
 Page 1 of 1 

Federation University ResearchOnline 
https://researchonline.federation.edu.au 
Copyright Notice 

This is the published version of: 

Black, P., Gondal, I., Bagirov, A., Moniruzzaman, M. (2021). Malware Variant Identification Using 
Incremental Clustering. Electronics (Basel), 10(14): 1628.    

Available online:  https://doi.org/10.3390/electronics10141628 

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This is an open-
access article distributed under the terms of the Creative Commons Attribution License (CC 
BY 4.0) (http://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in 
other forums is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms. 

CRICOS 00103D RTO 4909  

See this record in Federation ResearchOnline at: 
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/177851

https://researchonline.federation.edu.au/
https://doi.org/10.3390/electronics10141628
https://researchonline.federation.edu.au/vital/access/HandleResolver/


electronics

Article

Malware Variant Identification Using Incremental Clustering

Paul Black * , Iqbal Gondal, Adil Bagirov and Md Moniruzzaman

����������
�������

Citation: Black, P.; Gondal, I.;

Bagirov, A.; Moniruzzaman, M.

Malware Variant Identification Using

Incremental Clustering. Electronics

2021, 10, 1628. https://doi.org/

10.3390/electronics10141628

Academic Editor: Taeshik Shon

Received: 4 June 2021

Accepted: 5 July 2021

Published: 8 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Internet Commerce Security Laboratory (ICSL), Federation University, P.O. Box 663, Ballarat 3353, Australia;
iqbal.gondal@federation.edu.au (I.G.); a.bagirov@federation.edu.au (A.B.);
m.moniruzzaman@federation.edu.au (M.M.)
* Correspondence: p.black@federation.edu.au

Abstract: Dynamic analysis and pattern matching techniques are widely used in industry, and
they provide a straightforward method for the identification of malware samples. Yara is a pattern
matching technique that can use sandbox memory dumps for the identification of malware families.
However, pattern matching techniques fail silently due to minor code variations, leading to uniden-
tified malware samples. This paper presents a two-layered Malware Variant Identification using
Incremental Clustering (MVIIC) process and proposes clustering of unidentified malware samples
to enable the identification of malware variants and new malware families. The novel incremental
clustering algorithm is used in the identification of new malware variants from the unidentified
malware samples. This research shows that clustering can provide a higher level of performance
than Yara rules, and that clustering is resistant to small changes introduced by malware variants.
This paper proposes a hybrid approach, using Yara scanning to eliminate known malware, followed
by clustering, acting in concert, to allow the identification of new malware variants. F1 score and
V-Measure clustering metrics are used to evaluate our results.

Keywords: malware clustering; Yara rules; malware variant identification; incremental clustering

1. Introduction

This paper provides a technique called Malware Variant Identification, using Incre-
mental Clustering (MVIIC). A sandbox is an instrumented virtual machine that executes
malware samples and other programs, and gathers dynamic analysis features resulting
from program execution. These features include filesystem activity, registry activity, net-
work traffic, program execution, and code injection. Two common sandboxes are Cuckoo [1]
and CWSandbox [2]. Yara is a pattern matching technique that can use sandbox memory
dumps for the identification of malware families. Yara rules contain regular expressions
and strings [3]. Yara rules may fail to identify new malware variants when software devel-
opment modifies code corresponding to the Yara regular expressions, or when program
strings are changed. These unidentified malware samples provide a valuable source of
unknown malware families and new malware variants.

While the clustering of dynamic analysis features has previously been used for mal-
ware detection [4,5], this paper proposes a hybrid scheme using Yara rules, and a novel
incremental clustering algorithm [6] to enable the identification of new malware families
and malware variants.

In this research, malware identification is performed in two layers. In the first layer,
the previously developed Yara rules are used to reject samples of known malware families.
A novel incremental clustering algorithm is applied in the second layer. Unlike traditional
clustering algorithms that are sensitive to the choice of starting cluster centers, incremental
clustering is able to find or approximate the best cluster distribution and detect small size
clusters. This is important in malware clustering when new data (unidentified malware
samples) become available, as such data generate separate and small clusters. Therefore,
this incremental clustering algorithm is well suited for use in a malware analysis system,

Electronics 2021, 10, 1628. https://doi.org/10.3390/electronics10141628 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8245-043X
https://doi.org/10.3390/electronics10141628
https://doi.org/10.3390/electronics10141628
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10141628
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10141628?type=check_update&version=1


Electronics 2021, 10, 1628 2 of 15

where new samples are reviewed on a periodic basis, and new malware variants can
initially become visible in small numbers due to initial testing before becoming available in
large numbers, due to wide-scale malware deployment.

The usage scenario for this research is a malware analysis system, where new malware
samples are received on a periodic (daily) basis and processed in a sandbox.

Yara rules identifying known malware variants are used to scan the sandbox memory
dumps. These Yara scans are used to identify known malware variants for further analysis.
However, the unidentified malware samples represent a valuable source of new malware
families and new malware variants. Random sampling from the clusters can then be used
for the identification of new malware families and variants. As an example of this use case,
consider a situation where a malware author is testing a new malware product and a few
samples of this new malware are received in the analysis system; however, the clusters are
small and may not be selected for analysis. As this new malware product becomes used in
the wild, the number of samples received increases, larger clusters are generated, and they
are finally selected for analysis.

Yara rules employ regular expressions for the identification of malware families.
These rules are widely used in industry for malware identification, and have the follow-
ing characteristics:

• They are readily created.
• Testing allows the elimination of obvious false positives.
• They are excellent for the matching of machine code, program headers, metadata,

or strings in programs.
• Detection may fail, due to code changes resulting from malware development, or re-

compilation.
• When Yara rules fail, no warning is given.

MVIIC provides a key component of the intelligent malware analysis process shown
in Figure 1. In this scenario, dynamic analysis of samples from a malware feed (1) is per-
formed, using a Cuckoo sandbox. Yara rules are used to scan the memory dump (2) from
the sandbox. Clustering is performed using the dynamic analysis features (4) of each
unidentified malware sample (3,5). New malware families (6) and malware variants (6) con-
tained in a random selection of malware samples from each cluster are identified, and new
Yara rules (8) are created, using the memory dumps (7) of the clustered malware samples.

Yara Scan

Sandbox

Clustering

Yara Rule
Generation

Malware
Identification

2. Memory Dump

3. Hash of 
Unidentified Malware

5. Malware Clusters

6. Hashes of 
Identified Malware

8. New Yara Rule

1. Malware Feed

7. Memory Dump
4. Dynamic Analysis

Features

Figure 1. Analysis concept.



Electronics 2021, 10, 1628 3 of 15

This paper makes the following contributions:

• Provides a use case for a novel incremental clustering algorithm.
• Provides feature engineering of features derived from the dynamic analysis logs of

malware samples captured from the live feed.
• Develops a two-layered dynamic analysis system that uses Yara rules to reject known

malware, and uses a novel clustering algorithm and feature engineering to perform
clustering of unidentified samples to enable the identification of new malware families,
variants, and deficiencies in the Yara rules.

The structure of this paper is as follows: Section 2 presents related work; Section 3
provides the problem definition and overview; Section 4 describes our approach; Section 5
provides an empirical evaluation of the new approach; Section 6 provides discussion and
limitations; and Section 7 presents the conclusion.

2. Related Work
2.1. Malware Classification Using Machine Learning

Machine learning is widely used in malware detection, classification, and clustering.
Common feature extraction techniques are used in each of these activities [7]. Malware
feature extraction can be performed using dynamic or static analysis. Feature extraction
using dynamic analysis is often performed by running a malware sample in a sandbox. The
sandbox extracts behavioral features of the malware execution. These behavioral features
include API call traces, filesystem and registry activity, network traffic, memory, instruction,
and register traces. A further type of feature may be created by representing malware bytes
as gray-scale images. The main limitations of behavioral analysis are malware detection of
the analysis environment and the limited program path that a malware sample executes
without command and control inputs. Static analysis provides features that are extracted
from the malware sample, and includes the function call graph, control flow graphs, API
function calls, instruction statistics, graphical representations, strings, byte representations,
entropy measurements, and hashes. Malware obfuscation, including packing (compression
or encryption of the original malware binary), is used to hinder static analysis [7].

Traditional machine learning techniques, such as support vector machine (SVM) or
random forest, require time-consuming feature engineering for the design of the machine
learning model. Deep learning architectures do not require feature engineering, and pro-
vide a trainable system that automatically identifies features from the provided input data.
Deep learning algorithms include the convolutional neural network, residual network,
autoencoder, recurrent neural network, short-term memory network, gated recurrent unit
network, and neural network [7].

2.2. Malware Clustering

A malware clustering and classification system using dynamic analysis was developed
by Rieck et al. [8]. In this research, API call names and call parameters are extracted
using CWSandbox. The API call names and parameters are encoded into a multi-level
representation called the Malware Instruction Set (MIST) [8]. Malware samples of a specific
family frequently contain variants with a high degree of behavioral similarity, providing
a dense vector space representation. This research study used prototype clustering to
represent the dense groups. The use of a prototype representation accelerated clustering
times by reducing the machine learning computation. The clustering experiments used
hierarchical clustering with a Euclidean distance measure; features were taken from 33,698
malware samples, and provided a maximum F1 score of 0.95.

A study of the clustering of malware samples using dynamic analysis is provided
by Faridi et al. [9]. This research used a data set of 5673 Windows malware samples.
The ground truth was determined by using the Suricata Intrusion Detection System (IDS)
alerts [10] to classify the malware samples based on the network traffic generated from
the execution of each malware sample. This led to a manually verified identification of
94 malware clusters. The clustering features were extracted from the Cuckoo sandbox file,



Electronics 2021, 10, 1628 4 of 15

registry keys, services, commands, API names, and mutex reports. Features present in less
than two samples were dropped to reduce the outliers. The cluster number was estimated,
using the gap statistic [11]. Clustering was performed, using the following algorithms:
DBSCAN, K-Means++, Spectral, Affinity propagation. The features were derived from
the Term Frequency Inverse Document Frequency (TF/IDF) matrix of the behavioral data
extracted from the Cuckoo sandbox reports. The following pairwise distance functions
were used in calculating the TF/IDF matrix: Cosine7, Cityblock, Euclidean, Hamming,
Braycurtis, Canberra, Minkowski, and Chebyshev. The performance of density-based,
hierarchical, and prototype clustering was evaluated. The metrics that were used to
evaluate the clustering performance are as follows: adjusted mutual information score,
adjusted Rand score, homogeneity, completeness, V-measure, G-means (geometric mean
of precision and recall), and silhouette coefficient. This paper notes that precision and
recall are, in general, sensitive to the number of clusters calculated, while homogeneity
and completeness are not. Hierarchical clustering with a Bray–Curtis distance measure
provided the best performance with 107 clusters and a V-measure of 0.921 in 195.71 s [9].

2.3. Incremental Clustering

Internet security organizations often maintain a knowledge base of malware family
behaviors. When a new malware sample is received, the malware knowledge base is used
for malware classification, which identifies whether the malware sample is a variant of
an existing family, or if it is a new malware family that requires reverse engineering to
understand its behaviors. Clustering of malware features can be used in the identification
of malware families. However, samples in a malware feed are subject to an ongoing concept
drift, due to the software development in existing malware families and the creation of
new malware families. Traditional clustering algorithms are designed to operate with
static ground truth. To deal with concept drift, traditional clustering algorithms require
that the whole data set be periodically re-clustered to incorporate the updated ground
truth. The execution time of traditional clustering algorithms increases in proportion to
the data set size. The problems of concept drift and data set size can be addressed by a
two-layered solution, where clustering is used to identify new malware families and a
classifier is then trained with the updated malware families. Difficulties with this approach
lie in determining an optimal batch size and the retraining interval. MalFamAware [12]
performs both the identification of new malware families and malware family classification
through the use of online clustering, and removes the cost of periodic classifier retraining.
MalfamAware makes use of the BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies) incremental clustering algorithm. MalFamAware extracts static and
dynamic features, using the Cuckoo sandbox. MalFamAware uses the following two phases:
tuning, and family identification and classification. In the first phase, BIRCH is tuned
using the existing ground truth; in the second phase, BIRCH is used to perform malware
classification and new family identification. MalFamAware testing was performed, using a
data set of 18 malware families with a total of 5351 malware samples. In the evaluation of
MalFamAware, the BIRCH algorithm provided the best performance with an F1 score of
0.923 [12].

2.4. Yara

Yara rules were developed by Victor Alvarez of VirusTotal [13] for the identification
and classification of malware samples [14]. They consist of strings and regular expres-
sions [15] that are used to match the program data. They are relatively simple and can be
easily created. Yara rules represent patterns and other data in programs, including malware.

These patterns are dependent on the toolchain used to build the program, and can
change whenever the program is rebuilt or when software development is performed. Yara
rules will fail to identify new malware variants where software development or recompila-
tion have resulted in modifications to machine code corresponding to previous Yara rules.
This may result in a failure to identify new malware variants or new malware families.



Electronics 2021, 10, 1628 5 of 15

3. Malware Variant Identification Using Incremental Clustering

There are two classes of incremental algorithms in clustering. The first class con-
tains algorithms that add data points incrementally and update clusters accordingly (e.g.,
BIRCH [16]). Algorithms from the second class construct clusters incrementally. In order
to compute the k > 1 clusters, these algorithms start by calculating one cluster, which is
the whole data set, and gradually add one cluster at each iteration. Our algorithm belongs
to the second class of incremental algorithms. The following section provides a summary
of this incremental clustering algorithm.

Incremental Non-Smooth Clustering Algorithm

Clustering is an unsupervised partitioning of a collection of patterns into clusters based
on similarity. Most clustering algorithms can be classified as hierarchical or partitional.
We consider partitional clustering algorithms. These algorithms find the partition that
optimizes a clustering criterion [6]. Next, we briefly describe the non-smooth optimization
formulation of the clustering problem used in this paper.

Assume that A is a finite set of points in the n−dimensional space Rn, that is A =
{a1, . . . , am}, where ai ∈ Rn, i = 1, . . . , m. The hard clustering problem is the distribution
of the points of the set A into a given number k of pairwise disjoint and nonempty subsets
Aj, j = 1, . . . , k such that

A =
k⋃

j=1

Aj (1)

The sets Aj, j = 1, . . . , k are called clusters, and each cluster Aj can be identified by its
center xj ∈ Rn, j = 1, . . . , k. The problem of finding these centers is called the k-clustering
(or k-partition) problem. The similarity measure is defined using the squared L2 norm:

d2(x, a) =
n

∑
i=1

(xi − ai)
2 (2)

In this case, the clustering problem is also known as the minimum sum-of-squares
clustering problem. The non-smooth optimization formulation of this problem is [6,17]
as follows:

minimize fk(x) subject to x = (x1, . . . , xk) ∈ Rnk (3)

where
fk(x1, . . . , xk) =

1
m ∑

a∈A
min

j=1,...,k
d2(xj, a) (4)

One of the well-known algorithms for solving the clustering problem is the k-means
algorithm. However, it is sensitive to the choice of starting cluster centers and can find
only local solutions to the clustering problems. Such solutions in large data sets may
significantly differ from the global solution to the clustering problem.

To enable an effective clustering process, we apply the incremental non-smooth op-
timization clustering algorithm (INCA), introduced in [18] (see also [6]). This algorithm
computes clusters gradually, starting from one cluster. It involves the procedure to generate
starting cluster centers; the procedure is described in [6]. This algorithm is accurate and
efficient in data sets with a large number of features, and can find either global or near-
global solutions to the clustering problem (3). In INCA this problem is solved using the
nonsmooth optimization method, the discrete gradient method [19]. In the implementation
of the INCA algorithm, we apply the following stopping criteria:

1. f < ε, where f =
fi−1− fi

fi−1
, i ≥ 2, fi is the value of the clustering function obtained at

the i-th iteration of an incremental algorithm and ε is a user defined tolerance.
2. nc > C, where nc is the number of clusters and C stands for the maximum number

of clusters.



Electronics 2021, 10, 1628 6 of 15

The parameter ε is user defined. This parameter is defined using the cluster function
value at the first iteration and the number of records: ε = f1/m. The incremental non-
smooth clustering algorithm is shown in Algorithm 1.

Algorithm 1 Incremental non-smooth clustering algorithm

Require: Cluster count k > 0
Require: Finite point set A ⊂ Rn

Calculate set A center X1 ∈ Rn
L = 1
while L < k or fL−1 − fL < ε do

L = L + 1
Find starting point ȳ ∈ Rn by solving the auxilarity clustering problem for Lth cluster
Find ỹ ∈ RnL by solving clustering problem starting from (x1, . . . , xL−1, ȳ)
Set solution of the L-partition problem xj = ỹj, j = 1, . . . , L and find the value fL of
the cluster function f at this solution.

end while

4. Experimental Methodology

The use of the incremental clustering algorithm allows the computation of accurate
solutions to the clustering problem to consider at once cluster distributions for different
numbers of clusters, and to cluster unidentified malware samples.

4.1. Feature Engineering

The following features were extracted from the analysis reports following the dynamic
analysis in a Cuckoo sandbox [1] running on a Windows 7 virtual machine. Common
operating system related hostnames were excluded.

• API Call names.
• API call frequencies.
• DNS A record lookup requests.

Previous machine learning research achieved good performance, using API call fre-
quency histograms [20,21], while other research indicated good performance associated
with network and HTTP features [9], including hostnames. As a result, it was decided
to use API call frequency and DNS hostname features. Two types of feature encoding
were performed: histogram encoding, and TF/IDF encoding. The histogram was built,
using call counts for each unique API call, and DNS lookup requests for each unique
hostname. The TF/IDF encoding created vectors from the unique API call names and
unique DNS hostnames.

4.2. Clustering

Clustering was performed, using INCA [6]. The evaluation of feature encoding was
performed, using both histogram features and TF/IDF encoding. Feature engineering ex-
periments were performed to identify the configuration that provided the highest accuracy.

4.3. Clustering Metrics

The metrics applied for the clustering results presented from this research are the
F1 score, V-measure, and cluster purity. The F1 score is calculated using precision and
recall, which are calculated from the TP, TN, FP, and FN counts. Precision and recall [22] are
defined in Equations (5) and (6), respectively.

Precision = TP/(TP + FP) (5)

Recall = TP/(TP + FN) (6)



Electronics 2021, 10, 1628 7 of 15

The F1 score (F1) [22] defined in Equation (7) is used to assess the quality of the results
in terms of precision and recall.

F1 = 2× (Precision× Recall)/(Precision + Recall) (7)

The V-measure is an entropy-based external cluster evaluation measure. This measure
is based on two criteria: homogeneity and completeness. It determines the degree of
similarity between a clustering distribution and a class distribution. Homogeneity of a set
of clusters means that each cluster from this set contains data points only from a single class.
Completeness of a set of clusters means that data points from a given class are elements
of the same cluster. Given a set of classes C = {Ci : i = 1, . . . , p} and a set of clusters
K = {Aj : j = 1, . . . , k} the V-measure is defined as follows:

Vβ =
(1 + β)hc

βh + c
(8)

Here, homogeneity h is defined as follows:

h = 1− H(C|K)
H(C)

(9)

and,

H(C|K) = −
k

∑
j=1

p

∑
i=1

nij

|A| log
nij

|Aj|
(10)

H(C) = −
p

∑
i=1

|Ci|
|A| log

|Ci|
|A| (11)

Completeness c is defined as follows:

c = 1− H(K|C)
H(K)

(12)

and,

H(K|C) = −
p

∑
i=1

k

∑
j=1

nij

|A| log
nij

|Ci|
(13)

H(K) = −
k

∑
j=1

|Aj|
|A| log

|Aj|
|A| (14)

In the above formulas nij is the number of data points belonging to the i-th class and
the j-th cluster and | · | is the cardinality of a set. In this paper, we take β = 1.

Purity shows how well the cluster distribution obtained by a clustering algorithm
reflects the existing class structure of a data set [6]. Let Ā = {A1, . . . , Ak}, k ≥ 2 be the
cluster distribution of the set A and C1, . . . , Cl be the true classes of A. Denote by ntj the
number of points from the t-th class belonging to the j-th cluster. Compute the following:

m̄j = max
t=1,...,l

ntj, j = 1, . . . , k. (15)

The purity for the cluster distribution Ā [6] is given in Equation (16).

PR(Ā) =

(
1
m

k

∑
j=1

m̄j

)
× 100%. (16)



Electronics 2021, 10, 1628 8 of 15

4.4. MVIIC Algorithm

Algorithm 2 illustrates the process of building a malware data set from existing
samples and then submitting the malware data set for processing in a Cuckoo sandbox.
When the sandbox processing is completed, a script is used to extract the raw features
from the Cuckoo logfiles. The raw features are encoded as either an API histogram or as
API name and hostname data that are encoded using TF/IDF. The incremental clustering
program is then run to cluster the features; when the clustering is finished, the clustering
metrics are extracted.

Algorithm 2 MVIIC Algorithm

Require: Malware data set
Submit malware data set to Cuckoo sandbox
while Sandbox processing samples do

Wait
end while
Extract features from Cuckoo report
Encode features to vector format
Run incremental clustering program
while Clustering in progress do

Wait
end while
Read clustering metrics

5. Experiments and Results
5.1. Malware Feed

The malware feed used in this work was provided by the abuse.ch research project
on [23]. A common feature of machine learning research is the need for accurate identifi-
cation of the feature labels. In the case of malware clustering, the feature labels identify
the malware families. The automatic identification of malware families is an open research
problem. While prior research used anti-virus labels [24] or network traffic [9] to estimate
the ground truth, the filenames of the samples used in this research contain the malware
family name and the sample hash. The malware family name was used to provide the
ground truth for this research. The malware families in this feed are a mixture of banking
malware and Remote Access Trojans (RATs).

5.2. Research Environment

Feature extraction was run on a laptop with an Intel i5-5300U CPU 2.30 GHz, with 8 GB
of RAM, using Cuckoo 2.0.7, Virtualbox 5.2.42, and a Windows 7 64-bit VM. Clustering was
performed on a workstation with an Intel i7-3770 CPU 3.40 GHz, and 32 GB of RAM. The
Cuckoo sandbox [1] was used for dynamic analysis in this research. The malware sample
data sets were submitted to Cuckoo, and a script was written to extract the features from
the Cuckoo reports.

5.3. Data Sets

A prior study [25] examined research that clustered malware samples selected based
on their anti-virus classification. This research reported a high degree of clustering accuracy.
However, reduced accuracy was observed using the clustering algorithm on a different
malware data set. This study concluded that the method used for the selection of malware
samples may bias sample selection toward easily classified malware samples.

Data Set 1 contains samples of 6 malware families; the details of this data set are
provided in Table 1. Prolonging the sandbox execution timeout allows the malware samples
to execute more API calls, and this may improve clustering performance. To investigate
whether clustering performance is influenced by the sandbox timeout, three sets of feature



Electronics 2021, 10, 1628 9 of 15

extraction were performed with Data Set 1, using sandbox timeouts of 60, 120, and 180 s.
These features are referred to as Data Set 1A, 1B, and 1C, respectively.

Table 1. Composition of Data Set 1.

Malware Family Count

Agent Tesla 365
Heodo 151
Njrat 407
Quasar Rat 580
Tinba 374
Trickbot 263
Total 2140

5.4. Experiments

The experiments listed below were performed to examine the effectiveness of the
clustering algorithm. These experiments were designed to investigate feature engineering
for dynamic analysis features, to investigate the potential of sandbox hardening measures,
to demonstrate the effectiveness of the incremental clustering algorithm in this applica-
tion, and to provide a comparison of our clustering approach against Yara rule-based
malware detection.

• Experiment 1: Feature frequency threshold.
• Experiment 2: API histogram compression.
• Experiment 3: TF/IDF encoding.
• Experiment 4: Sandbox hardening.
• Experiment 5: Execution time.
• Experiment 6: Comparison against Yara rules.

The following abbreviations are used in reporting the results of Experiments 1–5; these
experiments use the filtering of infrequent or high-frequency API calls from the features in
order to improve the clustering performance.

• Min API Count is the threshold that is used to exclude infrequent API features.
• Max API Count is the threshold that is used to exclude high-frequency API features.
• API Count Truncation is the maximum value of the API histogram.
• Feat Count is the number of features that were present following filtering.
• Cl is the number of clusters that were identified.
• Purity is the cluster purity.
• F1 is the average F1 score of all clusters.
• V-M is the average V-measure of all clusters.

Experiment 1: Feature Frequency Threshold. In this paper, it is hypothesized that
features that occur infrequently or very frequently do not improve malware clustering
accuracy. To investigate this empirically, a histogram of the API call counts for all mal-
ware samples was constructed. The API call count histogram is a sparse representation.
Fujino et al. used TF/IDF to eliminate the infrequent or high-frequency API calls from the
data set [26]. Our research uses a similar approach to remove infrequent or high-frequency
API features, using minimum and maximum thresholds.

The effects of using API feature frequency thresholds are shown in Tables 2 and 3.
Referring to Table 2, it can be seen that the clustering performance improves when features
with fewer than 1000 nonzero API counts are excluded, giving a maximum F1 score of
0.68. Referring to Table 3, it can be seen that the clustering performance is improved by
excluding features with an API count of more than 2120, giving an F1 score of 0.47.



Electronics 2021, 10, 1628 10 of 15

Table 2. Data Set 1C exclusion of infrequent features.

Min API Count Feat Count Cl Purity F1 V-M

0 388 13 32.8 0.32 0.10
600 213 17 63.9 0.49 0.51
1000 181 26 82.09 0.68 0.65
1200 175 25 82.09 0.68 0.65
1400 170 29 82.23 0.68 0.64
1600 168 29 82.23 0.68 0.64
1800 164 34 77.95 0.67 0.63
2000 163 28 77.66 0.66 0.64
2140 155 29 49.43 0.38 0.39

Table 3. Data Set 1C exclusion of high-frequency features.

Max API Count Feat Count Cl Purity F1 V-M

2140 388 13 32.80 0.32 0.10
2120 387 14 49.61 0.47 0.41
2100 385 27 49.01 0.46 0.45
2080 383 14 37.37 0.34 0.20
2000 379 26 37.89 0.33 0.16
1600 375 14 32.89 0.32 0.11
1200 368 28 33.1 0.32 0.11

Experiment 2: API Histogram Compression. Some malware samples make a large
number (multiple 100,000) of calls to specific APIs. This may be an attempt to hinder analy-
sis by causing sandbox timeouts. CBM [27] improves performance, using a logarithmic
method to compress the value of API histogram counts.

In this experiment, we use a simpler method to compress the API histogram. Our
method truncates the API histogram value to a specified maximum value called the maxi-
mum API count. The results in Table 4 use a minimum API count of 1000 and a maximum
API count of 2120 and varies the API count truncation value. The best clustering perfor-
mance occurs with an API count truncation value of between 5 and 25.

Table 4. Data Set 1C API count truncation.

API Count Truncation Feat Count Cl Purity F1 V-M

1 180 12 87.56 0.76 0.74
3 180 7 86.33 0.80 0.77
5 180 7 87.42 0.81 0.78
7 180 10 91.8 0.82 0.78
10 180 7 85.39 0.81 0.76
15 180 12 90.66 0.80 0.76
25 180 11 89.73 0.80 0.76
50 180 11 89.87 0.81 0.76
100 180 15 93.50 0.81 0.76
300 180 29 95.05 0.80 0.76
500 180 19 85.96 0.71 0.69

Experiment 3: TF/IDF Encoding. TF/IDF was used to encode the API names and
DNS addresses. Duplicates were removed from the API names and DNS addresses prior
to TF/IDF encoding. The results of clustering using TF/IDF feature encoding are shown
in Table 5. The columns labeled Min DF and Max DF contain the values passed to the
SciKit-Learn TFIDF CountVectorizer that are used to ignore terms that occur below a
low-frequency threshold or above a high-frequency threshold. These results show that the
performance of the histogram and TF/IDF encoding in these tests is equivalent.



Electronics 2021, 10, 1628 11 of 15

Table 5. Data Set 1C TF/IDF performance.

Min DF Max DF Feat Count Cl Purity F1 V-M

0.000 1.00 386 7 88.50 0.81 0.78
0.001 1.00 248 9 90.25 0.81 0.77
0.002 1.00 223 7 88.60 0.81 0.78
0.003 1.00 213 8 88.60 0.80 0.77
0.004 1.00 203 7 88.60 0.80 0.78
0.010 1.00 186 7 88.60 0.81 0.78
0.020 1.00 172 7 88.60 0.81 0.78
0.030 1.00 162 8 89.44 0.81 0.77
0.040 1.00 153 8 88.55 0.76 0.75
0.050 1.00 141 8 88.55 0.76 0.75
0.001 0.99 244 8 88.60 0.80 0.77
0.001 0.95 240 7 88.60 0.81 0.78
0.001 0.80 229 7 88.60 0.81 0.78
0.001 0.60 229 8 90.95 0.82 0.79
0.001 0.40 216 8 88.60 0.80 0.77

Experiment 4: Sandbox Hardening. Some malware families contain anti-analysis
code that terminates the malware or performs decoy actions when execution in an analysis
environment is detected [28,29]. In this research, the following anti-analysis techniques
were mitigated:

• VM integration software detection.
• Processor core count checking.
• Malware slow startup.

VirtualBox and other VM environments provide optional software to improve the
integration between the host computer and the VM. While this software improves the
integration of the VM, it is readily detected by malware [29]. The first VM hardening
technique used in this research was the removal of the VirtualBox Guest Additions software.

Some malware, e.g., Dyre [30], counts the number of processor cores. If only one
processor core is present, the malware terminates. This test provides a mechanism for
detecting virtualized analysis environments. The VM used in this research was configured
with two processor cores.

Some malware programs start slowly, and this may cause a sandbox timeout before
malware behaviors are revealed. Setting a sandbox analysis timeout to a low value allows
a higher malware sample throughput but may not allow sufficient time to capture malware
behaviors. Setting a longer analysis timeout may allow identification of malware behaviors,
but does so at the cost of reduced throughput. In this research, an experiment was per-
formed to determine if clustering performance varies as a result of setting different analysis
timeout values. The results of this experiment, shown in Table 6, indicate that increasing
sandbox execution times results in improved clustering metrics (cluster purity, F1 score,
and V-Measure). This indicates that longer sandbox timeouts can be used to capture more
details of malware behaviors.

Table 6. VM timeout versus maximum cluster purity.

Analysis Timeout (s) Feat Sel Cl Purity F1 V-M

Data Set 1A 60 s 75 11 89.29 0.79 0.73
Data Set 1B 120 s 109 10 90.11 0.81 0.75
Data Set 1C 180 s 180 10 91.80 0.82 0.78

In addition, the following changes were also made to harden the VM [31]: disable
Windows Defender, disable Windows Update and deactivate Address Space Layout Ran-
domization (ASLR) [32].



Electronics 2021, 10, 1628 12 of 15

Experiment 5: Execution Time. The execution times for feature extraction and clus-
tering are shown for the three versions of Data Set 1 in Table 7. The experiments in this
research were conducted on a workstation using an Intel i7-3770 3.40 GHz CPU with
32 GB of RAM. Feature extraction was performed, using a Python script. The clustering
program was written in Fortran and was compiled with gfortran. These results show that
the clustering operation accounts for the majority of the run time, the malware clustering
times are suitable for research purposes, and that the clustering time is proportional to the
feature count.

Table 7. Execution time.

Data Set Feat Sel Extraction(s) Clustering(s)

Data Set 1A (60 s) 209 0.7 113.5
Data Set 1B (120 s) 256 0.8 164.1
Data Set 1C (180 s) 327 1.0 275.5

5.5. Yara Rules

Yara rules for the six malware families in Data Set 1 were obtained from Malpedia [33],
and these rules are summarized in Table 8. While these Yara rules were not written specifi-
cally for this research, they were used to conduct a study that highlights the shortcomings of
Yara rule-based malware detection. The best performing Yara rules were Agent Tesla, Njrat,
and Tinba rules. These rules were used in experiments that compared the performance of
Yara rules and clustering.

Table 8. Yara rule counts.

Malware Family Yara Rule Count

Agent Tesla 2
Heodo 4
Njrat 2
Quasar Rat 1
Tinba 4
Trickbot 7

Experiment 6: Comparison Against Yara Rules. The Yara rules from Malpedia [33]
were run against process memory dumps from Data Set 1. The malware identification
results for the Yara rules are shown in Table 9. These Yara rules were not optimized for
this data set. However, it can be seen that the detection rate using these Yara rules varied
from 18.90 percent to 94.12 percent. Yara rules are known to be sensitive to minor malware
changes resulting from software development. Referring to Table 6, it can be seen that the
cluster purity was approximately 90%. If the dynamic analysis features from the malware
samples that were not identified by the Yara rules had been clustered, then clusters with a
purity of approximately 90% would have allowed identification of the unidentified variants,
allowing an opportunity for updating the Yara rules. MVIIC uses a Cuckoo sandbox-based
dynamic analysis platform to provide the first step in the identification of new malware
variants. The runtime performance of the Cuckoo sandbox is heavily dependent on the
hardware platform, sandbox configuration, and the configured Yara rules. This leads to
the conclusion that, while the clustering performance is an important parameter of this
research, the Cuckoo sandbox execution time (including Yara scanning) is not relevant.



Electronics 2021, 10, 1628 13 of 15

Table 9. Data Set 1 Yara performance.

Family Sample Count % Detection Yara Hits

Agent Tesla 365 18.90 69
Heodo 365
Njrat 407 67.81 276
Quasar Rat 580
Tinba 374 94.12 352
Trickbot 263

6. Discussion and Limitations

This research is set in the context of a two-layered malware analysis system that uses
Yara rules for the identification of malware families and attempts to address the problem
of minor changes in the malware code, causing a detection failure. In this use case, this
paper proposes a hybrid approach, using Yara scanning and clustering, these act in concert
to identify new malware variants. In this scenario, those malware samples that are not
detected by Yara rules are collected for clustering, and the results of this clustering process
can be used for the identification of new malware variants. While previous malware
clustering research focused on the identification of the feature combinations and clustering
algorithms that provide the highest performance, this research investigates the application
of a novel incremental clustering method.

The results of the experiments in this paper show that this novel clustering algorithm
can be used for the task of clustering malware, using features obtained by dynamic anal-
ysis. In the data set used in this research, the filenames of each malware sample contain
the malware family name. This family name was used to provide the clustering ground
truth. Any errors in the malware labeling will reduce the reported clustering accuracy.
This highlights a need for the accurate labeling of malware data sets. The experiments
in this paper showed that clustering performance was improved by filtering infrequent
or high-frequency features. The performance of API frequency histogram encoding and
TF/IDF encoding of features gave similar results. Increasing the sandbox malware sample
execution timeout improved the clustering performance. The performance of malware
family detection using Yara rules was compared with clustering performance, this exper-
iment illustrated that the clustering approach has a more consistent and higher level of
performance that is resistant to small changes introduced by malware variants.

While there is a need to compare MVIIC with other related algorithms, care needs
to be taken to ensure that these comparisons are valid and to evaluate MVIIC using data
sets from previous research. MVIIC research has not yet progressed to the point of being
evaluated against data sets from other research.

7. Conclusions

This paper proposes a two-layered MVIIC technique that makes use of a novel incre-
mental clustering algorithm to support Yara-based malware family identification by the
clustering of unidentified malware variants. These unidentified malware samples represent
a valuable source of unknown malware families and new malware variants.

While some previous malware clustering research has focused on the identification of
the feature combinations and clustering algorithms that provide the highest performance,
this research investigates malware clustering using a novel incremental clustering method.
Using a data set of in-the-wild malware, this research has shown that this clustering
algorithm can be used to cluster malware features obtained by dynamic analysis. The
clustering performance was improved by excluding infrequent and high-frequency features.
A comparison of feature encoding using an API frequency histogram and TF-IDF encoding
of API names was performed. These feature encoding methods were shown to provide
equivalent performance. Increasing the malware sample sandbox execution time was
shown to improve clustering performance.



Electronics 2021, 10, 1628 14 of 15

An investigation of the detection of the malware samples by a set of existing Yara
rules was performed. Clustering provided cluster purity of 90%, while Yara detection
varied from 18.90% to 94.12%. This illustrates that the pattern matching approach used in
Yara rules may fail, due to minor code variations, while the performance of a clustering
approach is not impacted by minor code variations.

This research has shown that this novel incremental clustering algorithm is able to
cluster malware dynamic analysis features.

Future Work

The work presented in this paper can be extended as follows:

• Investigate techniques to improve the clustering performance of dynamic malware
analysis features.

• Investigate techniques to improve the run time performance of the clustering of
dynamic malware analysis features.

• Make use of the incremental operation of the non-smooth optimization clustering
technique to support the identification of new variants in a continuous malware
analysis operation.

• Investigate techniques for the automatic generation of Yara rules to support the
analysis concept shown in Figure 1.

Author Contributions: Conceptualization, P.B.; Formal analysis, A.B.; Funding acquisition, I.G.;
Investigation, P.B.; Methodology, P.B.; Software, P.B., A.B. and M.M.; Supervision, I.G.; Writing—
original draft, P.B.; Writing—review and editing, I.G. and A.B. All authors have read and agreed to
the published version of the manuscript.

Funding: The research by Adil Bagirov is supported by the Australian Government through the
Australian Research Council’s Discovery Projects funding scheme (Project No. DP190100580).

Data Availability Statement: The authors can be contacted for the availability of the datasets, and
requests will be processed case by case basis.

Acknowledgments: The research was conducted at the Internet Commerce Security Lab (ICSL),
where Westpac, IBM and Federation University are partners.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cuckoo Authors. Cuckoo Sandbox. 2021. Available online: https://cuckoo.sh/blog (accessed on 7 July 2021).
2. Willems, C.; Holz, T.; Freiling, F. Toward automated dynamic malware analysis using cwsandbox. IEEE Secur. Priv. 2007, 5, 32–39.

[CrossRef]
3. Brengel, M.; Rossow, C. YARIX: Scalable YARA-based Malware Intelligence. In Proceedings of the USENIX Security Symposium,

Virtual Event, 11–13 August 2021.
4. Shan, Z.; Wang, X. Growing grapes in your computer to defend against malware. IEEE Trans. Inf. Forensics Secur. 2013, 9, 196–207.

[CrossRef]
5. Bayer, U.; Comparetti, P.M.; Hlauschek, C.; Kruegel, C.; Kirda, E. Scalable, behavior-based malware clustering. In Proceedings of

the NDSS 2009, San Diego, CA, USA, 8–11 February 2009; Volume 9, pp. 8–11.
6. Bagirov, A.; Karmitsa, N.; Taheri, S. Partitional Clustering via Nonsmooth Optimization; Springer: Chem, Switzerland, 2020.
7. Gibert, D.; Mateu, C.; Planes, J. The rise of machine learning for detection and classification of malware: Research developments,

trends and challenges. J. Netw. Comput. Appl. 2020, 153, 102526. [CrossRef]
8. Rieck, K.; Trinius, P.; Willems, C.; Holz, T. Automatic analysis of malware behavior using machine learning. J. Comput. Secur.

2011, 19, 639–668. [CrossRef]
9. Faridi, H.; Srinivasagopalan, S.; Verma, R. Performance Evaluation of Features and Clustering Algorithms for Malware. In

Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018;
pp. 13–22.

10. Wong, K.; Dillabaugh, C.; Seddigh, N.; Nandy, B. Enhancing Suricata intrusion detection system for cyber security in SCADA
networks. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor,
ON, Canada, 30 April–3 May 2017; pp. 1–5.

https://cuckoo.sh/blog
http://doi.org/10.1109/MSP.2007.45
http://dx.doi.org/10.1109/TIFS.2013.2291066
http://dx.doi.org/10.1016/j.jnca.2019.102526
http://dx.doi.org/10.3233/JCS-2010-0410


Electronics 2021, 10, 1628 15 of 15

11. Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Stat.
Methodol.) 2001, 63, 411–423. [CrossRef]

12. Pitolli, G.; Laurenza, G.; Aniello, L.; Querzoni, L.; Baldoni, R. MalFamAware: Automatic family identification and malware
classification through online clustering. Int. J. Inf. Secur. 2021, 20, 371–386. [CrossRef]

13. Arntz, P. Explained: YARA Rules. 2017. Available online: https://virustotal.github.io/yara (accessed on 7 July 2021).
14. Yara. Yara: The Pattern Matching Swiss Knife for Malware Researchers. 2017. Available online: https://blog.malwarebytes.com/

security-world/technology/2017/09/explained-yara-rules (accessed on 7 July 2021).
15. Infosec Institute. YARA: Simple and Effective Way of Dissecting Malware. 2015. Available online: http://resources.

infosecinstitute.com/yara-simple-effective-way-dissecting-malware/#gref (accessed on 7 July 2021).
16. Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: A new data clustering algorithm and its applications. Data Min. Knowl. Discov.

1997, 1, 141–182. [CrossRef]
17. Bagirov, A.M.; Yearwood, J. A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems. Eur. J.

Oper. Res. 2006, 170, 578–596. [CrossRef]
18. Bagirov, A.; Mohebi, E. Nonsmooth optimization based algorithms in cluster analysis. In Partitional Clustering Algorithms; Celebi,

E., Ed.; Springer: Chem, Switzerland, 2015.
19. Bagirov, A.; Karmitsa, N.; Mäkelä, M. Introduction to Nonsmooth Optimization; Springer: Chem, Switzerland, 2014.
20. Black, P.; Sohail, A.; Gondal, I.; Kamruzzaman, J.; Vamplew, P.; Watters, P. API Based Discrimination of Ransomware and Benign

Cryptographic Programs. In Proceedings of the International Conference on Neural Information Processing, Bangkok, Thailand,
18–22 November 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 177–188.

21. Takeuchi, Y.; Sakai, K.; Fukumoto, S. Detecting ransomware using support vector machines. In Proceedings of the 47th
International Conference on Parallel Processing Companion, Eugene, OR, USA, 13–16 August 2018; p. 1.

22. Lipton, Z.C.; Elkan, C.; Naryanaswamy, B. Optimal thresholding of classifiers to maximize F1 measure. In Proceedings of the
Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Nancy, France, 15–19 September 2014;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 225–239.

23. Abuse.ch. Fighting Malware and Botnets-Abuse.ch. 2021. Available online: https://abuse.ch (accessed on 7 July 2021).
24. Zhang, Y.; Sui, Y.; Pan, S.; Zheng, Z.; Ning, B.; Tsang, I.; Zhou, W. Familial clustering for weakly-labeled android malware using

hybrid representation learning. IEEE Trans. Inf. Forensics Secur. 2019, 15, 3401–3414. [CrossRef]
25. Li, P.; Liu, L.; Gao, D.; Reiter, M.K. On challenges in evaluating malware clustering. In Proceedings of the International Workshop

on Recent Advances in Intrusion Detection, Ottawa, ON, Canada, 15–17 September 2010; Springer: Berlin/Heidelberg, Germany,
2010; pp. 238–255.

26. Fujino, A.; Murakami, J.; Mori, T. Discovering similar malware samples using api call topics. In Proceedings of the 2015 12th
Annual IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015.

27. Qiao, Y.; Yang, Y.; He, J.; Tang, C.; Liu, Z. CBM: Free, automatic malware analysis framework using API call sequences. In
Knowledge Engineering and Management; Springer: Berlin/Heidelberg, Germany, 2014; pp. 225–236.

28. Black, P.; Opacki, J. Anti-analysis trends in banking malware. In Proceedings of the 2016 11th International Conference on
Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 18–21 October 2016; pp. 1–7.

29. Ferrand, O. How to detect the cuckoo sandbox and to strengthen it? J. Comput. Virol. Hacking Tech. 2015, 11, 51–58. [CrossRef]
30. Kovacs, E. Dyre Banking Trojan Counts Processor Cores to Detect Sandboxes. 2015. Available online: http://www.securityweek.

com/dyre-banking-trojan-counts-processor-cores-detect-sandboxes (accessed on 7 July 2021).
31. Byte Atlas. Knowledge Fragment: Hardening Win7 x64 on VirtualBox for Malware Analysis. 2020. Available online:

http://byte-atlas.blogspot.com/2017/02/hardening-vbox-win7x64.html?m=1 (accessed on 7 July 2021).
32. Russinovich, M.E.; Solomon, D.A.; Ionescu, A. Windows Internals; Pearson Education: New York, NY, USA, 2012.
33. Plohmann, D.; Clauss, M.; Enders, S.; Padilla, E. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape. J.

Cybercrime Digit. Investig. 2018, 3. [CrossRef]

http://dx.doi.org/10.1111/1467-9868.00293
http://dx.doi.org/10.1007/s10207-020-00509-4
https://virustotal.github.io/yara
https://blog.malwarebytes.com/security-world/technology/2017/09/explained-yara-rules
https://blog.malwarebytes.com/security-world/technology/2017/09/explained-yara-rules
http://resources.infosecinstitute.com/yara-simple-effective-way-dissecting-malware/#gref
http://resources.infosecinstitute.com/yara-simple-effective-way-dissecting-malware/#gref
http://dx.doi.org/10.1023/A:1009783824328
http://dx.doi.org/10.1016/j.ejor.2004.06.014
https://abuse.ch
http://dx.doi.org/10.1109/TIFS.2019.2947861
http://dx.doi.org/10.1007/s11416-014-0224-9
http://www.securityweek.com/dyre-banking-trojan-counts-processor-cores-detect-sandboxes
http://www.securityweek.com/dyre-banking-trojan-counts-processor-cores-detect-sandboxes
http://byte-atlas.blogspot.com/2017/02/hardening-vbox-win7x64.html?m=1
http://dx.doi.org/10.18464/cybin.v3i1.17

	MalwareVariantIdentificationCopyright
	Federation University ResearchOnline
	https://researchonline.federation.edu.au


	MalwareVariantIdentification
	Introduction
	Related Work
	Malware Classification Using Machine Learning
	Malware Clustering
	Incremental Clustering
	Yara

	Malware Variant Identification Using Incremental Clustering
	Experimental Methodology
	Feature Engineering
	Clustering
	Clustering Metrics
	MVIIC Algorithm

	Experiments and Results
	Malware Feed
	Research Environment
	Data Sets
	Experiments
	Yara Rules

	Discussion and Limitations
	Conclusions
	References




