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Abstract

To ensure users’ safety on the road, a plethora of dissemination schemes for
Emergency Warning Messages (EWMs) have been proposed in vehicular net-
works. However, the issue of false alarms triggered by malicious users still
poses serious challenges, such as disruption of vehicular traffic especially on
highways leading to precarious effects. This paper proposes a novel Trust
based Dissemination Scheme (TDS) for EWMs in Vehicular Social Networks
(VSNs) to solve the aforementioned issue. To ensure the authenticity of
EWMs, we exploit the user-post credibility network for identifying true and
false alarms. Moreover, we develop a reputation mechanism by calculating
a trust-score for each node based on its social-utility, behavior, and contri-
bution in the network. We utilize the hybrid architecture of VSNs by em-
ploying social-groups based dissemination in Vehicle-to-Infrastructure (V2I)
mode, whereas nodes’ friendship-network in Vehicle-to-Vehicle (V2V) mode.
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We analyze the proposed scheme for accuracy by extensive simulations under
varying malicious nodes ratio in the network. Furthermore, we compare the
efficiency of TDS with state-of-the-art dissemination schemes in VSNs for
delivery ratio, transmission delay, number of transmissions, and hop-count.
The experimental results validate the significant efficacy of TDS in accuracy
and aforementioned network parameters.

Keywords: Emergency Warning Messages, False Alarm, Social Trust,
Vehicular Social Networks, Collision Avoidance.

1. Introduction

The idea of Vehicular Ad hoc Networks (VANETs) was conceived pri-
marily to ensure safety of users on the road. Therefore, various schemes and
protocols for the dissemination of Emergency Warning Messages (EWMs) in
VANETs have been proposed since its inception [1]. However, due to the
short communication range of On-board Units (OBUs), most of the VANET
based schemes rely on multi-hop broadcast techniques, which suffer from
issues such as, broadcast storm problem, hidden node collision, network con-
gestion, and fragile connectivity [2]. In recent past, the advent of Socially
Aware Networking (SAN) [3, 4] has inspired researchers to develop new tech-
niques for data forwarding and dissemination using social properties of the
users such as, centrality, community, interests, and interactions [5], [6], [7].
Following this trend, new paradigms in vehicular communication technology
have emerged such as, Vehicular Social Networks (VSNs), cloud assisted com-
munication, and Social Internet of Vehicles (SIoVs), which offer a wide range
of infotainment and safety related services [8], [9]. VSNs in particular are
user driven social networks where social interactions, mobility patterns, and
common interests of the users are leveraged to create different social groups
and structures. Moreover, this information not only helps in developing effi-
cient data forwarding and content dissemination but can also give an insight
into anomalous behavior on the road [10, 11]. In this context, few social
utility based mechanisms have also been proposed recently for dissemination
of EWMs in vehicular networks to mitigate the issues faced by conventional
VANET based schemes such as [12] and [13].

However, a major concern about all the EWM dissemination schemes
is the veracity of the generated EWM and integrity of the originator. For
example, a fake EWM generated by a malignant user may disrupt the traffic
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flow leading to severe consequences. Moreover, even a single occurrence of
a such event may create a lack of trust in the users to believe any credible
source of alert message. None of the aforementioned schemes provide any
mechanism to detect such malicious node and protect users from false alarms.
Therefore, to avoid such mishaps, a secure and trustworthy mechanism is of
even more importance, where trust can be regarded as the degree of surety
that a received message is authentic [14].

Consequently, some works have been proposed for trust establishment
among nodes in VANETs such as, [15] and [16] especially for urban traffic.
However, realistic initial trust values are hard to establish and maintain in
these scenarios whereas sparse highway conditions offer several challenges.
Similarly, very few works have been proposed for trust establishment and
management in VSNs context. For instance, in [17], the authors proposed
that a vehicle can be considered as a trusted social vehicle based on its
degree of social activity in the network. A higher social activity degree of
a node will assign it a higher trust value making it more probable to be
selected as the next forwarder of a message. Similarlty, in [18], an Analytic
Hierarchy Process (AHP) based trust establishment mechanism for VSNs has
been proposed where social parameters such as behavior and similarity are
utilized to establish trust and reputation of nodes in message forwarding.
However, these schemes do not take into account the delicacy of emergency
situations and only select the most trusted node to route a message from a
source node to a destination. Moreover, rogue nodes can also encounter an
emergency situation and may issue a true alert. Furthermore, on highways
due to high mobility of the nodes, VSNs exhibit dynamic nature and rapid
update of the reputation is of vital importance.

To fill the gaps, in this paper we propose a novel Trust based Dissemi-
nation Scheme (TDS) for authentic EWMs in VSNs in order to avoid false
alarms. The motivation behind this work is to provide secure real-time dis-
semination of EWMs which is resilient to malicious attacks with realistic trust
management. The contribution of this paper is manifold which is detailed
below:

• We differentiate a true EWM from a fake one by analyzing the posts
shared and spread by users of VSN over an extended period of time via
an interaction network. Moreover, we employ a cross-check mechanism
for the fake ones to avoid any rare miscalculations.

• We develop a trust estimation and management mechanism based on
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the reputation of nodes in VSNs by employing their social ties, behavior
and contribution in the network. Furthermore, we consider VSN as a
dynamic network and develop an update mechanism for the nodes’
trust-score as a function of time.

• The proposed scheme calculates the probability of the next broadcaster
of EWM based on higher trust-score, geographical location and speed
of the nodes. In this way the redundant re-broadcasts are avoided
reducing the overall network cost.

• We examine the accuracy of the proposed scheme under varying per-
centages of malicious nodes in the network. The results indicate high
accuracy of the proposed scheme even under higher density of malicious
nodes. Moreover, we present the comparison of the proposed scheme
with three state-of-the-art VSNs based schemes for a variety of network
performance indicators.

The rest of the paper is organized as follows: Section II gives an overview
of the related work; Section III describes the network model and system
overview; Section IV provides a detailed architecture and working of the TDS;
In Section V we present the simulation setup and performance evaluation;
Section VI concludes the paper with some future directions.

2. Related Work

Dissemination of EWMs has been extensively studied in VANETs for the
last two decades via multi-hop broadcast techniques due to the short range
of communication devices [1]. However, multi-hop dissemination suffers from
various Quality of Service (QoS) and network issues such as, broadcast storm
problem, for which various solutions have been proposed over the time [2].
Such schemes can be broadly classified into several categories depending on
the technique of broadcaster selection such as, location, distance, neighbors’-
table, probability, cluster, and topology based techniques. Below we categori-
cally present some high quality recent related work to the proposed technique
in this paper.

2.1. Social Network Based Forwarding Techniques

The more recent advent of VSNs has inspired researchers to explore social
characteristics of the users such as, mobility pattern, interests, social inter-
actions, and community structure for networking in vehicular environments.
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For instance, in [9] the authors gave a concept of social internet of vehicles
and highlighted its numerous applications in vehicular networks. In [10] an
application based on trajectory data analysis to detect anomalies on the road
has been proposed. Furthermore, in [19], the authors have demonstrated that
socially aware and content oriented forwarding can help reduce the network
cost and latency while improving delivery ratio significantly in disruptive
networks. Moreover, in [20], the authors presented that social contribution
of nodes in vehicular networks can be utilized to reduce the negative effects
of selfish nodes in the routing process. In [21], a multi-dimensional scheme
based on social features such as degree, interests, and social relationshps has
been proposed to calculate a social distance metric for efficient management
of time-slot allocation and forwarding of messages in SANs. Similarly, in
[22] a social acquaintance metric has been derived by employing degree, con-
tact information, and activity of the nodes for routing of messages in VSNs.
However, most of these schemes provide message forwarding techniques for
a predestined node in the network in contrast to spreading EWMs to a max-
imum number of nodes in the vehicular network.

2.2. Social Communities and Privacy

In [23], community and dynamic social features based multi-cast algo-
rithms have been proposed achieving higher delivery ratio for mobile social
networks. In [24], the authors identified that vehicles can be divided in dif-
ferent communities based on their social properties such as contacts and mo-
bility patterns which can be utilized to reduce broadcast storm problem and
other network issues. In [25], the authors introduced a social relationships
based community partitioning mechanism for data replication in Ad-hoc So-
cial Networks (ASNETs) in order to improve reliability and availability of
the data for all users. Similarly, in [26], it has been demonstrated that
network performance can be significantly improved with community-based
event dissemination technique where data brokers can be clustered in a com-
munity according to their social interests and similarity and hence filter the
replication. In order to identify such communities, detailed vehicular traces
providing mobility information of vehicles is required. In [27], the authors
used macroscopic vehicular data to identify clusters in vehicular networks
for efficient routing of messages. Similarly, mobility models and datasets of
large-scale urban and floating cars in VSNs have also been proposed recently
[28], [29]. However, these schemes provide either synthetic traces or floating
cars’ data in urban scenario, which is different than a highway scenario of ve-
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hicular networks in many ways. Still these works provide incite in developing
a framework for VSNs based dissemination schemes.

2.3. Social Inspired Dissemination Schemes

With the advancement of VSNs, social features based dissemination schemes
have also been proposed recently [30]. For instance, in [31], a socially inspired
dissemination scheme for VANETs has been proposed where next forwarder is
selected based on the degree centrality of the nodes. In [32], a game-theory
based approach has been presented for data dissemination in VANETs to
avoid broadcast storm problem. Very recently, in [12], the authors proposed
an efficient dissemination scheme for EWMs based on a social utility measure
by employing social groups, friendships, and interests of the users in VSNs.
However, these schemes do not offer any protection from malicious nodes
which may generate a false alarm with malign intent.

In [33], an insight into measuring trust in VSNs via direct social inter-
actions and indirect social recommendations from other vehicles has been
provided. In [34], a trust and security management framework has been
proposed for VANETs based on linkability information. In [35], a signalling
game based approach has been adopted to mitigate selfishness and uncertain
data forwarding in Moobile Social Networks (MSNs) by employing a belief
system and social distance among users. In [36], the authors proposed a
cloud based framework for evaluation of trust using Performance Evaluation
Process Algebra (PEPA). Similarly, in [37], a three layered trust evaluation
scheme for trustworthy information sharing in VSNs has been presented. In
[38], a privacy preserving scheme has been proposed for secure publishing of
croud-sourced data and statistics in social networks where privacy is one of
the leading issues with untrusted servers. However, these schemes do not take
into account the urgency of emergency warning messages and the problems
related to it.

3. Network Model and System Overview

3.1. Network Model

3.1.1. Physical Network Model

We consider a hybrid VSN model where vehicles are equipped with IEEE
802.11p based On-Board Units (OBUs) along with a cellular module for
communication. Moreover, Road Side Units (RSUs) are installed on various
points of the highway to facilitate the communication. In hybrid model of
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VSNs, vehicles can communicate in two modes: 1) Vehicle-to-Vehicle (V2V)
communication between OBUs via Dedicated Short Range Communication
(DSRC); 2) Vehicle-to-Infrastructure (V2I) communication between OBUs
and RSUs via 3G/4G cellular network if DSRC is not reachable. Moreover,
RSUs can share the gathered information with each other on a regular ba-
sis while providing a centralized monitoring system to the vehicles as well.
The message transmission, network connectivity, and resource allocation are
managed under standard IEEE 802.11p and cellular network protocols based
on the mode of communication. In addition, each vehicle is assumed to be
equipped with Global Positioning System (GPS) module that records its po-
sition on the road, speed, and time stamps in real-time. Fig. 1 illustrates
the network model for the operation of TDS. The lowest layer comprises
of the physical network of vehicles where communication is carried out via
DSRC/WAVE or cellular transmission depending on the resource availabil-
ity. The middle layer takes social network of the users into account where
social properties of humans are explored to find most important and trusted
nodes. The upper layer comprises of the posts-credibility network which is
based on the posts shared by users over the time to identify the truth of the
nature of EWM generated.

3.1.2. Social Network Model

We model a VSN as a dynamic social graph Gt = (V, e, t), that evolves
with time, where V = {v1, v2, . . . , vN} is a set of vertices that represents
the users driving vehicles/nodes and E = {(i, j)|1 ≤ i, j ≤ N} is a set of
edges for all i, j ∈ V , which relate to the social relationships among the
nodes. Moreover, we assume that nodes i, j ∈ V may interact with each
other at different intervals of time t, where these interactions are captured
in a set of events Inti = {i ∈ V | evi1 , evi2 , . . . , eviM}, for each node i being
the observer. In addition, we assume that all nodes have specific interests,
interaction circles, and affiliations, that can be organized as a set of social
features SF = {f1, f2, . . . , fN}, where fi = {fi1 , fi2 , . . . , fim} represents these
features for each node i and 1 ≤ m ≤ N . Moreover, each node has a number
of friends that can be stored in a friend-list Fli = {x ∈ V | fr1 , fr2 , . . . , frx}.
As in VSNs nodes can join several groups based on their interests and other
social properties, we maintain a set of groups such that most similar nodes
based on their social features form specific group gi which are stored in a
group register represented by the set Gs = {g1, g2, . . . , gL}. In our model
the users can provide feedback on the posts of others which in a combi-
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Figure 1: Illustration of the network model for the operation of TDS.

nation with other social parameters define the credibility of a node that is
registered in a credibility vector Cr = {cr1 , cr2 , . . . , crk} such that ck ∈ [0, 1].
Similarly, the estimated trust scores of all vehicles are stored in a vector
TS = {Ts1 , Ts2 , . . . , TsN} such that Tsi ∈ [0, 1], for i = 1, 2, . . . , N .

3.1.3. EWM and Posts

As in VSNs the OBUs and RSUs have high storage capacity, this paper
does not consider the storage constraints and buffer size for messages. We
assume that in normal conditions, each node i is capable of generating a set
of posts P = {p1, p2, . . . , pn}, about various topics and view-points. Then
each pi ∈ P can be labelled based on the view-points that are maintained
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in a vector space L = {l1, l2, . . . , lk} such that li ∈ [0, 1] for 1 ≤ i ≤ k
represents the weight of each of the view-points. Similar to [39], we assume
that each post has the following attributes: 1) a unique ID of the post; 2)
the originator’s ID, Orip; 3) distantions ID, Desp; 4) The Time-To-Live TTL
of the post, ttlp. On the other hand, we treat EWM differently than normal
posts as it contains only one viewpoint i.e., warning about an emergency.
Each EWM contains the following attributes: 1) Source Vehicle’s ID, IDSrc;
2) Origination time of the EWM tori; 3) Location of the source vehicle Locsrc;
4) Location of the emergency point LocEmP ; 5) Type of emergency, TEm; 6)
the Time-to-Live, ttlEWM after which EWM will be discarded; and 7) the
broadcaster’s ID, IDBr.

3.2. System Overview

The proposed scheme considers the severance of fake EWMs in a highway
scenario, where vehicles may face rear-end collision leading to vehicles pile
up on the road. Such a mishap can have a severe disastrous outcome. On the
other hand, a timely generated alert about any mishap on the road reduces
the chances of severe calamities by a significant amount. Therefore, we devise
a mechanism to avoid such false alarms along with efficient dissemination of
genuine EWMs in VSNs. Fig. 2 provides a flow diagram for the proposed
mechanism. Below is a brief detail of each step and component of TDS.

3.2.1. EWM Validation

The first and foremost step of the proposed scheme is to verify the au-
thenticity of the EWM issued by a vehicle. We consider this problem as the
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propagation of fake news in a social network and hence deal with it using
a user-post interaction and credibility network. This operation is carried
out by the EWM validation component of TDS based application. There-
fore, each node stores its social and geographical data in specified registers
of their OBUs, which is passed on to another vehicle upon each interaction
in an opportunistic manner. This data include social media posts, location
information, opinions of the nodes on different topics, which are used to cal-
culate the credibility of users and the authenticity of the posts. If a EWM is
identified to be genuine, based on credibility of the source vehicle, then it is
forwarded to the most suitable nodes that can spread it as fast as possible.
On the other hand, if EWM is verified to be of fake nature, then it is still
validated by the receivers for authenticity.

3.2.2. Important Nodes Identification

Once a true alert is validated, then the proposed scheme calculates the
social importance of nodes in the network using important nodes identifica-
tion unit. Because a highly important node is usually the most connected
and followed by others, it is more capable to spread the EWM to a higher
number of nodes significantly. For this purpose, TDS calculates the social
centrality of each node in the network, its similarity with other nodes, and
its interaction network based on various social features such as, interests,
social contacts, and activity in the network. By using the aforementioned
metrics, we derive a social utility function that determines how useful a node
i can be to other nodes in disseminating messages. Due to dynamic nature
of VSNs, these social metrics change as the time progresses, therefore we de-
vise a regular update mechanism for these metrics. In this way most recent
information is utilized for dissemination purpose

3.2.3. Reputation and Trust Calculation of Nodes

To deal with malicious nodes, we build a reputation and trust establish-
ment mechanism for nodes in the VSN via a reputation and trust estimation
unit. We consider several factors such as a user’s behavior, its social contri-
bution in the network, and its social activity to calculate its credibility in the
views of other nodes. Then by voting and feedback of other users, a reputa-
tion along with its credibility is built over time. This is done in a recursive
manner where a node’s reputation score is called in the voting function. The
reputation of the node essentially changes with time, therefore we update
the reputation information of nodes in a given interval of time. A node’s
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reputation and its social utility are employed in conjunction to estimate a
trust score for each node which helps eventually in avoiding fake EWMs. The
updated information is shared with other nodes upon each interaction.

3.2.4. Broadcaster Selection and Dissemination

In order to efficiently disseminate a genuine EWM in the network, we
benefit from the hybrid model of VSNs. Therefore, we employ both V2V and
V2I mode of communication based on the resource availability. Moreover,
we utilize social groups and friendships of the users to disseminate EWM
in respective groups and friendship networks for rapid delivery. For this
purpose, the most trusted nodes are given a higher priority in broadcaster
selection whereas within groups higher social utility nodes are selected to
broadcast it in their respective groups.

4. DETAILED DESCRIPTION OF TDS ARCHITECTURE

In this section we explain the architecture of a TDS based application and
give a detailed description of the construction and operation of its various
units. Moreover, we explain the algorithm developed for the dissemination
of EWMs in TDS under V2V and V2I strategies, based on the resource
availability. Fig. 3 demonstrates a detailed block diagram of the architecture
of TDS based application unit.

4.1. Message Handling

The proposed algorithm first collects the social and location data of the
vehicles in the network. To detect the authenticity of the EWM, we consider
a heterogeneous user-post interaction network. We consider that a false
alarm can be treated as a fake news in the social networks, therefore, we deal
with this problem as of a fake news detection. The data collected is used
to identify the credibility of nodes based on trust score that is maintained
in vector space TS. Vehicles with low credibility are more likely to raise a
false alarm than the higher ones. By employing the Non-negative Matrix
Factorization (NMF) method, the document-word matrix can be used to
find a non-negative matrix Y ∈ Rn×d representing the posts. Similarly,
the vehicles’ adjacency matrix A ∈ {0, 1}N×N can be used to obtain a non-
negative matrix X ∈ RN×d representing the users of the posts [40]. The posts
shared by the users are partially labelled which are maintained in a vector
space Lp = (lp1 , lp2 , . . . , lpK ) where lpi ∈ [0, 1]. In order to identify if any
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Figure 3: Block diagram of detailed architecture of TDS application unit.

node i has engaged in the spreading process of a specific post, we maintain a
vehicle-post engaging matrix E ∈ {0, 1} of the order N ×N as given in (1):

E =


e11 e12 · · · e1N

e21 e22 · · · e2N
...

...
. . .

...
eN1 eN2 · · · eNN

 , (1)

where eij = 1 if iv engaged in spreading ej and 0 otherwise. Then we can
separate a true EWM from a false one similar to [41] as:

PT = min
N∑
i=1

m∑
j=1

eij · Tsi
(

1−
1 + Lp(j)

2

)
‖Yi −Xi‖2

2, (2)

PF =
N∑
i=1

m∑
j=1

eij(1− Tsi)
(

1−
1 + Lp(j)

2

)
‖Yi −Xi‖2

2. (3)

When it is established that the EWM generated is not a false alarm then it
is given a special priority status in the medium access and communication
network. However, as the authenticity of EWM is determined based on the
credibility of nodes along with other aforementioned factors, a false alarm
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cannot be completely neglected as well because a low-credibility node can
also suffice a very real emergency at any time. Therefore, to consider such
a scenario, a EWM flagged as false alarm is still broadcast to the nearest
vehicles in range. However, only the receiving vehicles that are nearest to
the indicated anomaly location keep a suspicious EWM for further validation
while others discard it. Being in line of sight of the anomaly location and
closer to source vehicle, which can be calculated similar to [12], the receivers
decide whether the emergency is real or not by observing the situation. If the
generated EWM is found to be authentic, then the farthest vehicle from the
anomaly location is selected as the broadcaster which further broadcasts it
according to TDS protocol. On the contrary if EWM is still deemed as a false
alarm then it is discarded immediately and the source vehicle is blacklisted.
All other vehicles are informed about the suspicious vehicle and its false
alarm.

4.2. Node’s Importance Calculation
For reliable broadcast of authentic EWM, the most suitable and trust-

worthy nodes in the network must be identified. Therefore we exploit social
properties of the nodes in the network such as, similarity, community, inter-
actions, and centrality to select the most important nodes in the network.
Due to high mobility of the vehicles, VSN can be considered as a dynamic
network where the properties of the nodes may change with time. Moreover,
dissemination of EWMs in the VSN is a spreading phenomenon which has
the tendency of percolation. We consider a scenario where a source vehicle
i ∈ V , undergoes a change in percolated state from sti = 0 to sti ≤ 1 upon ini-
tiation of the EWM. As an example, if we divide nodes into states s1 and s2

where s1 represents that the node is not informed yet and s2 means that node
has been informed. This change of state in terms of its activity over time also
imparts a change of state in the target vehicles from states sti ∈ [0, 1] depend-
ing on their previous states. Therefore, we employ percolation centrality, Cp
[42] to calculate the importance of nodes in VSN for dissemination of EWMs
for any time t. For any node i ∈ V , Cp is the proportion of percolated paths
that go through it, at any given time interval t which is given as:

Ct
p(j) =

N∑
i 6=j 6=k

Gi,j(k)

Gi,j
× ωti,j,k , (4)

where Gi,j(k) is the number of geodesic paths between nodes i and j that pass
through k, whereas Gi,j is the total number of geodesic paths between nodes
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i and j, and ωti,j,k is a weighting factor of the percolated paths of source and
receiving nodes which is given as:

ωti,j,k =
R(sti − stk)∑N

i 6=j 6=k R(sti − stk)
, (5)

where R(sti − stk) is a Ramp function R(s) = s for a positive value of s and
0 otherwise. Based on this criteria, the proposed algorithm calculates the
social position Stp(i) ∈ [0, 1] of each node i in the network by exploring the

importance of node i and its neighboring nodes in the network, which is
utilized to weight the opinion of node i. This information is shared with
other nodes upon every interaction. However, as the time progresses, this
information changes due to topological changes and the dynamic nature of
VSNs. Therefore, similar to [14], we calculate the social position of each
node in VSN by employing Ct

p(i) instead of simple degree value, at any given
time t as:

St+∆t
p(i) =


Ct

P (i)

max
m∈V

Ct
P (m)

at t = 1

Stp(i) + σ2 · St−∆t
P (i) otherwise

, (6)

where the denominator represents the maximum percolation centrality of a
node in the network and σ is the priority constant whose exponent determines
the speed of variance of node i’s influence at time t for an interval ∆t which
can be calculated similar to [43].

According to homophily theory, nodes with similar interests are more
likely to befriend with each other [39]. This phenomenon leads to a faster
dissemination of messages among friends. Similarly, vehicles can be catego-
rized into various communities/groups based on their interactions. Therefore,
we categorize nodes into social similarity based groups. To calculate similar-
ity of the nodes we use Jackard Similarity Coefficient based on their social
features. However it is understood that some features may influence the re-
lationship more strongly than others, therefore, we calculate weights for each
feature x ∈ fi of node i similar to [44] as:

wi(x) =
fi(x)∑N
j=1 fj(x)

/
M∑
k=1

fi(k)∑N
j=1 fj(x)

. (7)

Then substituting each value of x with the weighted value we get a set of
weighted feature values as:

fwi = wi(x)× fi(x)|Nx=1 . (8)

14



The similarity value between nodes i and j for any feature x can then be
found using (9) whereas overall similarity for all the features is given in (10).

simx
(i,j) =

|fwi ∩ fwj |
|fi ∪ fj|

, (9)

sim
fi∪fj
(i,j) =

1

m

∑
x∈(fi∪fj)

simx
(i,j) . (10)

The overall similarity between any two nodes for all the features at any given
time t can then be calculated as follows:

simt+∆t
(i,j) =

{
sim

fi∪fj
(i,j) at t = 1

simt
(i,j) + σ2 · simt−∆t

(i,j) otherwise
, (11)

where the meaning of σ remains the same as in (6) and depends on the social
activity of the nodes. Each node maintains a table of similarity values with
its connected nodes.

In any social network, the interaction between users is of significant im-
portance and reveals important information about users’ social relationships,
behavior, and their classification into various communities. This argument
is further validated by extracting data from hycoups dataset [45]. In this
dataset the social contacts’ data of 72 users over a period of time from their
social profiles is obtained that contains their social interactions information
with each other. After extracting the data we observed that users were
classified into five distinct communities based on the number of interactions
and contacts they had in common which is given in Fig. 4. We take this
measure into account to derive social ties among nodes as follows: We con-
sider a scenario where a node i ∈ V , interacts with a number of nodes
Vint ⊂ V = {v1, v2, . . . , vL} and the number of interactions are recorded in
the vector Inti. By more frequent interactions, each node i ∈ V establishes
a community. Then the total number of interactions of node i with all the
other nodes in its community can be found as:

Nint(i) =
N∑
j=1

L∑
k=1

ak(i, j) , (12)

where ak(i, j) = 1 if nodes i and j have contacted each other and 0 otherwise.
As similarity between nodes i and j is a strong indicator of their tie-strength
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Figure 4: An example of community formation based on interaction of nodes.

[39], their interactions network can also be of great importance as well in
providing more accurate incite on tie-strength of two nodes [20]. Therefore,
we formulate a Tie-Strength metric for nodes i and j by employing their
simt

(i,j) value calculated in (11) and their interactions network as:

TS(i,j) = γ ·
(

2×Nint(i,j)

Nint(i) +Nint(j)

)
+ (1− γ) · simt

(i,j) , (13)

where Nint(i,j) indicates the number of times node i interacts with node j,
and γ ∈ [0, 1] is a normalization constant whose value can be adjusted to
incline the dependency of TS(i,j) toward similarity or interactions network
of these nodes. Since interaction between nodes i and j is a bidirectional
phenomenon, therefore we use a multiplicative factor of 2 in (13). From (6)
and (13), we can then calculate the social utility value of a node i to any
node j ∈ V in the network as:

U t
s(i) = α · Stp(i) + (1− α) ·

∑
j∈V

Ts(i,j) , (14)

where α ∈ [0, 1] is a normalization constant that can shift the tendency of
utility to either Sp(i) or TS(i,j). A higher social utility value of a node gives
it higher priority to be selected as next forwarder.

4.3. Reputation Calculation

In order to calculate the reputation of nodes, we consider two important
parameters i.e., social contribution and evaluation of nodes by their socially
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connected nodes. As we have seen that nodes can be categorized into various
groups based on their interactions, so we use this interaction information to
quantify the social contribution. Upon every interaction, nodes i and j may
share some messages based on which we can formulate the contribution of a
node i toward node j as:

Ci(j) =
L∑
j=1

Npri(j)

Npri(j) +Npsi(j)

, (15)

where Npri(j) indicates the number of packets i has received from node j and
Npsi(j) represents the number of packets sent by node i to node j. However,
it is of utmost importance to find how much node i facilitates other nodes
in its community by forwarding their messages to the destined nodes. For
instance, if node i has connections with nodes j and k whereas the latter
nodes are not connected directly. If node j wants to send a message to k and
asks i to forward it, then node i facilitates the communication between nodes
j and k. Therefore this facilitation is of utmost importance in calculation of
node i’s contribution which can be calculated as:

Xi(j,k) =

∑n
j 6=k∈V Npsi(j,k)

Npi +
∑n−1

j=1 Npsj(k)

, (16)

where Npsi(j,k) represents the number of packets i forwards from node j to
node k and Npi is total number of posts node i has generated while Npsj(k)

is the number of packets sent by node j to k. Then we can obtain the social
contribution of node i as:

Sc(i) = µ(Ci) + (1− µ)(Xi(j,k)) , (17)

where µ ∈ [0, 1] is a weight factor to control the dependence of Sci on node
i’s contribution and facilitation which can be calculated using social relation
between nodes i,j and k as:

µ =

∑
j 6=k Gj,k(i)

Nint(i,j) +Nint(i,k)

. (18)

In online social networks a post’s credibility is evaluated by the help of
likes and dislikes it receives from other users. Usually a higher number of
likes on a post defines its acceptability whereas a higher number of dislikes
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determines its rejection. We use a similar concept to evaluate the content
shared by users in the VSN over a time interval t. A higher number of
positive reviews over a number of posts pn gets a positive rating for users
while negative reviews earn them negative rating. Therefore, we formulate
the behavior of node i based on such reviews as:

Bi =

∑
j∈V
∑n

k=1 |PRk(j) −NRk(j)|
|Pi|

, (19)

where PRk(j) means positive review for kth post of i by node j and NRk(j)

means negative reviews. Using (17) and (19), we can calculate the evaluative
credibility of node i by other nodes j ∈ V at any instant of time t as:

Ct+∆t
ri(j)

=

{
β · Sc + (1− β) ·Bi at t = 1

Ct
ri(j)

+ σ2 · Ct−∆t
ri(j)

otherwise
, (20)

where β is a normalization constant that decides dependence of credibility
value on Sc and Bi. The obtained Ct

ri(j)
is stored in vector Cr defined in Sec-

tion III. Then we can calculate reputation of each node for single interaction
based on the views of other nodes per instance of interaction in a recursive
manner as:

Rint
i,j =

∑
j∈V

Ct
ri(j)
× F int

i,j , (21)

where F int
i,j is the feedback it receives upon each interaction from other nodes

and is called upon recursively in the reputation function. We calculate a
self-evaluation value E(i) for each node to ensure that a group of malicious
nodes do not alter the reputation of a single node. Therefore, we consider
the views of the friends of node i about node j based on which it evaluates
node j, which is represented by xij ∈ [0, 1]. Each view of a friend of node i
plays a role in evaluation of node j’s status as a trusted or untrusted node,
therefore, similar to [46] we derive a matrix AX such that:

AX =


a1

1 · x11 a1
2 · x12 . . . aM1 · x1K

a2
1 · x21 a2

2 · x22 . . . aM2 · x2K
...

...
. . .

...
aM1 · xM1 aM2 · xM2 . . . aMM · xMK

 , (22)

where aji = 1 if i considers j credible and 0 otherwise. To ensure that
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aji · xi,j ∈ [0, 1], we normalize the matrix as:

axij =

{
aji ·xij∑
n a

j
n·xjn

if aji · xij 6= 0

0 otherwise
.

Then the self-evaluation can be aggregated as:

E(i) = (AXT )K · axi . (23)

As the feedback of highly important nodes is given a higher priority. There-
fore we formulate the feedback function as:

F int
i,j = U t

s(i) × E(i) + (1− U t
s(i))×Rint

i,j . (24)

4.4. Trust Score Estimation

We calculate the trust score for each node based on its reputation which
is then used to select a node for broadcasting the EWM in the VSN. Due to
the highly dynamic nature of VSN, the reputation of nodes cannot remain
static and is dependent on time and diameter of its social circle. Therefore,
to update the reputation of nodes we consider the decay of reputation value
based on the velocity of the events ei and ej. For instance if event ei is
moving at velocity velei and event ei with velej , then the acceleration r of
these events can be calculated as:

r =
velei − velej

∆t
. (25)

Keeping in view the acceleration of events, we can calculate an impact func-
tion to increase or decrease the feedback of nodes with the passage of time
similar to [14] as:

Rimp(i) = |r| × F int
i,j

−3r
|r| + (1− |r|)× F int

i,j . (26)

Similarly, as the time progresses the reputation of nodes may increase or
decrease based on their activity in the network. Therefore, we use exponential
decay function along with impact function of reputation to update its value
at a given instance of time using (27) as:

Rt
i,j = e−τ ·Rt−∆t

i,j + (1− τ) ·Rimp(i) , (27)
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where the value of τ determines the rate of decay of the reputation value of
node i by node j. Then the trust score for node i in the whole network can
be given as:

T ts(i) =
1

N − 1

∑
j∈V

Rt
i,j . (28)

The trust score is propagated among the nodes over the time per interac-
tion. The nodes with higher trust scores are most probably going to improve
their reputation. On the other hand, malicious nodes will not gain higher
reputation because of their behavior while their Rt

i,j will decay as the time
goes on, earning them least Ts value and eventually will be discarded from
the dissemination network.

4.5. Dissemination Strategy for EWMs

For efficient dissemination of authentic EWMs, we developed an algo-
rithm which is illustrated in Fig. 5. The pseudocode is presented in Al-
gorithm 1 and is explained as follows: In case of an emergency, a vehicle
generates a EWM and broadcasts it to other vehicles and RSUs in its vicin-
ity. The generated EWM is checked for authenticity using (2) and (3). If it is
validated as a true warning then the dissemination process is started imme-
diately. In case if it turns out to be of suspicious nature, then the receiving
nodes and RSUs cross check it via nearest vehicles to the source vehicle. If
they validate the EWM then the dissemination process is initiated. Similar
to [12], we consider the infrastructure support vital for our dissemination
strategy. In case if there is an RSU in the range then infrastructure based
dissemination is employed because of the higher resource availability and effi-
cacy. Therefore, RSU determines the priority for broadcaster selection based
on the speed, location, mobility direction, trust-score and the social utility
of the vehicle. As demonstrated in [12] and [47] that dissemination via social
groups achieve higher efficiency, we employ similar strategy in V2I mode.
However, we consider groups based on similarity of nodes over social features
calculated in (10). Therefore, nodes i,j with higher similarity are considered
as members of a group gi as compared to node k with less similarity and is
given for realistic approximation as:

∀i, j, k ∈ V ; gi = {i, j}, if simF
(i,j) > simF

(i,k) .

Each group is managed by a group administrator that determines the accep-
tance or rejection of new members into the group and removal of disruptive
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members. The criteria for decision on admission request is also based on the
cumulative similarity of a group such that:

Adimisson Request =

{
Reject, sim

fi∪fgi
(i,gi)

< gith

Accept, otherwise
,

where gith is a threshold value for each group. Instead of selecting one broad-
caster, TDS selects highest Ts value nodes to forward the EWM to highest
U t
s(i) value nodes in each group whereas rest of the functionalities of groups

are similar to [12]. As speed of the vehicles have a direct impact on the prop-
agation of the messages, therefore a vehicle with highest mobility is selected

Algorithm 1 Pseudocode for TDS

1: Initialization: ∀i ∈ V → U t
s(i), T

t
si
, EWM generate

2: if EWM = PF then
3: validate → Neighbors(Vreceived,minDisEmp)
4: if True then
5: Terminate
6: Blacklist→ Vsrc
7: end if
8: else if EWM = PT then
9: for t ≤ ttlEWM do

10: if RSU is in range then
11: Initiate → V2I Mode
12: Vreceived ⊂ V,→ Select maxT tsi
13: ∀gjoined ∈ G→ forward max(U t

s(i), Vspeed)

14: broadcast → gi|Li=1 ∈ G, frx ∈ Fli
15: Jump to 12
16: else
17: Initiate → V2V Mode
18: Vreceivedi ⊂ V → broadcast to Fli
19: frx ∈ Fli → Select max(T tsi , U

t
s(i), Vspeed)

20: Scan RSU → if in range, jump to 12
21: else broadcast to (Flx , maxStp(i)|i∈V )
22: jump to 18
23: end if
24: end for
25: end if
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Figure 5: An illustration of TDS based EWM dissemination strategy.

in case of two nodes having same U t
s(i) value. Among the received nodes in

each group, the highest Ts value node with the farthest location from the
source node is selected to broadcast the EWM to the highest U t

s(i) value in
each group it has joined, which again broadcast the EWM in the respective
groups. In case if there is no RSU in range, then V2V mode is activated. As
it is evident from Fig. 4 that higher social interaction results in social com-
munities, therefore we can infer a fast dissemination probability within such
communities. We consider friendship based communities where friendships
of nodes are maintained over time based on historical data of interactions,
and similarity in Fli where friendship identification technique is similar to
[12]. However we employ similarity in conjunction with contacts to identify
nodes as friends. Therefore upon receiving a EWM, nodes broadcast it to
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their friends, fr1 , fr2 , . . . , frN−1
∈ Fli . In the next iteration, the highest U t

s(i)

valued friend is selected as broadcaster to its friends. Priority is given to
a node that is farther than the source node’s location. Upon reception the
received nodes search for RSU and if there is an RSU then V2I mode is en-
abled. If there is no RSU then the receiving nodes broadcast the EWM to all
the nodes in their range and the same procedure is repeated until the ttlEWM

is reached to its limit.

5. EXPERIMENTS AND PERFORMANCE EVALUATION

5.1. Experimental Setup

In order to evaluate the performance of TDS, we generated synthetic ve-
hicular traces for a 3 km highway scenario with 4-lanes in each direction
using VANETMobiSim, which is a very powerful and well known vehicular
mobility generation simulator. The reason for using synthetic mobility traces
is the lack of social data availability for vehicular networks especially in high-
way scenario. Although some realistic vehicular mobility traces are available,
they do not offer the flexibility to incorporate social features required for VSN
environment. In our experiments we employ Random Waypoint Model for
the mobility of vehicles, with a speed ranging from 60 km/h to 120 km/h.
Furthermore, to evaluate scalability of the proposed scheme, we varied the
density of vehicles between 10 vehicles/km and 70 vehicles/km. Each node
employs IEEE 802.11p standard for V2V communication via WAVE/DSRC,
having a communication range of 80 meters. For V2I communication we in-
stalled 10 RSUs, each having a communication range of 300 meters at random
points. The packets are generated and transferred at a rate of 1Mb/s. A list
of the details of network parameters is given in Table 1. We assume that no
node behaves selfishly and all nodes are fully cooperative for the purpose of
simplicity. In order to impart social features to the nodes such as interests,
interactions, friendships, and groups, we simulated the generated traces in
ONE (Opportunistic Network Environment) simulator, which is designed in
Java for opportunistic communication and is very flexible to incorporate such
social features. Therefore, we converted the traces into wkt format which is
compatible with ONE.

To analyze the social features and properties of the nodes, we setup the
simulation such that all nodes are capable of generating and receiving social
posts based on their interests, interactions, and group activity. The number
of posts is determined by the activity of the nodes that evolve over time.
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Table 1: Simulation Parameters
Parameter Value
Network Simulator ONE
Trip generation Random waypoint model
Simulation duration 2000 s
Vehicular density 10-70 vehicles/km
Road length 3000 m
Speed of vehicles 60-120 km/h
CBR 0.2 s
Transmission range of nodes 80 m
Transmission range of RSUs 300 m
MAC protocol for V2I IEEE802.11p
Malicious nodes 10-70%

Similarly, all nodes are capable to evaluate others and provide feedback on
the posts shared by either liking or disliking them. For this purpose, we
assigned each node an initial behavior probability pb ∈ [0, 1], randomly. For
instance, a node i with pb = 0.5, may generate a true or false alert with
an equal chance. Similarly, it may provide a negative or positive feedback
on the posts of other nodes with equal probability. Therefore, at pb = 0.5,
its behavior is unpredictable and we consider 0.5 as the seed value for all
vehicles upon initiation. On the other hand, vehicles with 0 < pb < 0.5 have
a higher tendency to create false alerts and negative feedbacks on genuine
posts of other nodes, therefore such nodes are considered relatively malicious.
However, a node with pb = 0 will always create a false alert and will always
provide negative feedback on the genuinely true posts of other nodes and
therefore it is considered a purely malicious node. As the time passes, the
behavior probability of nodes may change based on their activity which is
recorded and processed accordingly. However, to evaluate the performance of
TDS, a percentage of malicious nodes ranging from 10% to 70% are inserted
in the network. However, we assume that all nodes give a true feedback based
on their assessment of the nature of post. Therefore, we set a warm up time
of 24 hours to build reputations and trust of vehicles before analyzing them
for our desired EWM dissemination strategy.
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5.2. Performance Evaluation

To evaluate the performance of TDS, we conducted extensive experiments
by varying density, distance, TTL, and speed of vehicles for a variety of
network parameters that are listed below:

• Average delivery ratio is the mean value of the ratio of total number
of receiving nodes to the total number of nodes in a given network.
Ideally its value should be 100% but due to practical limitations it may
not reach to maximum value in most cases.

• Average transmission delay is the time taken by the EWM to prop-
agate in the network completely and cover the whole scenario. Due
to sensitivity of the situation transmission delay should be as less as
possible.

• Total number of transmissions is the number of generated messages
that are transmitted in the whole network with multiple copies and
re-broadcasts as well. To avoid broadcast storm problem, bandwidth
wastage, network congestion, and cost, the total number of transmitted
messages should be as minimum as possible.

• Time-to-Live (TTL) is the duration of time for which a EWM will
propagate in the network to avoid unlimited circulation.

• Hop-count is the total number of selected broadcasters that spread the
message to the far end of the network covering the whole length of the
road and vehicles.

In order to analyze the performance of TDS under the presence of ma-
licious nodes in the network, first we conducted experiments by inserting
malicious nodes in the network in a range of percentages. Then we observed
its performance for the aforementioned parameters under varying speed, den-
sity, TTL, and distance. Moreover, we also measured the cumulative social
trust that built up over the time of simulation for different values of α and
β. Secondly, to compare the performance of TDS, we set a criteria to select
protocols that use social metrics for dissemination of messages in a VSN envi-
ronment. Therefore, we selected the following state-of-the-art social metrics
based protocols for dissemination in VSNs:

25



• Social Utility based Dissemination Scheme (SUDS) [12] is a EWM dis-
semination scheme that employs social properties such as centrality,
friendships, and groups of users for V2V and V2I communication modes
in VSNs

• SCARF [17] is a robust dissemination protocol for VSNs that calculates
probability using social properties and location, for next forwarder se-
lection and collision avoidance in vehicular networks.

• Social-aware Bootstrap Trust Evaluation (SBTE) [18] is a reputation
based scheme for dissemination of messages in vehicular networks where
the reputation is calculated based on some social parameters such as
experience in driving and behavior of users.

We ran simulations 10 times for each experiment and the results presented
below represent the average of those simulation data.

5.2.1. Accuracy of TDS

To obtain the rate of cumulative social utility gain by the nodes with the
passage of time for different values of σ, we have given the results in Fig.
6 for a duration of 500 seconds for comprehensive understanding. A higher
value of σ means a lower weight is given to the social metrics at time t−∆t
as compared to the current values at time t. We varied the value of σ from
0.1 to 0.9 for an extended duration of time. From the results it is evident
that the cumulative social utility of nodes increases for all values of σ as the
time progresses due to the positive reviews and behavior of highly credible
nodes. However, the rate of improvement is much higher when the value of σ
is chosen smaller. For instance, at σ = 0.1, the rate of improvement in CSU
is 49.8% higher than that of at σ = 0.9. These findings indicate the recency
of social metrics of nodes is of utmost importance in calculation of the social
utility of the nodes.

To observe the effect of α and β on the values of U t
s(i) and Ct

i(j) of a node
i respectively, with the passage of time, Fig. 7 represents their values for a
duration of 1000 seconds where maximal values are achieved. It can be ob-
served that at lower values of α and β i.e., 0.3 the social utility and credibility
of an individual node vary at a slower rate whereas at a higher value such as
0.7, the rate of change is much higher. For instance the rate of improvement
of U t

s(i) at α=0.7 is 25% and 35% higher than that of at α=0.5 and α=0.7 re-

spectively, while its value improves 14.4% faster at α=0.5 as compared to at
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α=0.3. Similarly, the rate of change in Ct
i(j) of a node is 33% and 7% higher

at β=0.7 than that of at β=0.3 and β=0.5. From these observations we can
conclude that in a nodes social utility the role of its Tie-Strength is of higher
importance than its interaction network. A higher weight allotted to TSi,j
will result in higher rate of social utility improvement and update. Similarly,
in credibility of the node, its social behavior plays a bigger role than its total
social contribution. Therefore, users should pay higher attention to their
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behavior and social connections to achieve a trustworthy status in the VSN.
To verify the accuracy of TDS, we examined the calculated trust reputation
values of the nodes evolved over time against the values of initial probability
of nodes under presence of 10%, 30%, 50%, and 70% malicious nodes in the
network which is shown in Fig. 8. The probability density function of the
initial reputation values under ideal scenario exhibits a normal distribution.
We observed that at 10% and 30% malicious nodes’ presence, the reputation
values follow the ideal distribution very closely, which are shown in dotted
lines. The Mean Square Error (MSE) values for the aforementioned scenarios
are 0.0035 and 0.003 respectively which eventually converge to 0.0017 and
0.0018. Even at 50% the estimated values do not deviate significantly with
MSE value of 0.004 which converges to 0.0019 eventually. Although at 70%
the deviation is a little higher than that of at lower percentages having MSE
value of 0.005 converging to 0.003, however it is still not a significant devi-
ation. Moreover, it is very unlikely for a VSN to have 70% active malicious
nodes at a given time. The results validate that TDS performs extremely
well under the presence of a high ratio of malicious nodes.

In order to evaluate the stability of TDS we tested it for a range of 10%
to 70% malicious nodes under varying conditions. In Fig. 9(a), the accuracy
of high reputation based forwarder selection is shown against a range of 10%-
70% malicious nodes’ density in the network for a varying vehicular density
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Figure 9: Performance of TDS in the presence of varying percentages of malicious nodes’
density.

i.e., 10 vehicle/km to 70 vehicles/km. The results indicate that the malicious
nodes’ density has a very little effect on average relative accuracy of TDS,
where the MSE remains relatively equal at around 2% for all values. However,
a decreasing trend in the accuracy is observed at very low vehicular densities
such as 10 vehicles/km and 20 vehicles/km, regardless of the malicious nodes’
density. The reason behind this is the difficulty of social utility calculation
in very sparse networks. Overall the accuracy of TDS remains stable for
varying vehicular density.

In Fig. 9(b), the effect of varying distance on the accuracy is demon-
strated. It has been observed that regardless of the malicious nodes density,
the accuracy gets higher with increase in distance because of better social
utility and trust score estimation. Even at very short distance of 500 meters
the MSE value for high trust and reputation based selection is less than 3%
while at longer distances such as 2.5 km to 3 km the MSE value is even
reduced to less than 1% for the whole range of malicious nodes’ density. Fig.
9(c) provides the delivery ratio of EWMs in TDS by varying vehicular speed
and the percentage of malicious nodes in the network. The results indicate
that smaller percentages of malicious nodes i.e., 10%-30% have negligible ef-
fect on delivery ratio at 100 km/h speed. Even at 70% of malicious nodes’
presence, the performance remains quite stable at around 100 km/h speed
having degraded only by 6% compared to 60 km/h. However, at speeds
higher than 100 km/h the delivery ratio decreases faster for higher percent-
age of malicious nodes, e.g., at speed of 120 km/h, 70% of malicious nodes,
the delivery ratio decrease by 9.7%. However, generally the percentage of
malicious nodes is never that high in real world scenarios and so is the av-
erage speed of vehicles. Therefore, we can deduct that the performance of
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Figure 10: Comparative evaluation of TDS under varying vehicular density.

TDS remains highly stable and accurate in the presence of malicious nodes
in the VSNs.

5.2.2. Comparative Analysis

Since it is evident from Fig. 9 that the performance of TDS remains
extremely stable for average values of vehicular speed, density, and distance
even under very high density of malicious nodes, we used a fixed value of
malicious nodes density at 20% so that the performance of the aforementioned
compared methods do not suffer significantly.
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To analyze the scalability of TDS in comparison with the aforementioned
protocols, Fig. 10 represents the performance comparison of these schemes
in terms of delivery ratio, transmission delay, total number of transmissions,
and hop count against varying vehicular density from 10 vehicles/km to 70
vehicles/km. The results in Fig. 10(a) indicate that in terms of delivery ratio
TDS outperforms its competitors by a significant margin. For instance, at
vehicular density of 70 vehicles/km, TDS delivers 37.7%, 16.3% and 13.2%
higher than SBTE, SCARF, and SUDS respectively. However, at lower densi-
ties this difference gets even higher such as at 10 vehicles/km, TDS performs
88.9%, 60.3%, and 46.1% better than SBTE, SCARF, and SUDS respec-
tively. Similarly, the variance s2 in delivery ratio over a given range of vehic-
ular density was recorded to be 4.51 for TDS whereas 17.38, 14.15, and 12.83
for SBTE, SCARF, and SUDS respectively, which validates the stability of
TDS with varying vehicular density. Fig. 10(b) indicates the comparison
in performance of these protocols in terms of transmission delay where it is
evident that TDS outperforms SBTE and SCARF by a significant margin.
For instance at 70% vehicular density, TDS has 50.4% and 25% lower trans-
mission delay than SBTE and SCARF, respectively. However, it lags behind
SUDS by 9% because of the reason that it takes some processing time to
estimate higher trust based forwarder probability. Moreover, the variance
in transmission delay is 11.92, 6.03, 8.61, and 8.43 seconds for TDS, SBTE,
SCARF, and SUDS respectively with a decreasing trend for lower to higher
vehicular density. This means that TDS achieves a higher rate of decrease
in transmission delay compared to other protocols. From Fig. 10(c), it is
evident that TDS also outperforms the other three protocols in terms of to-
tal number of transmissions of EWMs to cover the whole network with a
peak value of 179 as compared to 291, 496, and 199 for SBTE, SCARF,
and SUDS at 70 vehicles/km. Moreover, TDS has a standard deviation of
49.01 as compared to 74.11, 128.32, and 49.39 of SBTE, SCARF, and SUDS
over the range of 10 to 70 vehicles/km. Similarly, from Fig. 10(d), we can
observe that TDS requires significantly low number of hops to completely
cover the whole scenario as compared to other protocols. For instance, at
10 vehicles/km the hop-count for TDS is 63 as compared to 81, 75 and 58
for SBTE, SCARF, and SUDS. At higher vehicular density such as 50-70
the difference is reduced significantly as the hop-count for all the protocols
reduces. However, TDS has the lower standard deviation value of 8.79 over
the whole range of vehicular density as compared to 18.73, 15.30, and 8.85
of SBTE, SCARF, and SUDS. These results validate that TDS is a scalable
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Figure 11: Comparative evaluation of TDS under varying distance.

protocol and is suitable in dense and sparse networks. In order to evaluate
the stability of TDS in comparison with the aforementioned protocols, Fig.
11 represents the performance comparison of these schemes over a distance
of 3 kilometers on the highway. Fig. 11(a) indicates that TDS stays signifi-
cantly more stable as compared to its competitors in terms of delivery ratio.
This is evident from the fact that the variance in delivery ratio over 3 km
was observed to be 2.32, 5.75, 4.43, and 1.47 for TDS, SBTE, SCARF, and
SUDS respectively. Although variance in SUDS is lower than TDS, however,
the overall delivery ratio of TDS is higher than SUDS e.g., the mean delivery
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ratio of TDS is 97.35% as compared to 96.25% of SUDS. Fig. 11(b) indi-
cates the comparison of these protocols in terms of transmission delay against
varying distance, where it can be observed that TDS outperforms SBTE and
SCARF by a significant margin of 56.41% and 43.71% respectively at a dis-
tance of 3 km. However, it lags behind SUDS by 9.5%, because of the reason
that it takes some processing time to estimate higher trust based forwarder
probability to avoid false alarms. Furthermore, the variance in transmission
delay is 6.40, 33.65, 21.58, 5.12 seconds for TDS, SBTE, SCARF, and SUDS
respectively with a decreasing trend. Fig. 11(c) presents comparison of these
protocols in terms of total number of transmissions where TDS outperforms
other protocols. For instance, a peak value of 165 as compared to 261, 331,
and 183 for SBTE, SCARF, and SUDS over 3 km distance. In addition,
TDS has a standard deviation of 48.86 compared to 76.91, 96.67, and 56.06
of SBTE, SCARF, and SUDS over a range of 0.25-3 km. In Fig. 11(d), it can
be noted that TDS remains significantly stable with fewer number of next
hop broadcasters as compared to SBTE and SCARF while SUDS almost
matches it as the distance increases. From the variance of hop-count over
range of 0.25-3km, which is 77.16, 202.61, 176.6, and 78.25 for TDS, SBTE,
SCARF, and SUDS respectively, it can be noted that TDS stays relatively
stable with significantly lower rate of increase than all the others. These
findings indicate that TDS performs with high stability over long distances.

In Fig. 12, we demonstrate the effect of varying TTL on the performance
of TDS and other protocols under constant vehicular density, speed, and dis-
tance. Fig. 12.(a), (c), and (d) show that TDS outperforms other protocols
by significant margins in terms of delivery ratio, total number of transmis-
sions and hop-count. For instance, the delivery ratio of TDS is almost 7%,
8% and 13% higher than that of SUDS, SCARF, and SBTE respectively for
TTL set at 5 seconds. It is worth noting that the performance of TDS re-
mains almost constant beyond TTL value of 10 while others fluctuate and
achieve steady results beyond TTL set at 25 seconds. Similarly, Fig. 12(c)
demonstrates that at lower values of TTL, TDS disseminates approximately
21%, 45%, and 54 % less number of messages as compared to SUDS, SCARF,
and SBTE respectively. In Fig. 12(b), we can also observe that over all TTL
values, TDS outperforms its competitors by a significant margin. However,
initially TDS performs better than SUDS in terms of transmission delay, but
after TTL set at 10 seconds, SUDS achieves approximately 0.5 seconds faster
delivery while the others remain relatively much higher than them. Overall
the performance of TDS remains almost constant beyond TTL value of 5
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seconds as compared to others. As TTL increases, the message remains for
a longer time in the buffer because the protocols consume longer time to
select suitable broadcasters and hence the increase in delay and number of
transmissions.

As vehicles are high mobility nodes especially in a highway scenario, their
speed has a direct impact on the performance of networking protocols. There-
fore the robustness of a protocol can be evaluated by testing it over a range
of speed. For this reason, Fig. 13 represents the performance comparison of
TDS with the aforementioned schemes by varying the vehicular speed from
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Figure 12: Comparative evaluation of TDS under varying TTL.
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Figure 13: Comparative evaluation of TDS under varying vehicular speed.

60 km/h up to 120 km/h. Fig. 13(a) shows their comparison in terms of
delivery ratio, where TDS performs significantly well having a variance of
3.52, as compared to 29.87, 18.25, and 10.42 of SBTE, SCARF, and SUDS
respectively. Similarly, at speed of 60 km/h TDS performs 93.7%, 71.42%,
and 46.1% better than SBTE, SCARF, and SUDS respectively. At higher
speeds this gap further increases such that at 120 km/h TDS performs 210%,
151%, and 95% better than SBTE, SCARF, and SUDS respectively. In Fig.
13(b), transmission delay for all protocols is compared against increasing
speed. Although TDS lags behind SUDS initially at lower speeds such as at
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60-90 km/h by 1 second, it catches up at higher speed with SUDS whereas
outperforming SBTE and SCARF by a significant margin of about 272%
and 111% at 60 km/h while 319% and 235% at 120 km/h. It is worth noting
that the effect of vehicular speed on TDS is much smaller than it has on the
other three protocols. This can be noted from the variance of transmission
delay which is 3.90, 9.55, 9.38, and 5.95 for TDS, SBTE, SCARF, and SUDS
respectively. Fig. 13(c) and Fig. 13(d) compare these protocols in terms
of total number of transmissions and hop-count respectively. In both cases
TDS has a lower count than the others. The lower standard deviation value
i.e., 13.04 for TDS as compared to 32.19, 31.89, 18.66 for the other three
respectively indicates that it is less affected by speed than the others. Simi-
lar is the case in hop-count in comparison with the former two while SUDS
initially has a 3% lower value than that of TDS but TDS catches up with
SUDS. However, vehicular speed is relatively higher than 80 km/h on high-
ways which undermines the negligible difference in hop-count between TDS
and SUDS at lower speeds. These results validate that TDS is a robust, sta-
ble and scalable dissemination protocol as compared to the aforementioned
protocols.

The reasons for better performance of TDS compared to the aforemen-
tioned methods which is evident from the above analysis are manifold. Firstly,
TDS employs the hybrid architecture of VSNs which ensures uninterrupted
connectivity of the nodes in order to disseminate the EWMs in the network
with extremely high delivery ratio. Secondly, the percolation centrality met-
ric can capture the change in social features more dynamically in highly
dynamic environments such as VSNs as compared to other centrality met-
rics that are used in the aforementioned methods. Therefore, the selection
of broadcaster in each iteration is more accurate resulting in lower trans-
mission delay, number of transmissions, and hop-count. Moreover, selection
of higher reputation based nodes narrows down the total number of suitable
broadcasters and reduces the chance of message replication which ensures the
avoidance of broadcast storm problem and network congestion. Similarly, the
proposed mechanism regularly updates the social metrics and reputation of
the nodes which are carried intrinsically over the time, therefore it requires
significantly less time to initiate the dissemination process and hence oper-
ates even at very low TTL values. Although there is very marginal amount
of extra transmission delay as compared to SUDS at the cost of authentic
message delivery which the later does not ensure but it is not very signif-
icantly high and almost negligible at the average values of the measuring
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parameters.

6. Conclusion

To solve the problem of fake emergency warning messages generated by
malicious nodes, we proposed a trust based dissemination scheme for authen-
tic EWMs in VSNs. We first evaluated the nature of EWM by employing a
user-post interaction network to identify whether a generated EWM is true
or fake. Then to disseminate a true EWM in the whole network, first we de-
veloped a mechanism where nodes build reputation, based on their behavior
contribution in their social networks, and social activity over a longer period
of time. Based on the reputation and social importance of the node we es-
timated a trust-score for each node. Moreover, we calculated a social-utility
for each node based on its centrality, social interactions, and similarity with
other nodes which is used in conjunction with trust-score to select a broad-
caster. In order to disseminate EWMs, we employed V2I based strategy via
social groups in case of infrastructure availability while V2V based strategy
via friendship networks of the nodes in the absence of infrastructure support.

To analyze the performance and accuracy of TDS, performed extensive
experiments for various network parameters and compared it against the
state-of-the-art schemes in VSNs. The results indicate that TDS outperforms
its competitors in terms of the aforementioned parameters by significant mar-
gins, however it lags behind SUDS very marginally in terms of transmission
delay at the cost of trustworthiness and authenticity of the EWMs. In future
we plan to extend our work to investigate problems such as, effect of selfish
behavior of nodes on the dissemination of EWMs. Moreover, we will explore
the possibilities of EWMs dissemination in urban scenario which is very much
different than highways and its network structure poses varied challenges.
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