution.

(3.2) Mean =α∗β

(3.3) V ariance =α∗β2

3.3.3 PEBL Go/No-Go experiment study

The sample data used for studies here is the reaction time data generated from the

PEBL Go/No-Go test. This data was collected for 10 participants, 2 males and 8 females,

with a mean age of 36.2 years. The sample data was collected as part of a digital health

intervention program by School of Science, Psychology and Sport at Federation University;

from a group of Australian participants who subscribed to participate in this program

voluntarily. Participants were presented with a series of binary visual stimuli —the letter

R or P. The participants were asked to press a key when they saw the letter P which was

configured as the target stimuli for the experiment. Each participant underwent a total of

160 trials as part of round 1 (block 1) where target P was shown 80% of the times and 160

trials as part of round 2 (block 3) where target P was shown 20% of the times. The size of

PEBL Go/No-Go test trials was initially set to be equal (160 trials for each round) for each

participant.
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3.3.4 Analysis of reaction time data distribution

The pre-processing of data reduced the size of trials for the participants in each round

even though the size of PEBL Go/No-Go test trials was set to be equal for each participant.

The pre-processing was necessary to remove timeout data, i.e., reaction time data where

the timeout instances exceeded 1450 milliseconds. All analysis was conducted using the

Statistical Package for the Social Sciences (SPSS), version 23 and R, version 3.3.1. The

level of significance was set at p < 0.05. Exploratory data analysis was used to summarise

the descriptive statistics. Figure 3.7 illustrates the kernel density plots and their skewness

and kurtosis values for the 9 samples that were analysed for round 1 PEBL Go/No-Go test

trials. The density distribution plots clearly show that the participant reaction time data,

in most cases, is positively skewed. The data distribution is unimodal having one local

maximum except in one instance, for participant ID 679_1, where there are two peaks. The

skewness of reaction time data in the kernel density plots describes the measure of datasets

symmetry while the kurtosis of the reaction time distributions refers to the measure of

the combined weight of the tails relative to the rest of the distribution. The results of the

Anderson Darling normality tests reveal that in 9 out of 10 cases, the sample distributions

were not normally distributed (p-value was smaller than the alpha significance level set at

0.05). These 10 sample distributions were analysed for Round 1 of PEBL Go/No-Go test

trials.

In order to assess other properties of the reaction time data distribution, such as

skewness and kurtosis, we plotted the Cullen and Frey graph in statistical tool R. All the

10 sample distributions of reaction time data were analysed for round 1 and round 2 of

the PEBL Go/No-Go test trials. In total, we analysed the skewness and kurtosis of the

reaction time distributions for 20 samples. The R Cullen and Frey graphs were used to

visualise the likely distribution, the skewness and kurtosis followed. These graphs for the

sample data are shown in Figure 3.8 and Figure 5. The observation is depicted by a blue

circle that describes the likely distribution followed by the skewness and kurtosis of the

sample reaction time data. From Figure 3.8, we can see that 'Observation' on skewness and

kurtosis are more likely to follow a Gamma or a Weibull distribution for 7 out of 20 samples.

Although the 'Observation' in 9 samples fall under the range of a Beta distribution, as

described in Figure 3.9; this distribution belongs to a family of continuous probability

distributions defined in the interval [0,1], and hence does not suit our study of reaction

time data which can be any random positive number. The closest distribution for these

samples is the Gamma / Weibull distribution as seen from the Cullen and Frey graphs. Four
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samples examined fall outside the range of any descriptive distribution. As the next step,

we used the test statistic from the sample Kolmogorov-Smirnov test (KS-test) and Akaike

information criterion (AIC), to determine the most compatible distribution for our reaction

time data. The goodness-of-fit tests (in this case, KS-test) is used to indicate whether it is

reasonable to assume that the random sample of reaction times comes from the specified

Gamma / Weibull distribution. The AIC is a measure of the relative quality of statistical

models for a given set of data. Figure 3.8, lists the Gamma distribution parameters for

the populations’ samples, computed using Maximum Likelihood Estimation (MLE). An

alternative to the MLE is the Method of Moments estimation which is known to be a poor

estimator, owing to inefficiency, for small shape values [281–283]. The null and alternate

hypothesis for conducting the KS-test is stated as follows: H0: Sample data comes from the

stated distribution HA: Sample data do not come from the stated distribution The level of

significance was set at: p <0.05.
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Kernel density distribution plots 
673_1 

Skew: 1.1306 
Kurtosis: 1.2699 

P value of AD-test: 0.0002 

679_1 

Skew: 0.2183 
Kurtosis: -0.9377 

P value of AD-test: 0.00012 

678_1 

Skew: 0.4894 
Kurtosis: 0.1204 

P value of AD-test: 0.0235 

711_1 

Skew: 0.9095 
Kurtosis: 0.7475 

P value of AD-test: < 0.0 

712_1 

Skew: -0.0815 
Kurtosis: 0.7909 

P value of AD-test: 0.0002 

744_1 

Skew: 0.9629 
Kurtosis: 1.8890 

P value of AD-test: 0.0031 

732_1 

Skew: 0.3453 
Kurtosis: -0.1067 

P value of AD-test: 0.425 

733_1 

Skew: 0.5250 
Kurtosis: -0.8474 

P value of AD-test: 0.0028 

739_1 

Skew: 0.7708 
Kurtosis: -0.4149 

P value of AD-test: < 0.0 
738_1 

Skew: 0.6996 
Kurtosis: -0.4054 

P value of AD-test: < 0.00 

Figure 3.7: Kernel density distribution plot for reaction time data (Round 1)
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Cullen and Frey graphs describing distribution of skewness and kurtosis (Round 1 and Round 3) 
732_1 732_3 711_1 

673_1 678_1 744_3 

739_3 

Figure 3.8: Visualisations from Cullen and Frey Graph (Gamma/Weibull)
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Cullen and Frey graphs describing distribution of skewness and kurtosis (Round 1 and Round 3) 

673_3 678_3 712_3 

733_3 679_1 738_1 

711_3 739_1 733_1 

Figure 3.9: Visualisations from Cullen and Frey Graph (Beta distribution)
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Shape Rate AIC

One-

sample 

KS test

statistic

Shape Scale AIC

One-

sample 

KS test

statistic

356.5301 0.6442 Weibull

ID

1541.9170 0.0560 Gamma

744_3 136.2196 0.2397 352.8615 < 2.2e-16 12.4648 590.4582

353.9073 0.8317 Weibull

744_1 50.2101 0.0953 1502.9610 0.5504 6.3390 560.8972

1629.8370 0.0091 Neither Gamma nor Weibull

739_3 68.1439 0.1324 358.9912 0.3026 10.4674 540.0222

392.0527 0.0000 Gamma

739_1 36.0768 0.0822 1600.3410 0.0112 5.8631 471.8065

1619.4600 0.0310 Gamma

738_3 49.9565 0.0894 385.6924 0.9738 6.8326 594.1733

154.0669 0.6982 Gamma

738_1 24.5387 0.0508 1596.2200 0.0842 4.9433 525.0606

557.7254 0.0735 Gamma

733_3 22.9027 0.0388 153.2775 0.6219 5.2239 641.5653

417.4847 0.6055 Gamma

733_1 50.6413 0.1115 549.7175 0.2309 7.2329 483.2539

1637.4350 0.6868 Gamma

732_3 46.1180 0.0737 407.5460 0.8360 6.1565 667.8267

453.1952 0.2854 Weibull

732_1 31.8991 0.0601 1622.8390 0.7975 5.8809 570.6043

1612.2470 0.0790 Gamma

712_3 16.7876 0.0357 483.0640 0.0051 7.8300 498.6794

408.0075 0.5935 Gamma

712_1 37.7439 0.0940 1613.8370 0.4494 6.9533 428.1976

1634.8690 0.0367 Gamma

711_3 25.8948 0.0428 399.7757 0.6959 4.7449 656.7764

390.4055 0.3427 Gamma

711_1 27.3583 0.0521 1604.4030 0.4204 4.9638 569.2789

1696.7930 0.1157 Gamma

679_3 49.9474 0.0809 380.4244 < 2.2e-16 6.2800 657.3020

335.2543 0.6630 Gamma

679_1 17.6205 0.0271 1691.5870 0.2407 4.6517 710.3543

1446.8960 0.1511 Gamma

678_3 208.3214 0.3730 328.6786 0.7001 14.2221 577.4763

365.6816 0.8798 Gamma

678_1 67.7527 0.1324 1423.1180 0.4206 8.1031 540.0527

1567.3580 0.0124 Gamma

673_3 93.0714 0.1717 363.2773 < 2.2e-16 10.4457 567.4644

Gamma Weibull

Preferred distribution

673_1 52.9126 0.1169 1522.9580 0.0674 6.4652 481.9701

Figure 3.10: Computation of Gamma distribution parameters
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The results from the KS-test show that most samples of analysed reaction time data

are more compatible with Gamma distribution than with a Weibull distribution. Based on

the KS-test results, we can accept the null hypothesis that the sample reaction time data

follows Gamma distribution. The AIC values are also lower for a Gamma compared to the

Weibull distribution [284]. Based on KS-test and AIC values’ combined results, we can infer

that the Gamma distribution is well suited to represent recognition reaction time generated

from PEBL Go/No-Go test. The Gamma distribution is bounded on the left by zero. This

property is important for analysing the PEBL Go/No-Go test reaction times, as negative

reaction time is not a valid scenario. Hence, a distribution that excludes negative values

is readily applicable [170, 282]. The Gamma distribution offers a tremendous amount of

flexibility in the shape of the distribution function [170]. Moreover, this flexibility allows

the Gamma distribution to fit any reaction time data with reasonable accuracy, while

other distributions may fit only specific reaction time values. These reasons make Gamma

distribution useful allowing for a holistic analysis of the PEBL Go/No-Go test, reaction

time data.

Analysing the distribution of reaction time data helps discover hidden patterns that

are not visible using traditional approaches, e.g., the statistical methods such as ANOVA,

applying transformation, Ex-Gaussian methods or non-parametric testing methods. Based

on the research work presented in this study, we see that the recognition reaction time

data generated from the PEBL Go/No-Go test is compatible with Gamma distribution.

Modeling the data with Gamma distribution enables data to be analysed using interesting

distribution properties such as skewness and kurtosis. When the mean of the Gamma

random variable increases, its variance also increases. This property of a Gamma distribu-

tion provides more confidence and power to use the distribution, to represent probability

distributions of reaction time data. Future work can extend to include Gamma distribu-

tion of data to analyse any participant’s recognition reaction time changes before and

after a digital health intervention. Methods such as generalised likelihood ratio [285] and

Likelihood Ratio Tests (LRT) [286], can also be investigated to compare two samples that

follow Gamma distribution where the sample sizes are different and where the samples’

Gamma distribution parameters are unequal. Building upon the current work, we propose

to investigate methods such as parametric bootstrapping with Gamma prior, to transform

the data to a Gaussian form with bootstrapping, yet retaining the Gamma shape and scale

estimates to determine the change in mean or variance between the two distributions.
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3.4 Analysing the social data

In this section, we will focus on the social discipline of the Biopsychosocial model. Social

data was collected during the DHI program via

1. EMA (Ecological Momentary Assessment) surveys

2. Surveys using online questionnaires

EMA surveys collect real-time data based on repeated measures and observations that take

place in participant’s daily environment [287]. It involves the measurement of behaviours

and experiences in naturalistic settings [288]. In this form of a survey, users are repeatedly

prompted to report on their experience at fixed times per day [289]. The EMA data

collected is less susceptible to recall bias because of a lower reliance on the memory of

the participants [290] and this data can provide insights into time-varying dynamics of

behaviour and its correlates; and provides more ecologically relevant data [291–293]. The

affective mobile app data was a mixture of categorical and numeric data derived from

questions from the affective app survey. This data was highly dimensional; this was because

the number of records (around 5000) was in the same order as the number of features.

There was a strong temporal aspect to the data as all the emotion data was captured 5

times a day for 7 weeks. The exploratory data analysis of the EMA data revealed some

properties of this data collected as part of the social discipline of the ‘Wellness dataset’.

The findings of the exploratory data analysis are listed below.

1. Use of Likert values for responses on the slider scale: Slider scales are similar to

Likert scales with much more response categories. Instead of selecting one of the

response alternatives, respondents use a slider to position themselves on a certain

question. Slider scales were used to capture EMA survey responses during the DHI

program. Survey questions asked the participants to indicate their level of agreement

e.g., from strongly agree to strongly disagree, using the slider scale. The participants

scaled the responses to a 5 or a 10 point format. The measures generated from the

slider scales similar to Likert data; were ordinal, discrete and had a limited range.

Table 3.6 describes some sample EMA survey questions that used Likert values.

2. Scope for user errors on EMA survey data: The erroneous outliers for numeric type

responses were minimal for the affective data. There were only a couple of fields

(e.g., sleep duration and duration of time spent talking with people around), that

required free text numerical input from the user. All other values in the EMA survey

were choices built into the software. The questions requiring categorical responses
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allowed participants to skip questions and progress to the next survey question.

Non-responses to skipped questions were marked as missing values in the EMA

survey data. A few non-numeric, text-based fields were used to allow participants to

provide free text data that supported the participants’ responses at different points

in the EMA survey.

3. Missing values patterns in EMA survey data: The exploratory analysis of missing

patterns in the EMA survey data revealed three common missing data patterns as

described.

a) The EMA survey software required that participants submit a value on an

active survey session, so there were few missing values for the individual

features. Although the participants were prompted by the app five times a day

for the repeat survey question - ‘What is going on right now’; in most cases, the

participants chose to respond only once to this question. Not responding to one

or more survey questions was the most common data missing pattern, at the

record level.

b) The exploratory data analysis of the EMA data revealed a gradual declining

trend of responses to alerts over the 7 weeks during the DHI program. Most

participants actively filled out the surveys in the first week but the responses

were sparse over subsequent weeks due to the server being down, so no data

got recorded.

c) There were several missing values for subsequent survey questions in the

EMA survey responses, where the participant had reported a negative primary

emotion ‘sad’. A software error caused this issue.

d) The default value on the 10 point format slider, was set to 5. The EMA survey

software would not advance the page if the user did not move a single slider,

but many 5s were indicative of unanswered questions. Figure 3.11 describes

an extract of EMA survey data for a sample participant with unanswered

questions.
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Survey
question

Slider bar
grid

Likert scale
format

I am currently feeling..
0-extremely tired....

10-extremely energetic 10 point

I try and figure out or try to solve the
problem/issue

0-totally disagree....
10-totally disagree 10 point

Get emotional support from others
0-totally disagree....
10-totally disagree 10 point

Avoided things wanted/had to do
0-not at all....

5-a lot 5 point

Table 3.6: Sample EMA survey questions assessed on a Likert scale.

Figure 3.11: Sample EMA survey data of participant shows slider value unmoved from
default value 5 indicating unanswered questions in the EMA survey session.
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The participants of the DHI program took up surveys using online questionnaires at

three different points in time. During pre-intervention, the participants completed the

first online questionnaire that asked participants questions about their mental health and

wellbeing, how they deal with their emotions, how mindful and optimistic they are, and a

few questions about the demographics and the personality of the participants. During week

4 and week 8, the participants submitted the online questionnaire responses that included

the same set of questions about mental health and wellbeing. These online questionnaires

enabled the participant to assess and record their levels of emotions, negative feelings,

optimism and perceived ‘psychological stress’ level. Subsection 2.8.1, provides a brief

description of these scales. More details for these scales are described here.

• Perceived Stress Scale (PSS): It is the most widely used psychological instrument

for measuring the perception of stress [294]. It is a measure of the degree to which

situations in one’s life are appraised as stressful. The questions in this scale ask

participants about their feelings and thoughts during the last month.

• Depression Anxiety and Stress Scale (DASS): The DASS is a set of three self-report

scales designed to measure the negative emotional states of depression, anxiety and

stress [229, 230]. Each of the three DASS scales contains 14 items, divided into

sub-scales of 2-5 items with similar content. Scores for Depression, Anxiety and

Stress are calculated by summing the scores for the relevant items.

• Kessler scale (K-6): This scale is a simple measure of psychological distress [235, 236].

The K-6 is a 6-item inventory rated on a 5 point Likert-type scale. It is a truncated

version of the K-10 scale.

• Difficulty in Emotion Regulation Scale (DERS): The DERS is a brief, 36-item, self-

report questionnaire designed to assess multiple aspects of emotion dysregulation

[229, 230]. The measure yields a total score as well as scores on six scales (non-

acceptance, goals, impulse, awareness, strategies and clarity) derived through factor

analysis.

• Mental Health Continuum scale (MHC): The MHC scale measures emotional wellbe-

ing [231, 232]. The scale contained 14 items related to three dimensions of wellbeing:

emotional, social and psychological.

• Revised Life Orientation Test (LOT-R): This scale is a 10-item scale that measured

how optimistic or pessimistic people feel about the future [233, 234]. Respondents
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use a 5-point rating scale (0 = strongly disagree; 4 = strongly agree) to show how

much they agree with 10 statements about positive and negative expectations.

In addition to the responses to the above test scales, the participants also recorded self-

reported values for features such as Social support, Religiousness, Physical health, Mental

health and Quality of life. The responses were recorded as Likert values.

3.5 Conclusions from conducted experiments

The concise conclusions and findings of the experiments conducted in Section 3 are sum-

marised below.

1. The static analysis of the BDNF values pre and post interventions reveals that 83%

of participants had increased BDNF readings at the end of the physical activity

intervention compared to a 33% increase in BDNF for the mindfulness intervention.

The physical activity intervention showed stronger changes in BDNF compared to

mindfulness intervention at the end of the DHI program, as was hypothesised earlier.

The findings also revealed that, within the physical activity sub-group, for 66.67% of

participants, an increase in levels of BDNF showed a strong correlation with higher

LOT-R (measures optimism) test scores recorded during week eight at the end of the

DHI program.

2. The AUCG method is preferred over the AUCI method, to compute and apply a single

biological score to a set of four cortisol level readings recorded on a single day that

change over time.

3. The DHI program benefited the experimental group participants, particularly the

physical activity sub-group. This is evident from values of ‘peak heart-rate count’

which lie within a smaller range compared the control group.

4. The Gamma distribution is well suited to represent recognition reaction time gen-

erated from PEBL Go/No-Go test using interesting distribution properties such as

skewness and kurtosis.

5. Exploratory analysis of social data revealed properties of Likert values, scope for

user errors and missing value patterns in EMA data.
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3.6 Summary

The primary aim of the thesis work was to explore and discover relevant insights by con-

ducting a retrospective study and analysis of the existing Wellness dataset. As a first step,

to achieve this aim, this chapter has explored the salient features of the transdisciplinary

dataset generated by the ‘Wellness study’ DHI program. The data from three disciplines of

the Biopsychosocial model were independently explored and analysed using exploratory

and statistical tools. The study of salient features included examining the distribution of

different sub-sets of the wellness dataset. We used data aggregation tools to aggregate mul-

tiple measures of a single feature collected during the course intervention programs and

experiments to study the correlation of features between the biological, psychological and

social disciplines, impacted by the mindfulness and physical activity health interventions.

The biological data comprised the blood and cortisol data. The analysis of the biological

BDNF data generated pre-intervention and post-intervention revealed high BDNF levels

in participants at the end of physical activity intervention compared to the mindfulness

intervention. Participants with high BDNF measures also showed a strong correlation with

higher LOT-R test scores recorded for these participants during the same time frame. The

cortisol data analysis used the established AUCG method to aggregate the cortisol measures

and compute a single cortisol score from the set of 4 readings. Analysis of the physiological

data examined the various physiological features captured by the wearable device. In

contrast to the cross-sectional biological data, the physiological data was continuous in

nature. We analysed the heart-rate data in detail and a new metric, ‘heart-rate peak

count’ was proposed along with the new MedIQR method to analyse the distribution of the

heart-rate peaks, using range and IQR values. Analysis of the psychological data examined

the data generated from the neurocognitive tests conducted at the start and the end of

the DHI program. The three kinds of neurocognitive tests were the PEBL (Psychology

Experiment Building Language) based Go/No-Go test, Stroop test and the trail test. The

experimental study of psychological data revealed that recognition reaction time data

generated from PEBL Go/No-Go test is compatible with Gamma distribution. Modeling the

data with Gamma distribution enabled data to be analysed using interesting distribution

properties such as skewness and kurtosis. We analysed the social data by examining its

properties and their different sources such as EMA surveys and online questionnaires.

In the next chapter - Chapter 4, we examine the challenges in using the retrospective

wellness dataset in order to prepare it for statistical analysis.
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4
PRE-PROCESSING CHALLENGES OF WELLNESS DATASET

In the previous chapter, , we studied the salient features of the wellness dataset,

which comprised a. biological and physiological data, also known as biometric data,

b. psychological data and c. social data. In this chapter, we focus on the challenges of

using the real-time wellness dataset to prepare it for statistical analysis using statistical

procedures or ML methods. The activities described in this chapter can be mapped to

the Scrub and Explore phases of the OSEMN data mining process model. The chapter is

organised as follows

• Section 4.1 describes the challenge of missing data and their impact when pre-

processing data;

• Section 4.2 examines the missing pattern in physiological time-series data;

• Section 4.3 discusses the choices of imputation approach to impute missing time-

series data; and

• Section 4.4 summarises the chapter.

The psychological and social data, the two key components of the wellness dataset, were

cross-sectional in nature. These data were collected via biological and neurocognitive tests

and self-reported online questionnaires during the course of the DHI program. This set of

cross-sectional data comprising the biological and psychological data was collected for all

participants at multiple instances (Week 1, Week 4 and Week 8) during the program. The
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physiological data were collected in the form of long segments of continuous data and were

sourced from wearable sensor devices worn by the participants.

It was necessary to pre-process the wellness dataset to make it fit for downstream analy-

sis. The static analysis of the wellness dataset revealed the issue of missing observations.

Missing data can occur at the unit level or the item level [295]. An example of unit-level

non-response is when a participant refuses to undertake a test or declines to fill out a

survey. In this scenario, no information is collected from the participant, which results in

missing values for the entire test or survey. An example of item non-response is when a

participant misses completing some portions of a test or skips some questions in a survey.

In this scenario, partial information is collected from the participant, which results in

missing values for some aspects of the test or survey. At times, technical or system errors

also result in missing values, as all data from tests or surveys fail to be recorded. For the

purpose of this research, we prioritised analysing missing data due to item non-response.

Missing values in quantitative research lead to biased estimates, loss of information,

decreased statistical power and weakened generalisability of findings [295]. Missing data

can have a substantial influence on the results produced by statistical analysis. The manner

of influence varies depending on the how missing data are handled, but some bias always

occurs whenever data are missing. All biases inherent in incomplete data can seldom be

removed with any amount of statistical compensation. Paul D Allison [296] concludes that

a good solution to the missing data problem is not to have any. On the same subject, he

also acknowledges that perfectly complete datasets are highly probable when conducting

survey research on human subjects. Dong et al. [297] discuss missing data treatments in

their review of quantitative studies published in the Journal of Educational Psychology

between 2009 and 2010. The findings in this study indicate that several research practices

continued using data with missing values and did not explicitly acknowledge the presence

of missing data nor detail the approach used to deal with them. As far as possible, the

goal should be to minimise missing data; when the problem is inevitable, the dataset with

missing data must be closely examined for the missing data mechanism, rate of missing

data, missing patterns in data and data distribution before selecting a suitable method to

insert the missing data.
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The focus of this chapter is to study the challenges of using the real-time wellness

dataset to prepare it for statistical analysis using statistical procedures or ML methods.

We explicitly evaluate the impact of missing data problems and examine the conditions

under which they occur. We also examine the suitability and challenges of several known

techniques for handling missing values in the wellness dataset.

4.1 Data pre-processing and impact of missing data

The multidisciplinary wellness dataset used in this study had a large proportion of missing

data at the item level. This was particularly prominent in the physiological data collected

as long segments of continuous data sourced from wearable sensor devices. The amount

of missing data was directly related to the quality of statistical interference [297]. So far,

there is no established cut-off in the literature regarding an admissible percentage of

missing data in a dataset for valid statistical inferences. Some studies have noted that a

missing rate of 5% or less is inconsequential [298], whereas others have maintained that a

missing rate of more than 10% can lead to biased statistical analysis [299].

Missing data rate is just one of the many indicators for assessing the missing data

problem. Other indicators that have a greater impact on research results include missing

data mechanisms and missing data patterns [300].

4.2 Missingness pattern in physiological data

The static analysis of physiological time-series data revealed a large proportion of missing

data at the item level. The physiological data, also known as the sensor data, were collected

from the BASIS watches worn by participants during the course of the DHI program. This

sensor data collected were in real-life settings during the intervention. The physiological

data comprised heart-rate, accelerator magnitude, galvanic skin response, skin temperature

and steps and were classified by activity type. The presence of missing values in such real-

life sensor data is inevitable, as they are collected in real-life settings. The quality controls

that can be imposed on data collected in a controlled environment could not be imposed

in the real-life setting during the DHI program. Factors such as participant behaviour

(keeping the wearable device on during the intervention period), wearable device battery

life, device malfunctioning or system glitches preventing the reporting of measures from

the wearable device to the server system were the main causes of missing sensor data

collected as part of the wellness dataset. Using this sensor data with missing values would
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be unfit for research purposes and would severely affect the adoption of statistical or ML

methods that could be applied to these data for modelling.

To mitigate this risk, we quantified the impact of the missing data in the time-series

physiological data, proposing an imputation strategy that incorporates handling missing

data for physiological features in the wellness dataset. We analysed the pattern of missing

data for each of the physiological features, and this analysis guided the imputation strategy

used for the data. Table 4.1 shows a few entries of records from the physiological data ex-

tracted from the biopsychosocial data. Typically, a dataset in analytic form is characterised

as a rectangular matrix (with participants shown in rows and participant features shown

in columns) and the missing data are the elements not observed in this matrix, which are

marked by question marks in Table 4.1.

Table 4.1: Missing data matrix

Date Participant
id

Heart
rate

Accelerator
magnitude

Skin
temp.

Galvanic
skin

response

Activity
type Steps

17-Jan-2015 13:58:28 rctw111 75 4003.0 85.693 .00040 light activity .0
17-Jan-2015 13:58:29 rctw111 75 1570 85.693 .00040 light activity .0
17-Jan-2015 13:58:30 rctw111 ? 1060 85.693 .00040 light activity .0
17-Jan-2015 13:58:31 rctw111 ? 124 85.693 .00040 light activity .0
17-Jan-2015 13:58:32 rctw111 ? ? 85.693 .00040 light activity .0
17-Jan-2015 13:58:33 rctw111 ? ? 85.693 .00040 light activity .0

Missing physiological time-series data, such as heart-rate, accelerator magnitude, skin tem-

perature and galvanic skin response, are the consequence of a random process that can be

characterised by missingness models. We list three broad types of missingness mechanisms

[301], in order to examine the missingness pattern for our physiological time-series data.

1. Missing completely at random (MCAR): A variable is MCAR if the probability of

missingness is independent of any subject characteristics. Each participant during

the course of the DHI decided to remove or wear the wearable device that captured

the physiological data at their own wish, which was completely random. No biometric

data were recorded when the wearable device was removed.

2. Missing at random (MAR): A more general assumption, MAR, is that the probability

a variable is missing depends only on observed variables. Missing values for the

physiological features occurred because the wearable device was turned off by the

participant for a certain period. Here the missing values of the heart-rate or skin
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temperature features depended on the observed value of off, for the feature activity

level.

3. Not missing at random: Missingness is no longer ‘at random’ if its probability depends

on variables that are incomplete.

We conducted an experimental study on a sample subset of 10 participants and their

physiological data to examine their missingness patterns and determine the missingness

mechanism that can be applied to the time-series physiological data.

4.2.1 Experiment - missing data pattern

We used a subset of 10 participants belonging to either the mindfulness or physical activity

intervention groups for this experiment. This represents 10% of the physiological time-

series data that constitute the wellness dataset. During data collection, the physiological

time-series data were captured over an equidistant time interval of one second via the

sensor device. The features of heart-rate, accelerator magnitude, galvanic skin response,

skin temperature and steps are numeric and the classifying feature activity type is categori-

cal. The configuration of various values for the feature activity level was managed by the

company BASIS.

We performed a static exploratory analysis of each of the physiological features against

the four different values of the categorical feature activity type namely: inactive, light

activity, moderate activity, sleep. We left out the value off for the feature activity type, as

this refers to the condition in which the BASIS watch was switched off by the participant

and therefore did not record any physiological features. The missingness pattern for this

condition was invalid for our study. Table 4.2 describes the missing data pattern for the

subset of 10 participants used in the experiment.
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Table 4.2: Summary of missing data pattern (% of missing values)

Sample
Heart
rate

Accelerator
magnitude

Galvanic
skin

response

Skin
temp.

Steps
Activity

type

112 32.041 0.092 0 0 inactive

112 84.390 0.409 0 0 0.038 light activity

112 95.666 0.073 0 0.023 0 moderate activity

112 99.984 100 100 100 1.038 off

112 2.903 0 0 0 0 sleep

672 12.527 0.100 0 0.004 0.014 inactive

672 75.320 0.399 0 0.024 0.018 light activity

672 95.231 0.348 0.147 0.176 0 moderate activity

672 99.973 100 99.980 99.980 61.077 off

672 0.528 0.033 0.013 0.017 0 sleep

698 34.301 0.019 0 0 0 inactive

698 85.530 0.459 0 0 0 light activity

698 96.896 0.211 0 0 0 moderate activity

698 99.998 100 99.988 99.994 93.534 off

698 2.898 0 0 0 0 sleep

741 12.527 0.100 0 0.004 0.014 inactive

741 75.320 0.399 0 0.024 0.018 light activity

741 95.231 0.348 0.147 0.176 0 moderate activity

741 99.973 100 99.980 99.980 61.077 off

541 0.528 0.033 0.013 0.017 0 sleep

541 12.527 0.100 0 0.004 0.014 inactive

541 75.320 0.399 0 0.024 0.018 light activity

541 95.231 0.348 0.147 0.176 0 moderate activity

541 99.973 100 99.980 99.980 61.077 off

242 0.528 0.033 0.013 0.017 0 sleep

242 12.527 0.100 0 0.004 0.014 inactive

242 75.320 0.399 0 0.024 0.018 light activity

242 95.231 0.348 0.147 0.176 0 moderate activity

242 99.973 100 99.980 99.980 61.077 off

242 0.528 0.033 0.013 0.017 0 sleep

Continued on next page...

79



CHAPTER 4. PRE-PROCESSING CHALLENGES OF WELLNESS DATASET

Table 4.2 – continued from previous page

Sample
Heart
rate

Accelerator
magnitude

Galvanic
skin

response

Skin
temp.

Steps
Activity

type

673 12.527 0.100 0 0.004 0.014 inactive

673 75.320 0.399 0 0.024 0.018 light activity

673 95.231 0.348 0.147 0.176 0 moderate activity

673 99.973 100 99.980 99.980 61.077 off

673 5.563 0.471 0.199 0.219 0 sleep

698 34.301 0.019 0 0 0 inactive

698 85.530 0.459 0 0.068 0.045 light activity

698 96.896 0.211 0 0 0 moderate activity

698 99.998 100 99.988 99.994 93.534 off

698 2.898 0 0 0 0 sleep

113 29.712 0.214 0 0.014 0.014 inactive

113 76.683 0.808 0 0 0.058 light activity

113 90.118 0.868 0 0.457 0 moderate activity

113 99.991 100 99.989 99.989 83.837 off

113 2.249 0.249 0.120 0.120 0 sleep

739 38.809 0.198 0 0.012 0.015 inactive

739 90.072 0.350 0 0.035 0 light activity

739 95.478 0.452 0.155 0.388 0 moderate activity

739 98.785 100 99.663 99.663 14.478 off

739 4.606 0.122 0.051 0.073 0 sleep

4.2.2 Findings - missing data pattern

The static analysis of the missing data pattern of the physiological feature values reveals

the following findings.

1 An average of 2.6% of values is missing for the feature hear-rate when the activity type

is sleep. Other physiological features recorded no missing data for this condition. This

can be explained by the fact that in these instances, the participant had minimum
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activity owing to rest and there were minimum interruptions to the wearable device,

allowing it to remain in contact to capture the measurements (see Figure 4.1).

2 An average of 28% values is missing for the feature heart-rate when activity level is

inactive. An average of 90% of values is missing for the feature heart-rate when the

activity level is moderate active or light active. These could pertain to the technical

issues with the wearable device that failed to save the feature values to the upstream

server system during end-of-day reporting. (see Figure 4.2, 4.3, 4.4).

3 The percentage of missing data for other physiological features when activity type is

inactive or moderate activity is minimal.

4 There is a strong correlation between the missing data pattern of the features heart-

rate and accelerator magnitude when activity level is sleep or off. There is potential

for correlation between observations with time-series sensor data such as this, where

the feature values were collected at adjacent time periods.

5 The missing data pattern shows that the dataset is connected. Any observed data

point can be reached by correlating other features through a sequence of horizontal

or vertical moves. For example, heart-rate can be correlated to the features activity

level or accelerator magnitude. This indicates that the physiological time-series data

can be analysed as multivariate.

6 The missing data pattern for the sample set of 10 participants reveals that the timing

of missing data for the different variables is informative for the imputation problem.

This implies that the probability of a data value missing for a variable is the same

only within groups defined by the observed data. For example, the missing values

of the variables heart-rate, accelerator magnitude, skin temperature and galvanic

skin response can, for a period, be explained by the value off against the correlated

variable activity level. Therefore, the missingness pattern in this data is MAR.
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Figure 4.1: Missing data pattern for sample participant where activity level = sleep

Figure 4.2: Missing data pattern for sample participant where activity level = inactive
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Figure 4.3: Missing data pattern for sample participant where activity level = light activity

Figure 4.4: Missing data pattern for sample participant where activity level = moderate
activity
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4.3 Choice of imputation approach

In this section, we first discuss the imputation methodology of some well-known imputation

approaches with respect to their application to the wellness dataset. These approaches

include the classic multivariate method of multiple imputation (MI) and the univariate

method of Kalman filtering. We examine the suitability and discuss the challenges of both

these methods with respect to their application to time-series physiological data sourced

from wearable devices.

From the static analysis of the wearable sensor data and the missing data patterns

revealed earlier, we can infer that the data are connected and can be treated as multivariate.

Further, the missingness pattern of the physiological data, is found to be MAR. Although

we see a huge percentage of missing values for heart-rate when activity level is inactive

and moderate activity, these values can be imputed by correlating the adjacent feature

values for the same timestamps using the multivariate data imputation approach or by

correlating the historical and future values of the feature on the longitudinal timeline

using the univariate data imputation approach if the former approach is not found suitable.

The following sections 4.3.1 and 4.3.2 examine the multivariate and univariate imputation

algorithms for the different physiological features.

4.3.1 Multivariate data imputation approach

MI for missing data is an attractive method for handling missing data in multivariate

analysis [301]. Using MI on the physiological data can provide unbiased estimates for the

missing values. The static data analysis of the physiological data of the studied samples

in the previous section supports the assumption that the missing data are MAR. Under

MAR, the MI approach seeks to retain the advantages of maximum likelihood while also

allowing the uncertainty caused by imputation, which is ignored in single imputation, to

be incorporated into the completed data analysis. The MI method involves creating more

than one set of replacements for the missing values based on plausible models for data,

therefore generating multiple completed datasets for analysis. The statistical reasoning

behind MI is that the observed data likelihood can be approximated by the average of the

completed data likelihood over unknown missing values [302]. However, a multivariate

imputation approach such as MI cannot provide an accurate imputation for a variable

when missing values for other correlated variables used for imputation occur at exactly

the same time intervals.
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The physiological data extracted from the wellness dataset contain long periods of

interruptions caused by sensor errors (e.g., wearable malfunction) and inconsistent data

collection periods (e.g., wearing behaviour and varying compliance by participants) [303].

Such interruptions in physiological time-series data degrade the performance of inference

that relies on the complete dataset. Long periods of interruption in the physiological

time-series data present a major challenge in the application of multivariate imputation.

To overcome this challenge, we used sequences of well-defined lengths of 20 minutes of

physiological time-series data for this research.

4.3.1.1 SPSS MI imputation

We applied the SPSS MI function to 20-minute sequences of time-series physiological data

to impute values for the feature heart-rate for a sample participant. Three imputations

sets were generated. The MI imputation method used was Fully Conditional Specification

with 10 iterations. The imputation sequence was set in the following order: galvanic skin

response followed by skin temperature, steps, accelerator magnitude and heart- rate. The

linear regression imputation model is used by the MI method. The MI method uses the

linear regression imputation model. The SPSS MI imputation method imputed implausible

missing heart-rate values that were not useful for statistical inferences (see Figure 4.5).

The imputed values of heart-rate varied drastically over one-second intervals, which is not

reasonable compared to previous and future original heart-rate values measured over time.

This is because the MI method works by imputing the missing values multiple times and

then consolidating across imputed datasets to account for variation within and between

imputations, reflecting the fact that imputed values are not the known true values. Further,

the MI method is based on assumptions relating to the distributional form of the variables

and generally assumes a joint multivariate normal model for the continuous variables.

Figure 4.5 shows the imputed values generated by the SPSS MI imputation function for

the missing values of heart-rate. Therefore, the multivariate imputation method of SPSS

MI is not found suitable for imputation of physiological data values. In the next section,

we examine the univariate data imputation approach to correlate the historical and future

values of the feature heart- rate on the longitudinal timeline.
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Figure 4.5: Extract of implausible heart-rate values imputed by SPSS MI method

4.3.2 Univariate data imputation approach

Here, we examine use of the na_kalman function to impute missing values on structural

time-series model of the physiological data is examined. The na_kalman is an imputation

algorithm and is available in the imputeTS package in R. Kalman filtering provides es-

timates of unknown variables given the measurements observed over time. To use the

na_kalman function, each feature of the physiological sensor dataset is treated as univari-

ate time-series data and the function handles missing values in the sample observations.

4.3.2.1 R-Kalman filter

The static analysis of the physiological time-series data shows a very high percentage of

missing values for the feature heart- rate under the conditions light activity [84%] and

moderate activity [95%] for the feature activity type. Kalman filtering is not considered

suitable as an imputation method for feature heart-rate because of the large period of

missing values. The univariate imputation method of linear trend is suitable for imput-

ing missing values for the feature heart-rate. Kalman filtering is suitable for the other

physiological features that contain smaller periods of missing values. To examine the

suitability of the na_kalman function for the remaining physiological variables, we used

the time-series structural model fitted by the ML function and passed it to the na_kalman
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function to impute missing values for the physiological features: accelerator magnitude,

galvanic skin response, skin temperature and steps. The imputed values for accelerator

magnitude, galvanic skin response, skin temperature and steps are visualised in Figures

4.6, 4.7, 4.8 and 4.9. Visual inspection of the figures indicates that the imputed values

(shown as red dots) fit well in the univariate time-series data for the different physiological

features. Therefore, the na_kalman function is found suitable for imputing values for the

physiological features accelerator magnitude, galvanic skin response, skin temperature and

steps.

4.3.2.2 Combining univariate imputation methods

The na_kalman function, although suitable for most physiological features, is not appro-

priate for use on the feature heart-rate, which has long periods of missing values. We

examined other univariate imputation methods for this feature and found that linear trend

and linear interpolation are most suitable under this condition:

• The linear interpolation imputation method uses the last complete observation value

before the missing data and the first complete observation value after the missing

data to impute the missing values. If the first and last observations are missing in the

set, imputation fails [304]. For each 20-minute sequence of time-series physiological

data, we used linear interpolation to impute missing values for the feature heart-rate

where the missing values occurred in between the sequence. Where the missing

values occurred at the start or end of the 20-minute sequence, we used the linear

trend at point imputation method.

• The linear trend at point imputation method consistently determines the missing

values in accordance with the trend of the current structure (e.g., a trend could be

that the values tend to increase from the first subject to the last). The missing data

are placed into the values decided in an index variable where the sets are scaled

from 1 to n [304]. We used the linear trend at point imputation method to impute

missing values occurring at the start and end of the 20-minute sequence.

The combination of the univariate imputation methods na_kalman function and linear

interpolation and linear trend at point were used as the imputation approach to handle

missing values for the feature heart-rate.
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Figure 4.6: Imputation - accelerator magnitude

Figure 4.7: Imputation - galvanic skin response
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Figure 4.8: Imputation - skin temperature

Figure 4.9: Imputation - steps
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4.4 Summary

This chapter has highlighted the challenges of data pre-processing. We focused on the

problem of missing data, particularly within time-series data, during data pre-processing

and their impact on research analysis. We examined the suitability and challenges of

multivariate and univariate imputation methods, considering the specific case of the

physiological time-series data derived from the wearable device as part of the DHI program.

We observed that the multivariate imputation method SPSS MI does not provide accurate

imputation for missing features if the correlated variables available for imputation are also

missing at exactly the same time intervals. As a result of this limitation, the generated set

after imputation is incomplete with missing values. Most real-world time-series data, such

as the assessed physiological data obtained from wearable devices, are affected by large

intervals of missing values. The findings from the studies conducted reveal that the MI

imputation method failed to impute the plausible values of missing heart-rate on short,

well-defined lengths of uninterrupted data, as the original MI approach assumes a joint

multivariate normal for continuous variables. Therefore, a multivariate imputation method

such as SPSS MI was found unsuitable for adoption as an imputation method for the

physiological time-series data that constituted the complex wellness dataset. Conversely,

the univariate method using the na_kalman function was found suitable, as it imputes

plausible values in conditions with smaller periods of missing values for the continuous

variable. This method of imputation is not suitable for data with large quantities of missing

values, as seen in this study for the feature heart-rate. In this scenario, the na_kalman

function did not provide a complete imputed set of values, as Kalman filtering relies

on neighbouring values observed over time. To overcome this limitation, the univariate

methods of linear trend at point and linear interpolation were used to impute the missing

values in conditions with longer periods of missing data for the feature heart-rate occurring

at the start, end or middle of the 20-minute time-series sequence.

In the next chapter, we exploit the insights developed in this chapter to explore the

statistical and ML methods for examining possible contributory connections between

the different biopsychosocial features of participants in the DHI program. We use the

physiological time-series data that was made ready by imputing missing values using

the data imputation approaches discussed in this chapter. We explore building prediction

models using nonlinear classifiers on the biopsychosocial data to compare and evaluate

the interventions. We also explore building a prediction model using ML and ANN for the

physiological time-series data.
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5
A MACHINE LEARNING APPROACH FOR BIOPSYCHOSOCIAL

WELLBEING

In the previous chapters, we have studied the salient features of the wellness dataset

(produced from the ‘Wellness study’), examined ways to pre-process the raw data,

and adopted suitable methods to reduce dimensionality prior to data analysis. We

further analysed the missing data problems and the conditions under which they occurred,

examined the principled methods suitable to handle the missing values in the wellness

dataset and assessed the challenges in doing so. As mentioned earlier, the orchestration of

this research closely follows the OSEMN process [75, 158] (see Section 2.4). After obtaining,

exploring and scrubbing the unique wellness dataset, as a next step, we will model the

data for our particular biopsychosocial problem and further evaluate the model using

performance metrics. Doing so will enable us to interpret the results from the model

and data. In this chapter we present the results of applying ML techniques to perform

predictive analytics on the ‘Wellness dataset’.

Predictive analytics, a part of data analytics uses data mining and probability to predict

results. In predictive analytics, each model is built using a number of predictors and these

predictors strongly determine the future decisions made by the predictive model. As part

of the data mining process, we pre-processed the ‘Wellness dataset’ and explored it using

statistical tools (see Chapters 3 and 4). In this chapter, we will explore statistical and

ML methods on the processed data to examine possible connections between the different
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biopsychosocial features for digital and mental health interventions (see Section 2.9),

identify trends in data and design models that can estimate future conclusions. We will use

supervised learning on the real life ‘Wellness dataset’, build a prediction model to predict

features of interest such as levels of positive or negative affective states as reported by the

different scores such as DASS and DERS and predict the primary emotion for a participant

based on the participants’ wearable sensor data. Finally, we will evaluate the performance

of the model using prediction metrics such as training and validation accuracy. The rest of

this chapter is organised as follows:

• Section 5.1 investigates the relevance of ML for determining the suitability of a

participant into a DHI assignment based on existing biopsychosocial information.

We use different non-linear classifiers and compare their prediction accuracy to

evaluate their suitability to determine if biopsychosocial features can be used to

predict changes DASS scores;

• Section 5.2 investigates the suitability of RNN-LSTM to be applied for a multi-variate

time-series classification problem. In Section 5.2.4 we build an RNN-LSTM model

to predict DERS improvement affected by one of the two digital health interven-

tions (mindfulness or physical activity). The developed RNN-LSTM model is further

modified to predict primary emotion based on physiological features of the wellness

dataset (see Section 5.2.5); and

• Section 5.3 summarises the chapter.

5.1 Prediction model using non-linear classifiers

Health care providers use DHI programs to promote engagement within the community.

Effective assignment of participants into DHI programs helps increase benefits from

the most suitable intervention, such as mindfulness or physical activity. A significant

challenge with the roll-out and implementation of DHI is assigning participants into

the intervention that is most likely to be successful, based on initially available data.

Further, there is limited research evaluating or analysing DHIs using machine learning

tools, following the biopsychosocial model occurring in real-life setting. The use of the

biopsychosocial model [105] for this purpose is not wide-spread, due to limited personalised

interventions formed on evidence-based data-driven models. ML has changed the way data

interpretation works by involving methods that have replaced the traditional statistical

techniques. In this section, we investigate the suitability of ML for this purpose, study
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different non-linear classifiers and compare their prediction accuracy to evaluate their

suitability. Further, as a novel contribution, we use real-life biopsychosocial features as

input in this study. The results help in developing an appropriate predictive classification

model to assign participants to the most suitable DHI. We exploit the various input features

of the wellness dataset to evaluate different categories of popular classifiers and compare

their performance. This study paves the way for using historical biopsychosocial features

to a-priori predict a specific intervention type’s suitability for an individual participant.

5.1.1 Summary of study protocol

In this section, we describe the summary of the study protocol. The details of the ‘Wellness

study’ DHI program and its framework are described in Section 2.9. As mentioned earlier

(see Section 2.7), the wellness dataset was generated in a research environment, by the

School of Science, Psychology and Sport at Federation University, Australia in 2015.

Local Australian volunteers, aged between 19 to 59 participated in this experiment. The

program’s goal was to investigate which of the intervention groups’ participants benefited

from the interventions conducted. In this study, we analyse the wellness dataset and

identify which biopsychosocial features are suitable predictors of mental ill-health described

by the Depression Anxiety and Stress Scale (DASS) score. The participants were randomly

assigned to one of the two interventions in the experimental or control wait-list groups. The

participants in mindfulness or physical activity interventions undertook activities relevant

to that group, during the experiment period that lasted for 12 weeks. The participants

in both the intervention programs were examined for biological, psychological and social

conditions as part of various tests. At the start of the intervention, the participants were

given biological tests, neuro-cognitive tests, and survey questions that enable them to

assess their levels of emotions, negative feelings, optimism, and perceived ‘psychological

stress’ level. Scales, namely, Perceived Stress Scale(PSS), DASS (Depression Anxiety

and Stress Scale), Kessler scale (K6), Difficulty in Emotion Regulation Scale (DERS),

Mental Health Continuum scale (MHC) and Life Orientation Test (LOT), encapsulate

the test level values. At the end of the intervention, all the above mentioned tests were

repeated. The test level values were captured again. The biopsychosocial features used in

this study are divided into 5 main categories as described in subsection 2.8.1. The levels

and scores of all the biopsychosocial features are recorded. The DASS level measures

negative affect states, which include stress, depressive and anxiety symptoms (mental

ill-health). The DASS level is recorded at the start and end of the intervention period. In

addition to the biopsychosocial features, an additional feature ‘DASS label’ (see Figure 5.3)
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is computed for each participant based on the change in DASS level at pre-intervention

and post-intervention. DASS label Improvement is used if the DASS level at the end of the

intervention is less than the DASS level recorded at the start of the intervention. DASS

label No Improvement is used if the DASS level at the end of intervention remains the

same or is greater than the DASS level recorded at the start of the intervention.

5.1.2 The method

We propose to apply a score to each biopsychosocial feature during analysis to enable:

1. applying a single biological score to a set of four cortisol level readings recorded on

a single day that changed over time. Since the cortisol readings were taken at four

different times during the day, we put together the four readings’ values to compute

one single cortisol reading that would represent the biological score

2. regularizing the scores for the different biopsychosocial features to make them

consistent; to be used within classifiers as input features

3. computing correlation coefficient on a 2-dimensional scale. We do this to determine

the extent of correlation between the scores from the three disciplines of the wellness

dataset generated from the ‘Wellness study’.

The output DASS score and the input biopsychosocial features are applied for comparing

the ten classifiers mentioned below. Following are the salient factors related to the proposed

approach for DHI data analysis.

5.1.2.1 Cortisol readings

Cortisol is a steroid hormone that regulates a wide range of processes throughout the body,

including metabolism and immune response, and helps the body respond to stress. The

drool method (a method used to collect oral fluid for biological testing) is used for data

collection of cortisol levels. As we aim to develop a predictive model using data available

prior to the intervention, only the week 1 cortisol readings are used in this study. The 4

readings denoted by S1 (20 mins after wake), S2 (60 mins after wake), S3 (midday) and S4

(evening) are recorded. We propose to use the AUCG [251] method to compute the single

cortisol score from the set of 4 readings.
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5.1.2.2 Feature scaling

The wellness dataset contains 18 features. We will normalise each feature value (excluding

gender and age) by linearly re-scaling the data values using the observed minimum and

maximum values for that feature across the entire dataset, into a new arbitrary range of 0

to 1. The formula for scaling is given by:

( f eatV al−min( f eatV al1 : f eatV aln))
(max( f eatV al1 : f eatV aln)−min( f eatV al1 : f eatV aln))

where featVal refers to the feature value, min is the minimum observed value of the feature

and max is the maximum observed value of the feature.

5.1.2.3 Trail test reaction time

The trail test reaction time data was generated from PEBL [244] tests. IIn our earlier

research [305], we had established that a Gamma distribution best represents neurocog-

nitive reaction time data. In this chapter, we use the Gamma Cumulative Distribution

Function (CDF) to analyse trail test reaction time data.

5.1.2.4 Correlation between features

The wellness dataset used for this study is rich in variety, and with high dimensionality

(consisting of 18 input features). However, the number of samples used for the study is

limited due to missing data. Given the nature of the dataset, imputation of missing data is

very challenging, and it can result in unreliable imputed values. We analyse the correlation

between the three biopsychosocial disciplines using the Pearson correlation coefficient. The

Pearson coefficient, ρ, is computed as follows:

ρ = cov(X ,Y )
σxσy

For sampled data, the sample Pearson’s correlation coefficient r is given by:

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

To explore the relationship between biological, psychological and social measures, the
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set of 18 feature scores (see Table 5.1) are reduced to 3 feature scores; one for each disci-

pline (i.e., biology, psychology and social). A single mean score for each discipline of the

‘Wellness dataset’ is computed using the features scores’ simple average. The mean scores

for each biopsychosocial dimensions are used to explore the relationship between them and

the DASS result at the end of the mindfulness intervention.

Table 5.1: Summary of 18 input feature data used

Demographic
features

Biological
features

Psychological
features

Social
features

Age Cortisol level Go / No Go test mean accuracy DERS
Gender Trail test total time MAAS

Stroop test total errors DAAS
MHC
LOT-R
K-6
PSS
Social support
Religiousness
Physical health
Mental health
Quality of life

5.1.2.5 Classification

We evaluate ten popular classifiers to ascertain which set or subset of biopsychosocial

features affect the participants’ mental ill-health as the DASS score; at the end of the DHI

program. These classifiers are Support Vector Machines (SVM), decision trees, random

forests, logistic regression, Naìve Bayes, Stochastic Gradient Descent, Linear Discrimi-

nant Analysis, Extra Tree classifier, Bagging classifier and Neural net. We choose these

classifiers because they are robust to small datasets. The following are key considerations

for configuring the classifiers:

1. Classifier parameter optimisation: We use the grid search function to scan the dataset

to configure optimal classifier parameters. We use the Python GridSearchCV function

for classifiers: SVM, decision trees, random forests and neural net.

2. Number of hidden layers and nodes in neural network: We propose to use one hidden

layer to keep the classifier model simple while still allowing the data points to be

separated non-linearly. We use the same number of nodes for the neural net classifier

as the number of input features. This decision is made based on test runs carried
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out on the neural network classifier with a different number of nodes on the hidden

layer. In the test runs, the highest prediction accuracy is seen when the number of

nodes is the same as the input features.

5.1.3 Experimental studies

In this section, we first carry out a scatter plot analysis to examine if a correlation exists

between the different biopsychosocial features. Subsequently, we apply the ten popular

classifiers to the wellness dataset,okp for their comparative evaluation.

5.1.3.1 Dataset

The following table 5.2 describes the participant dataset used for this study. The dataset

of 18 participants (11 from the mindfulness program and 7 from the physical activity

program) is expanded to 90 samples, using data augmentation by introducing noise around

each feature data point.

Table 5.2: Data summary

Mindfulness
program

Physical activity
program

Number of participants 11 7
Number of features 18 18
Binary classification group 1 Improvement in DASS Improvement in DASS
Binary classification group 2 No Improvement in DASS No Improvement in DASS

5.1.3.2 Scatter plot analysis

The correlation between the mean scores in each of the biopsychosocial dimensions is

described using scatter plots. The Pearson correlation coefficient value r is computed.

The correlation scores for the different dimensions of the wellness dataset,okp[], are

summarised in Table 5.3. The input features occurring in each dimension are listed in

Table 5.1.

The following conclusions are drawn from the scatter plots:

1. For participants in the mindfulness intervention, who showed an improvement in

DASS score, there was a moderate positive correlation between mean biological

and mean psychological scores (see Figure 5.1). The correlation coefficient is given
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Table 5.3: Correlation scores (Figures in bold indicate significant values)

DASS label Dimensions compared Pearson correlation
r

Improvement bio and psycho 0.55783
No improvement bio and psycho 0.3880
Improvement psycho and social 0.4079
No improvement psycho and social 0.4580
Improvement bio and social 0.4079
No improvement bio and social 0.4580

by r=0.55783 This indicates that both biological and psychological features are

good predictors to describe Improvement in DASS score in the case of mindfulness

intervention.

2. No linear correlation exists between mean biological, psychological and social scores

within the wellness dataset, to indicate any DASS score Improvement or No Improve-

ment (see Figure 5.2).

Figure 5.1: The figure describes the correlation between biological and psychological
features seen amongst participants in the mindfulness intervention to indicate

Improvement in the DASS score (moderate positive correlation between mean biological
and mean psychological scores)

Although scatter plots are a good tool to visualise linear relationships in a static manner,

they cannot reveal the non-linear relationships between features in multiple dimensions. In

98



CHAPTER 5. A MACHINE LEARNING APPROACH FOR BIOPSYCHOSOCIAL
WELLBEING

Figure 5.2: The figure indicates no linear correlation between biological, psychological and
social features seen amongst participants who showed DASS Improvement, or No

Improvement. The values on axes are from 0 to 1 (normalised and re-scaled).

our pursuit to study the influence of the biopsychosocial factors to assign participants into

effective DHIs in future, we compare different non-linear classifiers and ascertain which

set or subset of these biopsychosocial features affect mental ill-health of the participant,

measured by the DASS score. The prediction accuracy of these classifiers is compared

based on the predicted output DASS score and the input biopsychosocial features.

5.1.3.3 Comparison of classifiers

We compare 10 non-linear classifiers to determine the underlying relationship between the

biopsychosocial features. The application of ML methods on the real-life biopsychosocial

data (referred to in this thesis as wellness dataset) has not been done before and is unique

to this study. The wellness dataset in this study was gathered using a structured DHI

program and this adds credibility to this unique data. The present study uses the wellness

dataset of 18 participants assigned to the mindfulness program and the target label used

is: Improvement or No Improvement in DASS score. The DASS score describes wellbeing

stress broadly in the dimensions of depression, anxiety and stress. The DASS score is

chosen as the target label as it is more appropriate than other biopsychosocial features

available for this study. Figure 5.3 is a snapshot of the table that shows the values of

different DASS dimensions that are used to compute the binary target label: Improvement

or No Improvement in DASS score.
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Figure 5.3: DASS score used as output label for the classifier.

We expand the dataset of 18 participants to 90, using data augmentation by introducing

noise around each feature data point. Each data point is surrounded by 4 noise data points

by adding and subtracting 10 % and 20% to the original data value. We train the classifiers

on the training set of 90 records (known observations for the biopsychosocial feature set

of the mindfulness group); using the Leave One Out (LOO) method. In using the LOO

method, along with the left out point, we also leave out the augmented data for the left out

point. Next, we test the classifiers on the unseen set of 16 records (biopsychosocial feature

set of the physical activity group), to determine the classifier’s prediction accuracy. The

classifiers use different combinations of input features from the wellness dataset to enable

a comparative study of their prediction accuracy. A comparative study of the classifier

prediction accuracy is provided in the following tables. Classifier prediction accuracy is

described as the ratio of the number of correct predictions to the total number of input

samples [306]. The classifiers classify the given set of samples into two groups: Binary

classification group 1 that describes the improvement in DASS and Binary classification

group 2 that describe no DASS improvement. Interesting influences of the biopsychosocial

features on the classifiers are described below.
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Table 5.4: Classifiers using 18 biopsychosocial features as input and their prediction
accuracy. (Figures in bold indicate significant values)

Classifier Feature
count

Prediction accuracy
Physical activity group

Prediction accuracy
Mindfulness group

Neural net 18 0.4375 0.38889
Bagging classifier 18 0.4375 0.55556
Extra test classifier 18 0.625 0.55556
Linear discriminant analysis 18 0.625 0.44444
Stochastic gradient descent 18 0.5625 0.5
Naìve Bayes 18 0.4375 0.38889
Logistic regression 18 0.5625 0.55556
Random forest 18 0.375 0.5
Decision trees 18 0.5625 0.61111
SVM 18 0.5625 0.61111

Table 5.5: Classifiers using 3 biological features (includes demographic features) as input
and their prediction accuracy. (Figures in bold indicate significant values)

Classifier Feature
count

Prediction accuracy
Physical activity group

Neural net 3 0.5625
Bagging classifier 3 0.5625
Extra test classifier 3 0.4375
Linear discriminant analysis 3 0.5
Stochastic gradient descent 3 0.3125
Naìve Bayes 3 0.4375
Logistic regression 3 0.5
Random forest 3 0.5
Decision trees 3 0.4375
SVM 3 0.4375
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Table 5.6: Classifiers using 5 psychological features (includes demographic features) as
input and their prediction accuracy. (Figures in bold indicate significant values)

Classifier Feature
count

Prediction accuracy
Physical activity group

Neural net 5 0.5
Bagging classifier 5 0.5
Extra test classifier 5 0.5625
Linear discriminant analysis 5 0.5
Stochastic gradient descent 5 0.5625
Naìve Bayes 5 0.5
Logistic regression 5 0.5
Random forest 5 0.5625
Decision trees 5 0.5625
SVM 5 0.5625

Table 5.7: Classifiers using 14 social features (includes demographic features) as input and
their prediction accuracy. (Figures in bold indicate significant values)

Classifier Feature
count

Prediction accuracy
Physical activity group

Neural net 14 0.5625
Bagging classifier 14 0.5625
Extra test classifier 14 0.5
Linear discriminant analysis 14 0.4375
Stochastic gradient descent 14 0.375
Naìve Bayes 14 0.375
Logistic regression 14 0.4375
Random forest 14 0.5
Decision trees 14 0.5
SVM 14 0.5625
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Table 5.8: Classifiers using combinations of biopsychosocial features (includes
demographic features) as input and their prediction accuracy on the unseen test set

(physical activity group). (Figures in bold indicate significant values)

Classifier Bio and Psycho Psycho and Social Social and Bio

Neural net 0.5625 0.5625 0.5625
Bagging classifier 0.5625 0.375 0.3125
Extra test classifier 0.4375 0.5625 0.4375
Linear discriminant analysis 0.5625 0.5 0.4375
Stochastic gradient descent 0.5 0.5 0.4375
Naìve Bayes 0.375 0.4375 0.4375
Logistic regression 0.5 0.3125 0.375
Random forest 0.375 0.43755 0.4375
Decision trees 0.375 0.4375 0.4375
SVM 0.5625 0.5625 0.5625

1. Table 5.4 shows that the majority of classifiers perform better than a random predic-

tion accuracy of 50%; when all the biopsychosocial features are used for training the

classifier. Extra tree classifier and linear discriminant analysis show high prediction

accuracy for mindfulness intervention (at 62.5%). Decision trees and SVM show high

prediction accuracy for the physical activity intervention (at 61.1%).

2. Table 5.5 and Table 5.7 show that fewer classifiers perform reasonably when only

the biological features or only social features are used for training the classifier.

3. Table 5.6 shows that more number of classifiers (5 out of 10) perform fairly when only

psychological features are used for training. However, the prediction accuracy of these

classifiers is lower (at 56.25%), compared to the case where all the biopsychosocial

features are used to train the classifier.

4. Table 5.8 shows that other combinations of biopsychosocial features used for training

the classifiers, do not result in higher prediction accuracy than what is achieved by

using all the biopsychosocial features for training the classifier.
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5.1.4 Analysis and discussion

The addition of data points using noise enabled us to effectively apply the classifiers,

reducing over-fitting and avoiding poor performance during testing. The additional data

points make the input space smoother and easier for training. Although the biological data

such as cortisol level was clinically obtained and was of good quality, the feature values of

social data, in the form of self-reported scores is subjective and only as good as the interest

level of the participant. The prediction accuracy of the classification model affected by the

sparsity of the wellness dataset and the quality of the feature values in the dataset, can

be further improved by improvements in field data collection techniques. The wellness

dataset used for this study, being from an earlier conducted DHI program, was collected

with a different objective to this comparative study. In this study, we have used the DASS

to measure mental ill-health health and examined the ML methods’ prediction accuracy

to predict which intervention is more suitable, based on the underlying biopsychosocial

features. Realizing that most/all the participants were not clinical, it is possible that little

changes can occur during the intervention period. The framework of the DHI program

that conducted the biopsychosocial tests partly focused on the DASS variables as part of

the social data collected in the form of Test scale levels. We can achieve the productive

use of the wellness dataset with more integrated tests spanning all dimensions of the

biopsychosocial model within the framework of DHI program.

This study used ML and non-linear classifiers on real-life biopsychosocial features, com-

pared their prediction accuracy and evaluated their suitability to a DHI. The experimental

studies indicated that while the methods such as scatter plots were unable to reveal the

linear relationship between the features of the ‘Wellness dataset’, the ML approach was

successful in identifying which features are appropriate as predictors of mental ill-health.

Prediction accuracy of classification models improved when all biopsychosocial features

are considered input features compared to using features from just one or two domains.

Classifiers such as extra tree classifier and linear discriminant analysis showed high

prediction accuracy (at 62.5%) in the mindfulness group. Decision trees and SVM showed

high prediction accuracy (at 61.1%) in the physical activity group. While the research work

focused on establishing the relevance of ML approach for DHI, the prediction accuracy can

be improved further by improved classifier design and data collection.
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5.2 Prediction model using RNN-LSTM

In the previous section, we recognised the power of ML methods using non-linear classifiers

to identify which features are appropriate as predictors of mental ill-health represented

by the DASS score. We chose the classifiers for the experiment based on their robustness

to small datasets. Most datasets generated from DHI programs have a small sample

size because the number of participants enrolled in these programs is limited. Small

sample sizes pose a challenge for finding statistically significant biopsychosocial markers.

The wellness dataset generated by the ‘Wellness study’ DHI program in this research,

is also marked by small sample size as they were a limited number of participants who

volunteered to participate in this program. Even though the wellness dataset is highly

dimensional, the small sample size of participants limits the application of statistical tests

at the participant cohort level for the two different types of interventions.

In contrast to this, the large sample size of time-series physiological data, collected

through the BASIS watch wearable sensor device, provides ample scope to examine ML

methods on this data. The physiological data used in this research is long segments of

continuous data over an equal time interval of one second, collected during the ‘Wellness

study’ DHI program. We will use multivariate time-series physiological data, a subset of

the existing wellness dataset, in the experiments described in this section. We will feed

this multivariate physiological time-series data as inputs to the ML algorithm to build the

analytical prediction model. To handle the large volume of time-series physiological data,

where data is intrinsically linked to the notion of time, the ML algorithm must understand

sequences (of time) instead of isolated samples.

In this study, we apply ANNs to analyse, model and interpret the time-series physiologi-

cal data. In the past, ANNs have widely been applied to real-world problems in areas of

business, education, economics and many aspects of life problems [307]. Most researchers

have used ANNs and ML successfully to solve classification problems [308, 309]. ANNs

are excellent identifiers of trends and patterns in data [310], and they are suited for fore-

casting and prediction needs. The choice of using ANN for our experiments was driven the

physiological time-series data representation and the nature of the problem being solved.

In the case of time-series data, the order of inputs is an important attribute as it is for

most sequential data.
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In ANNs such as feed forward neural networks (FFNN), information is transmitted only

in one direction from the input nodes, through any hidden nodes, and finally to output nodes.

Some examples of FFNNs are single-layer perceptron and multilayer perceptron. Although

FFNNs can acquire high predictive power with sequence data, using the overlapping

windowed dataset method, they are incapable of producing the same accuracy when the

input sequence is rearranged. This is because FFNNs do not distinguish the order within

the data and therefore miss some information. Therefore a neural network that can

remember the order of inputs is required. Recurrent Neural Networks (RNNs), a class

of ANNs, has a short term memory and supports the output of the previous state to be

fed as the input to the next state. These networks are called recurrent as they carry out

repeated tasks for every observation of the input sequence and the output relies on the

preceding computations. We can think of RNN to have 2 inputs namely the current and

the recent past and these inputs represented as a sequence, contain important information

to predict the future observation. This property of RNNs makes it powerful for modeling

sequence data such as time-series or natural language [311]. In our experimental studies

we are interested in using an internal state memory to process the sequential nature of the

time-series physiological data to predict features of interest that describe biopsychosocial

wellbeing such as Improvement or No Improvement on DERS and primary emotion. Hence

we will choose RNN for the experiments in our study.

Although RNNs can learn to recognise short-term time-dependent patterns and rela-

tionships, it is impractical to use standard RNNs to learn long-term patterns in data

sequences. This is because of the ‘vanishing gradient problem’ that occurs when, during

back-propagation, the loss function gradient becomes negligibly small after only a few

recurrences [312]. The nature of the physiological time-series data which is represented

in the form of long segments of continuous observations over a one second time interval,

demands storing of data observations for a long time and learning from long-term depen-

dencies. A type of RNN called RNN-LSTM is well suited for this requirement. RNN-LSTM

networks are a type of RNN that uses special units called ‘memory cell’ that can store

and maintain information in memory for long periods. This is in addition to standard

units of the RNN model architecture. The RNN-LSTM network uses gates to control when

information enters the memory, when information is output, and forgotten. The input

gate determines whether or not to let the new input in, the forget gate determines which

information to delete that is not important and the output gate decides what information

to output [313]. These three gates are analog and are based on the sigmoid function whose

range is between 0 to 1. This capability of RNN-LSTM enables the neural network to learn
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longer time dependencies compared to vanilla RNNs [312]. LSTM networks [312] have

been widely used in Natural Language Processing (NLP) and have achieved state-of-art

performance in sequence tagging tasks including Part-of-Speech tagging [314], Named

Entity Recognition [314] and Chunking. [315].

The RNN-LSTM network is well-suited to construct the predictive model for our ex-

perimental studies as it not only allows the model to treat the time-series physiological

data as sequential data but is also capable of remembering information for a long period.

The length of the physiological time-series data is 900 to 2520 times steps long and the

RNN-LSTM architecture is suitable to handle this length of time in a sequential manner.

We will conduct two experiments using the RNN-LSTM model on time-series physiologi-

cal data as input features. The first experiment will use the RNN-LSTM model to a priori

predict the likelihood of improvement of the negative affective variable DERS, prior to

participation in a DHI program. The outcome of this experiment can be used as guidance

to determine the group of participants, who are more likely to benefit from a similar DHI

program in the future, based on their physiological features before enrolment. The second

experiment will use the RNN-LSTM model to predict participants’ primary emotion at the

point in time, based on the wearable sensor device’s physiological features twenty minutes

preceding the reported time-stamp. Both the experiments will use classification models to

solve the time-series sequence classification problems. We will use supervised learning for

the experiments that operate on labelled data for training so that the model can predict

the class label for the unseen sequences in the test set.

5.2.1 Sequence classification and time-series data

The physiological time-series data collected from the BASIS watch wearable device is

sequential because the data is represented as an ordered list of events. There are two

approaches to analyse time-series data namely, sequence prediction and sequence classifi-

cation.

1. Sequence prediction: A problem in which historical sequence information is used to

predict the succeeding value or set of values in sequence, is called sequence prediction.

A sequence prediction problem differs from a supervised learning problem. It imposes

that the observations follow a well-defined sequence and this sequence be preserved

when training the model to make predictions. Sequence prediction is not a relevant

approach in the context of our experimental study, as we are not interested in
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predicting the future value of a physiological feature based on its historical sequence

information.

2. Sequence classification: This refers to a predictive modeling problem where a se-

quence of inputs is distributed over time or space. The aim is to predict a category or

class label for an input sequence. In this way, we build a classification model which

uses a labelled dataset so that the model can predict the class label of an unseen

sequence [316].

Our experiments described in this section will analyse the physiological time-series data

treating it as a sequence classification problem. This is because we are interested in

predicting a class label for the input physiological time-series data. As mentioned earlier,

we are also interested in storing the historical sequence information in the input time-series

data to make the class predictions.

5.2.1.1 Sequence classification

Sequence classification algorithms are broadly divided into two categories. They are binary

sequence classification algorithms (see Figure 5.4) and multi-class sequence classification

algorithms (see Figure 5.5). The two experiments described in this section are sequence

classification experiments as it predicts a class label for a given input sequence of vectors.

The first experiment (Subsection 5.2.4) is a binary sequence classification experiment as

the output class is either 0 which represents DERS Improvement, or 1 which represents

DERS No improvement. The second experiment (Subsection 5.2.5) is a multi-class sequence

classification experiment, as the output class can be any one of the eight primary emotions.
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Figure 5.4: Binary sequence classification model
(The input features represent the physiological features: heart-rate, accelerator
magnitude, skin temperature, galvanic skin response, activity level and steps).

Figure 5.5: Multi-class sequence classification model
(The input features represent the physiological features: heart-rate, accelerator
magnitude, skin temperature, galvanic skin response, activity level and steps).

Sequence classification has been used in a broad range of real-world applications. Xing et

al. [317] have discussed the various challenges in sequence classification on different data
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types including time-series data. In health-informatics, classifying ECG time-series can

predict if the data is sourced from a healthy person or a person with heart disease [318]. In

the area of information retrieval, classifying documents into different topic categories has

been very successful [319]. Other interesting areas where classification algorithms have

been used successfully, include classifying query log sequences to distinguish web-robots

from human users [320, 321] and classifying transaction sequence data in a bank to combat

money laundering [322]. In the area of genomic research, the functions of a new protein are

learned from classifying protein sequences into existing categories [323]. Other examples

of sequence classification problems include DNA sequence classification [324], anomaly

detection [325, 326] and sentiment analysis to predict whether the sentiment of the text is

positive or negative for a given set of sequences.

Time-series sequence classification has been actively researched for a very long time

[327, 328]. Existing research works have used multivariate time-series classification for

gesture recognition [329] and motion recognition [330]. In the area of Human Activity

Recognition (HAR), Norgaard et al. [331], describe an RNN-LSTM framework to capture

the dependency between consecutive sensor data samples and generate labels for every

micro-segment. The time-series ECG dataset was used to demonstrate the performance of

a semi-supervised learning classifier [318]. The recent work by Yang et al. [332] describes a

Convolutional Neural Network(CNN) framework, to perform sensor classification by using

multivariate time-series sensors’ data, as inputs.

To the best of our knowledge, RNN-LSTM has not been used for time-series sequence

classification, in the context of physiological time-series data from the DHI program in a

real-world setting, to predict any aspect of biopsychosocial wellbeing. The work presented

in the following experiments is new. The outcome of the experiment can be used as guidance

to determine the group of participants, that are more likely to benefit from a similar kind

of DHI program in the future, prior to their enrolment into the interventions. In this way,

we build upon existing physiological data to enable enrolment into future DHI programs,

informed by the classification and prediction models’ results.
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5.2.1.2 Time-series data

The physiological time-series data can be approached as either univariate time-series

or multivariate time-series. When each feature of the physiological time-series data is

treated in isolation, it represents the time-series data as univariate (e.g., using only the

feature heart-rate as input to the sequence classification model). In this case, the univariate

time-series is a sequence of real values ordered in timestamp ascending order.

E.g.,

(t1,76) (t2,76) . . . (tn,78)

is a simple time-series recording the heart-rate data from timestamp

t1 to tn

On the other hand, a multi-variate time-series is a sequence of numerical vectors. For e.g.,

(t1, (76, 1095, l ightactivity)) (t2, (76, 1093, l ightactivity))

. . . (tn, (65, 1065, moderateactivity))

is a time-series recording a vector of features for heart-rate, accelerator magnitude and

activity level. Copious amounts of unlabelled time-series data are often readily available

however, in most instances, supervised time-series data is very difficult or expensive to

obtain. Our experiments will use supervised multi-variate time-series physiological data

derived from the existing wellness dataset. The time-series data is supervised because it is

labelled with the output target label (DERS Improvement or DERS No Improvement for

experiment 1 (section 5.2.4) and with one of eight primary emotion values for experiment

2 (see Section 5.2.5). As described in the previous chapter (see Section 4.3.2.2), the raw

physiological time-series data were pre-processed using data imputation. The univariate

imputation methods such as na_kalman function, linear interpolation and linear trend

at point was used to impute missing values for heart-rate. The na_kalman function was

used to impute missing values for accelerator magnitude, skin temperature, galvanic skin

response, and steps.

The experimental problems in this section are expressed as time-series sequence classi-

fication problems and will be solved using a feature-based classification approach. This

approach will transform the input sequence (multivariate time-series physiological data),

into a vector of features. The sequences of feature vectors will then be fed as input to

the RNN-LSTM model to predict the output class label. The performance of the RNN-

LSTM model will depend vastly on the choice of hyper-parameters, hence they must be
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chosen carefully to get good results. Being a relatively new model, there are no established

guidelines for configuring RNN-LSTM hyper-parameters [313]. The next section will re-

view some commonly used approaches, methods, and considerations for hyper-parameter

optimisation.

5.2.2 Hyper-parameter optimisation approach

Achieving a good LSTM [312] network requires selection and optimisation of hyper-

parameters such as tuning the number of recurrent units, selecting the depth of the

network, selecting the dropout rate and many more [333]. Hutter et al. highlight the signif-

icance of hyper-parameter selection that often makes the difference between mediocre and

state-of-art performance for ANN models [334]. Nakisa et al. [335] evaluate and compare

different hyper-parameter optimisation methods using a dataset collected from wearable

sensors to classify emotions. Most studies use grid search and manual search to configure

neural networks. A widely used strategy is the combination of manual search and grid

search [336] and the use of ML software packages such as libsvm and scikit.learn [337].

The grid search method of hyper-parameter search is also called parameter sweeping. It

is an exhaustive search through a manually defined subset of possible hyper-parameters

[333]. The disadvantage with using grid search is that it is computationally expensive.

Randomly chosen trials are more efficient for hyper-parameter optimisation than trials on

a grid [338]. When using randomised search, the options and ranges for hyper-parameters

must be applied carefully. When using random search, sample parameters are set at

random for a fixed number of times. This method of setting hyper-parameters is reasonably

efficient and also provides the advantages of implementation simplicity and reproduce-

ability of pure grid search. The problem with random search is that it does not adapt

its behaviour based on previous outcomes. In some cases, a single poorly chosen hyper-

parameter (e.g., a very high learning rate), can prevent the model from learning efficiently.

Manual tuning of hyper-parameter is an effective approach. The designer iteratively

selects different architectures and hyper-parameters and hones it to a high-performance

region of the hyper-parameter space. Using a manual search approach to configuring a

neural network such as RNN-LSTM, there is no ‘correct answer’ on the number of hidden

neurons or the number of layers one should choose for the model. A drawback of using

manual search is the difficulty in reproducing results [338]. We will use the manual search

method for the experiments to determine the values of the hyper-parameters. The choice

of manual search is preferred as it is flexible to assign different values, change a part of
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them, train the model again and check the difference in the performance scores without

using automation to select or change values of parameters.

The experiments will use and assign different values to the hyper-parameters a. dropout

layer b. activation function c. learning rate. The dropout layer is used to prevent over-fitting

since it ignores the randomly selected neurons during training and in this way reduces

the sensitivity to the specific weights of individual neurons [339]. The choice of activation

function on the output layer depends on the kind of problem we want the model to solve

[340, 341]. Common choices are linear functions, sigmoid function and softmax functions.

We will use the sigmoid and softmax activation functions to solve the sequence classification

problems. For the binary sequence classification problem described in experiment 1 (see

Section 5.2.4), we will use the sigmoid activation to make clear predictions for a two-class

problem. The probabilities produced by the sigmoid activation are independent and are not

constrained to sum to 1. This is because the sigmoid activation function views each raw

output value separately and hence the predictions are clear. For the multi-class sequence

classification problem described in experiment 2 (see Section 5.2.5), we will use the softmax

activation function since it can handle multiple output classes. In using this function, the

outputs are interrelated. This is because the softmax probabilities will always sum to 1 by

design. Hence in a multi-class sequence classification problem, to increase the likelihood of

one class, the likelihood of the other class must decrease by an equal amount.

The learning rate hyper-parameter will be used to control the extent of changes to be

carried out on the RNN-LSTM model based on the estimated error, each time the weights

of the model are updated. Selecting an optimum value for the learning rate is a challenging

task. A value too small may lengthen the training process and may also lead training to

get stuck. A very large value may result in learning a sub-optimal set of weights quickly or

may lead to an unstable training process. We will configure the value of this parameter to

be within the range 0.0 and 1.0. Leslie N. Smith [342] describes a powerful method to select

the learning rates and optimise the learning schedule for a neural network by training

with cyclical learning rates instead of fixed values. However, for our experiments, we will

follow a trial and error approach to tune and optimise the learning rate and the values of

other hyper-parameters such as the loss function number of hidden layers and number of

units in each hidden layer. The manual tuning of hyper-parameters allows us to compare

and check the difference in performance scores when applied to the unseen test data.
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5.2.3 Output target label

In this section, we describe the choice for the output target variables used in the two

experiments.

5.2.3.1 Difficulty in Emotion Regulation Scale

DERS is widely used to measure of emotion (dys-) regulation ability in clinical and nonclin-

ical populations [343]. It will be used as the output target variable for experiment 1 (see

Section 5.2.4). DERS is designed to measure multiple dimensions of emotion regulation

ability in a comprehensive way. The dimensions of DERS described below are adapted

from the work reported by Williams et al. [257]. Levels of emotion regulation difficulties as

measured by DERS are associated with different kinds of psychopathology such as person-

ality disorders, post-traumatic stress disorders, depression and anxiety [344–348]. Higher

scores for the negative affective variable DERS indicate poorer emotion regulation by the

participant [343]. The DERS score measures emotion (dys-) regulation ability broadly in

the dimensions of:

1. Nonacceptance: The items in this dimension reflect an inclination to experience

negative secondary emotional responses or a non-accepting reaction to distress,

mainly shame, guilt, or self-blame regarding one’s own (negative) emotions.

2. Goals: The items in this dimension refer to troubles following goal-directed behaviour

and reflect difficulties associated with concentration or carrying out tasks when

upset.

3. Impulse: Items in this dimension describe difficulties controlling emotions or be-

haviours when in distress. It also includes items reflecting the perception of emotions

as overwhelming.

4. Awareness: These items refer to the absence of emotional awareness and are made

up of reverse-scored items. These items reflect the tendency to pay attention and to

acknowledge emotions.

5. Strategies: This refers to limited access to emotion regulation strategies. The items

in this dimension reflect the belief that the person’s negative emotions cannot be

regulated. It suggests a feeling of hopelessness when confronted with one’s negative

feelings.

114



CHAPTER 5. A MACHINE LEARNING APPROACH FOR BIOPSYCHOSOCIAL
WELLBEING

6. Clarity: These items describe a lack of emotional clarity. They refer to the ability of a

person to understand emotions. A high score in these dimensions indicates a high

degree of confusion regarding emotions.

We find that DERS as a measure of emotion (dys-) regulation ability is closely linked with

physiological variables such as heart-rate, galvanic skin response and level of physical

activity. Researchers have examined the relation between emotion regulation and heart

rate in the past. Williams et al. [257] highlighted two distinct facets of emotion regulation:

impulse control and emotional clarity. These facets of emotion regulation were items of

interest when investigating the link between emotion regulation, resting vmHRV (Vagally

mediated Heart-Rate Variability), and related health outcomes including morbidity and

mortality. Thayer and Lane [349] propose that the characteristic beat-to-beat variability in

the heart-rate time-series and heart-rate variability (HRV) - serves as a readily available

index and measure of emotion regulation capacity. GSR, physical activity and sleep are also

closely related to emotion regulation. Existing research has shown that an increase in GSR

is related to emotional intensity; the more an individual experiences an emotion, the more

likely a detectable change in GSR measure is seen. Low levels of GSR are linked to emotions

or experiences of relief [350] or contentment [351]. In the context of physical activity and

sleep, the work by Zang et al. [352] examines how the mind-body exercise intervention

improves implicit emotion regulation ability. Sleep deprivation was a contributing factor

that diminished the capacity to regulate emotion [353]. As described above, DERS as a

negative affective variable that measures emotion (dys-) regulation, is closely linked to the

physiological variables of heart-rate, galvanic skin response and level of physical activity. A

lower DERS score at the end of the DHI program in week 8 that at the start of the program

at week 1 indicates Improvement in emotion regulation ability that is brought about by

the mindfulness or physical activity intervention. A same or higher DERS score at the end

of the DHI program compared to the start of the program indicates No Improvement in

emotion regulation ability. Hence DERS score is a good choice to compute the output target

label for experiment 1 (see Section 5.2.4).
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5.2.3.2 Primary emotion

Primary emotion is used as the output target variable for experiment 2 (see Section

5.2.5). The ‘Wellness study’ DHI program described primary emotion as any one of a

limited set of emotions: Angry, Sad, Happy, Disgusted, Surprised, Joy, Neutral and Fear.

The primary emotion is the reaction to an external event and secondary emotion is the

emotion felt about the primary emotion itself. For example, one may feel angry about being

hurt or shame about feeling anxious. In this case, the feeling of hurt and anxiousness

are primary emotions, and anger and shame are secondary emotions. The primary and

secondary emotions were captured as part of the EMA surveys that captured emotion

data 5 times a day during the DHI program. In experiment 2 (see Section 5.2.5), we draw

associations between emotion experiences and physiological variables. For this purpose,

primary emotion is best suited as the output target variable since it records the direct

reaction to an external event.

In the following sections, we will describe the RNN-LSTM model designed to predict the

output target labels, using the physiological time-series data. Both experiments use Keras

2.2.4 GPU and Python 3.6.10 as the programming environment.

5.2.4 RNN-LSTM model to predict DERS using wearable data

This section will describe the RNN-LSTM model designed to predict DERS Improvement

or No Improvement using the wearable data (physiological time-series data).

5.2.4.1 Encoding

The physiological time-series data consists of numerical features and categorical features.

The categorical variable activity type contains four categories namely inactive, light activity,

moderate activity and sleep. Since the LSTM-RNN network is not suited to operate on

labelled data, it is necessary to encode the categorical variable for the efficient implemen-

tation of the algorithm. One hot encoding is chosen as the preferred encoding method for

categorical variable activity type. This is because the categories in the feature variable

activity type do not possess any ordinal relationships. Using one hot encoding, we will

represent the variable activity type as an integer. We will then replace the encoded integer

variable using a new binary variable for each unique integer value.
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Figure 5.6: Representation of physiological time-series sequence. (Each time-series
sequence is 2520 time steps long.)

5.2.4.2 Length of time-series data

As mentioned earlier, the physiological time-series data is represented as a sequence

of numerical vectors that contains the values for the features heart-rate, accelerator

magnitude, skin temperature, galvanic skin response, activity level and steps. The time-

series sequences will be created with an identical length of 42 minutes. The decision to

keep time-series sequences of length set to 42 minutes is for two reasons.

1. 42 minutes is sufficiently long to capture significant trends in data collected for any

of the physiological variables

2. The exploratory analysis of the physiological data reveals that 42 minutes of sequen-

tial data is easier to extract, and is marked by fewer data imputations for missing

values.

Figure 5.6 describes the physiological data represented as multivariate time-series se-

quences. The data in each sequence consists of 5 numerical features namely heart-rate,

accelerator magnitude, skin temperature, galvanic skin response, steps and 1 categorical

feature activity level.

(t1, (80.4,2925.0,0.000154,91.17, l ightactivity,0.0))
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5.2.4.3 Examining class balance

Using multivariate time-series data for sequence classification, we will require the output

classes to be represented equally. The training data set collected for experiment 1 is

imbalanced as the number of samples in the training set for each class label is not the

same. This is a common problem with most real-life datasets. The primary cause for the

class imbalance occurs because the input features are not synchronous with the output

target label. DERS is recorded at the participant level and in contrast, the physiological

data is recorded for each second of activity engaged by the participant for the length of the

time-series sequence. The RNN-LSTM model being developed is oblivious to participants’

distribution and is based on the physiological time-series data distribution. Hence it is

necessary to replicate the DERS output target label for each time-step in the time-series

sequence pertaining to the same participant. To mitigate the class imbalance problem

in the training set, we will include more time-series data using data imputation and

re-arrange the input data, such that there are balanced classes for each target label (DERS

Improvement and DERS No Improvement). During the re-arrangement of input data, the

sequential structure of the time-series data will be kept intact.

5.2.4.4 Training and test data set-up

Table 5.9 describes the distribution of the training and test data used for experiment 1. To

mitigate the class imbalance problem, we will use a modified balanced training and test

set whose participants will belong to a mixed cohort of experimental and control groups.

Table 5.9: Experiment 1: Training and test data distribution

Training
set

Test
set

Number of participants 10 9
Participants in class label Improvement 5 5
Participants in class label No improvement 5 4
Number of samples 14212 11832
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5.2.4.5 Loss function

Different loss functions such as cross-entropy loss, hinge loss and squared hinge loss

are examined for experiment 1 that predicts a binary value: DERS Improvement or No

Improvement (0 or 1). Hinge loss and Hinge squared loss are primarily developed for

Support Vector Machine (SVM) models. In using the hinge loss function, the margins

between decision boundaries and data points are maximised. This ensures that each point

is correctly classified. The points that are farther away from the decision margins have

a more significant loss value and so these points are penalised. The binary cross-entropy

loss function comes from a maximum likelihood estimate of our model’s parameters. We

will use binary cross-entropy loss for experiment 1 since it is suitable for solving binary

classification problems where the target values are within the set {0, 1}.

5.2.4.6 Performance metrics - predicting DERS using wearable data

The input training data is fed to the RNN-LSTM model and the model is fit on the training

set. As mentioned earlier, the manual search approach for hyper-parameter tuning is used

which involves several rounds of training using different values for the various hyper-

parameters. The hyper-parameters namely: dropout layer, optimiser learning rate, number

of units, and number of hidden layers are tuned on the model’s training set for several

iterations. The performance metrics for each iteration are noted and compared to adjust to

hyper-parameter values to find the best fitting model. Table 5.10 compares the training

results for training accuracy and training loss for different hyper-parameter values during

the different trials. The best performing model is observed in Trial 1, which generates a

training accuracy of 0.69 and training loss of 0.60. The hyper-parameter values for this

best-performing trained model is highlighted in bold in Table 5.10.

A manual 3-fold cross validation was performed on the training set to boost confidence

in the training metrics using the best fitting RNN-LSTM model (see Section 5.11). The

results of the 3-fold cross validation on training data revealed that the training accuracy

recorded (at 66%) for Fold 1 were very close to the training accuracy recorded for remaining

folds (Fold 2 and Fold 3). The results of the training accuracy for the manual 3-fold cross

validation (average accuracy across folds at 66%) provided confidence in the training

accuracy reported as part of Trial 1 (at 69%) on the original training set.
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Table 5.10: Experiment 1: Trial-wise performance metrics (Figures in bold indicate
significant values)

Parameters Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7

Training accuracy 0.697 0.63 0.68 0.57 0.68 0.65 0.65
Training loss 0.60 0.65 0.53 0.68 0.58 0.60 0.61
Dropout 0.65 0.65 0.67 0.65 0.66 0.65 0.65
Adam learning rate 0.0001 0.01 0.001 0.00001 0.0001 0.0001 0.0001
Units in each hidden layer 18 18 18 18 18 18 18
No. of hidden layers 1 1 1 1 1 2 1

Table 5.11: Training metrics reported on manual 3 fold cross-validation

Fold
number

Training
loss

Training
accuracy

Fold 1 0.5995 0.6659
Fold 2 0.5994 0.66600
Fold 3 0.5996 0.6665

Table 5.12: Optimised Model parameters

Parameter Value

Dropout value 0.65
No. of epochs 3
Loss function binary cross-entropy
Optimiser Adam Learning rate for optimiser 0.0001
No. of units in hidden layer 18
No. of dense layer 1
No. of units in dense layer 18
No. of epochs 3

Table 5.12 lists the optimised model parameters for the best-performing model on the

training set (seen during Trial 1) which recorded a training accuracy of 69%. As a next

step, the associated hyper-parameter values and weights were validated on 5 variants of

unseen test sets (Test set 1 to Test set 5). The performance metrics (training accuracy and

training loss) of the RNN-LSTM model for experiment 1 are described in Table 5.13. The

number of epochs for each unseen test set was set to 3. The unseen test set 5 reported

the best test accuracy of 63% (see Table 5.13). Validating the best performing RNN-LSTM

network model on 5 variants of unseen test set, provides us with increased confidence in
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the performance metrics reported by the RNN-LSTM model for this experiment.

Table 5.13: Best performing RNN-LSTM model applied on 5 variants of unseen test set.
(Figures in bold indicate significant values)

Test set Epoch
number

Test
loss

Test
accuracy

1 1 0.68 0.62
1 2 0.68 0.62
1 3 0.68 0.62
2 1 0.65 0.62
2 2 0.65 0.62
2 3 0.65 0.62
3 1 0.67 0.60
3 2 0.67 0.60
3 3 0.67 0.60
4 1 0.67 0.57
4 2 0.67 0.57
4 3 0.67 0.57
5 1 0.66 0.63
5 2 0.66 0.63
5 3 0.66 0.63

The results of experiment 1 show that the RNN-LSTM sequence classification model can

be used successfully on physiological time-series data generated from the DHI program in

a real-world setting. The developed RNN-LSTM model has learned from long sequences

of vector information to predict the binary class of the output target variable (DERS

Improvement or No improvement) with a testing accuracy of 63 %. Table 5.14 lists the

values of some hyper-parameters and reports the performance metrics for the developed

model.
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Table 5.14: Experiment 1: summary of performance metrics.
(RNN-LSTM Model to predict DERS using wearable data.)

Parameter Value

Size of the training set 35530000 records
No. of sequences in training set 14212
Size of 1 sequence in training set 2520 seconds or 42 minutes
Training loss 0.60
Training accuracy 0.697
Size of an unseen test set 29580000 records
No. of sequences in an unseen test set 11832
Size of 1 sequence in the test set 2500 seconds or 42 minutes
Testing loss 0.65
Testing accuracy 0.63

The black-box nature of ML algorithm limits the transparency of the RNN-LSTM

model to describe the causality between inputs and outputs of the model. To overcome

this problem, we repeated the experiment with each physiological feature to determine

the feature that most influenced the prediction accuracy. The outcome of this experiment

revealed that no single physiological feature had an overbearing influence on the model

prediction metrics. Further, no single features’ prediction accuracy matched the prediction

accuracy of 63% as reported by the interplay of all the physiological features used as

input for the experiment. Therefore, all the physiological features played an equal role in

determining the prediction accuracy. Table 5.15 describes the training and test metrics

reported on individual physiological features on the RNN-LSTM model.

The next section describes the RNN-LSTM model designed to predict primary emotion

using wearable data (physiological time-series data).

Table 5.15: Experiment 1: summary of performance metrics when an individual
physiological feature is input to RNN-LSTM network.

Feature Training
loss

Training
accuracy

Testing
loss

Testing
accuracy

heart-rate 0.587 0.637 0.678 0.603
accelerator magnitude 0.651 0.637 0.674 0.6035
galvanic skin response 0.620 0.6835 0.7547 0.5105
skin temperature 0.6547 0.6374 0.673 0.603
activity type 0.649 0.637 0.674 0.603
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5.2.5 RNN-LSTM classification model for emotion prediction

This section describes the RNN-LSTM model that predicts the primary emotion using the

wearable data (physiological time-series data). During the ‘Wellness study’ DHI program,

wearable devices used passive sensing technologies during activity tracker to detect sleep or

heart-rate monitoring to capture the physiological data [354]. In contrast to this, the EMA

surveys captured more detailed time courses of individual’s psycho-social and subjective

experiences and how they related to other phenomena such as their primary and secondary

emotions and their physiological states and experience data. The EMA surveys were

facilitated via a smartphone application and were successful in prompting the participants

to report particular behaviours, subjective experiences, and various contextual variables.

Data collected by the EMA surveys comprised the participant’s primary emotion, along

with other values for secondary emotion, experiences, and interactions with others.

The experiment 2 in this section uses the existing EMA data generated from the ‘Well-

ness study’ DHI program. As part of data pre-processing activities, the EMA data was

synchronised with physiological time-series data collected from the wearable sensor device,

by matching both these datasets’ timestamps. The goal of the experiment is to build a

multi-class sequence classification model that can predict the primary emotion at a particu-

lar point in time, based on the physiological time-series data reported by the participant; 5

minutes preceding the time when the primary emotion was recorded. The test environment

for this experiment is set up using Keras 2.2.4 GPU and Python 3.6.10 was used as the

programming environment.

5.2.5.1 Training and test data set-up

Experiment 2 solves a multi-class sequence classification problem because the output class

primary emotion comprises eight values namely: Angry, Sad, Happy, Disgusted, Surprised,

Neutral, Joy and Fear. RNN-LSTM network will be used to build the classification model.

The experiment will use labelled data for training so that the model can be used to predict

the class label for the test set that contains unseen sequences. Primary emotion is set as the

target output label. The labelled training set uses the physiological and EMA survey data

for 9 participants. The input features to the RNN-LSTM model are the physiological time-

series data that comprise features: heart-rate, skin temperature, galvanic skin response and

steps. The time-stamp of the output target label primary emotion will be used to synchronise

the output target label with the physiological time-series data collected from the wearable

device. The last 5 minute (300 seconds) lag of physiological data was discarded. This was
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done because we wanted to exclude participant’s physiological data that was collected while

the participant answered the EMA survey questions, which approximately took about

5 minutes. Discarding the last 5 minutes physiological data reduced the length of each

sequence from 20 minutes to 15 minutes (900 seconds), in both the training set and the test

set. These data sequences are represented as numeric vectors. These activities were done

as part of data pre-processing, prior to the start of the experiment. Table 5.19 describes the

time-series dataset used for this study. The training set is reasonably balanced (see Table

5.16), whereas the test set is imbalanced (see Table 5.17), as there is a limited amount of

EMA data for primary emotion values 4, 5, 7 and 8.

Table 5.16: A Balanced training set

Frequency Percent Valid
Percent

Cumulative
Percent

Valid 1 7200 12.9 12.9 12.9
2 7200 12.9 12.9 25.8
3 7200 12.9 12.9 38.7
4 5400 9.7 9.7 48.4
5 7200 12.9 12.9 61.3
6 7200 12.9 12.9 74.2
7 7200 12.9 12.9 87.1
8 7200 12.9 12.9 100.0
Total 55800 100 100

Table 5.17: An imbalanced test set

Frequency Percent Valid
Percent

Cumulative
Percent

Valid 1 2700 20.0 20.0 20.0
2 2700 20.0 20.0 40.0
3 2700 20.0 20.0 60.0
4 900 6.7 6.7 66.7
5 900 6.7 6.7 73.3
6 1800 13.3 13.3 86.7
7 900 6.7 6.7 93.3
8 900 6.7 6.7 100.0
Total 13500 100 100

The RNN-LSTM model was executed on the training set and reported a high training

accuracy of 96.77%. The test accuracy on the unseen test set was low at 47%. The per-

formance metrics did not improve with any changes to the hyper-parameter design and



Table 5.18: A balanced test set

Frequency Percent Valid
Percent

Cumulative
Percent

Valid 1 900 16.7 16.7 16.7
2 900 16.7 16.7 33.3
3 900 16.7 16.7 50.0
5 900 16.7 16.7 66.7
6 900 16.7 16.7 83.3
8 900 16.7 16.7 100.0
Total 5400 100.0 100.0

iterative runs on the training and test set data (see Table 5.20). The low accuracy score on

the test set is due to the class imbalance in the test set data.



Table 5.19: Experiment 2: Training and test data distribution

Training
set

Test
set

Count of participants 60 6
No. of samples in training set 55800 13500
Ratio of samples in each set 91.08% 8.82% %

Table 5.20: Experiment 2: Trial-wise performance metrics for the balanced training set and unbalanced test set (Figures in bold
indicate significant values)

Parameters Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Training accuracy 0.8225 0.8870 0.8548 0.9677 0.9677
Training loss 0.4080 0.4303 0.3538 0.1863 0.1577
Test accuracy 0.400 0.400 0.400 0.470 0.400
Test loss 5.45 1.7 7.04 3.69 3.48
Dropout 0 0 0 0 0
Adam learning rate 0.01 0.001 0.01 0.01 0.01

Model loss function
categorical
cross-entropy

kullback
leibler divergence

kullback
leibler divergence

kullback
leibler divergence

categorical
cross-entropy

Units in each hidden layer
hidden layer 1 - 45
hidden layer 2 - 8

hidden layer 1 - 45
hidden layer 2 - 8

hidden layer 1 - 45
hidden layer 2 - 8

hidden layer 1 - 45
hidden layer 2 - 8

hidden layer 1 - 45
hidden layer 2 - 8

No. of hidden layers 2 2 2 2 2



As a next step, the class imbalance of the test set is investigated and corrected such

that samples for each output label (i.e., each class of primary emotion) are balanced. The

revised test set, described in Table 5.18 is balanced by restructuring the participant data.

The temporal aspect of the sequential time-series data is kept intact.

5.2.5.2 Performance metrics - predicting PE using wearable data

The RNN-LSTM model is executed on the training data for several iterations with different

values for model hyper-parameters. The best performing RNN-LSTM model on the training

set reported a training accuracy of 72.5% (see Figure 5.8) and a low training loss of 1.0478

(see Figure 5.7). The best performing RNN-LSTM model was re-run on the unseen balanced

test set. The test accuracy improved and was reported at 67% with a test loss of 1.5598

(see Table 5.21).

To improve the performance metrics, the output classes for this experiment were reduced

from 8 classes to 3 classes. This was done by reclassifying the 8 output primary emotions

to 3 emotions namely positive emotions comprising (Happy, Joy, Surprised); negative

emotions comprising (Sad, Depressed, Fear, Anxious) and neutral emotions comprising

(Neutral). The test accuracy of the RNN-LSTM model with three output classes, on the

test set deteriorated (50%) compared to the earlier seen test accuracy of 67% for eight

output classes (see Table 5.21). Table 5.22 describes the training and test metrics for the

RNN-LSTM three-class model with and without the dropout layer. The test accuracy’s

poor performance can be explained by the interesting phenomena, often seen in a multi-

class problem. As described by Abramovich et al [355], ‘in a multi-class problem, the

precision of classification improves as the number of classes grows. This is because, more

accurate feature selection is possible since even weaker significant features, which are not

sufficiently strong can be manifested in a coarse classification, being shared across the

classes’. This has a stronger impact as the number of classes increases.



Table 5.21: Experiment 2: Training and Test metrics (Balanced training and test data sets) (Figures in bold indicate significant
values)

Dense
layer

Activation
output layer

Model
loss

Optimiser Learning
rate

Epochs Training
accuracy

Training
loss

Test
accuracy

Test
loss

1 softmax kullback_leibler_divergence adam 0.001 600 0.96774191 0.127969174 0.4 3.38
1 softmax kullback_leibler_divergence adam 0.001 600 0.96774191 0.127969174 0.666666687 2.03837
1 softmax kullback_leibler_divergence adam 0.001 200 0.88709676 0.430371608 0.5 1.28852
2 softmax kullback_leibler_divergence adam 0.01 200 0.69354838 0.879156711 0.333333343 7.25998
2 softmax categorical_cross_entropy adam 0.01 200 0.93548387 0.180161358 0.5 3.66896
2 softmax categorical_cross_entropy adam 0.01 600 0.93548387 0.105320831 0.333333343 7.39356
1 softmax kullback_leibler_divergence adam 0.001 800 0.98387098 0.034867851 0.333333343 3.04841
1 softmax kullback_leibler_divergence adam 0.001 400 0.98387098 0.089431563 0.333333343 1.88943
1 softmax kullback_leibler_divergence adam 0.0001 400 0.56451613 1.3029569 0.5 1.6633
1 softmax kullback_leibler_divergence adam 0.0001 600 0.72580647 1.047843291 0.666666687 1.55985
1 softmax kullback_leibler_divergence adam 0.01 600 0.87096775 0.323096675 0.333333343 6.41299

Table 5.22: Experiment 2: Training and Test metrics for a three-class model (Balanced training and test data sets)

Dropout
layer

Dense
layer

Activation
output layer

Model
loss

Optimiser Learning
rate

Epochs Training
accuracy

Training
loss

Test
accuracy

Test
loss

0.5 1 softmax kullback_leibler_divergence adam 0.001 600 0.91935486 0.423808637 0.5 1.08629
no 1 softmax kullback_leibler_divergence adam 0.001 600 0.77419353 0.318217117 0.5 0.42848



Figure 5.7: Training versus test loss

Figure 5.8: Training versus test accuracy (X-axis shows the number of epochs (600) and
Y-axis shows the accuracy percentage)

The results from experiment 2 reveal that the RNN-LSTM model accuracy can be further

improved by increasing the sample size of participants used for training. The low sample

size of participants’ EMA data had limited the size of the training and test sets used for the

study. The imputation of EMA data is complex and hence this strategy was not considered

as a means to increase the sample size. Small sample sizes of participants are a typical

challenge in handling real-world DHI program data. The voluntary nature of participation

in EMA surveys lead to non-responses or skipped questions which further resulted in
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missing values in EMA survey data. The work in this experiment supports the choice of

using the RNN-LSTM model for modeling physiological time-series data to predict primary

emotion.

5.2.6 Analysis of results

The analysis of the prediction accuracy of the experiments conducted in this section reveal

that the results can be improved further using following approaches.

1. The highest prediction accuracy set was reported to be 63% for the experiment RNN-

LSTM model to predict DERS using wearable data 5.2.4. Although the prediction

accuracy is reasonable it can be improved by performing the experiment using

RNN-LSTM architecture that implements the computationally expensive grid search

method of hyper-parameter optimisation.

2. The highest prediction accuracy was reported to be 67% for the experiment RNN-

LSTM model to predict DERS using wearable data 5.2.5. The prediction accuracy

of this experiment can be increased by making enhancements to data collection

methods, to improve the size and quality of collected data and reduce class imbalance

problems. Although data imputation can be used to overcome the class imbalance

problem in some cases, the imputation of real-world EMA data as seen in this

experiment is complex and challenging.

5.3 Summary

In this chapter, we explored the use of predictive analytics to predict aspects of biopsychoso-

cial wellbeing by analysing patterns in the wellness dataset aligned to the biopsychosocial

model of health. We used statistical and ML methods to examine possible connections

between the different biopsychosocial features of participants who undertook one of the two

interventions of the DHI program, namely the mindfulness intervention and the physical

activity intervention. We investigated the relevance of ML for determining the suitability

of a participant into a DHI assignment based on existing biopsychosocial information. We

used different non-linear classifiers and compared their prediction accuracy to evaluate

their suitability to determine if biopsychosocial features can be used to predict DASS. The

experimental studies indicated that while the methods such as scatter plots were unable

to reveal the linear relationship between the features of the wellness dataset, the ML

approach successfully identified which features are appropriate as predictors of mental

ill-health.
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We further investigated the suitability of RNN-LSTM to predict DERS improvement,

affected by one of the two DHI (mindfulness or physical activity). We carried out two

experiments to solve the time-series sequence classification problem and we reviewed

various approaches for model hyper-parameter optimisation. As part of experiment 1, we

developed an RNN-LSTM model to predict DERS Improvement or No Improvement based

on wearable data. Further, we adapted this model in experiment 2 to predict primary

emotion at a particular point in time, based on the participant’s physiological time-series

data. The RNN-LSTM model is aptly suited for sequence classification problems described

in experiments 1 and 2. The model is efficient in dealing with sequential time-series data

and can remember information for a long period. Prediction accuracy of the RNN-LSTM

model used in this study can be further improved by increasing participants’ sample size

within the training and test sets.

In the following chapter (Chapter- 6), we summarise the work reported in this thesis

and future directions for research.
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6
CONCLUSIONS AND FUTURE WORK

B iopsychosocial wellbeing is a consequence of the interaction between the biological,

psychological and social factors as described within the biopsychosocial model of

health. One of the many limitations of the biopsychosocial model is that it has

unclear boundaries between the biology, psychology and social disciplines. In recent years,

digital health technologies have addressed these limitations by providing more accessible,

scalable and comprehensive data from various aspects of health and disease. Using digital

health allows us to capture biological, psychological and social information, offer a non-

dichotomous understanding of an individual’s medical condition and help unmask the

biomedical focus of the original biomedical model.

This increased research into digital health has paved the way for integrating healthcare

data from different platforms. Advancements in digital healthcare technologies have

advanced clinical practice, from prevention to diagnosis and from monitoring to disease

management [36]. It has led to unprecedented public interest and engagement in self-

management and wellbeing. With advancements in digital health, healthcare screening

aligned with the biopsychosocial model has helped health practitioners evaluate the

potential benefits of a health solution at the individual, population or organisational level

using digital tools. The use of mobile and wireless DHI has allowed healthcare practitioners

and researchers in the healthcare domain to develop and implement different kinds of

DHI programs. Digital health program frameworks in clinical and non-clinical practice

increasingly use patient-centric interviews, enabling clinicians and healthcare practitioners
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to identify a scientific biopsychosocial model specific to each patient. The openness to and

demand for biopsychosocial interventions is also driven by developments in behavioural

health and medicine that focus on behaviour and health, which are significant contributors

to maintaining overall wellbeing and quality of life.

Digital tools are being used to improve the reach and effectiveness of DHI programs,

leading to immense opportunity for mining the large amount of data produced by digital

health programs and applying analytics to evaluate these programs’ effectiveness [139].

Thus, digital health research grows in importance and is based upon what is already

known, so that investments in the digital health space can be informed by the strongest

possible evidence base [17]. Applying digital health analytics using data mining and ML

has emerged as an efficient approach to evaluating data-rich interventions. The small

number of identified studies and the low rigour of ML evaluation methodology used therein

indicates a vast need for the research community to conduct further studies in the area of

DHI programs to demonstrate the potential of ML to evaluate DHIs in real-life settings.

Several studies have evaluated interventions in a clinical setting, and these are retrospec-

tive validations of ML algorithms and models given the availability of one or more datasets.

Further, these studies have focused primarily on data from a single discipline centred only

on the body, treating illness as a purely biological event. To date, few researchers have

evaluated or analysed DHI by following the biopsychosocial model in a real-life setting.

The research in this thesis analyses the existing wellness dataset generated from the

‘Wellness study’ DHI program conducted by the School of Science, Psychology and Sport

at Federation University. The DHI program produced a complex set of biopsychosocial

data (referred to as the wellness dataset). This real-life wellness dataset provided fertile

ground for applying the data analytics process model and discovering patterns hidden in

the data. Different statistical methods and ML methods were used to pre-process, analyse

and discover new knowledge from the data analysis.
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6.1 Conclusions

As mentioned earlier, this thesis has explored the existing wellness dataset generated

from the DHI program. We used data analytics on the transdisciplinary wellness dataset

to discover patterns and relevant insights. The data analytics work in this thesis was

carried out following the OSEMN data mining process framework. This work is novel

research undertaken in the biopsychosocial domain, as it systematically dissects unique

and complex real-world biopsychosocial data. The data analytics work in this thesis was at

the intersection of IT, statistics and healthcare domains. We examined the transdisciplinary

wellness dataset and uncovered the challenges of data quality and data integration along

with the challenges exposed by the interplay of the underlying complex data’s variety,

value and veracity. The key achievements and significance of the research reported in this

thesis are summarised below.

• We modelled neurocognitive reaction time using gamma distribution. We examined

reaction time data obtained from participants undertaking neurocognitive tests

using electrodermal activity to assess their distribution. Analysis of participants’

reaction time in the PEBL Go/No-Go test showed that the reaction time data are

more compatible with a gamma distribution. It also clearly demonstrated that these

can be better modelled by gamma distribution that considers higher order moments

of data, such as skewness and kurtosis, using shape and scale parameters rather

than the commonly applied Gaussian distribution, which is defined using mean and

variance.

• We developed a novel ‘peak heart-rate’ count metric to quantify level of ‘biological’

stress. We analysed and focused on heart-rate data as one key biophysiological

indicator of stress. A new metric, ‘peak heart-rate count’, was proposed to measure

‘biological’ stress. Further, a new approach using the median and IQR of daily

heart-rate data was used to define maximum threshold. The proposed new metric,

‘heart-rate peak count’, and the associated new MedIQR method were used to analyse

the distribution of the heart-rate peaks between the two interventions, mindfulness

and physical activity, to determine which was more beneficial to the participants

during the DHI program. With this, we can apply the new metric, ‘heart-rate peak

count’, and the associated new MedIQR method for studies where HRV data are not

available.

• We conducted a comparative evaluation of nonlinear classifiers to identify features

that can predict mental ill-health represented by the DASS—ML and nonlinear
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classifiers were explored on the existing wellness dataset. Real-life biopsychosocial

features were input to nonlinear classifiers to predict mental ill health represented

by DASS score. The work carried out showed that the prediction accuracy of the

classification model improved (by 62.5% for mindfulness intervention and by 61.1%

for physical activity intervention) when all features from the three disciplines of the

biopsychosocial model were used. This finding underpins the need to develop future

DHI programs aligned with the biopsychosocial model of health. Well-performing

nonlinear classifiers such as extra tree classifier and linear discriminant analysis

(with prediction accuracy of 62%) and decision trees and SVM (with prediction

accuracy of 62%) can be applied to build prediction models to evaluate similar

interventions in the mindfulness and physical activity spaces.

• We undertook wearable data analysis using the RNN-LSTM sequence classification

model. We developed an RNN-LSTM model using a sequence classification algorithm

to predict negative affective variable DERS and PE based on input time-series

wearable data. This work supports the choice to use the RNN-LSTM network to

a build prediction model that can predict positive and negative affective variables

and PE sourced from EMA surveys. The results from this study can be adapted and

applied by healthcare specialists to correlate the information gained from wearables

with that of EMA-reported findings. The study findings can also help accelerate and

improve the design of DHI programs in the mindfulness and physical activity spaces,

which use sensor devices and EMA surveys in parallel to collect data.

• We used the AUCG formula for cortisol score computation. The formula was used on

the biological saliva data to compute a single cortisol score from four cortisol readings

that were recorded on a single day and changed over the course of that day.
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6.2 Future work

Through this research, we were able to comprehensively study and implement the data

analytics techniques, using statistical and ML methods, on the existing wellness dataset

generated from the ‘Wellness study’ DHI program. To extend the research presented in

this thesis, the following future research studies can be explored.

• Future research work can focus on further enhancing the use of ML methods on DHI

programs. Currently, limited research provides evidence of the effectiveness of ML

learning applications in DHI programs. This is a promising area for future work, as

ML techniques in digital health can enable healthcare solutions to achieve their full

potential via their application within the healthcare and scientific community.

• Further, future research work focused on collecting richer biopsychosocial data from

all three disciplines (biology, psychology and social) may be designed to use all

the variables of the holistic biopsychosocial model. It can help analyse how these

variables interplay in addition to investigating feedback loops, reciprocal influences

and correlated variables, thus allowing for a multi-level and multivariate analysis.

• Another research area that can be explored is the generation of synthetic biopsy-

chosocial data using real-world data and ML methods. Such a dataset can serve as a

benchmark dataset for future researchers.
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