B# Federation
B (niversity

Federation University ResearchOnline

https:/Iresearchonline.federation.edu.au
Copyright Notice

This is the peer-reviewed version of the following article:

Sun, K., Liu, J.,, Yu, S., Xu, B., & Xia, F. (2020). Graph Force Learning. 2020 IEEE
International Conference on Big Data (Big Data), 2987-2994.

https://doi.org/10.1109/BigData50022.2020.9378120

Copyright © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

See this record in Federation ResearchOnline at:
https://researchonline.federation.edu.au/vital/access/manager/Index

CRICOS 00103D RTO 4909 Page 1 of 1

https://researchonline.federation.edu.au/
https://doi.org/10.1109/BigData50022.2020.9378120
https://researchonline.federation.edu.au/vital/access/manager/Index

arXiv:2103.04344v1 [cs.LG] 7 Mar 2021

Graph Force Learning

Ke Sun!, Jiaying Liu', Shuo Yu!, Bo Xu!, and Feng Xia®
1School of Software, Dalian University of Technology, Dalian 116620, China
2School of Engineering, IT and Physical Sciences, Federation University Australia, VIC 3353, Australia
{kern.sun, jiaying liu, y_shuo} @outlook.com, boxu@dlut.edu.cn, f.xia@ieee.org

Abstract—Features representation leverages the great power in
network analysis tasks. However, most features are discrete which
poses tremendous challenges to effective use. Recently, increasing
attention has been paid on network feature learning, which
could map discrete features to continued space. Unfortunately,
current studies fail to fully preserve the structural information
in the feature space due to random negative sampling strategy
during training. To tackle this problem, we study the problem
of feature learning and novelty propose a force-based graph
learning model named GForce inspired by the spring-electrical
model. GForce assumes that nodes are in attractive forces and
repulsive forces, thus leading to the same representation with
the original structural information in feature learning. Com-
prehensive experiments on benchmark datasets demonstrate the
effectiveness of the proposed framework. Furthermore, GForce
opens up opportunities to use physics models to model node
interaction for graph learning.

Index Terms—Network feature learning, Spring-electrical
model, Label prediction, Graph visualization

I. INTRODUCTION

A network is composed of a set of nodes and edges,
which is commonly employed to represent data in real world.
The effective representation of network features can signif-
icantly improve the performance of downstream tasks [1].
For example, in knowledge graph research, effective entity
feature representation can promote the establishment of more
accurate relationship between entities [2]; in online social
recommendation systems, capable user feature representation
is conducive to accurate recommendation [3]]. Therefore, it
is necessary to develop algorithms that could automatically
extract features representation from the original graph, thus
freeing people from tedious feature extraction works.

Network feature learning [4] is critical for network analysis
tasks, such as node clustering [5]], label prediction [|6], and link
prediction [7]]. It could map desired information of vertices
or edges to low dense feature vectors in a continuous feature
space. The features extracted from the network simultaneously
preserve network structural information, node attributes infor-
mation, and promote users to deeply understand hidden char-
acteristics of networked data. What calls for special attention
is that most existing network feature learning algorithms could
not fully preserve original features of network structure due
to the random sampling of negative nodes [6[]. Specifically,
unconnected nodes have similar representation in the feature
space due to the mechanism of most current methods. For
example, Node2vec [[6] and DeepWalk [8|] algorithms are
based on skip-gram model [9]-[11]. They rely on negative
sampling to calculate nodes similarity. Therefore, negative

Repulsive force
Attractive force

Edge between nodes

Relation between nodes

Original space Feature space

Fig. 1. The principle of GForce. The dash circle represents the repulsive
force between nodes. Two nodes will move far away with the force. The
vector arrow represents an attractive force between two nodes. Finally, nodes
will learn the right location (vector) in the feature space.

samples that are not selected might be very close to the
target nodes in the feature space. Matrix factorization based
methods, such as GraRep [12], HOPE [13]], cannot get rid of
the disadvantages of matrix decomposition, e.g., computational
complexity. Recent advancements in network feature learning
mainly focus on deep learning, such as graph convolutional
networks [[14], graph attention networks [15]], and graph cap-
sule networks [[16]]. In these studies, the total loss function and
stochastic gradient descent (SGD) are employed to optimize
weight matrices for minimizing the loss function. A large
amount of parameter matrices of perceptrons are required to
be updated, but still cannot resolve the problem of gradient
explosion.

In this work, we propose a non-neural network feature
learning algorithm, namely GForce, that can fully preserve
the structure in the feature space. GForce is inspired by the
spring-electrical model [17], which simulates the motion of
particles under force. Such idea has been successfully applied
to graph visualization [[18[|-[20] in 2D and 3D space, aiming at
presenting the original network topology of graph. The similar
and connected nodes tend to be located in the similar position
or belonging to the same cluster. Therefore, we believe that
the positions of nodes in 2D or 3D space can be regarded as
vectors of nodes in feature space, so similar embedding vectors
can represent similar information of nodes. We adopt the idea
of spring-electrical model, and extend embedded dimensions
to any dimensions. Our goal is to fully extract structural
features from the observed network rather than using any hand-
engineered features. We assume that each node is repulsive to
other nodes but attractive to neighbors. The two connected
nodes will be relatively close to each other, otherwise, nodes
will be far from each other in feature space. The core idea of
GForce can be simply illustrated as Fig|l} In addition, GForce

can directly learn the vectors of nodes without using SGD.
Every node calculates its own vector, and they move through
attractive relations and repulsive relations in the feature space.
Since every node computes its own vector, the algorithm could
run in a parallel model with multi-threads and multi-processes.

We evaluate the performance of GForce against several
baselines on five real-world datasets (i.e., Corﬂ CiteseerEl,
Wikipedi WebKBEl, 20newsgr0upﬂ). Experimental results
show that our algorithm achieves better performance in la-
bel prediction and graph visualization in comparison with
the state-of-the-art baselines (i.e., DeepWalk [8]], LINE [J5],
Node2vec [[6]). Our major contributions can be summarized
as follows:

« We propose a novel graph force learning algorithm based
on the spring-electrical model. The proposed GForce can
sufficiently preserve structural information, which fills the
gap of network feature learning.

e GForce could run in parallel with threads or multi-
processes, that make full use of computing resources.
The representation process of GForce depends on network
structure information. Therefore, GForce owns the advan-
tage of expandability in graph structure based application
scenarios.

o We evaluate the GForce on real-world datasets in the tasks
of label prediction and graph visualization. Experimental
results show the effectiveness and efficiency of our pro-
posed algorithm.

The rest of this paper is organized as follows. We first
discuss related works in Section @ Then, we present related
notations and definitions of graph feature learning in Sec-
tion And then, we introduce the GForce in Section
In the following, we outline the experiments and present
the results in Section E Finally, we conduct our works in
Section

II. RELATED WORK

Network feature learning is always an important research
problem in network science. Amount of previous studies have
proved its validity for applications, such as link prediction,
label prediction, and network visualization. There have been
a large amount of network embedding models proposed in
recent years, such as linear methods PCA [21]], and non-linear
methods including IsoMap [22], multidimensional scaling
(MDS) [23]], and LLE [24]]. These methods are mainly applied
to network embedding and dimensionality reduction. However,
these methods have disadvantages in both computational and
statistical performance.

In recent years, some representative studies have been de-
voted to other aspects of this field. For example, GraRep [12],
HOPE [13], TADW [25] are matrix factorization methods.
They utilize matrix factorization to obtain nodes embeddings.

Thttp://lings.cs.umd.edu/projects//projects/Ibc
Zhttps://csxstatic.ist.psu.edu/downloads/data
3http://www.cs.umd.edu/ sen/Ibc-proj/LBC.html
“http://www-2.cs.cmu.edu/ webkb/
Shttp://qwone.com/ jason/20Newsgroups/

DeepWalk [8]], Node2vec [[6] are established based on the
Skip-gram model [9]|-[/11]], which is a kind of natural language
processing model. DeepWalk utilizes a truncated random
walk to capture the network structure information. Node2vec
improves the sampling strategy with walking preference pa-
rameters to maintain the local or global characteristics of the
graph. Besides, some work focuses on edge modeling, such
as LINE [5]] and TLINE [26].

Taking advantage of the ability to extract hidden features in
deep learning, recent advancements in network feature learn-
ing are mainly focused on deep learning based models. These
deep learning technologies such as convolutional neural net-
works [27]], autoencoder [28]], attention neural networks [29]],
capsule neural networks [30]], and reinforcement learning [|31]]
are leveraged to network embedding [32], such as VGAE [33]],
Shifu2 [34]], graph convolutional networks [35[], [36], graph
attention networks [15], [37]], graph capsule networks [38]],
[39], graph generative network [40] and graph reinforcement
learning [41]]. These deep learning based models rely on a
total loss function and utilize SGD to optimize weight matrices
to minimize the loss function. Hence, these methods need to
update a large number of weight matrices by using SGD.

Different from all these graph feature learning algorithms,
we abandon the way of constructing complex graph neural-
based model and the mechanism of message propagating be-
tween nodes, which are often utilized by recent advancements
in network feature learning. Most of them rely on SGD to
learn the feature vectors. We novelly involve physical model
to graph feature learning, and propose the GForce. GForce
enables each node to have the learning ability to calculate
similarity or heterogeneity to others. This is why GForce can
be computed in parallel without depending on a single loss
function and SGD. Nodes can independently learn the feature
vector through direct and concise operations according to the
structure information while it could fully preserve original
structure information in feature space.

III. PRELIMINARIES

We focus on network (graph) structure data. In this section,
we formally give the related definitions of graph, network
embedding, label prediction, etc.

DEFINITION 1: (Graph). A graph is defined as a set of
nodes and edges, G = (V, E|Y), where V = {v1,va,...,0,}
is a set of nodes. Each node is usually associated with labels
and attributes Y. The notation E C (V x V) is a set of edges
between nodes. Each edge e € E connects a pair of nodes
e = (4,7). Edges are associated with weight w;; > 0, which
represents the strength of relations between two nodes. For
undirected graph G, e;; = ej;. Otherwise, e;; # e;;.

In practice, graph is a kind of complex structure data. A
graph can be directed (e.g., citation networks), undirected
(e.g., social network), homogeneous (e.g., protein network),
and heterogeneous (e.g., webpage network). Weights between
nodes can be real or binary. This paper mainly studies

Update
Vector

Repulsive relation

step Calculate update values

Fig. 2. The framework of GForce.

isomorphic graphs.

DEFINITION 2: (K-order Proximity). The K-order prox-
imity is used to weigh the relation between two nodes in
network, where K C N+ is a set of positive integers.
For instance, K=1 or K=2 is corresponding to the first-order
proximity and second-order proximity of nodes. The first-
order (K=1) proximity is evaluated by the weight of the edge
connected by two nodes. The second-order (K=2) proximity
is determined by directed neighborhoods of two compared
nodes. Specifically, given neighbors N; = {s;1,...,s;|V|}
of node i and N; = {s;1,...,s;|V|} of node j, the second-
order proximity between ¢ and j is calculated as the similarity
between IV; and N;.

K-order proximity is based on the assumption that nodes
tend to have similar information and attributes if they have a
direct or indirect connection. For example, people who are
friends with each other are likely to have similar interests in
social networks. Two persons who have similar friends may
also have the same preferences in shopping or other habits.

DEFINITION 3: (Network Embedding). Given a network
G, the aim of network embedding is to learn a function that
can map nodes to a continuous feature space f : V ~ R4,
where d < |V|. In the feature space, the distance between
nodes approximates to the real distribution of the original
space, maintaining first-order proximity, second-order
proximity or high-order proximity.

DEFINITION 4: (Label Prediction in Feature Space). Given
feature vectors U generated from feature mapping function
f by graph G = (V, E|Y), we aim to learn a hypothesis H,
that could aggregate labels to unseen data H : U — Y.

In the following, we introduce a force-based graph learning
model that could fully preserves structure information.

IV. GRAPH FORCE LEARNING

The algorithm contains two main steps: attractive relation
step and repulsive relation step similar to spring-electrical
model that has attractive and repulsive components. Attractive
relation step could make similar nodes move to closer posi-
tions. Repulsive relation component makes different nodes stay
away from each other. The input of GForce is an undirected
(un)weighted graph. Given a graph G = {V, E'}, the extracted
feature vectors of G is U € RIVI*" where the dimension of
feature space: n > 3. The update process of feature vectors
is expressed as the following equation:

U=U+h=«(VF,+VF,), (1)

where VF, is the update of attractive relation step, VF,. is
the update of repulsive relation step. The notation h is a
parameter to control the learning speed. It can be a constant or
a self-adjusting variable. In this paper, we adopt the calculation
method proposed by Weinred et al. [42]], which could adapt to
both global and local learning speed on the graph. The feature
vectors U update in each iteration. We define the distance
between nodes ¢ and j is d;; = u; — u;. The update of
attractive relation of node ¢ is expressed as following:

Vfa(i) = —p x5 * (w; — uy),)

where u; is an feature vector of nodes 7. p is the learning rate,
which controls the learning speed. It can be set to a constant
(such as p = 1). w;; € W is a positive link weight between
nodes ¢ and j from a dataset. The repulsive relation strength
is inversely proportional to Euler distance d. However, when
d approaches zero (d — 0), V f,. approaches infinite (V f, —
o0). To overcome this weakness, we design a bias repulsive
relation method. The update of it is expressed as:

. (wi—uy)
|[u; — u;| +b*’

VfT(’L) =q* ’inj (3)

where b is a distance bias, which can be set to a small positive
value, for example, b = {0.01}}. ¢ has similar function to
p, which controls the learning speed. w;; is a negative weight
between two nodes divergence. We can regard the distance bias
as the diameter of nodes. It means that two nodes cannot be
located too close to avoid the infinite repulsive relation value
between them. We define that node has attractive relations
between its neighbours. By the Eq. 2] the update of the
attractive relation of node k between neighbours is expressed
as:
Neiy
Vfa(k) =—p* > g * dii,i € Neig, (4)
i=1

where wg; € W s the weight between node k and node
i € Neig. Neiy is the neighbors set of k. dg; is one element

of matrix Dy, = {dj1,dso, ...,
is defined as:

dpjv|_1}. Dy € RUVIZ1xn

U — U
Ur — Ui—
Dk _ k k—1) (5)
Up — Ug+1
Uy — U|V|

The V f,(k) can be reformed as:

Neiy

:_p*zwk‘l

By the Eq. [3] the update of repulsive relation between % and
other nodes is expressed as:

V fa(k (ug —uy). (6)

V-1

dyi
) =qx }: Wi * = (7)

e
f-(k s

CZM is the ith element of]jk, which is formulated as:
Dy =S (D] oD]), ®)

where o is the Hadamard product of matrix. The matrix
S = [13,1s,..., 1,1, 1,], which is used to sum columns of

D—r OD—r The notation Dy, is the bias distance matrix, whose
element is represented as:

ki = |dgi| + b, &)

where dy; is an element of Dg. So, V f,.(k) can be reformed

as:
V-1

=q* Z wkz

GForce directly updates the vectors through the nodes. In
other words, each node has its own feature vector and updates
itself, so the algorithm can learn and operate in parallel.
We can assign the designated nodes to different CPUs, and
each CPU calculates features of nodes independently. Nodes
will reach a position where the forces are balanced after
independent calculations according to nodes’ relations. To
measure whether all nodes are in equilibrium, we define the
energy F of the graph:

up —u;

Vfr(k Tor—w - BE

(10)

V]

E =Y |IVfak
k=1

Symbol E can be used to stop the iteration of learning
progress. When FE is stable, it means that the node has reached
its equilibrium position. In the proposed framework, each node
retains its own feature vector ug, and updates it through the
influence of relations imitating force in each iteration. The
framework of GForce is shown in Fig[2] The pseudo-code of
GForce is presented in Algorithm

)+ VI (k)5 (11)

Algorithm 1 GForce Algorithm

Input: graph G = {V, E'}, randomly initial feature vectors
U € RIVIX7 of nodes;
Output: feature vectors U;

repeat
for k € |V] do
Calculate Dy, by Eq and D, by Eq. I
Vi (k) =q* >N d’“ * Wy

Vfa(k) = —px* Zz 1 dkz * Wi
Vf(k) = vfa(k) + vf7()
Calculate learning speed h;
u, = ug +h* Vf(k);
end for
Move nodes in the feature space;
until Reached minimal energy state;

TABLE I
DATASETS USED IN OUR EXPERIMENTS
Dataset Cora | Citeseer | Wikipedia | WebKB | 20newsgroups
VI 2,708 3,312 2,405 877 1,727
IEl 5,429 4,732 17,981 1,605 2,982,529
1Yl 7 6 20 5 20
Vertex attr Yes Yes Yes No No

V. EXPERIMENTS

In this section, we present a series of experimental analyses
on GForce. We thoroughly evaluate the performance of our
model by conducting extensive experiments analysis from
three aspects including embedding analysis, label prediction,
and graph visualization.

A. Experimental Setup

GForce could run in parallel. We implement a multi-
processes version of GForce, for which, each process could
handle operations of a certain number of nodes. In the fol-
lowing experiments, we set the parameters p = 1 and ¢ = 5.
We use energy F to determine whether the learning process
is complete. If E is stable, which means node has reached its
equilibrium position and learning process is finished.

Before conducing experiments with real-world datasets, we
first simply verify whether GForce follows the embedding
results, that is, the two connected nodes in the feature space
will be relatively close to each other, otherwise, nodes main-
tain far from each other. We learn feature vectors from a
15 x 15 grid graph, and then map the dimensionality reduction
vector to nodes in 2D space to observe whether nodes follow
the embedding results. Then we conduct an experiment on
the dataset to verify the relationship between the embedding
dimension and structure embedding accuracy.

To test the feature learning performance of GForce, we
compare it with baselines on benchmark network datasets.
These baselines are all graph structure-based embedding al-
gorithm focusing on first-order proximity and second-order
proximity. In the label prediction experiment, we train our
algorithm on the citation network, and webpage network. We

TABLE II
SUMMARY OF BASELINES

Methods First-order | Second-order | Higher-order
DeepWalk v v
LINE v v
Node2vec v v
GraRep v v
HOPE v v
SDNE v v

randomly sample a portion of the labeled nodes as training
samples, and the rest as the test set. In each group of controlled
experiments, we randomly select data from 40% to 80% of
a set of labels and repeat 5 times. We compute the average
Micro-F1 socre and Macro-F1 score for label prediction task.
In the graph visualization experiment, we utilize t-SNE toolkit
to reduce feature vectors extracted from the 20newsgroups
dataset. Nodes of the same type are assigned the same color.
Therefore, clustering the same nodes together can represent a
better representation.

1) Datasets: Five different benchmark datasets including
Cora, Citeseer, Wikipedia, WebKB, and 20newsgroups are
selected to implement experiments. The overview of datasets
is presented in Table [I]

Cora dataset is a citation network, which is one of the
most commonly used benchmark dataset to verify the
performance of network feature learning. In the dataset,
each vertex (publication) is represented by a unique
number. Links between vertexes (publications) are stored
in the form of adjacency matrix or edge lists. Labels and
attributes of vertexes are stored in two different dictionary
files.

Similar to Cora, Citeseer is a citation network that
includes publications, publication classes, and links. Each
attribute of the publication is extracted from the abstract.
Attribute is represented by a 0/1-valued sequence. Each
single value of attribute indicates whether the keyword
exists in the abstract.

Wikipedia dataset is a co-occurrence network extracted
from Wikipedia website, containing keywords, their links
and labels. This dataset has been pre-processed for ease
of use. All nodes and labels are replaced with data in
digital string format.

WebKB (World Wide Knowledge Base) is a dataset of
webpages. WebKB contains original hyperlinks of web
pages. The data in the dataset are organized in a similar
way to other datasets.

20newsgroups dataset is is one of the international stan-
dard data sets for text classification and text extraction.
The dataset has about 20,000 newsgroup documents,
which were evenly divided into 20 newsgroups with
different topics.

2) Baseline Methods: We validate the performance of
GForce by comparing it with graph structure-based base-
lines including DeepWalk [§], LINE [5]], Node2vec [6],
GraRep [12], HOPE and SDNE [43]. DeepWalk,

Iteration:39 Iteration:119
80 . 100 .‘!! oS
.0 So 0 ol e’
60 o ? [P]
.:-. " -‘ﬁ‘. 0 :: :.‘,; ﬁ:,“'i'é
40 %.%% o % e S % L)
R BN E R
. 4 o o e
20 :. \'\ » " 'n‘.‘. n...,
ol et o '.l L 1Y 0 " .'l. l.'." oy
o AGE S R Ty
° Tt g, 'S . L .
b » v A “‘o LI &
=20 S Y S My T ‘0 o % v lede
"o g 0" o Yy .I.|. ’ =50 .:“. o. R
-40 ..o'l':. *Pops \o‘. .' '...C e ".c :..0
~60] ‘8,0 100 s " %
-60 -40 =20 0 200 40 60 =100 =75 =50 =25 0 25 50 75
Iteration:199 Iteration:279
150
""o" ""v‘,.'
100 [
Sebl | ey
o' .~ '.l" . 'Q‘ “
50 34 7%e% 50 Se S0
o *o n"l"‘..‘ .". Yo, .‘.
8, .‘n Q0o ."- *e,
% . L2 Pt | 0 . . .
0 "'a. v, e ,'.'o A i e
P e S .?‘ L s S S
B A R P tren
"" ot v ety f,‘.'o."'uuu
100 ' ’o ".l . -::., ~100 d " o .'.!.o oo::
- i = *e
e setl tragsen
=100 =50 0 50 100 =150 =100 =50 0 50 100

Fig. 3. Verification embedding results of GForce on a grid graph.

Node2vec, GraRep, and HOPE focus on global graph charac-
teristics including second-order and higher-order proximities.
LINE can simultaneously maintain the first-order and second-
order proximity of the graph. The properties of them are
summarized in Table [l The detailed descriptions of these
methods are listed as follows.

o DeepWalk algorithm is established on word2vec
model. The algorithm utilizes random walk to sample
graph and then generates nodes sequence, that is similar
to word sequence. DeepWalk could keep the local and
global graph characteristics.

« LINE is a kind of network embedding learning
algorithm for large graphs, which can preserve the first-
order and second-order proximity of the graph.

 Node2vec [6] is an improved algorithm based on Deep-
Walk. The algorithm is combined with biased sampling
strategy with parameters p and ¢ so as to keep local or
global characteristics of the graph.

o GraRep also leverages the skip-gram model but
keeps the high-order proximity of graph. The main idea
is that nodes with k-steps neighbors should have similar
representations in the embedding space.

« HOPE could capture the asymmetric high-order
proximity in a directed graph, which is a kind of matrix
factorization based network embedding algorithm.

o SDNE [43] could preserve first-order and seconder-order
proximity of nodes. It is a network representation learning
model based on the deep autoencoder approach.

TABLE III
RESULTS OF LABEL PREDICTION ON THREE BENCHMARK DATASETS

Datasets Cora Citeseer Wikipedia
Maetric Algorithm | 40% 50% 60 % 70% 80% 40% 50% 60 % 70 % 80% 40% 50% 60 % 70% 80%
DeepWalk | 0.761 | 0.770 | 0.780 | 0.787 | 0.789 | 0.576 | 0.578 | 0.589 | 0.590 | 0.594 | 0.672 | 0.680 | 0.683 | 0.687 | 0.688
Node2vec 0.810 | 0.811 | 0.815 | 0.822 | 0.825 | 0.585 | 0.580 | 0.594 | 0.597 | 0.609 | 0.659 | 0.667 | 0.682 | 0.684 | 0.690
. LINE 0.755 | 0.773 | 0.778 | 0.797 | 0.797 | 0.493 | 0.500 | 0.501 | 0.507 | 0.527 | 0.645 | 0.666 | 0.652 | 0.650 | 0.652
Micro-F1 | GraRep 0.768 | 0.769 | 0.781 | 0.803 | 0.785 | 0.548 | 0.545 | 0.542 | 0.545 | 0.545 | 0.647 | 0.651 | 0.656 | 0.662 | 0.659
HOPE 0.644 | 0.652 | 0.654 | 0.676 | 0.656 | 0.452 | 0.448 | 0.453 | 0.457 | 0452 | 0.591 | 0.606 | 0.611 | 0.599 | 0.609
GForce 0.817 | 0.832 | 0.837 | 0.838 | 0.865 | 0.643 | 0.648 | 0.649 | 0.648 | 0.647 | 0.626 | 0.685 | 0.689 | 0.699 | 0.700
DeepWalk 0.732 | 0.765 | 0.768 | 0.776 | 0.782 | 0.525 | 0.528 | 0.541 | 0.528 | 0.544 | 0.568 | 0.580 | 0.592 | 0.585 | 0.590
Node2vec 0.776 | 0.806 | 0.808 | 0.812 | 0.817 | 0.545 | 0.531 | 0.543 | 0.554 | 0.572 | 0.649 | 0.547 | 0.548 | 0.561 | 0.559
LINE 0.715 | 0762 | 0.766 | 0.794 | 0.801 | 0.463 | 0.462 | 0.461 | 0.470 | 0.483 | 0.572 | 0.548 | 0.558 | 0.570 | 0.568
Macro-F1 | GraRep 0.746 | 0.745 | 0.761 | 0.786 | 0.777 | 0.485 | 0.480 | 0.574 | 0.475 | 0.482 | 0.498 | 0.507 | 0.507 | 0.522 | 0.519
HOPE 0.626 | 0.630 | 0.632 | 0.652 | 0.634 | 0.392 | 0.386 | 0.393 | 0.392 | 0394 | 0.426 | 0.438 | 0.440 | 0433 | 0432
GForce 0.778 | 0.818 | 0.821 | 0.827 | 0.854 | 0.595 | 0.595 | 0.590 | 0.595 | 0.594 | 0.457 | 0.570 | 0.602 | 0.615 | 0.618
verification purposes and corresponding results.
901 2 Structure Embedding Verification. GForce follows the
- 801 § principle of spring-electrical model. To ensure the reliability of
2 701 -g the structure embedding, we utilize GForce to extract structure
c . . . ey .
] @ information of 15 x 15 grid graph. To facilitate the observation
€ 60 = grd grap
] " :
5 S S of embedded results, we map nodes with vectors to 2D feature
g o P
g_SO £ 2 space with an increasing frame.
= o . .
%401 2 E From the Fig[3] we can see that nodes are in chaos when the
E 301 § © iteration time is small. As the number of learning iterations
w 20/ % increases, unconnected nodes gradually move away from each
2 other. Therefore, the nodes gradually learn the correct vector to
4 w . .
10 % " = " 0 & become a grid graph. Experimental results show that GForce
Embedding dimension follows the aforementioned embefldlng hypothesis and can be
5.0 0 used for structural feature extraction.
N ¢ c
- ‘1‘8 g!me"5!°”5 'g Embedding Accuracy with Dimensions. The feature learn-
’E 45 Imensions P
5 e 70 dimensions | 5 ing of GForce maps nodes 1nt0.a rel'atlvely high continuous
240 —=— 100 dimensions E feature space (n > 3), because high dimensional feature space
[N . . .
£ ‘;’ " could effectively represent features. To prove this conclusion,
T35 w £ we verified it through the WebKB dataset. The results are
8_3 0 2% shown in Fig [
> 2 £ From the Fig ffa), the energy per dimension of node
o £ E . . . ; .
225 ¥ decreases with the increasing dimension of feature space,
© =
% 5 which means that the energy of nodes in high-dimensional
=20) feature space is lower. The low energy indicates that nodes
15— T TTWVIIWILWY | 2 have reached the equilibrium position in the feature space.
0 25 50 75 T_100 125 150 175 200 — From Fig [b), the energy of dimension in 100-dimensions
imes =

Fig. 4. Relations between the dimension of feature space and energy. As
shown in the top figure, high embedding dimension can achieve low energy
under the same conditions. As shown in the bottom figure, the red line of
100 dimensions is consistently lower than that of other dimensions with the
increasing learning time. Low energy means the corresponding dimensions of
embedding space could effectively embed original graph structure information.

B. Quantitative Results

The experimental results are summarized from Fig[3]to Fig[3]
and Table [Tl We can make the following observations from
the results.

1) Embedding Analysis: To verify that GForce is able
to effectively embed structure information, we first conduct
embedding analysis experiments. In the following, we present

feature space is consistently lower than others with increasing
learning times. In conclusion, high-dimensional feature space
can better preserve the original structure information.

2) Label Prediction: We conduct label prediction on three
benchmark datasets. The results are shown in Table [[TIl

From the Table we can see a significant improvement
in GForce compared with baselines on the Cora dataset
with both Micro-F1 and Macro-F1 score. As the training
ratio increases, GForce obtains higher accuracy. Node2vec
is based on DeepWalk and obtains the best performance
among baseline algorithms. The prediction accuracy of GForce
is consistently better than Node2vec on both Micro-F1 and
Macro-F1. Compared with Node2vec, the best performance of
GForce in Micro-F1 and Macro-F1 exceed 0.040 and 0.037
respectively. DeepWalk and LINE produce similar results, and
can always improve prediction accuracy on HOPE.

LINE GraRep

HOPE

SDNE

GForce

Fig. 5. Visualization results of 20newsgroups dataset. Positions of vertexes are two-dimensional vectors reduced by t-SNE from the learned feature vectors.

Color of a vertex indicates the category of the webpage.

From the Table [II] of label prediction results on Citeseer
dataset, we can observe that the Micro-F1 score of GForce
is consistently exceeding 0.6, but other baselines are not. In
this experiment, the performance of baselines is similar to
previous results. Node2vec performs best among the baselines.
In addition, DeepWalk is slightly better than GraRep in both
Micro-F1 and Macro-F1 scores.

From the Table [III| of label prediction results on Wikipedia
dataset, DeepWalk achieved 0.672 on Micro-F1 score at 40%,
which is over other baselines and GForce. However, node2vec
achieved 0.649 on Macro-F1 score at 40%, that is better than
other baselines and GForce. GForce obtained higher accuracy
in Micro-F1 at 50% than others, and exceed baselines on both
Micro-F1 and Macro-F1 with higher proportions of training
set.

3) Graph Visualization: We select 3 classes of documents
from the 20newsgroups dataset. Different colors in figures
indicates different categories.

As can be seen from Fig [5} the layouts using SDNE and
GraRep are not very effective because most different types of
nodes are mixed. Visualization results of HOPE and LINE are
better because nodes are clustered in separable groups with
clear boundaries. However, most nodes of the same type are
not close in the same group. For GForce, different types of
nodes are relatively concentrated in distinguishable regions,
and each group has a clear boundary. Therefore, from the
visualization results, GForce achieves better performance than
other baselines.

VI. CONCLUSION

In this paper, we propose GForce algorithm, which can
better represent the relations among nodes in network. The
main two steps of GForce are attractive relation step and
repulsive relation step, which can be a (non)linear method to
capture hidden relationship between nodes. GForce is different
from most network representation learning models that rely
on global optimal solutions. It can learn the feature vector
by the node itself. This feature makes the algorithm own
the ability of parallel computing. The main advantage of
GForce is that it can fully capture the feature of the graph.
Empirically, we verify the performance of GForce through

the tasks of label prediction and graph visualization on real-
world network datasets. The results show that our algorithm
achieves better performance than state-of-the-art baselines. In
the future, gravity method will be taken into consideration
in our proposed model, which could map the node towards
a high degree node (a fix point) in the feature space. In
order to further reduce computational complexity, edge-cutting
strategy will also be considered. Learning each subgraph
individually can effectively reduce learning complexity and
shorten learning time.

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, 2013.

[2] C. Shang, Y. Tang, J. Huang, J. Bi, X. He, and B. Zhou, “End-to-end
structure-aware convolutional networks for knowledge base completion,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 3060-3067.

[3] L. Wu, P. Sun, Y. Fu, R. Hong, X. Wang, and M. Wang, “A neural
influence diffusion model for social recommendation,” in Proceedings
of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2019, pp. 235-244.

[4] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 5,
pp- 833-852, 2018.

[5] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2015, pp. 1067-1077.

[6] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016,
pp. 855-864.

[71 L. Wang, J. Ren, B. Xu, J. Li, W. Luo, and F. Xia, “Model: Motif
based network embedding for link prediction,” IEEE Transactions on
Computational Social Systems, vol. 7, no. 2, pp. 503-516, 2020.

[8] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2014, pp. 701-710.

[9]1 F. Morin and Y. Bengio, “Hierarchical probabilistic neural network

language model.” in In Proceedings of the International Workshop on

Artificial Intelligence and Statistics, 2005, pp. 246-252.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of

word representations in vector space,” in ICLR Workshop Papers, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their composi-

tionality,” in Advances in Neural Information Processing Systems, 2013,

pp. 3111-3119.

[10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with
global structural information,” in Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management.
ACM, 2015, pp. 891-900.

M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 1105-1114.

Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional
networks with eigenpooling,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 723-731.

V. Kosaraju, A. Sadeghian, R. Martin-Martin, I. Reid, H. Rezatofighi,
and S. Savarese, “Social-bigat: Multimodal trajectory forecasting using
bicycle-gan and graph attention networks,” in Advances in Neural
Information Processing Systems, 2019, pp. 137-146.

T. Hahn, M. Pyeon, and G. Kim, “Self-routing capsule networks,” in
Advances in Neural Information Processing Systems, 2019, pp. 7658—
7667.

M. E. Ko, C. M. Williams, K. I. Fread, S. M. Goggin, R. S. Rustagi,
G. K. Fragiadakis, G. P. Nolan, and E. R. Zunder, “Flow-map: a graph-
based, force-directed layout algorithm for trajectory mapping in single-
cell time course datasets,” Nature Protocols, pp. 1-23, 2020.

A. Arleo, W. Didimo, G. Liotta, and F. Montecchiani, “A distributed
multilevel force-directed algorithm,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 4, pp. 754-765, 2018.

H. Haleem, Y. Wang, A. Puri, S. Wadhwa, and H. Qu, “Evaluating the
readability of force directed graph layouts: A deep learning approach,”
IEEE Computer Graphics and Applications, vol. 39, no. 4, pp. 40-53,
2019.

B. Jenny, D. M. Stephen, I. Muehlenhaus, B. E. Marston, R. Sharma,
E. Zhang, and H. Jenny, “Force-directed layout of origin-destination
flow maps,” International Journal of Geographical Information Science,
vol. 31, no. 8, pp. 1521-1540, 2017.

J. Lever, M. Krzywinski, and N. Altman, “Points of significance:
Principal component analysis,” Nature Methods, vol. 14, no. 7, pp. 641—
643, 2017.

J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319-2323, 2000.

N. Saeed, H. Nam, M. I. U. Haq, and D. B. Muhammad Saqib, “A
survey on multidimensional scaling,” ACM Computing Surveys (CSUR),
vol. 51, no. 3, pp. 1-25, 2018.

H. Cao, H. Zhang, C. Wang, and M. Liu, “Supervised locally linear
embedding for polarimetric sar image classification,” in 2016 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS).
IEEE, 2016, pp. 7561-7564.

C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network represen-
tation learning with rich text information,” in 24th International Joint
Conference on Artificial Intelligence, 2015.

X. Zhang, W. Chen, and H. Yan, “Tline: scalable transductive network
embedding,” in Asia Information Retrieval Symposium. Springer, 2016,
pp. 98-110.

C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets:
Minkowski convolutional neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
3075-3084.

X. Yang, C. Deng, F. Zheng, J. Yan, and W. Liu, “Deep spectral
clustering using dual autoencoder network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
4066-4075.

Q. Kong, C. Yu, Y. Xu, T. Igbal, W. Wang, and M. D. Plumbley, “Weakly
labelled audioset tagging with attention neural networks,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 27,
no. 11, pp. 1791-1802, 2019.

T. Vijayakumar, “Comparative study of capsule neural network in
various applications,” Journal of Artificial Intelligence, vol. 1, no. 01,
pp. 19-27, 2019.

K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying
generalization in reinforcement learning,” in International Conference
on Machine Learning, 2019, pp. 1282-1289.

Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

H. Shi, H. Fan, and J. T. Kwok, “Effective decoding in graph auto-
encoder using triadic closure,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 01, 2020, pp. 906-913.

J. Liu, F. Xia, L. Wang, B. Xu, X. Kong, H. Tong, and I. King,
“Shifu2: A network representation learning based model for advisor-
advisee relationship mining,” IEEE Transactions on Knowledge and
Data Engineering, 2019.

L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text
classification,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 7370-7377.

J. Xu, S. Yu, K. Sun, J. Ren, 1. Lee, S. Pan, and F. Xia, “Multivariate
relations aggregation learning in social networks,” in Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries in 2020, 2020, pp.
77-86.

W. Song, Z. Xiao, Y. Wang, L. Charlin, M. Zhang, and J. Tang, “Session-
based social recommendation via dynamic graph attention networks,” in
Proceedings of the 12th ACM International Conference on Web Search
and Data Mining, 2019, pp. 555-563.

J. Ma, P. Cui, K. Kuang, X. Wang, and W. Zhu, “Disentangled graph con-
volutional networks,” in International Conference on Machine Learning,
2019, pp. 4212-4221.

K. Ahmed and L. Torresani, “Star-caps: Capsule networks with straight-
through attentive routing,” in Advances in Neural Information Processing
Systems, 2019, pp. 9098-9107.

A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative generative
modeling of graphs,” in International Conference on Machine Learning,
2019, pp. 2434-2444.

Y. Wang, Y. Tong, C. Long, P. Xu, K. Xu, and W. Lv, “Adaptive
dynamic bipartite graph matching: A reinforcement learning approach,”
in 2019 IEEE 35th International Conference on Data Engineering
(ICDE). 1IEEE, 2019, pp. 1478-1489.

C. Weinreb, S. Wolock, and A. M. Klein, “Spring: a kinetic interface
for visualizing high dimensional single-cell expression data,” Bioinfor-
matics, vol. 34, no. 7, pp. 1246-1248, 2018.

D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 1225-1234.

	GraphForceLearningSubmitted Version Copyright
	Federation University ResearchOnline
	https://researchonline.federation.edu.au

	GraphForceLearningSubmitted Version
	I Introduction
	II Related Work
	III Preliminaries
	IV Graph Force Learning
	V Experiments
	V-A Experimental Setup
	V-A1 Datasets
	V-A2 Baseline Methods

	V-B Quantitative Results
	V-B1 Embedding Analysis
	V-B2 Label Prediction
	V-B3 Graph Visualization

	VI Conclusion
	References

