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How much I can Rely on You: Measuring
Trustworthiness of a Twitter User

Rajkumar Das, Gour Karmakar, Member, IEEE, and Joarder Kamruzzaman, Senior Member, IEEE

Abstract—Trustworthiness in an online environment is essential because individuals and organizations can easily be misled by false
and malicious information receiving from untrustworthy users. Though existing methods assess users’ trustworthiness by exploiting
Twitter account properties, their efficacy is inadequate because of Twitter’s restriction on profile and tweet size, the existence of missing
or insufficient profiles, and ease to create fake accounts or relationships to pretend as trustworthy. In this paper, we present a holistic
approach by exploiting ideas perceived from real-world organizations for trust estimation along with available Twitter information. Users’
trustworthiness is determined by considering their credentials, recommendation from referees and the quality of the information in their
Twitter accounts and tweets. We establish the feasibility of our approach analytically and further devise a multi-objective cost function
for the A* search to find a quasi-optimal path between the trust evaluator and the user whose trustworthiness is being evaluated. We
also propose an incentive mechanism to increase user participation in the trust evaluation process, and a threat model and
trustworthiness measure of referees to thwart the possibility of providing an untruthful recommendation to inflate one’s trustworthiness.
The efficacy of our proposed approach is validated through experiments using Twitter data and extensive simulation in various
scenarios.

Index Terms—Social Networks, Security, Trustworthiness, Reliable Communication.
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1 INTRODUCTION

W ITH 310 million active users per month and 500 mil-
lion tweets per day, Twitter is one of the largest online

social network platforms. 69% of the purchases made from
small and medium-sized businesses (SMB) are because of
the information customers come across in Twitter, and over
80% of their customer service requests are received through
this channel [1]. Short but targeted and immediate customer
reviews and feedback from large Twitter users enable busi-
nesses and organizations to evaluate their products and
services within a short time at almost no cost. Consequently,
this allows organizations to improve customer experience
and meet their demands promptly. Twitter is also a strong
vehicle to express and crystallize public opinion on vital
socio-political issues as demonstrated in the recent events
like Brexit and Greece economic crisis. Therefore, Twitter
content analysis is one of the most critical determinants
for the success of businesses as well as government and
non-government organizations. Another important applica-
tion of Twitter is that over 63% of its users consider the
platform a source of information for events and issues [2].
Accordingly, Twitter emerges as one of the fastest ways to
disseminate information. The information is used by users
for making decisions on socio-economic issues.

Like other publicly accessible online environments, Twit-
ter is vulnerable to security concerns, which necessitates
evaluating the trustworthiness of users and their generated
tweets individually. A group of customers or a rival com-
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pany can generate false reviews to destroy the economic
strength and goodwill of an organization. On the other
hand, a consumer can be deceived in making an online
purchase based on biased Twitter reviews. Similarly, Twitter
is also a source of misinformation deliberately propagated
through compromised and untrustworthy users [3]. There-
fore, it is utmost important to verify the trustworthiness of
(i) a Twitter user and (ii) information generated from the
user’s Twitter account.

The existing research proposed methods mostly based
on machine learning techniques to determine trustworthi-
ness of users [7], [8] and their tweets [6] [4] by exploiting
several factors derived from Twitter. The efficacy of these
learning based techniques is very much limited to the
selection and accuracy of their training sets. Most impor-
tantly, the main drawback of the existing works is that
they are vulnerable to be misled by the users who create
fake accounts and relationships to present them as trust-
worthy. The online predators work in groups by making
strongly connected networks among them and can easily
manipulate the Twitter statistics to falsely appearing as
trustworthy. Anyone can pretend to be a person with good
credential by listing false information in profile; there is
no way to verify directly. Consequently, we cannot rely on
any information from an account which is not verified as
trustworthy. We refer to this as the ’trustworthiness of a
node’ to differentiate it from the ’trustworthiness of data’
[32] generated from that account. The problem of verifying
a node as trustworthy is further compounded by the fact
that around 50% Twitter users have no or limited profile
information. These limit the efficacy of the existing methods
for measuring trustworthiness. In real-world, a person can
be identified as trustworthy only after being verified with
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their real identities. This creates a significant research gap
between online environments like Twitter and real-world
systems in measuring the trustworthiness of a user.

In real-world systems, users are asked to provide their
credentials through official identity, based on which they
are verified as trustworthy or not. The 100-points identity
verification process implemented by the Australian gov-
ernment [12] is a classic example of such system which is
adopted by Banks and other financial institutions, real estate
agencies and many others. Here, credentials are asked from
a number of categories and each category is assigned with
some points. A person needs to provide at least 100 points to
verify her identity. However, it is not possible to implement
such a method in an online environment like Twitter, as
people will not provide their credentials online for privacy
and security reasons. Therefore, it raises a very potential
research question: is it possible to verify a user’s identity
in the online environment to measure its trustworthiness?
If possible, what would be such credentials and how the
parties could transfer them in Twitter privately and verify?
Any credential which can represent a user’s identity in
online is referred to as web credential. To address the above
research question, for the first time, this paper proposes a
method to measure trustworthiness of Twitter users using
web credentials. Please note that our mechanism allows
only true Twitter users towards trustworthiness evaluation
and thus, fake and bot accounts are excluded from all
considerations. We shed more lights on this in later sections.

Verifying a user’s trustworthiness through web creden-
tials does not provide a complete solution as some users
might have no or an insufficient number of credentials
despite being trustworthy in their real-world interactions.
To address this issue using the most popular and widely
adopted approach used in the real-world verification pro-
cess, we incorporate a further verification process by re-
questing users to nominate a set of possible referees and
users’ trustworthiness is verified based on their recommen-
dations. Since online referees may be fake users or generate
false recommendations, in this paper, we also introduce
the trustworthiness measure of referees from their Twitter
accounts and recommendation scores. To the best of our
knowledge, evaluating users’ trustworthiness using direct
recommendation process has not been investigated before
for Twitter. Once a user is verified, we evaluate the trust-
worthiness of tweets of a user in an innovative way.

The success of the proposed trust model depends on
(i) the establishment of a communication path in Twitter
network between the trust evaluator and a user whose
trustworthiness is to be evaluated, (ii) the possibility of the
user to provide her web credentials on request and (iii)
the availability of trustworthy recommendation from the
referees. To address the first issue, considering the charac-
teristics of Twitter users and the underlying network, we
analytically ensure the possibility of such a communication
path between any two Twitter users within a reasonable
delay-bound. Furthermore, we devise a multi-objective cost
function for the A* search to find the most reliable path
within less amount of delay. For the second issue, we
develop an incentive mechanism to encourage users to par-
ticipate in the trust evaluation process. Finally, we propose

a threat model to thwart the trust inflation process by a
strongly connected group of users who review each other
positively. Especially, the threat model addresses the Sybil
attack [26] with respect to our recommendation process and
eliminates those referees who pose a higher possibility of
being Sybil nodes, attempting to provide fake and inflated
recommendations.

In a nutshell, in this paper, we propose a holistic ap-
proach to solve the existing research gap by incorporating
ideas perceived from physical organizations for trust esti-
mation along with available Twitter information. Our model
has two-fold potential benefits. First, verification of a Twitter
user by online credentials and referees’ recommendation re-
ports will improve the quality of trustworthiness measures.
Second, the concept can be used, with minor modification,
in other online platforms like Facebook, blogs, and other
social networks. Our major contributions are the followings:

• Trustworthiness of a Twitter user is determined by
employing the user’s web credential and devising an
online recommendation system. Credentials and recom-
mendations are sought and exchanged in a way that
preserves privacy.

• Trustworthiness of tweets of a user is determined by
measuring the quality of information it presents with
respect to the information-space on Twitter.

• An incentive mechanism to facilitate communication
and a threat model to thwart Sybil attack are proposed.

• Finally, the feasibility and performance of the proposed
model are investigated analytically, and an innovative
cost function for A* search to find quasi-optimal paths
to communicate among nodes within an acceptable
time is proposed. The approach is extensively verified
using real Twitter and simulated data.

2 LITERATURE REVIEW
Trustworthiness is an important factor to establish a

safe, reliable and sustainable social platform [15], where
the awareness and guarantee of safety are ensured through
developing and strengthening trustworthiness among its
users [16]. Consequently, assessing the trustworthiness of an
online social network user draws substantial attention from
the relevant research community. Despite this, trust evalu-
ation is still poorly understood in an online social network
environment and thus, needs extensive investigation in this
area [17] [16]. Already being a multifaceted problem, the
different characteristics of different online social networks
demand platform-specific solutions by considering their
distinguished features and corresponding vulnerabilities. In
this section, we mainly focus on measuring the trustwor-
thiness of users on Twitter. The existing approaches can be
categorized into two different but closely related streams,
namely (i) assessing user trustworthiness and (ii) detecting
a spam user account.

To address the first issue, the existing research proposed
methods to determine the trustworthiness of users [7], [8]
and their tweets [6] [4] by exploiting several factors derived
from Twitter. It includes (i) the graph based factors that
exploit the structural and contextual properties of users such
as the number of followers, friends and list-memberships
and (ii) factors extracted from the characteristics of the user
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generated tweets including the number of times a tweet has
been re-tweeted or liked by others and the quality of the
links included in a tweet.

Yu et al. built a hybrid graph with users, tweets and
topics as nodes to represent the trust relationship among the
nodes, and conduct a semi-supervised learning algorithm
inspired by the Label Propagation Algorithm to detect un-
trusted users [18]. Their main drawback is that they need a
seed set of known trusted users, which may be challenging
to get all the time, especially a user may change her be-
haviour over time or depending on a topic. Similarly, in [7],
Zou et al. proposed a graphical probabilistic model based on
Pairwise Markov Random Field (PMRF) considering both
user features and social relationships, and employ the Belief
Propagation algorithm for trust inference. However, trust-
worthiness is highly subjective [17] that might not converge
to a single value for a user across the social network.

Salih et al. in [8] formulate a domain-specific trustworthi-
ness metric incorporating several attributes extracted from
content and user analysis and considering temporal factors.
However, the main concern is that, instead of comprehend-
ing the user’s trustworthiness, the attributes mainly relate
to the influence of a user on Twitter-sphere on a particular
topic. Rather than relying on a training set, in [6], Twitter is
treated as a news channel, and the credibility of user tweets
is verified against the information from contextually simi-
lar trustworthy news sources. The authors further devised
trust propagation rules by combining contextual and social
networking information to estimate users’ trustworthiness.
The major drawback is that, for any past event, the trust-
worthiness computation heavily relies on the availability
of event-related posts generated by credible news outlets.
Any error generated in this step will be propagated in users’
trustworthiness estimation.

On the other hand, a series of trust propagation and
inference models is proposed where the connected peers of
the user assign trust scores through the networks [5] [11] [9].
Although propagative nature of trust can provide a rough
estimation of an unknown user, the subjectivity in trust
necessitates an individual evaluation of each user’s trust-
worthiness, especially in the information-centric network
like Twitter.

Trustworthiness is also related with whether the cor-
responding Twitter account is a spammer and dissem-
inates spam. Several existing models deal with the
spam/spammer detection on Twitter. In [19], Benevenuto
et al. recognized a number of characteristics relating to
spammers’ social behaviour and their tweet content and
applied machine learning techniques using these attributes
to classify users as either spammers or non-spammers.
The characteristics of tweets include (i) fraction of tweets
containing URLs, (ii) fraction of tweets that contain spam
words, and the average number of words that are hash-tags
on the tweet. Twenty-three user attributes are considered,
including account age, the existence of spam words on the
user’s screen-name, the minimum, maximum, average, and
median of the time between tweets and the number of
tweets posted per day. Similarly, in [21], Wang proposed a
spammer detection strategy using both graph- and content-
based features, such as the number of followers and friends,

user reputation, duplicate tweets, number of HTTP links,
and number of replies and mentions.

Instead of using account features, Song et al. proposed
a spam tweet filtering method in [20] by using relation
features, namely the distance and connectivity between the
sender and receiver of a tweet. Amleshwaram et al. [23] in-
troduced bait-oriented features that capture the techniques
used by spammers to grab victims’ attention to lure them
into clicking malicious links. Examples include the number
of unique mentions, unsolicited mentions, hijacking trends
and others. They also clustered the spammers into prevalent
spam campaign groups on Twitter.

Lin et al. [24] analyzed the effectiveness of the common
features used in prior studies for detecting long surviving
Twitter spammer account, and their study yields two very
simple yet, effective features, namely (i) the URL rate and (ii)
the interaction rate. Likewise, very recently, Herzallah et al.
[22] conducted a comprehensive analysis of all the features
that were investigated for spam detection in the literature
to determine the most effective ones. The most effective
features in detecting spam Twitter account are reported, and
the prediction performance of well-known classifiers (e.g.,
Naive Bayes, support vector machines, neural networks,
Decision Trees, k-Nearest Neighbour) using these features is
evaluated. They obtained a very high prediction accuracy of
99% in detecting spam accounts, though they experimented
with small dataset having balanced spammer and non-
spammer class size. In reality, class sizes are unequal and
whether similar high accuracy is achievable with large scale
real dataset is yet to be tested.

The main problem of these machine learning based
techniques is that its detection performance mostly depends
on the appropriateness of the training set used in the
learning phase. On Twitter, users can easily manipulate
the features used for learning, and the current machine
learning based approaches in literature do not embed a
mechanism to verify and filter out this false/manufactured
information provided by untrustworthy Twitter users. For
the first time, the proposed model addresses these issues by
introducing the concepts of real-world identity verification
process along with referees’ recommendation to evaluate
user trustworthiness in the context of Twitter-like public
online environment. Since our method does not require
a high number of web-credentials and recommendations,
the data is either very small in size or low dimensional
indicating a machine learning based approach is not suitable
here.

Evaluating trust is also essential in other systems, such
as a system for recommending web services to users [38]
[39]. In [38], Wang et al. propose a system for web service
recommendation to users. In recommending a service to a
user, it takes into consideration the trust relationship be-
tween a user and the recommenders who have earlier used
those services. It employs the well-reputed beta trust model
to evaluate both direct and indirect trust between a user and
recommenders before taking the recommendations for web-
services. On the other hand, the model Personalized Service
Recommendation Based on Trust Relationship (PSRTR) [39]
proposed by Tian et al. compute user trust based on their
interest background, evaluation tendency and recommenda-
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Fig. 1. Conceptual framework of a Twitter user trustworthiness measure-
ment.

tion effect. Our model that applies to Twitter is completely
different from the web-service recommendation platform.
The innovation comes from the process of establishing a
communication path among users, collecting web creden-
tials from them and attaining recommendation reports from
trustworthy referees. It is a new concept first introduced for
Twitter Platform, and the methods for web service recom-
mendation are not directly applicable to Twitter.

3 CONCEPTUAL FRAMEWORK
The conceptual framework depicted in Fig. 1 represents

the core components of our proposed framework. Here, the
three most fundamental modules of the framework are: (i)
communication path establishment, (ii) verifying trustwor-
thiness using web credentials and referee recommendations
and (iii) measuring trustworthiness from user tweets.

First, a user (trust evaluator) establishes a communica-
tion path with another user (destination) by exploiting the
Twitter network’s follower-followee relationship. Incentives
encourage users to participate in the path establishment
process. Using this path, web credentials are obtained from
the destination user and her trustworthiness is evaluated.

Second, a list of referees is also sought after using this
communication channel. Further communication paths be-
tween the trust evaluator and the referees are established to
obtain the referees’ report and using them user’s trustwor-
thiness is further evaluated. Referee threat profile is built to
thwart the Sybil attacks in the recommendation process and
to pick the most reliable referees.

Third, a user’s tweets are used to further evaluate that
user’s trustworthiness. User Trust Repository is the trust
evaluator’s personal repository to store the three trust scores
that can be referred to when interacting with any user on
Twitter.

In the following section, we briefly describe the three
fundamental components of our framework.

3.1 Communication Path Establishment
Twitter does not support private communication path

between two arbitrary users which is necessary for them to
exchange web credentials in privacy-preserving way. This
is because (i) traditional tweets are public and visible to

Fig. 2. Illustrations of (a) communication paths and (b) information
quality measurement. Here, the source is the trust evaluator, and the
destination is the one whose trustworthiness is being measured. The
source initiates communication regarding credentials and referee re-
ports, and the destination responds.

all and (ii) sending a private message is only limited to
one-hop communication from a followee to its follower.
To work around this restriction, as depicted in Fig. 2(a),
a communication path between any two Twitter users (A,
Z) needs to be established by a chain of one-hop followee-
follower interactions (A, B, X and Z). Please note that
followers connect to their followee, whereas the message
is sent in the opposite direction. Even to reach a followee
(F ), a follower (A) has to establish such a path using one of
the followers as an intermediate node (C).

Using the path A← B ← X ← Z , A can send messages
to Z, but will be visible to the intermediate nodes, thus
violating privacy of communication. Moreover, Z cannot
send any message using this path due to its unidirectional
flow of information, and need to establish another path
from Z to A if any. Thanks to Twitter feature “group con-
versation”, a bidirectional private communication between
A and Z can be established. With respect to Fig. 2(a), on
Twitter, node A can start a group conversation by including
any combination of followers B, C, D in a private message.
Being a part of the conversation, any node can add their
followers to the list. Following this chain of followee-to-
follower interactions, the destination node Z will eventually
be added to that conversation by any of her followees (X
or C) previously added to the group. After Z joins the
conversation, the message originator A can remove others,
thus having a communication group of only two users, A
and Z , effectively communicating directly to Z.

The participation of intermediate users in the commu-
nication path establishment and of destination users to
exchange information need incentives. An incentive mecha-
nism to facilitate participation is discussed in Section 9.

Please note that, on Twitter, there always exists a
communication path between two users A, Z consist-
ing of a few intermediate nodes. Twitter network has
very good connectivity and a user can reach 96%
of all Twitter users by visiting the friends of friends
at six levels (https://sysomos.com/inside-twitter/twitter-
friendship-data/), and 99.99% of all users at eight levels.

3.2 Verifying Identity - Web Credentials and Referees’
Recommendation Report

A person is adjudged trustworthy by financial organisa-
tions (e.g., bank, government organisation) globally through
verifying their identity documents. Similarly, the online
presence of a person, such as a Twitter account can also
be verified as trustworthy using her online identity - her
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public manifestations on the Internet. Examples of such web
presences include, but are not limited to, a person’s presence
in various social media (LinkedIn, Facebook and social
question-answer communities), personal and institutional
websites, Youtube channels and shared videos, personal
blogs, membership to scientific communities like Google-
Scholar, authorship of news items published in a newspaper,
and so on. We refer them as “Web Credentials” in this paper,
and use them to evaluate a Twitter user’s trustworthiness.

Referees recommendation is also a well-practiced
method for verifying facts and identity in real life, and can
be adopted in our model to verify a user trustworthiness.
A set of referees (Twitter accounts) can evaluate a user on
a set of online identity criteria, and the evaluation results
comprise the recommendation report.

3.3 User Tweets - Information Quality Measurement
On twitter, a user’s (refer to A in Fig. 2(b)) news-feed

is populated by tweets from the Twitter accounts that the
user follows (here F ). Similarly, F obtains information from
P , Q and R. Thus, the followee F acts as an information
gateway to A. The quality of this information needs to be
measured to determine its trustworthiness. For this, we need
to extract the information from a user’s tweets, and assess its
quality according to its similarity to the majority-supported
information in the Twitter-space.

Content analysis tools can be used to extract information
from a user’s tweets on a particular topic ({PQR} in Fig.
2(b)). A set of keywords and hash-tags can be generated
from a user’s tweets and be used to extract tweets from
the Twitter-space on that topic. This represents the Twitter-
space information (I in in Fig. 2(b)). The difference between
the Twitter-space information and that of the user can be
used to assess the quality of her tweets.

4 MODEL DESCRIPTION
In our model, we represent the Twitter relationship

structure using a directed graph G = (V,E). For any
two Twitter users u, v ∈ V , the directed edge (u, v) ∈ E
denotes that u (follower) is following v (followee).Mu and
Fu are the sets of followers of u and the followees that u
follows, respectively.Wu denotes the set of web credentials
comprising the online identity of u. Now, Θu represents
the set of tweets originating from or retweeted by u on a
particular topic, while Θ symbolises the tweets generated
by all the users in the Twitter-space on that topic. Table 1
lists and briefly explains the symbols used in this section for
a quick reference.

4.1 Evaluating Trustworthiness from Web Credentials
To measure the trustworthiness of a user by her web

credentials, we adopt the personal identification system
(known as the “100-point-check”) adopted by the Australian
Government. In that system, every identification document
is assigned a value (points) which can be further divided
into primary, secondary and tertiary categories. For a user’s
identity to be considered verified by the system, she must
provide documents totalling a certain number of points
(e.g., 100 points). However, the number of points assigned
to a particular document, the number of document cate-
gories, and the total number of points required are highly
adaptable based on the specific needs of the implementing

TABLE 1
Important symbols used in the paper and their meaning.

Symbols Description
A, Z Twitter users - trust evaluator (communication

source) and user whose trust is evaluated (desti-
nation), respectively.

Mu, Fu The set of followers and followees for any Twitter
user, respectively.

Wu, Θu The set of web credentials of a Twitter user and the
Tweets generated from that account, respectively.

ΨW
Z , ΨR

Z ,
ΨΘ

Z

Trust of user Z computed by user A based on web
credentials, referees’ recommendation and gener-
ated tweets, respectively.

νA(WZ(k) User A’s evaluation on the kth web credential of
user Z.

C, Ω The number of categories web credentials can be
divided into and total number of points a user
needs to be verified as trustworthy, respectively.

RZ , ΦZ The set of referee for user Z and the evaluation
criteria which the referees will recommend Z on,
respectively

ψA
Z,RΦ, τr The recommendation report - recommendation re-

ceived from all referees RZ and on all identity
criteria ΦZ , and the trustworthiness of any referee
r ∈ RZ , respectively.

organisation. The web presences of a person can likewise be
divided into multiple categories based on how informative
they are and their usefulness as credentials. For example, a
person’s LinkedIn profile carries more reliable information
than her Facebook profile. Likewise, information in web
profiles in domains such as .gov and .edu, and in corporate
employee profiles, are far more reliable than those presented
in personal website or blog. Consequently, they can be
grouped in different categories. Consider that we can divide
user credentials into C number of categories.

Now, consider that a Twitter user A is evaluating the
trustworthiness (ΨWZ ) of another user Z based on the lat-
ter user’s web credentials WZ . If Ω represents the total
credential value required for a user to be verified, her
trustworthiness ΨWZ can be computed using Eq. (1).

ΨWZ =
∑
c∈C

max
WZ(k)∈Wc

Z,A

νA(WZ(k))

Ω
(1)

Here, Wc
Z,A ⊆ WZ represents the subset of credentials

of Z in category c that is available to A when comput-
ing the trustworthiness. Depending on the value of Ω,
the number of credential categories C and the value of
any credential WZ(k) of Z , νA(WZ(k)) is assigned by
A. Unlike physical identity documents, web credentials
can be perceived differently by different individuals. The
perceived value of a web credential can depend on the
quality of the corresponding web source. Page rank is a
good indication of such quality. In addition, the value of
a credential also reduces any confusion in unambiguously
identifying a user from her web credentials. Consequently,
νA(WZ(k)) = p(WZ(k))×π(WZ(k)) is an estimation of the
value of a credential, where π(WZ(k)) represents the page
rank of the website corresponding to the credentialWZ(k),
and p(WZ(k)) ∈ [0, 1] is the probability that it is indeed a
web presence of Z .

4.1.1 Dealing with Number of Credentials
It can be argued that a user with more web credentials

is not necessarily more trusted than someone with fewer
credentials. Dividing credentials into multiple categories
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and assigning different scores to them address this issue.
Having fewer credentials in high valued categories is suf-
ficient for a user to be considered trustworthy. Depending
on the requirements and situation, users who do not have
highly-reputed credentials can use credentials from low-
valued categories. However, limiting the value of C helps
the proposed model to negotiate the situation where users
may generate many fake accounts on public web services,
while still having low or insufficient scores as per Eq.
(1). Moreover, it is not possible for a user to create fake
credentials in the most-reputed category, such as profiles
in government or educational websites.

4.1.2 Dealing with Fake and Bot Accounts
Another problem the proposed model needs to deal with

is the identification of fake web credentials provided by
users whose trustworthiness is being evaluated. Usually, a
real Twitter user creates legitimate accounts on other online
public media, whereas a fake Twitter user remains fake in
all her public online appearances. Usually, 10% of Twitter
users are fake [37]. To deal with these fake Twitter accounts,
a user is tested as real or fake before her trustworthiness
is evaluated. There are several existing methods [28], [29]
to determine fake account on Twitter with good accuracy,
and our model leverages their outcomes. It is unnecessary to
evaluate the trustworthiness of a user who is deemed highly
fake by those methods. Therefore, our model only consists
of those users that pass the fake user detection process.

In some occasions, a real Twitter user might provide fake
credentials to the evaluator. In that case, the credentials
must be evaluated as real or not. Likewise on Twitter, a
fake user can be identified in other online platforms [29],
such as LinkedIn and Facebook. However, to minimise
the overhead, we can employ this step only when the
information provided by the destination and the referee
differs, or when there is no high quality referee available for
that destination. Moreover, between 9% and 15% of active
Twitter users are bots [36] whose activities are controlled by
computer programs. Since our framework relies on answer-
ing the messages that are sent to the intermediaries or the
destinations, it can detect these bot accounts. This is possible
because bots usually do not reply to messages.

4.2 Evaluating Trustworthiness from Referee Recom-
mendations

In addition to the web credentials, A can request Z to
provide a list of referees RZ , and use their recommenda-
tions to better determine the trustworthiness of Z . Like the
identity verification system, the referees are asked to pro-
vide reports on Z using multiple identity criteria, which are
then converted into a combined score representing trustwor-
thiness. User Z might choose her referee from her followers
and followees, thus RZ ∈ FZ ∪ MZ . As they are just a
one-hop distance from her, this increases the availability
of recommendations. However, since the referees are not
limited to relationships within Twitter, a user can select
referees who might not have a Twitter account. For this, Z
needs to provide A with a way to communicate with those
referees (e.g., email addresses). Nevertheless, followers of a
Twitter account would be the best choice as referee, because
they have the best knowledge on that user.

If ΦAZ represents a set of identity criteria on whose basis a
referee is evaluating Z , the recommendation report received
by trust evaluator A from referees RAZ on the target user Z
can be represented as ψAZ,RΦ = [ψAZ,rφ], where r ∈ RAZ and
φ ∈ ΦAZ . Thus, ψAZ,rφ denotes the recommendation on Z
received by A from referee r on an identity criteria φ. The
trustworthiness ΨRZ of Z using this recommendation report
is estimated as:

ΨRZ = Mo(ψAZ,RΦ) = Mo
∀r∈RA

Z ,∀φ∈ΦA
Z

([ψAZ,rφ]) (2)

Here, Mo takes the statistical mode across the full recom-
mendation report, i.e., the mode of all recommendations
received by trust evaluator from the referees on the desti-
nation node. We choose Mo as it provides the most common
evaluation of the destination received from the referees.

4.2.1 Trustworthiness of the Referee
To rely on the user trustworthiness values computed

from recommendations, it is important to consider the trust-
worthiness τr of a referee r ∈ R, whereR represents the set
of referees a trust evaluator considers. For this, we can lever-
age the existing methods for computing trustworthiness,
which are based on the characteristics of a Twitter account
as proposed in the literature. Instead of using every possible
feature and training a large dataset using a machine learning
algorithm, the approach proposed in [25] suits our purpose
well, which is described in the following paragraph.

We choose the two most important features reported
in [22], namely (i) reputation and (ii) age, of a Twitter
account, to compute the trustworthiness of a referee. Here,
the reputation (R) of a Twitter account is defined in [21] as:

Rr =
|Mr|

|Mr|+ |Fr|
(3)

whereMr and Fr are the set of followers and followees of
the Twitter account of referee r, respectively. The reasoning
behind such a definition is that, on Twitter, a reputable
account usually has more followers than followees.

Using these factors, the trustworthiness of a referee is
defined using Eq. (4).

τr =
Ar

max
∀β∈R

(Aβ)
× Rr

max
∀β∈R

(Rβ)
× Mr

max
∀β∈R

(Mβ)
(4)

Here, A is the age of the account that represents its length
of exposure to Twitter platform. This is an important pa-
rameter generally used in calculating the trustworthiness of
a referee [25]. While selecting the referee from the set of
followers of a user, those with high values of τr are chosen
and asked for their recommendation values. After obtaining
their recommendations, the trustworthiness of the referees
can be further scaled as per the following equation.

τr =
τr

max
∀β∈R

(τβ)
× (1− |ψ̃AZ,RΦ − ψ̃AZ,rΦ|) (5)

Here, ψ̃AZ,RΦ and ψ̃AZ,rΦ represents the median of the rec-
ommendation values obtained from the all referees RAZ
and from the referee r in consideration, respectively. The
median is used to remove the effects of any outliers on the
recommendation system.

Since any follower of a Twitter user can be selected as a
referee, the most reliable ones should be chosen to give their
recommendations. For this, we need to filter out those who
are members of a strongly-connected network (potentially
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a Sybil [26] user) and would be likely to manipulate the
recommendation system by providing untrue recommen-
dations. To address this issue, we propose a threat model
by defining the quality of a follower using social graph-
based properties. The threat model is discussed separately
in Section 5.

4.3 Evaluating Trustworthiness from Tweets
So far, we have calculated the trustworthiness of a Twit-

ter user based on her web credentials or recommendations
from referees. However, to evaluate user trustworthiness
from her tweets on a particular topic, an application sys-
tem needs to know how much it can rely on information
disseminated by tweets generated from the account on
that topic. This emphasises the importance of assessing the
trustworthiness of Twitter data. There are already many
methods proposed in the literature for mining trust infor-
mation from tweet content. Existing methods are primarily
machine learning-based and accordingly, their performance
is heavily training data-dependent. We adopt a different
approach, where each Twitter account is considered a source
of information, and the quality of its information is used to
determine the trustworthiness of the data generated from
that Twitter account.

Consider that I(ΘZ) represents information extracted
from the tweets ΘZ of user Z on a particular topic, whereas
I(Θ) is the information extracted from a set of all tweets
Θ from the Twitter-space on the same topic. We adopt the
Euclidean distance between the two data sets as a measure
of their similarity. This defines the trustworthiness of Z’s
tweet data on the topic, as approximated by A (Eq. (6)).

ΨΘ
Z = 1− D(I(ΘZ), I(Θ)) (6)

Here, D(I(ΘZ), I(Θ)) represents the difference between the
information extracted from the two sets of tweets. For a
specific topic, to represent the information that a particular
tweet conveys, we extract the opinion from the tweet text.
Content analysis tools can extract opinions from the text of
a user’s tweets and assign it a numerical value. However,
to measure the Euclidean distance between two unequal
tweet datasets, we first convert the extracted opinions into
a probability space by computing the probability using
a histogram. For this, we consider z equal-length bins
B = {b1, b2, ..., bz}, and compute the probability of the bins
for each dataset. Finally, the Euclidean distance is measured.

D(I(ΘZ), I(Θ)) =

√∑
b∈B

(P (Θ(b))− P (ΘZ(b)))2 (7)

Here, the probability P (Θ(b)) is defined as |OΘ(b)|
|Θ| , where

OΘ(b) is the set of extracted tweet opinions that belong to
the opinion block b. In a similar way, P (ΘZ(b)) is calculated
using the tweets ΘZ of user Z .

4.3.1 Generating a Reference Sample
In Section 4.3, it was assumed that, in measuring the

trustworthiness of a Twitter user based on her tweets, all
the tweets on a certain topic are collected. In practice, this
is not possible due to the well-known practical limitations
of the Twitter APIs, i.e., the Twitter Search API only returns
tweets published in the past seven days. To overcome the
limitations of data availability, a sample set of tweets is
extracted from Twitter using the combination of Search
and Streaming APIs. Here, the Streaming API is configured

to collect all tweets generated on a particular topic from
Twitter’s global stream of tweet data. The sample should be
a quality representation of the information that exists in the
Twitter-sphere. We consider two properties of the sample
to ensure its quality, namely (i) expertise and (ii) diversity.
These are discussed in detail in the next paragraph.

Topic Expertise of the Sample Set: Usually, experts (and
leaders) have greater influence on general people. Hence
a quality sample should contain tweets from experts. Let,
S and US represent our sample and the set of users in the
sample, respectively. For any user u ∈ US , Eu denotes their
expertise level, which can be measured using the algorithm
proposed in [27]. Now, Eq. (8) defines the ratio ES of experts
to non-experts in a sample.

ES =
|{u ∈ US : Eu >= Eth}|

|US |
(8)

Here, Eth is the level of expertise that a user must have
to be considered an expert on a topic. If expertise values
range between 0 to 1, Eth can be assigned as 0.5. As per
the definition, any sample with ES > 0.5 is a good quality
sample, since it contains more expert users than lay people.

Diversity of the Sample Set: As discussed earlier, a Twitter
account works as an information source for its followers. For
example, if u follows v, tweets from v populate the news-
feed of u. Here, v ∈ Fu, where Fu is the set of followees of
u on Twitter. A sample is considered diverse when it is open
to various information sources, whereas a closed sample is
restricted to information from its members. Consequently,
the diversity OS of the sample can be defined as follows.

OS =
| ∪u∈US (Fu)− US |

|US |
(9)

Here, ∪ represents set union operation, and thus ∪u∈US (Fu)
denotes the set of information sources for the sample. The
numerator denotes the number of information sources that
are new with respect to user set US in the sample set. A
sample with OS ≈ 0 is a very closed sample with very
few new information sources. This might happen when all
the tweets are published by a close-knit group of users and,
hence do not comprise a representative sample. The higher
the value of OS , the more acceptable the sample is to be
considered in measuring user trustworthiness using tweets.

Using Eqs. (8) and (9), a good quality reference sample
set of tweets can be extracted from Twitter. The sample can
be used to calculate I(Θ), which is then applied in Eq. (6) to
estimate the trustworthiness of tweets generated by user Z .

4.4 Decision on a User
Before creating any association with a user, her trust-

worthiness needs to be evaluated using web credentials and
referee recommendations. This is also important for build-
ing a trusted community. On the other hand, when using
the user as an information source, trustworthiness based on
generated tweets is more important. A user confirming with
the information of a sample is as trustworthy as the sample
for obtaining information. However, a user cannot be con-
sidered untrusted if her opinions differ significantly from
the “common sense” of the Twitter network or from that of
the representative sample. Under these circumstances, if the
user is already verified by credentials, she can be regarded
as a source of alternate information, or be ignored while
making decisions based on Twitter information.
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5 THREAT MODEL
The trust component measured according to recommen-

dation is prone to attack when malicious users work in
groups to form strongly-connected networks that positively
review each other. To be resilient to such attacks, the pro-
posed model needs to distinguish between referees that are
trustworthy real users, and the fake ones that are gener-
ated by untrustworthy users (possibly by the user whose
trustworthiness is to be evaluated). To address this issue,
we propose an innovative way to measure the quality of
potential referees and select those deemed to be suitable.

LetRZ represent the set of potential referees for destina-
tion user Z , where most are fake Twitter accounts created by
Z . They are termed as Sybil in the literature [26]. A network
formed by Sybils (i) exhibits fast mixing property [26], that
is, it is a strongly-connected graph and (ii) is connected by a
limited number of edges to the honest part of the network–
referred to as attack edges. These two properties ensure that
most Sybil users are only connected to themselves, with
a few having connections to the honest network through
the attack edges. This observation leads us to formulate the
quality measure of a referee as discussed below.

For any user r ∈ RZ , Q1
r denotes the immediate quality

of r, which is defined as:

Q1
r =
|Mr −MZ |
M̂1

r

(10)

where, Mr and MZ represent the set of followers of
referee r and user Z , respectively. The numerator signi-
fies the number of new users that can be encountered
through this connection of Z and r. The denominator
M̂1

r = |(MZ ∪Mr)|+ |(MZ ∩Mr)| is a normalising factor,
where (MZ ∪Mr) represents the users covered by Z and
r together, and (MZ ∩ Mr) denotes the users they share
between them. If the number of new users encountered
through r is smaller, or the number of users r and Z share is
larger, the qualityQ1

r is lower. By exploring one hop further,
we can define the 2-hop quality of r as per Eq. (11).

Q2
r =

1

|Mr|
×
∑
s∈Mr

|Ms − (MZ ∪Mr)|
M̂2

r

(11)

where M̂2
r = |(MZ∪Mr∪Ms)|+ |(MZ∩Mr)|+ |((MZ∪

Mr) ∩ Ms)|. The 3-hop quality of referee r is similarly
defined as:
Q3
r =

1

|Mr|
×
∑
s∈Mr

(
1

|Ms|
×
∑
k∈Ms

|Mk − (MZ ∪Mr ∪Ms)|
M̂3

r

)

(12)
where M̂3

r = |(MZ ∪Mr ∪Ms ∪Mk)|+ |(MZ ∩Mr)|+
|((MZ∪Mr)∩Ms)|+|((MZ∪Mr∪Ms)∩Mt)|. Similarly,
the quality of r in further hops can be defined.

The quality of any referee of a userZ residing in the Sybil
region yields smaller values for Qr , since its connections
are limited in that region, which reduces the possibility of
exploring new users as the number of hops increases. Con-
sequently, the quality values drop quickly with increasing
hops to a very small value near zero. However, for any user
in the honest region, this will not occur, and their qualities
have higher values even after considering a substantial
number of hops. Therefore, if we restrict the referees from
those with high quality, the proposed model can restrict
malicious users to be selected as referee.

5.1 Finding a Lower Bound for Qr
A lower bound for the values of Qr can be computed

so that any user r having a quality value less than this
lower bound can be discarded as a referee. Consider, ρ
represents the fraction of users that a particular user Z is
connected to within a Sybil region. Through a user r having
connection only in that region, Z can explore, at most,
(1 − ρ) new users. Following Eq. (10), Q1

r can be bounded
by Q1

r <= 1−ρ
1+(2×ρ−1) = 1−ρ

2×ρ . Similarly, from Eqs. (11)-(12),
Q2
r <= 1−ρ

1+ρ+(2×ρ−1) = 1−ρ
3×ρ and Q3

r <= 1−ρ
1+ρ+ρ+(2×ρ−1) =

1−ρ
4×ρ . In general, for n-hop quality, Qnr <= 1−ρ

(n+1)×ρ . This
lower bound is applicable for any Sybil region with ρ > 0.5.
However, the lower bound for any region with ρ < 0.5 is
set empirically as 1

n+2 for n-hop quality Qnr .

6 FEASIBILITY ANALYSIS
As alluded to in Section 4, the computation of the trust-

worthiness of a user and her data is formulated statistically.
However, the success of our model depends on the co-
operation of intermediate users through which the trust
evaluator can communicate with the destination user. Let αu
represent the probability that a user u will respond to any
Twitter message forwarded to her. For the sake of analytical
simplicity, we assume an equal response probability α for
all users. For any path having length L from any source
A to destination Z , the probability of such a path being
established successfully depends on the response of all the
intermediate users along with the destination. Equation (13)
captures that probability.

P (A← Z) = (α)L (13)
Here, we consider the path establishment a success only

if all users along the path respond to A so that it can receive
the credentials and list of referees from Z . Now, exploring
through each of the followersMA, A can independently try
to establish a successful path to Z with a success probability
of p = (α)Lm , where Lm is the path length from A to Z
through the mth follower of A. This process of establishing
a successful communication path by exploring each of the
followers is referred to as forward exploration, and is depicted
in Fig. 3(a). Consequently, the expected number of paths
established successfully from the independent exploration
ofM paths is given by the following equation.

E(A← Z) =
M∑
m=1

(α)Lm (14)

Now, according to the “six degrees of separation” theory
[30], any two users are connected through six or fewer steps
on Twitter. Therefore, we can assume that there is, at best, a
six-step path from A to Z with a successful communication
probability of α6. Moreover, each of the otherM−1 follow-
ers of A will provide at least one seven-step path, with each
having a success probability of α7. Therefore, the estimated
expected success in establishing a path Ê(A← Z) is:

E(A← Z) ≥ Ê(A← Z) = α6(1 +
M−1∑
m=1

α)

= α6 [(M− 1)α+ 1]

(15)

In Eq. (15), we consider the worst case scenario of having
a six-step path between any two users; however, they can
be connected by fewer than six steps. As suggested in [31],
the average path length between any two users on Twitter
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Fig. 3. Establishing a communication path: (a) forward exploration from
the source (A); (b) backward exploration from the destination (Z).

is 4.2. Therefore, the actual number of successes will be
greater than or equal to our estimated value Ê(A← Z), i.e.,
E(A ← Z) ≥ Ê(A ← Z). Establishment of one successful
path from A to Z is all that is needed in our model for
the trust evaluator (A) to obtain the credentials and list of
referees from Z . Therefore, equating Ê(A ← Z) = 1 with
typical response probability α = 1/3 [14], Eq. (15) yields
M≥ 244, whereas with α = 1/2, it yieldsM≥ 21. Finally,
with α = 1,M = 1.

Exploring more than one path through each of the
followers of A further ensures better success with smaller
values of α and M. For example, with each follower of
A, if we explore the paths through all of their successive
followers, Ê(A← Z) is evaluated using Eq. (16).

Ê(A← Z) =
M∑
m=1

α(
M∑
n=1

(α)Ln) =
M∑
m=1

[
α6(α2(M− 1) + 1)

]
(16)

In simplifying Eq. (16), we again apply the six degrees of
separation theory to establish the fact that there is at least
one path of length seven through each of the followers ofA’s
followers. Again, equating a successful path establishment
with α = 1/3, we have a reasonable estimate of M ≥ 138
for the average number of connections in an OSN. These
estimates ofM match the distribution of the average num-
ber of followers on Twitter, as found in [31]. This indicates
high possibility of being successful in establishing a path
between any two users A and Z on Twitter.

7 SEARCHING FOR AN OPTIMAL PATH
The previous section’s analysis demonstrated that, in the

worst case, our model is capable of establishing at least
one successful path with high probability from any trust
evaluator to the target user. However, exploring each path
sequentially will not provide an optimal result in terms of
success probability and exploration delay. Consequently, we
need a guided search to find the best possible path from
source A to destination Z . Here, we adopt the A* search to
find such a heuristically-defined optimal path. For this, we
need to define the heuristics. For a path to be optimal, it
needs to have the following properties.
• Shortest path: The optimal path should be the shortest

of all paths from A to Z ; thus, the optimal path length
is L(OP ) = min

∀P(A,Z)
(L(P(A,Z))), where P(A,Z) is a

path between A and Z with length L(P(A,Z)).
• Reliable path: We need the optimal path to be reliable.

For reliability, we consider the following two factors.
1) Trustworthy path: A reliable path should be the one

which includes the more trustworthy users. Tradi-
tionally, the trustworthiness of a path is defined as
the lowest trustworthiness value of all users con-
stituting a path. We use ΨX as the trustworthiness

value for user X on a path, which can be computed
hop-by-hop using her publicly-available tweets as
per Eq. (6). The best possible path is the one that
has the highest value for the lowest trustworthiness
of its constituting users. Therefore, the trustworthi-
ness Υ of the optimal path is defined as Υ(OP ) =
max
∀P(A,Z)

Ψ(P(A,Z)) = max
∀P(A,Z)

( min
u∈P(A,Z)

(ΨΘ
u )).

2) Responsive path: For reliability, we need a path
where every user responds to messages quickly and
positively. For this, we need to maximise the cu-
mulative response probability of all users in a path.
Here, the response probability of a path α(P(A,Z)
is defined as Πu∈P(A,Z)αu, which can be simplified
using Eq. (13).

• Expected success: We need to consider the expected
success of a path E(P(A,Z)) to ensure it is optimal.
Since A* evaluates all successors of a user to select
the best one in each iteration, it needs to consider
the expected success of each of the users in the path
to ensure the highest value of E(P(A,Z)). Therefore,
E(P(A,Z)) =

∑
X∈P(A,Z) E(X ← Z).

7.1 Cost Function and Proof of Obtaining a Quasi-
Optimal Path

Based on the criteria described above, we define the
following cost functions (heuristic) for any intermediate
user X while it is explored by the A* search.

g(X) =
1

α(P(A,X)
× 1

Ψ(P(A,X))
× L(P(A,X))

E(P(A,X))
(17)

h(X) =
1

α̂(P(X,Z)
× 1

Ψ̂(P(X,Z))
× L̂(P(X,Z))

Ê(P(X,Z))
(18)

Here, g(X) is the cost used to reach X from A, and h(X)
is the estimated heuristic (cost) from X to Z . In Eq. (18),
ˆ(•) represents the estimate of the corresponding parameters.

For the A* search to guarantee a quasi-optimal path using a
graph search from A to Z , we need to prove our heuristic to
be admissible and consistent.
• Admissible: For admissibility, we have to prove that,

for all intermediate users X , h(X) ≤ h∗(X) holds
true, where h∗(X) denotes the true cost of reaching
the destination Z from X . Thus, the heuristic never
overestimates the cost. While estimating a successor,
we assume that the destination is one step away
(L̂(P(X,Z)) = 1, Ê(P(X,Z)) =MX ) from the succes-
sor. Moreover, the successor will evaluate the destina-
tion as trustworthy (Ψ̂(P(X,Z)) = 1) and responsive
(α̂(P(X,Z) = 1) with the highest possible values.
Thus, h(X) = 1

1 ×
1
1 ×

1
MX

will be always smaller
than h∗(X) with destinations more than one step from
the successor. Here, MX is the number of successors
for X .

• Consistent: For consistent heuristic, we have to prove
that for any edge (X,X ′), h(X) ≤ h(X ′) + g(X,X ′)
holds true, where g(X,X ′) is the cost to reach X ′ from
X . From the discussion above, h(X) = 1

MX
, h(X ′) =

1
MX′

, and g(X,X ′) = 1
ΨX′
× 1

αX′
× 1

αX′
. The mini-

mum possible value of g(X,X ′) is 1. Therefore, for the
heuristic to be consistent, the inequality 1

MX
≤ 1
MX′

+1

must hold for all possible edges (X,X ′) on Twitter.
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Now, for any number of followers MX ,MX′ >= 0,
the inequality holds, which proves that our heuristic is
consistent.

Therefore, using the cost functions defined in Eqs. (17)-
(18), A* search guarantees to return the best path to explore
first, which reduces the delay and ensures the highest pos-
sibility of a successful transfer of credentials from Z to A.

8 EXPECTED DELAY
Besides finding an optimal path from A to Z , we need

to estimate the average time required to establish the first
successful path, or the time it might take before terminating
the process without any successful communication with
Z . Consider that a user takes x minutes to reply to any
message forwarded to her, and X is the time-out period
used to decide that there will be no reply from her. With
a response probability α, the expected delay for a one hop
communication is:

D1 = αx+ (1− α)X (19)
For a path with length L, the expected end-to-end commu-
nication delay is:

DL =
L∑
l=1

(D1) = LD1 = L(αx+ (1− α)X ) (20)

Because of the real-time nature of Twitter, for the majority
of the questions, the earliest response arrives within five
minutes [13]. Therefore, x = 5 is a rational assumption for
reply time. Now, if we assume X = 30 minutes for the time-
out period and α = 0.33 for the response probability, the
expected delay for a path of length six would be DL ≈ 132
minutes, which is a reasonable waiting time.

As established in Section 6, to obtain credential infor-
mation, our model can guarantee a minimum number of
successful communication between a source and destination
by exploring a path through each of the source’s followers.
This depends on (i) the number of followers (M), (ii) the
response probability (α) of a user, and (iii) the average path
length (L) from source to destination. Here, we define the
average delay (D) in receiving the first successful response
from the destination through such an exploration. Equation
(21) captures such a delay.

D = DL +M× (L × D1 + X ) (21)
Here, D1 and DL are defined in Eqs. (19) and (20), respec-
tively. In Eq. (21),M represents the average number of paths
that need to be explored before getting the first success,
whereas L denotes the average number of users on a path
of length L that is traversed before being unsuccessful on
that path. Considering that each user on a path makes her
decision individually,M and L can be computed using the
binomial distribution as per Eqs. (22) and (23).

L = (1− α)×
L−1∑
i=0

(i)× αi−1 (22)

M = (α)L ×
M−1∑
i=0

(i)× (1− αL)(i−1) (23)

The average delay in establishing the first successful path is
further investigated experimentally in Section 10.3.

The amount of delay can be reduced significantly if we
use the A* search, instead of the above-mentioned exhaus-
tive search. We analyse the delay incurred in the A* search
as follows. Although the A* search provides a quasi-optimal

path from source to destination, it does not guarantee that
the path will be established successfully. If any of the users
on the optimal path does not respond, an A* search from the
last responding user needs to be resumed after excluding
the non-responsive link from consideration. This method
of searching sub-optimal paths from the last responding
user on the heuristically optimal path is termed backward
exploration, and is depicted in Fig. 3(b). However, we can
limit the search by P number of such sub-optimal paths
from the last responding user, so that other potential paths
through the responsive users on the initial heuristically
optimal path can be explored. The worst possible delay (D∗),
encountered when not getting a response from any of the
sub-optimal paths from P, is defined by:

D∗ =
P∑
q=1

(X +
(Lq − 1)

2
D1) (24)

where Lq is the length of the qth path. With the optimal path
of length L, the worst-case delay for a path establishment
process without success is defined using Eq. (25).

D∗ ≤ (L − 1)× (X +
P∑
q=1

LqX ) (25)

The delay in establishing the first successful communication
between source and destination using the A* search with
backward exploration is further analysed experimentally in
Section 10.4.

9 INCENTIVE MECHANISM
For the successful implementation of the proposed

framework, (i) the destination user needs to agree to provide
the credentials asked for by the trust evaluator and (ii) the
intermediate users have to respond by forwarding the mes-
sage to the next hop. In this section, we discuss an incentive
mechanism which can convince users to participate in the
above tasks. Following this incentive mechanism, a Twitter
user will receive help to separate fake messages from the
good ones depending on how much the user help other in
similar cases. To be specific, collaboration through our ap-
proach helps real Twitter users to receive untainted/reliable
information only and this is the biggest incentive for the
Twitter community as a whole.

Referring to Fig. 2, let trust evaluator A ask destination
Z for credentials. For this, A first introduces herself to Z by
providing A’s credentials. Moreover, the intermediate users
evaluate their relationships with the previous user in the
communication chain, e.g., B evaluates A and X evaluates
B. These evaluation scores and A’s credentials together
assure Z that A is a real and trustworthy. This encourages
Z to participate in the trust evaluation process.

When destination Z provides her credentials to trust
evaluator A, the users along the path (A, B and X) inform
their respective neighbours of this behaviour. Moreover,
when an intermediate user agrees to forward the message,
this information is also communicated to the neighbours of
the users along the path. The neighbours then record the
information for future reference. Using this shared informa-
tion, an incentive mechanism is proposed as follows.

9.1 Incentive for the destination
After being assured that the trust evaluator A is a real

user with a good reputation, the destination (Z) examines
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A’s earlier participation behaviour, i.e., whether A provided
credentials previously to other users upon request. Any
evidence of such behaviour will certainly increase the prob-
ability of Z responding to A’s request. For this, Z will com-
municate with her neighbours to obtain the participation
record ofA. The adjustment of Z’s response probability (αZ )
is captured as:

αZ(IZ) = αZ +
1− αZ

1 + e−kIZ
(26)

where, αZ(IZ) is the modified response probability of Z
after considering the incentive, whereas IZ is the corre-
sponding incentive metric which is computed as IZ =
NZ(A)/NZ .NZ andNZ(A) represent the number of neigh-
bours of Z and the number of neighbours having a record
that A provided credentials on request, respectively. In Eq.
(26), k controls the steepness of the logistic curve, which
signifies the personal trait of the user in changing her
decision upon the availability of information.

9.2 Incentive for Intermediate users
The incentive to forward a message by an intermediate

user X can be modelled using similar reasoning to that
described above. Any history of forwarding of X’s message
by the trust evaluator A certainly acts as a greater incen-
tive for X to respond to A’s current request. Considering
these incentives, X’s increased response probability can be
modelled using Eq. (27)

αX(IX)=

{
1 A forwarded X’s request
αX+(1−αX)IX Otherwise

(27)
Likewise Eq. (26), IX = NX(A)/NX , which represents
the fraction of neighbours of X who have the information
that A has participated in the trust computation process
by forwarding a message. Please note that incentives for
destinations and intermediate users are defined differently
(exponential vs. linear, as in Eqs. (26) and (27), respectively)
to provide more incentives to the destinations, since getting
credentials from a destination user is the ultimate goal of
this communication process.

10 SIMULATION RESULTS
We assessed the potential efficacy of the proposed

framework for determining user trustworthiness through
simulations using synthetic data, along with experiments
using real Twitter data. For simulation, we implemented
the Watts-Strogatz model [35] to generate a graph having
1000 nodes (users) with directed edges among them, which
emulates the real connectivity structure of Twitter. It ensures
the small-world properties of Twitter [34], which has short
average path lengths and high clustering coefficients [33].
Each user is equipped with a number of web credentials
which other users can evaluate to compute her trust. Web
credentials are divided into four categories. A user can ask
for any number of credentials from another user to evaluate
the latter’s trust.

Similarly, a user seeks recommendation from a number
of referees to evaluate another user’s trust, and a referee is
asked to provide a recommendation report by evaluating a
number of criteria (web credentials). The choices for all sim-
ulation parameters are specified in the respective sections.
Moreover, the publicly accessible Streaming and Rest APIs

were used to collect Twitter data. The description of the data
set is presented in Section 10.5.

10.1 User Trustworthiness
In this section, to emulate people’s natural way of devel-

oping trust of others through an identity verification pro-
cess, we present experiments that investigated the impacts
of a number of factors on users’ evaluated trustworthiness;
namely the number of credentials, the number of referees,
the number of identity criteria presented in a recommenda-
tion report, and the recommendation values available to the
trust evaluator.

In the first experiment, we considered that a user could
have a maximum of 15 possible web credentials. Here, to
represent various scenarios, we varied the average number
of credentials, as represented by ` in Fig. 4(a), that a user ac-
tually had. ` = 1.0 denotes every user had all 15 credentials,
whereas ` = 0.5 means, on average, a user had only half of
this. Similar to the real-world identity verification system
established by the Australian Government [12], where dif-
ferent credential categories (e.g., primary photo IDs like a
driver’s licence or passport constitute 60 points) score dif-
ferent amounts of points, the credentials were classified into
four categories in the simulations, worth ω = 100, 50, 30, 10
points. We assigned 100 points to the first category, which
includes credentials that are very hard to fake; hence a user
with such a credential is deemed trustworthy.

When a user provides a credential of a specific value ω,
the trust evaluators have their own perceptions or evalua-
tions of the merit of that credential, which is within a range
[0, ω]. In the experiment illustrated in Fig. 4(a), we varied the
number of credentials. For each set of credentials provided,
the trustworthiness of the users was computed. For this
experiment, divergence in the perceived value of credentials
by the trust evaluators was incorporated by varying indi-
vidual evaluation within [0, ω]. Here, for statistical validity,
trustworthiness was taken as an average across the network.
For averaging, trustworthiness was evaluated for each pair
of users in the network for each respective set of credentials
requested or provided.

From the figure, it is evident that a user’s trustworthi-
ness does not depend on the value of `, i.e., the number
of credentials that the user has. Rather, trustworthiness de-
pends on the number of credentials requested and provided
by the users. Nevertheless, for a user to be considered
trustworthy, at least five credentials are required in all the
scenarios, except when ` is too low (` ≤ 0.3).

In Fig. 4(b), a similar set of results as described above
is presented, where users’ average trustworthiness is de-
picted against the number of credentials available to the
trust evaluator, but with a different experimental condition.
For this, we considered 1 − y as the divergence of users’
perceptions on the value of a credential ω, where this value
can be perceived in the range [y × ω, ω]. For a group of
trust evaluators with high level of knowledge, and with the
authenticity of the credentials provided being very high,
y would be higher, and consequently, the diversity of the
evaluated values (perceptions) would be less. On the other
hand, in the presence of possible fake and untrue creden-
tials, y would be lower, and the resulting diversity in human
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Fig. 4. (a)-(b) Trust vs. number of credentials requested/provided; (c) trust vs. number of referees. Here, ` represents the average fraction of
credentials users possess, 1 − y captures the variations in perceptions of the credential values (ω) by individuals where the perceived values are
distributed in the range [y × ω, ω], and represents the number of identity criteria based on which a referee recommends.

perception would be high. In this experiment, ` was chosen
as 0.6, representing a society of people having 60% of the
possible credentials.

From the figure we see that user trustworthiness can be
measured accurately with a lower number of credentials
when the corresponding value of y is higher. However,
when the value of y is lower, more credentials are required
to verify a user as trustworthy. These observations are real-
istic in nature. When people have reasonably good under-
standing of the credentials’ true values and the credentials
are information-rich, they can infer the trustworthiness of
others with a limited number of credentials. On the other
hand, when people have a different understanding of the
value of web credentials, or when ambiguous and fake web
presences are very common in the society, we need more
credentials to cross-match with to verify a user as trust-
worthy. For both the cases described in Figs. 4(a)-(b), the
number of credentials needed to assess the trustworthiness
of a user reasonably is five; however, with richly-perceived
credentials, even four is good enough (Fig. 4(b)).

Referee recommendation is used, in parallel with web
credentials, to evaluate user, which in turn cross-validates
these two measures of trustworthiness. In the third experi-
ment, we captured such a process of assessing user trust-
worthiness with recommendation reports received from
nominated referees. For this experiment, we considered a
maximum of 10 referees, and trust is computed using Eq.
(2). Each referee provides a report by evaluating the user’s
credentials from different perspectives, such as the nature of
the existing relationships between the user and the referee,
and its duration, the user’s profession, her acceptance in the
society, and other factors that may be pertinent. We called
these identity criteria as represented by φ in Fig. 4(c), and
described in Section 4.

From these results, we observed that trustworthiness
from recommendation increases with the number of identity
criteria and with the number of referees. More identity
criteria mean better perception and observation on a user.
Similarly, with the presence of more referees, there is less
confusion on a user’s trustworthiness. Interestingly, trust-
worthiness computed using recommendations from three
referees with 3–5 identity criteria closely matches with trust-
worthiness evaluation based on three web credentials.

10.2 Comparison
This section presents the performance of our model in

evaluating user trust. First, user trust using web credentials
(ΨW ) is analysed against two relevant and contemporary
models (‘Beta Trust’ [38] and PSRTR [39]), where trust is
evaluated in the context of web-services recommendation
system. The first one is called PSRTR [39] that computes
trust based on interest background, evaluation tendency
and recommendation effect. The other one is the well-
reputed beta trust model that is utilised in [38] by a user
to evaluate direct trust of another user before taking web-
service recommendation from. Although these two models
mainly recommend web services to a user based on the
experience of other users, the technique of evaluating the
trust of a recommending user aligns with that of our model.

Trust values are computed based on the simulating set-
tings presented in Fig. 4(a) with ` = 1.0. The number of
credentials used to evaluate a user trust varied from 1 to
10, and the value of a credential can be perceived by the
trust evaluator in [0 − ω] where ω is the highest possible
value of a credential. The parameters for the beta model, as
referred to by success and failure, are evaluated based on
the difference between the perception of the values of web
credentials by the trust evaluator and the user (whose trust
is being evaluated).

Fig. 5(a) shows the trust values of our and PSRTR mod-
els, and the direct trust of Beta trust model for verifying a
user identity using the available web credentials. Fig. 5(a)
evidences our model always outperforms Beta trust model
for any number of web credentials. It also performs better
than PSRTR model when verifying users with a smaller
number (≤ 5) of credentials. The requirement of five cre-
dentials to obtain a trust value of 1.0 is sufficient in web
platform as in the real-world identity verification process
between two to four identities are usually used [12]. The
categorisation of web credentials into multiple groups and
accumulating the credential values for user verification are
the key to the better performance of our model.

Second, user trust using referees’ recommendations
(ΨR) is evaluated comparing with the indirect trust of a
user as computed in [38] using the weighted average of the
direct trust values between the recommended user and a
set of users targeted by the trust evaluator. The number of
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referees is varied from 1 to 10, and 5 identity criteria are
used for trust evaluation. The results are presented in Fig.
5(b). The simulation settings are equivalent to that used in
Fig. 4(c) with φ = 5.

The figure shows that the use of statistical mode op-
eration to compute trust from recommendation reports in
our method outperforms the Beta indirect trust computed
in [38]. Mode can capture the commonalities among the
referees evaluations, which eventually helps the trust eval-
uator to better verify user trustworthiness in our method.
On the other hand, varying referee number does have a
lesser impact on the trust computed for the user network,
because of the nature of the average function used for trust
computation.

One strength of the proposed model is the selection of
referees (recommenders) (r ∈ R) based on their trust (τr)
scores. The model always selects the highly trusted recom-
menders. In the absence of any mention of referee selection
method in [38], a random choice of recommenders yielded
the trust of the selected referees using the Beta indirect trust
model is depicted in Fig. 5(c). It is observed that our model
always picks referees that are highly trustworthy. On the
other hand, random selection can result in recommenders
of low average trust score.

10.3 Average Success and Delay
In this section, the simulation results for success (number

of successfully established paths between the trust evaluator
and the destination) and delay (in establishing the first
successful path) of our proposed framework are presented.
A social network graph with small world property with
5000 users was constructed with an average path length of
around 3.2. We present the results for users with follower
counts from 88 to 113 to provide an indication that our
model will work in the Twitter network. The response
probability α was set as 0.33.

First, we present the simulation results for the average
percentage of successes obtained by exploring a single path
to the destination through each follower of a trust evalu-
ator. Therefore, for a user with M followers, M paths are
explored and the number of successfully established paths is
recorded. This is compared with the theoretical lower bound
as defined by Eq. (15) in Section 6. In addition, the success
ratio after applying the proposed incentive mechanism is
also recorded. Figure. 6(a) illustrates these findings.

From the results, it is evident that the success ratio we
obtained experimentally is close to those computed ana-
lytically, which validates the analytical computation. More-
over, the results imply that the number of experimentally
obtained successes and those guaranteed analytically, are
greater than 1, which ensures that our model will be success-
ful in contacting and receiving credentials from destination
users, even if the response probabilities of those users are
as low as 33%. With the use of our easily implemented
incentive mechanism, the success rate is three to four times
greater than that obtained analytically and without an incen-
tive mechanism. This validates the efficacy of our proposed
incentive mechanism.

Second, we elaborate the results for the delays (in hours)
in getting the first successfully established path to contact
the destination. Both the theoretical and experimental av-
erage delays for the first success are presented, along with
the delays experienced when the incentive mechanism is
employed. The delays were computed separately by con-
sidering 30-min and 10-min time-out periods. Figure 6(b)
demonstrates these results. The average expected delay for
the first success with a 30-min time-out is around 16 hours,
and that with a 10-min time-out is 5.7 hours.

From these results, it is evident that the average delays
predicted analytically match those obtained experimentally,
which validates our analytical computation of expected
delays. Considering the real-time nature of Twitter [13], 10
minute is a more realistic assumption for a time-out period,
and the corresponding delay of 5.7 hours is a reasonable
period to wait to receive credentials from a user. In addition,
when the incentive mechanism is employed, the delay can
be further reduced by three hours for 30-min and by one
hour for 10-min time-out periods.

10.4 Average Delay using A* Search
To evaluate the effectiveness of the devised A* search in

obtaining the best path from the source to the destination
user, we conducted the same experiments as described
above, but with a response probability α distributed within
(0.25, 1.0). The results are presented in Fig. 7.

In Fig. 7(a), the delays in obtaining the first success
are presented, considering a 30-min and 10-min time-out
periods. For both cases, the delays incurred by A* search
were smaller than those obtained by exploring a single path
through each follower. For a 30-min time-out, on average,
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the delay was reduced by around 2.5 hours, whereas it was
decreased by 15 minutes for a 10-min time-out.

Figure 7(b) shows the number of users that has to be
explored before obtaining the first success, for both the
exploration methods. The improvement by A* search is
clearly evident. On average, A* search needed to explore
around three users fewer to obtain the first success, which
increases the possibility of establishing the communication
path within a realistic time and distance. It also validates
the definition of the cost functions (Eqs. (18)-(19)).

10.5 Trustworthiness of User Tweets
We evaluated the trustworthiness of user data by mea-

suring the quality of their tweets, as proposed in Section
4. For this, we streamed Twitter using its Streaming API
for a period of 30 consecutive days between November 04,
2015 and December 03, 2015 on the topic of the “Vaccination
Debate”, which is globally important because of conflicting
expert opinions. A substantial total of 113270 tweets were
collected with 55930 unique users.

The expertise of the users was evaluated using the
method proposed in [27]. To generate a reference sample
S , a total of 515 users were selected with a sample expertise
ES = 1.0 and a sample openness OS = 25.9, as computed
using Eqs. (8) and (9), respectively. The high value of OS
indicates that the sample included information from a large
number of sources, as many as approximately 13, 350 in this
case. Our reference sample included a total of 3, 285 tweets
from the 515 selected users.

To extract information from a user tweet, we used senti-
ment analysis tools, namely the commercially-available tool
found in http://text-processing.com/. Current sentiment
analysis tools can achieve more than 80% accuracy [40],
which might vary depending on the underlying approach
of using machine learning or lexicon/dictionary based algo-
rithms. Note that the information presented in a tweet refers
to the opinion of a user on the topic, and is represented in
the range [0, 1]. The information extracted from the 3, 285
tweets constituted the sample of the Twitter-sphere’s infor-
mation on that topic. To compute a user’s trustworthiness,
the information extracted from her tweets was evaluated
using the sample information according to Eqs. (6) and (7).

TABLE 2
The performance of statistical and machine learning models

Accuracy Sensitivity Precision F1 Score
Our Model 0.73 0.89 0.74 0.80
Machine Leanring 0.6 0.90 0.64 0.74

We evaluated the trustworthiness of 244 users who had
more than one tweet in our dataset. This constitutes our
evaluated sample.

To evaluate the performance of our trustworthiness mea-
sure based on user tweets, we considered the fact that
Twitter routinely suspends accounts which mainly engaging
in spamming or abusive behaviours.1 Consequently, they
are definitely untrustworthy. In our evaluation, 55 accounts
among the 244 we considered for assessment were deemed
untrustworthy (trust scores ≤ 0.5). We tried to extract their
profiles from Twitter, and found that 34 of them had already
been suspended by Twitter. Therefore, more than 60% of
the users we evaluated as untrustworthy were also deemed
untrustworthy by Twitter.

In our evaluated sample, there were 59 suspended ac-
counts with an average trustworthiness score of 0.51. On
the other hand, the average trustworthiness of this sample
was 0.65. If we discard the suspended accounts from consid-
eration, the sample’s average trustworthiness score rises to
0.70. This indicates that our method rightfully assigns lower
trustworthiness (in the vicinity of 0.5) to accounts that are
eventually suspended by Twitter and, hence, the method is
effective in assessing trust and finding untrustworthy users.

To evaluate the performance of our statistical model,
a machine learning approach is employed to measure the
trustworthiness of user Tweets. Table 2 compares the out-
comes. The training data set was prepared using the refer-
ence sample of 515 users, where two persons independently
evaluated the trustworthiness of user tweets subjectively,
and the data was labeled using the average of these eval-
uations. Deep learning neural network model was imple-
mented using Tensorflow (https://www.tensorflow.org/) to
train a binary classifier, and then used to classify the 244

1. https://support.twitter.com/articles/15790
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users into trustworthy and non-trustworthy classes. Please
note that a user was classified as trustworthy when her
trustworthiness score was greater than 0.5.

From the results, it is evident that our statistical model
performs better in predicting users as trustworthy compared
with the deep learning-based model. Our model achieves
better accuracy, precision and F1 score. The sensitivity (re-
call) of both models are nearly equal. Being a statistical
model, the proposed model performs better than machine
learning to predict the trustworthiness of user tweets, as
with fewer attributes (one in our case – sentiment value),
the statistical model performs better than machine learning

10.6 Performance of the Threat Model
In this section, we present the performance of the pro-

posed threat model in detecting Sybil users. For this, a Sybil
region is added with the social network created earlier for
the other simulations. In this context, the original social net-
work is referred to as the honest region. Any user is detected
as Sybil if its n-hop quality Qn is below the threshold, as
defined in Section 5. The results are presented in Fig. 8.

First, we applied our Sybil detection mechanism for
both the honest and Sybil regions using a 1- to 4- hop (n)
quality index and a threshold of 1

(n+2) . For this experiment,
a standard Sybil region was created with 100 users that had
a strongly connected community structure. The results are
presented in Fig. 8(a). From the results, it is evident that the
performance of our threat model in detecting Sybil users is
very good for all hop quality scores except for n = 1, where
it is very poor for honest regions using 1-hop quality. For
n = 1, around 60% honest users are classed as Sybil.

Second, the connectivity (ρ) of the Sybil region was
varied from 10% (ρ = 0.1) to 90% (ρ = 0.9), and the perfor-
mance of the model was evaluated for 1-4 hop quality. Here,
the Sybil region had 100 users, and as discussed in Section
5.1, the threshold was chosen as 1−ρ

(1+n)∗ρ for ρ > 0.5, and
1

(n+2) otherwise. The results are depicted in Fig. (8)(b). The
performance using 3 and 4 hop quality was very high, with
almost every user in the Sybil region being detected. Perfor-
mance with 2-hop quality was quite acceptable, especially
when there was enough connectivity in the Sybil region.

Though not presented here, all the users in the honest region
were detected successfully under this scenario. Based on
these two experiments, it can be concluded that the n-hop
quality index is suitable for differentiating between Sybil
and honest users for higher values of n.

In the third set of experiments, the number of Sybil
users was increased from 100 to 500 to create a larger Sybil
region. The Sybil users were also connected following the
small world property, to emulate a scenario where attackers
try to create a network with the properties of a real social
network. Consequently, the threshold was selected as 1

(n+2) .
From the results of this experimental scenario (Fig. 8(c)),
it is observed that Sybil detection performance decreased
with the increase in Sybil region size, for both 2- and 3-hop
quality scores, although the latter performed better than the
former. In contrast, using 4-hop quality index, more than
95% of users were successfully detected as Sybil users even
when its region size was large.

Based on the findings discussed above, we can conclude
that for better performance, we need to consider the highest
possible quality indices in terms of hop count, although this
might be computationally expensive for larger networks. A
4-hop quality strikes a balance between performance and
computational complexity. In addition, it is possible to fine-
tune the thresholds rather than using values computed from
the aforementioned formulae. In that case, it is possible to
obtain acceptable performance with a lower hop quality
index. This is investigated in the following section.

10.6.1 Choosing threshold for 2- and 3-hop quality
As discussed above, the performance of 2- and 3-hop

quality indices in detecting Sybil users degrades as the Sybil
region size increases. Especially, if the connectivity in Sybil
regions follows that of the honest region, the theoretical
threshold chosen as 1

n+2 (see Section 5) cannot differenti-
ate successfully between Sybil and honest regions. How-
ever, it is possible to improve this situation by fine-tuning
the thresholds empirically around the theoretically-derived
value in such a way that our method can yield acceptable
results using the less computationally-intensive 2- and 3-
hop quality values. The empirical analysis is presented in
Fig. 9. For this, the experiment represented by Fig. 8(c) was
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the 2-hop quality measure, with a threshold in the range [0.25− 0.31]; (b) average percentage of successfully detected honest users for the same
thresholds with 2-hop quality; (c) percentage of detected Sybil users vs the size of the Sybil region for the 3-hop quality measure, with a threshold
in the range [0.2− 0.23]; (d) average percentage of successfully detected honest users for the same thresholds with 3-hop quality.

repeated for 2- and 3-hop quality values using thresholds
of [0.25 − 0.31] and [0.2 − 0.23], respectively, mainly in the
vicinity of the corresponding theoretical value of 1

n+2 .
For Sybil detection, Fig. 9(a) shows that our model

attains very good performance for thresholds ≥ 0.3. For
those values, the performance for the honest region starts
decreasing, especially when the threshold reaches 0.31 (Fig.
9(b)). We can set the value at 0.3, as this gives reasonably
better results for both regions compared with other values.
Note that the performance in the honest region is less
important as long as the method can select the required
number of referees for a user.

Similar set of results are demonstrated for 3-hop quality
in Figs. 9(c) and (d). The threshold value for 3-hop quality
can be set as 0.22, which is a trade-off in detection perfor-
mance for the Sybil and honest regions.

11 CONCLUSION
In this paper, we propose a holistic approach to deter-

mine the trustworthiness of a Twitter user and her tweets.
We employed the concept of identity verification in real-
world system to compute trustworthiness using a number of
her information-centric sources, namely web credentials and
recommended referee reports. Referee recommendations are
used for those users who have no or limited number of web
credentials. On the other hand, the trustworthiness of tweet

data generated by a user is computed by determining their
quality of information with respect to that of a quality ref-
erence sample extracted from Twitter-space on a particular
topic. Simulation results evidence that, with information-
rich web presences and recommendations, 3 to 5 web cre-
dentials or the same number of referee recommendations are
required to verify a user as trustworthy. This is consistent
with the number of identity documents and referees needed
to verify a user’s identity trust in a physical system.

We analysed the feasibility of our proposed model an-
alytically and through simulation. We observed that it is
possible to successfully establish a communication path
between the trust evaluator and any Twitter user within
a reasonable time period, and web credentials and referee
reports can be obtained through this established path. Fur-
thermore, the heuristic cost functions that we defined for the
A* search is found to be effective in producing better success
and delay. Therefore, for time critical applications, instead
of the exhaustive search, one can implement our heuristic
based A* search to establish a communication path quickly.
In addition, an easy to implement incentive mechanism has
been devised that attains better performance in terms of
both success and delay. Our trustworthiness computation
method when applied to real-world user tweets revealed
some suspected accounts which were later founded sus-
pended by Twitter itself, substantiating its applicability in
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evaluating users’ data trustworthiness. Finally, the perfor-
mance of the proposed threat model ensures that Sybil
nodes cannot inflate the trustworthiness computation by
providing untrue and high recommendation.
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