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ABSTRACT Rock-burst is a common failure in hard rock related projects in civil and mining construc-
tion and therefore, proper classification and prediction of this phenomenon is of interest. This research
presents the development of optimized naïve Bayes models, in predicting rock-burst failures in underground
projects. The naïve Bayes models were optimized using four weight optimization techniques including
forward, backward, particle swarm optimization, and evolutionary. An evolutionary random forest model was
developed to identify the most significant input parameters. The maximum tangential stress, elastic energy
index, and uniaxial tensile stress were then selected by the feature selection technique (i.e., evolutionary
random forest) to develop the optimized naïve Bayes models. The performance of the models was assessed
using various criteria as well as a simple ranking system. The results of this research showed that particle
swarm optimization was the most effective technique in improving the accuracy of the naïve Bayes model
for rock-burst prediction (cumulative ranking = 21), while the backward technique was the worst weight
optimization technique (cumulative ranking = 11). All the optimized naïve Bayes models identified the
maximum tangential stress as the most significant parameter in predicting rock-burst failures. The results
of this research demonstrate that particle swarm optimization technique may improve the accuracy of naïve
Bayes algorithms in predicting rock-burst occurrence.

INDEX TERMS Evolutionary random forest, naïve Bayes algorithm, particle swarm optimization, rock-
burst occurrence, weight optimization.

I. INTRODUCTION
Rock-burst (RB) is an extreme and unexpected failure of rock
caused by the intense release of elastic energy accrued in
the rock mass during deep underground activities [1]–[4].
RB is typically associated with several destructive events,
including slabbing and spalling. These can lead to severe
injuries, damage to supporting systems and equipment, and
significant delays in construction activities [5]–[7].

The location of rock burst (RB) is mostly near the
newly excavated working face, and some of them are far
away from the newly excavated working face. The common
rock burst parts are arch or arch waist of tunnel in high
stress concentration area. The RB cases can be occurred

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Da Lin .

subsequently after excavation, mostly in 2-3 hours after blast-
ing, or within 24 hours after blasting [1], [8], [9].

Rock-burst (RB) failures are typically classified into
type I and II. The difference between these two RB types
is in the damage mechanism and the location of the source
mechanism. While type I occurs in the proximity of freshly
excavated underground openings, type II occurs at a distance
from excavation activities and involves the activation of geo-
logical discontinuities [10]. It is worth mentioning that type
I is directly associated with the excavation process and is
known as a ‘‘strain burst’’, as it is triggered due to the high
stress concentration near the opening of the excavation. Type
II failures incur damages of underground opening due to the
rock mass displacements induced by the transmitted shock
waves [10]. Typically, type II RB failures are more significant
than type I failures, especially if more significant volumes of
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rock mass are involved, and more considerable stress arises
far from the excavation [8].

It has been shown that RB failures are strongly influenced
by seismic activities and it is therefore important to identify
and localize seismic events in the assessment of the likelihood
of occurrence of RB [11], [12]. During the past years, a num-
ber of experimental and theoretical studies were conducted
on several aspects of RB, including control, mechanism, and
prediction [13], [14]. However, according to He et al. [15],
RB is still considered a complicated and unresolved issue in
deepmining. Several classifications of RB are available based
on the potential severity, potential damage, failure pattern,
as well as scale. The severity of RB failures are typically
assessed based on the failure depth [16], [17]. Damage assess-
ment, is typically performed using four classifications includ-
ing none, light, moderate, and strong. RB failures may be
classified as cave collapse, slabby spalling, collapse, bending
failure, as well as dome failure. Finally, the scale is classified
as sparse, for RB lengths <10 m, large for RB lengths in the
range of (10-20 m) and continuous, for RB lengths >20 mm.

Sousa and Einstein [18] identified several factors that influ-
ence the occurrence of RB i.e., the stress state, geological
conditions, mechanical properties of the rock, and construc-
tion techniques. Considering the large number of influential
factors and the complicated character of the RB, its control
and prediction are extremely challenging tasks [8]. Both
short-term and long-term predictions of the occurrence of RB
are possible. For example, for short-term predictions, the pre-
cise location and occurrence of RB can be predicted using
a micro-seismic monitoring system and acoustic emission,
which are the main in situ measurements/techniques. Despite
their extensive use, both of these techniques suffer from
serious drawbacks in terms of high costs and time [1], [8].
Concerning the long-term prediction of rock-burst, several
techniques can be used, including the conventional criteria,
data mining techniques, as well as numerical models. Several
studies [2], [5] have suggested that the long-term prediction
techniques perform better than the short-term, especially for
the initial stage of a project. These techniques allow engineers
to select the most suitable excavation method.

In general the definition of RB prediction varies signifi-
cantly [19]. The first term is ‘‘rock-burst liability’’, which is
also known as ‘‘rock-burst proneness’’. This term refers to the
activeness and intensity of the occurrence of RB. The sec-
ond term is ‘‘rock-burst hazard’’, which refers to an initial
evaluation of the probability of occurrence of an RB and the
probable hazards of RB in the engineering context. Finally,
the term ‘‘rock-burst severity’’ denotes a primary observa-
tion of a previously occurred RB, which is also considered
as the intensity/classification/ranking of the RB. According
to Zhou et al. [1] and Pu et al. [20], several well-known
RB indices have been established utilizing different strength
parameters, as shown in Table 1. This table shows that a
limited number of input parameters were considered using
the usual criteria, and several parameters that may influence
the RB were overlooked by these criteria. Table 1 shows the

RB evaluation indices using both the rock-burst liability and
the rock-burst hazard terminologies. The rock-burst severity,
can be typically classified using various indices e.g., fail-
ure modes, mechanical aspects, level of damage, etc. Some
researchers have proposed different classifications for the
rock-burst severity. For example, Yian [21] presented four
grades of RB classification ranging between weak, moderate,
strong, and violent, Petukhov et al. [22] classified the RB into
3 or 5 different types and Russenes [23] introduced types 0 to
3 for rock-burst severity, with class 0 corresponding to the
weakest RB and class 3 corresponding to the most serious
failure. Different RB levels of minor, moderate, strong and
severe were proposed by Zhou et al. [24].

Machine learning (ML) and soft computing (SC) are
advanced computational methods, which identify com-
plex correlations between numerous input and output vari-
ables [1], [9], [25]. These techniques are a branch of com-
putational intelligence that employ a variety of statistical
and optimization tools to learn from past examples and
to then utilize that prior training to estimate novel trends.
ML and SC methods have been widely employed in several
research areas [26], [27], [36]–[45], [28], [46]–[55], [29],
[56]–[65], [30], [66], [67], [31]–[35].

In terms of the applications of ML and SC in RB clas-
sification and prediction, the initial attempts were made by
Feng and Wang [68], who established artificial neural net-
works (ANNs) for controlling and predicting the likelihood
of RB. Several other studies [69]–[72] applied ML and SC
techniques in the assessment of RB after the study by Feng
and Wang [68]. Zhou et al. [1] introduced three hybrid sup-
port vector machine (SVM) models which were optimized
using heuristic algorithms i.e., genetic algorithm, grid search
method, and particle swarm optimization (PSO) for determin-
ing the RB. Another hybrid model of least squares SVM-PSO
was developed by Wu et al. [73] to determine a non-linear
relationship between the model input parameters and RB and
to evaluate the risk associated with the RB. The risk level of
RB was evaluated and predicted in the study conducted by
Zhou et al. [74] using another model, which was a combi-
nation of the firefly algorithm and ANN. Zhou et al. [74]
showed that their model could evaluate the risk level of
the RB with a high degree of accuracy. In another research
Pu et al. [75] investigated the likelihood of occurrence of RB
in an igneous rock type (i.e., kimberlite) using a combination
of principal component analysis and a fuzzy model and con-
cluded that their proposed model could perform well in the
field of RB occurrence.

All these researchers used some well-known ML tech-
niques for predicting and classifying the likelihood of
rock-burst, the researchers neglected some of effective ML
techniques, such as Naïve Bayes (NB). The underlying
assumption of the Naïve Bayes (NB) technique is that under
a given set of classification characteristics, the attributes are
independent of each other. In practice however, this inde-
pendence assumption is not always satisfied [76]. Conse-
quently, for NB classification deficiency, researchers improve
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TABLE 1. Some of the indices to evaluate the RB together with their classifications.

its performance using the weighted naive Bayes, in which
inputs have different weights [76]–[78]. To achieve the best
attributes’ weight, which improves the overall performance of
NB, studies in other disciplines, employed some optimization
techniques, including forward, backward, PSO, and evolu-
tionary [76], [79]. However, to the authors’ best knowledge,
no study employed NB method and its optimized variants
for predicting the likelihood of rock-burst. This research
investigates the suitability of optimization techniques for
improving the NB model performance for rock-burst
prediction.

II. METHODS AND MATERIAL
This research employed four weight optimization techniques
to improve the accuracy of the NB model to predict the like-
lihood of rock-burst. These optimization techniques include
forward, backward, PSO, and evolutionary (i.e., genetic algo-
rithm). Before development of these optimized models, the
most important input parameters should be selected. The
suitable input selection was performed using evolutionary
random forest (RF) modelling. The input variables selected
in this step were used to develop the optimized NB models
and the best optimized NB model will be selected based on
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the performance prediction results and the ranking system.
Figure 1 shows the steps performed in assessing the most
suitable NB technique in predicting RB occurrence.

A. INPUT SELECTION TECHNIQUE
Random Forest (RF) is one the most frequently used tech-
nique for input selection. RF combines a huge number of
decision trees to produce results that are more accurate.
RF uses bagging techniques to create bagged trees by gener-
ating ‘‘x’’ number of decision trees that are trained using ‘‘n’’
bootstrapped training sets. While this technique is known as
an efficient technique for solving regression and classifica-
tion problems as well as input selection, it can tend to over-
fit, thus its hyper-parameters should be tuned. To this end, this
study combined the optimized the RF model using the evolu-
tionary algorithm. the RF algorithm was used for non-linear
relationship modeling while evolutionary was used for RF
hyper-parameters tuning. Figure 2 shows the evolutionary RF
modelling flowchart.

B. NAÏVE BAYES
Naive Bayes (NB) classifier is a kind of simple ‘‘probabilistic
classifier’’ which applies the Bayes theory with influential
(naïve) independence assumptions among the input variables.
This technique is the most suitable and easy to implement for
Bayesian network models and when applied in combination
with kernel density approximations, the prediction accura-
cies may increase significantly [80], [81]. NB classifier is
extremely scalable, requiring some linear input parameters in
the number of predictors in a learning problem. NB trains the
dataset using themaximum-likelihood technique and assesses
a closed-form formulation, which uses linear time, rather than
an expensive iterative calculation, which utilizes numerous
other kinds of classifiers.

The NB classifier integrates the NB probability model into
a decision rule. The NB classifier employs the maximum
a posteriori or MAP decision rule as a common rule for
selecting the most feasible hypothesis. A similar classifier,
the Bayes classifier, is the function that allocates a class label
y = Ck , (kv{1,. . . , K} ) for some k as follows:

y = argmax p (Ck)
∏n

i=1
p ((xi |Ck)) (1)

C. OPTIMIZATION TECHNIQUES
The performance of NB may be affected by initial weight
assignment. Optimizing the inputs’ weight is important in
developing NB models. Weighting the inputs aims when
defining the optimal level of an input’s power by adopt-
ing a training dataset. If the application of this technique
is successful, the related inputs are assigned a high weight
value and unrelated inputs are assigned a zero or near-zero
weight value. This study applied four weight optimization
techniques, including forward, evolutionary, backward, and
PSO to optimize the inputs’ weight of the NB model.

The forward weight optimization technique assumes that
the inputs are independent and if the inputs are not strongly

correlated, this method may provide exceptional outcomes.
This technique defines the weight of each input based on the
naive theory. In this technique, inputs are assigned weights
using a linear search. The forward optimization technique
chooses a subset of inputs for the final model. Contrary to
the forward optimization technique, the backward method
commences with the complete least squares model compris-
ing all inputs. This technique then repetitiously eliminates
the most insignificant inputs, one after another. Both forward
and backward techniques designate 1’s and 0’s as the primary
weights.

The evolutionary weight optimization technique esti-
mates the inputs’ weight using the genetic algorithm (GA).
Inputs with higher weights are consider to be more suit-
able inputs. The GA is an efficient exploratory method,
which mimics the natural evolution’s procedure. This method
provides an efficient solution to optimization and search
queries [55], [82]. GA belongs to the more general classifica-
tion of evolutionary algorithms (EA) that provide answers to
optimization queries by implementing methods stimulated
via natural evolution, including inheritance, mutation, selec-
tion, and crossover (Figure 3). In GA, mutation points to
shifting inputs on and off and crossover includes swapping
employed inputs [83].

The PSO technique learns the process by making a series
of arbitrary particles and every particle implies a single set of
weights and biases in the model. Later, the model is trained
by employing the initial weights and biases [84]. Eventually,
the PSO updates the model’s weights and biases in each
replication. PSO determines the system errors among the
actual and forecasted values in each repetition. These errors
further are depreciated by modifying the particles’ positions.
This process is maintained to produce excellent weights and
biases to minimize the error function.

D. CASE STUDY AND DATA
Rock-burst events were compiled from various works in
the published literature [1], [5], [6], [68], [85], [86] in
order to propose several optimized NB models in estimat-
ing rock-burst occurrence. A total of 134 rock-burst inci-
dents were employed in this research. These compiled RB
events were taken from different projects, such as hydropower
plants, underground coal and metalliferous mines, and
powerhouse stations. In the data used, the elastic energy
index (EEI), the uniaxial tensile strength (UTS), the uniaxial
compressive strength (UCS), and the maximum tangential
stress (MTS) were considered as model inputs while the
RB’s occurrence was set as model output. In the database,
the EEI values refer to the ratio of elastic energy saved to
the dissipated energy in one cycle of a cycling compression
test. Actually, EEI which was proposed by Kidybiński [87],
is considered as a classification index of the likelihood of
RB. In this research the average value of MTS was 51.3MPa
and ranged between (2.6–108.4 MPa), the average value of
the UCS was 128MPa and ranged between (20–306.6 MPa),
the average value of UTS was 7.5MPa and ranged between

91350 VOLUME 9, 2021



B. Ke et al.: RB Occurrence Prediction Based on Optimized Naïve Bayes Models

FIGURE 1. Process of this present study in predicting RB occurrence.
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FIGURE 2. Evolutionary RF modelling flowchart.

FIGURE 3. Important steps of GA for optimizing problems.
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FIGURE 4. Data visualization of 134 sets of the RB data.

(1.3–22.6 MPa) and the average value of EEI was 4.7 and
ranged between (0.85–10.6 MPa).

III. RESULTS AND DISCUSSION
A. INPUT SELECTION
In this research, RF was used for input selection. The RF
employed an evolutionary algorithm (i.e., GA) for input
selection. Fig. 5 shows some parameters and settings used to
develop the RF model.

Once the parameters were defined, the model was applied
and MTS, UTS, and EEI were selected as the most important
and relevant factors for predicting the RB occurrence. The
performance of the model is shown in Table 2. The overall
accuracy of this model is 94.78%. A 10-fold cross validation
technique for estimating the statistical performance of the
model was used.

B. OPTIMIZED NB MODELS
Four optimization techniques were used to improve the accu-
racy and performance of the NB model. These techniques

FIGURE 5. Parameters’ used for applying input selection technique.

included forward, backward, PSO, and evolutionary tech-
niques. Before applying these techniques, a basic NB model
was applied and used as a benchmark. This research used a
10-fold cross validation technique to evaluate the statistical
performance of the models. Fig. 6 presents the parameters,
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TABLE 2. Performance of the RF- evolutionary algorithm for input
selection.

FIGURE 6. Parameters employed for developing optimized NB models.

which were applied on each model. The accuracy of the NB
model was 86.43% for the RB occurrence.

The performance of the models was assessed using the
following six criteria; accuracy, kappa, area under the
curve (AUC), precision, recall, and lift. The equations for
each performance criterion are shown in Figure 7.

A simple ranking method was developed, which ranked
each model based on each criterion. This ranking system also
provides a cumulative ranking for each model, by summing
each criterions’ rankings. The formula for a models’ cumula-
tive ranking may be expressed as:

Model ′scummulative ranking

= R1 + R2 + R3 + R4 + R5 + R6 (2)

where, the R1 denotes the ranking of the model’s accuracy,
R2 is the ranking of model’s kappa, R3 is the ranking of the
model’s AUC, R4 is the ranking of the model’s precision,
R5 is the ranking of model’s recall, and R6 is the ranking of
the model’s lift.

This study employed a wide range of indicators to assess
the performance of the models developed in this study com-
prehensively and systematically. While accuracy is the corre-
sponding number of precisely classified samples or namely
the percentage of accurate forecasts, the kappa statistics con-
sider the accurate prediction happening by accident. In addi-
tion, the AUC graph sorts the forecasts by score, from greatest

to lowest, and the graph is plotted sample by sample. Pre-
cision and recall together examine how great the model is
catching information. Lift represents the model’s enhance-
ment over arbitrary sampling.

Since four optimized models were developed in this study,
the model that achieved the highest value of a certain criterion
was ranked as four. On the other hand, the lowest ranking
was assigned to a model, which achieved the lowest criterion
value. The same value of the same criterions received the
same ranking.

The correct predictions of the two RB classes by the four
NB optimized models are shown in Figure 8. The NB models
optimized using forward, PSO, and evolutionary techniques
predicted a class 1 likelihood of RB failure, and whereas the
NBmodel optimized using, the backward technique achieved
the smallest prediction accuracy. For class 2, NBmodels opti-
mized using forward and evolutionary techniques predicted
a class 1 likelihood of RB failure. NB models optimized
using the backward technique showed the best performance
for correctly predicting class 2 of the RB.

The performance and the cumulative ranking of each NB
optimized models are presented in Table 3. All optimiza-
tion techniques improved the NB accuracy level. However,
the improvement in prediction accuracy was the lowest for
the backward technique. The PSO model achieved the high-
est cumulative ranking among the models developed in this
study. Whereas the NB model optimized using the backward
techniques performed poorly compared to other optimized
models. In terms of accuracy, AUC, and kappa, the NB
model optimized by the PSO technique achieved the highest
ranking (four). In addition, regarding the precision, recall,
and lift, the NBPSO technique achieved the second greatest
ranking.

AUC and receiver operating characteristic (ROC)
graphs/curves were used for each model to measure the
prediction performance, rather than their absolute values. The
true positive rate in ROC curve is highlighted as the vertical
axis while the horizontal axis shows the false positive rate.
A greater AUC indicates a more immeasurable classification
accuracy. AUC and ROC are generally used to evaluate the
prediction accuracy of classifiers in binary classification
problems. In this study, the RB risk classification is a twofold
problem, thus the AUC area and ROC curve can be helpful
to show the performance of the models. Figure 9 shows the
ROC curve and AUC values obtained by the four optimized
NB models. It can be seen that the NB models optimized
by PSO and evolutionary techniques achieved the highest
AUC, followed by NB model optimized by forward tech-
nique; whereas NB model optimized by backward technique
performed, the worst compared with other optimized NB
models.

The PSO optimization technique possesses many advan-
tages; the higher accuracy ranking of PSO than other opti-
mization techniqueswas expected. Remarkable advantages of
this technique are as follows: (1) the PSO technique requires
a little number of input variables, (2) it possesses a flexible
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FIGURE 7. Performance criteria used in this study.

TABLE 3. Performance and cumulative ranking of the optimized NB models.

scaling of design search, (3) it can be applied straightforward,
and (4) it has an effective s global optimum search.

As mentioned before, there is a high level of RB possi-
bility immediately after excavation and blasting in under-
ground mines and spaces. Therefore, the prediction of the RB
occurrence is of interest and importance in any underground
project. With the introduced models in this study, a mining or
geotechnical engineer can know about the possibility of the
RB occurrence. In fact, the developedmodels in this study can

be efficiently utilized/implemented in the same mentioned
condition for minimizing the associated risk with a high level
of accuracy.

IV. IMPORTANCE OF INFLUENTIAL FACTORS
In mining construction, the prediction of the RB under partic-
ular rock mass conditions is of interest. To accurately predict
the RB occurrence and reduce the cost and risk of tunneling,
the impact of the factors must be assessed. In summary,
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FIGURE 8. Correct predictions of the two RB classes by various optimized NB models.

FIGURE 9. AUC graphs of the optimized models in this study.
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FIGURE 10. Importance score of influencing variables on rock-burst for each model developed in this study.

those input variables that were selected using the RFEVO
method i.e. MTS, UTS, and EEI have an impact level on
rock-burst; however, the sensitivity of each input is uncertain
and requests further investigation. To this end, this research
investigated the significance of the input variables on each
model output using the test of mutual information (MI). MI is
a filtering system employed to capture the random association
among various features and the label. MI identifies how the
variables are associated. The information gain is employed
to estimate the magnitude of the mutual information among
variables.

Gain (A,B) = Ent (A)−
∑v

v−1

|Av|
|A|

Ent
(
Av
)

(3)

where, v signifies the number of all probable values of B,
Av denotes the set of A corresponding to when B takes Bv,
and Ent(A) denotes the information entropy. The greater the
value of Gain (A, B), the greater the association between
B and A. Ultimately, according to the variable score in the
mutual information test, the significance levels of the input
variables in calculating rock-burst for each model, were esti-
mated. As shown in Figure 10, MTS was identified by all
models. In addition, this input variable achieved the highest
importance score. ANNEVO and ANNFOR models identi-
fied onlyMTS as the influential factor for predicting the rock-
burst. ANNPSO and ANNBAC, on the other hand, ANNEVO
and ANNFOR showed similar behavior for determining
the importance score of the variables for predicting the
rock-burst.

Determining the MTS as the most important factor for
rock-burst prediction in all four models was in line with
the findings of those studies that previously confirmed the
importance of this factor for predicting the rock-burst [72].
However, other studies also identified different factors,

including the properties and stress of surrounding rock for
rock-burst prediction [6], [68], [85], [86].

V. SUMMARY AND CONCLUSION
The aim of this research was to employ an NB algorithm for
predicting the rock-burst hazard and to improve theNBmodel
performance using weight optimization techniques. To this
end, an evolutionary random forest technique was employed
for input selection. This technique identified MTS, EEI,
and UTS as the most suitable input variables for rock-burst
prediction. These variables were then used to develop the
optimized NB models using forward, backward, PSO, and
evolutionary optimization techniques. The performance of
these optimized models was assessed using six criteria.
A simple ranking system was also developed to evaluate
the models systematically. The results of this research show
that PSO is the most suitable optimizer for improving the
predictive accuracy of the NB model to predict the likeli-
hood of rock-burst failure. The developed NBPSO model,
which achieved a cumulative rank of 21, attained the high-
est prediction accuracy, whereas the developed NB forward,
NB backward, and NB evolutionary models achieved cumu-
lative rankings of 19, 11 and 14 respectively. MTS was the
most influential factor for predicting rock-bust failures in all
optimizedmodels. Future researchmay explore the suitability
of other optimized NB models such as NB artificial bee
colony, NB ant colony optimization and NB whale optimiza-
tion algorithm in increasing the prediction accuracy of rock-
burst failures.
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