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MODEL: Motif-based Deep Feature Learning for
Link Prediction

Lei Wang, Jing Ren, Bo Xu, Jianxin Li, Wei Luo, and Feng Xia, Senior Member, IEEE

Abstract—Link prediction plays an important role in net-
work analysis and applications. Recently, approaches for link
prediction have evolved from traditional similarity-based algo-
rithms into embedding-based algorithms. However, most existing
approaches fail to exploit the fact that real-world networks
are different from random networks. In particular, real-world
networks are known to contain motifs, natural network building
blocks reflecting the underlying network-generating processes.
In this paper, we propose a novel embedding algorithm that
incorporates network motifs to capture higher-order structures
in the network. To evaluate its effectiveness for link prediction,
experiments were conducted on three types of networks: social
networks, biological networks, and academic networks. The
results demonstrate that our algorithm outperforms both the
traditional similarity-based algorithms (by 20%) and the state-
of-the-art embedding-based algorithms (by 19%).

Index Terms—Network Motif, Link Prediction, Network Em-
bedding, Deep Learning, Autoencoder.

I. INTRODUCTION

COMPLEX networks occur in many natural and social
settings, examples including academic networks [1], bi-

ological networks [2], social networks [3], [4], and vehicular
networks [5]. A network contains both vertices representing
entities and links representing relationships between entities.
It is a well-known problem that many networks generated
from relational databases suffer from missing links. Link
prediction aims to identify such missing links in a network
[6]–[9]. It is an active research area that has many useful
applications: Through link prediction, we can recommend a
scientific paper for scholars in academic networks [1], build
social recommender systems [10], [11], and discover currently
unknown protein-protein interactions in biological networks
[12].

In link prediction, a score is assigned to each pair of
unconnected vertices based on their features. A higher score
implies a higher probability of a missing link connecting
the two vertices. Traditional similarity-based algorithms for
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link prediction rely on hand-crafted features, such as Com-
mon Neighbors and Jaccard’s Coefficient [6]. However, when
creating hand-crafted features, we need to select informative
features and consider specific domain knowledge. To solve this
problem, the idea of automatically learning features, known as
network embedding [13], [14], has emerged. The main idea of
network embedding is to map each vertex in a network to a
vector in a d-dimensional space, with the correlation of vectors
reflecting the correlation of the corresponding vertices. For
example, the cosine of the vectors of two vertices can indicate
the strength of their similarity or correlation.

Although existing algorithms for link prediction achieve
good performance, they face the following challenges:

(1) Higher-order structures: Real-world networks usually
exhibit higher-order structures. This is, the networks contain
a large number of connected subgraphs that occur more
frequently than in random networks. The well-known Science
paper [15] has demonstrated that such subgraphs, known as
network motifs, are basic network ”building blocks” reflect-
ing specific types of networks. A lot of studies in network
analysis [16], [17] have confirmed that leveraging subgraphs
can improve experimental performance. In particular, frequent
subgraphs have been successfully applied to improve whole-
graph embedding [18]. However, to our knowledge, network
motifs have not been used to improve link prediction.

(2) Weak ties: The number of common neighbors between
two vertices is informative of measuring their similarity.
However, some vertices exhibit a weak tie, which means they
share a few or no common neighbors [19]. We can find this
phenomenon where two vertices reside in two different com-
munities [20]. If we only concentrate on common neighbors,
it will be difficult to discover the potential edge between two
vertices that exhibit a weak tie.

(3) Complex network structures: Many networks have
complex and highly non-linear structures, as demonstrated in
[21]. Existing embedding-based algorithms rely on linear and
shallow models, such as matrix factorization, which are unable
to capture the complex structure of networks [8].

To sum up, the majority of existing algorithms fail to capture
higher-order structures and potential weak ties since they rely
on only pair-wise similarity and immediate neighbors. This
problem can be addressed using special subgraphs (such as
motifs) that preserve higher-order connectivity patterns [15].
Such higher-order connectivity patterns are often crucial for
link prediction. In addition, existing algorithms, for example
HONE [9], often learn features leveraging only shallow mod-
els. Often a complex model is necessary to capture complex
network structures to achieve optimal link prediction [21].
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In this paper, we propose a MOtif-based DEep feature
learning algorithm for Link prediction named MODEL. The
proposed algorithm uses motifs to automatically learn vector-
ized features. When learning vector representations, we hope
that learned vectors of these vertices composing a motif close
to each other, and ensure that overlapping motifs are together.
To achieve this goal, we redefine the first-order proximity
and second-order proximity, both of which are different from
the definition in [8], [22]. The redefined first-order proximity
transforms the connectivities in a network from two vertices
to more vertices, strengthening intra-motif relationships as
connectivity exists between any two vertices in a motif. The
redefined second-order proximity captures the relationship be-
tween the two vertices which do not reside in a motif but share
many redefined neighbors. The two redefined proximities also
address the problem that two potentially connected vertices
exhibit a weak tie, since we add more neighbors for each
vertex by redefining neighbors.

Aiming to address the complexity and non-linearity of
network structures, we adopt a deep learning model called
autoencoders which enjoy high non-linearity. The proposed
algorithm first compresses the second-order proximity of ver-
tices to low-dimensional vectors. From the perspective of the
first-order proximity, we adjust vectors obtained from the
second-order proximity to keep the first-order proximity in
the vector space. At the same time, a method of negative
sampling based on motifs is proposed to optimize the proposed
algorithm.

To illustrate the effectiveness of our algorithm, we exten-
sively conduct experiments on multiple types of networks,
including social, biological and academic networks. Experi-
mental results show that our algorithm outperforms state-of-
the-art embedding-based algorithms by 19% and traditional
similarity-based algorithms by 20% for link prediction. In
addition, these experiments also show that our algorithm
performs better in predicting potential weak ties than the
baseline algorithms. At last, we investigate the influence of
motif types on experiments, which is not discussed before but
provides insight for selecting the most appropriate motif type
for a network.

Contributions: The contributions of this paper are outlined
as follows:

1) We propose a novel motif-based embedding algorithm
for link prediction. This method seamlessly incorporates
motifs and deep learning model into link prediction.

2) We redefine the first-order proximity and the second-
order proximity of two vertices by motifs. The two re-
defined proximities are beneficial for preserving higher-
order structures, and can be applied to different kinds of
network analysis tasks.

3) Experiments on six networks empirically demonstrate
that our algorithm achieves 19% gain over embedding-
based algorithms and 20% gain over baseline algorithms
for link prediction.

Organization: The rest of this paper is organized as fol-
lows: In Section II, we give an overview of related work on
network embedding and link prediction. Section III introduces
some important preliminaries, including the redefined first-

order proximity and the second-order proximity. In Section IV,
we present the overall framework of our proposed algorithm
and the loss function in detail. In Section V, we evaluate
the effectiveness of the algorithm over three distinct types of
networks. Finally, Section VI concludes the paper.

II. RELATED WORK

In this section, we review key applications of motifs,
and algorithms for network embedding and link prediction.
Besides, we state the relationship and difference between our
study and some similar studies.

A. Motif

Previously, the concept of motif is used to apply largely
to biological networks. Uri Alon [23] discusses two types of
transcription network: sensory networks and developmental
networks where motifs can be found. Grundy et al. [24]
propose motif-based HMMs to solve the problem that HMMs
require a relatively large training set. Recently researchers
apply motifs to multiple networks and a variety of scenes.
Benson et al. [15] propose a motif-cut approach to improve
network clustering accuracy, which is successfully applied to
social networks, academic networks, and so on. Arenas et al.
[16] have used motifs to define which communities vertices
belong to. Xia et al. [25] surveyed measures for network
motifs.

For detecting motifs in networks, Milo et al. [26] propose an
approach to find the striking appearance of motifs in networks.
The approach only selects patterns appearing in real networks
with the numbers being significantly higher than those in
the randomized networks. S. Wernicke proposes an algorithm
[27] that can enumerate and sample subgraphs by selecting a
random edge and randomly extending the subgraph. Based on
the algorithm [27], Wernicke et al. [28] devise a tool, namely
FANMOD, for network motifs detection.

B. Network Embedding

1) Pair-wise Connectivity: Inspired by the success of word
vectors, DeepWalk [29] considers a vertex sequence sampled
by random walk as a sentence. These sentences can be used
to learn a vector representation for each vertex by the power
of SkipGram [30]. LINE [22] uses the first-order and the
second-order proximity to learn vectors. Meanwhile, edge
sampling and negative sampling [31] are used to optimize the
model. GraRep [32] illustrates the importance of using global
information when learning vector representations. Based on
the discussion in the study [33] where negative sampling
is equal to matrix factorization, GraRep can obtain a low-
dimensional vector representation for each vertex using SVD
at each step, and concatenate all vectors in K step as the
last vector representations. SDNE [8] uses a deep learning
model that uses the second-order proximity as input to mine
highly non-linear relations between vertices and attaches the
first-order proximity as a supervised component to the model.
The algorithm is successfully applied to link prediction. Since
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SDNE and LINE only consider pair-wise similarity, the first-
order and second-order proximities defined by the similarity
can not preserve higher-order structures.

Besides homophily, some networks exhibit structural equiv-
alence or structural similarity. Node2vec [29] defines a second-
order random walk using return parameter p and in-out pa-
rameter q, and also shows effectiveness on link prediction.
Different from Node2vec that considers both homophily and
structural equivalence of networks, Struc2Vec [34] exclusively
focuses on structural identity by vertex sequences ordered by
degree of vertices. This approach shows great superiority over
Node2vec on node classification.

2) Higher-order Structure: The approaches listed above ig-
nore an important characteristic of networks, i.e., higher-order
structures. Recently, some researchers have begun to leverage
subgraphs, graphlets or motifs to improve the performance of
vector representations used to perform network tasks. SNS
[17] defines the structural similarity of two vertices based
on graphlet and orbit, which can be combined with original
methods of learning word2vec, such as CBOW. HONE [9]
defines the problem of higher-order network representation
learning based on network motifs. This approach defines a
new adjacency matrix for each motif from two-node to four-
node and demonstrates its effectiveness on link prediction.
However, this approach does not indicate why motifs are
informative of link prediction, and involves a number of
matrix multiplications and linear matrix factorizations. As
a result, HONE has high computational complexity and, as
our experiment results show, may not able to fully capture
complex network structures and relationships between higher-
order structures.

C. Link Prediction

1) Tradititonal Similarity-based Algorithms: Traditional
similarity-based algorithms [6] for link prediction mainly
focus on neighbors of two potentially connected vertices to
measure their similarity. Common Neighbors directly simply
counts common neighbors. Jaccard’s Coefficient divides the
number of common neighbors by the number of all neighbors
of the two vertices. Adamic-Adar also counts common neigh-
bors, but assigns the less-connected neighbors more weight.
Preferential attachment assumes that two vertices of higher
degrees are more likely to link to each other.

2) Embedding-based Algorithms: Embedding-based algo-
rithms measure the similarity of two vertices by their learned
vectorized features. SDNE [8] uses the cosine as an in-
dicator of similarity. Node2vec [29] designs four different
operators over vertices’ features to generate edges’ features,
including Average, Hadamard, Weighted-L1 and Weighted-L2.
HONE [9] uses Average operation to construct edges’ features.
DeepGL [35] uses the four operators to construct edges’ fea-
tures for inductive network representation. The paper [29] il-
lustrates that embedding-based algorithms can outperform tra-
ditional similarity-based algorithms on link prediction. Wang
et al. [36] propose a predictive network representation learning
named PNRL to solve the structural link prediction problem.
PNRL jointly optimizes two objectives for observed links and

assumed hidden links. Tu et al. [37] propose a Community-
enhanced Network Representation Learning named CNRL.
The algorithm shows its superiority on link prediction. Liao
et al. [38] propose a network embedding for attributed social
networks, and show that the method achieves substantial gains
on the task of link prediction. Zou et al. [39] propose an
encoder-decoder model for graph generation. The encoder is
a Gaussianized graph scattering transform and the decoder
can be adapted to link prediction. RGCN [40] uses graph
convolutional networks to learn embedding vectors and uses
a tensor factorization model to predict links.

D. Similar Work
There are some studies similar to our. Both E-LSTM-D [41]

and MODEL aim at predicting links in networks and use auto-
encoder. However, E-LSTM-D focuses on dynamic networks
and thus needs multiple graphs. MODEL focuses on static
networks and thus needs only one graph. S-LSTM-D combines
auto-encoder and a stacked long short-term memory (LSTM),
a deep learning model, and does not consider the higher-
order structure. MODEL combines auto-encoder and motifs,
higher-order structures that naturally exist in networks. Qi et
al. propose a concept of subgraph network (SGN) that can
be applied to network models [42]. Both SGN and MODEL
consider subgraphs, but SGN uses various types of subgraphs.
MODEL uses only one type of subgraphs, i.e., motif. SGN
constructs structural features without considering the nonlinear
network structure, while MODEL learns features by auto-
encoder that addresses the nonlinear network structure. The
goal of the paper [42] seams to address network classification;
our goal is to predict links of networks. Both the study [43]
and MODEL leverage network property. But the study uses the
centrality features; MODEL uses motifs. The study combines
network property with line graphs to predict link weights, i.e.,
to determine the weight of links, while MODEL combines
network property with auto-encoder to predict links, i.e., to
judge whether there is a link between two vertices. Both
RUM [44] and MODEL leverage motifs to capture high-order
network structure. However, RUM needs to be combined with
existing embedding algorithms, such as DeepWalk and LINE,
and does not consider the nonlinear network structure. On the
contrary, MODEL is an individual algorithm and uses auto-
encoder to capture the nonlinear network structure. Motif2Vec
[45] also leverages motifs, but its goal is to design a new
random-walk method, which is unsatisfactory to capture the
nonlinearity of the network structure. Furthermore, Motif2Vec
focuses on heterogeneous networks, while MODEL focuses
on homogeneous networks. The study [46] defines topological
features by motifs from three-node to five-node, without
considering the nonlinearity of the network structure. MODEL
learns features only by one type of motifs and considers the
nonlinearity. The study [46] sees link prediction as a binary
classification problem, while MODEL sees it as a probability
problem.

III. PRELIMINARIES

In this section, we list some important preliminaries and
notations for this paper. It is worthwhile to note that the
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definitions of the first-order proximity and the second-order
proximity in this section are redefined by motifs, different from
the definitions from the papers [8], [22]. Some key notations
are shown in Table I.

TABLE I: Key notations in this paper

Notations Meaning

G A graph
V The vertex set
|V | The number of vertices
vi The vertex i
E The edge set
|E| The number of edges
M A motif/A motif type
{M} The motif set
Mxy A motif of order x and number y

d The dimention of vector representations
yi The vector representation of vertex i
Ni The first-order proximity of vertex i and other vertices
N(i) The set of neighbors of vertex i

f,g Mapping functions
x An input vector of the model
xj The jth element of x
yk An output vector of kth hidden layer in encoders/decoders
x′ An ouput vector of decoders
z The penalty vector
Wk The weights of kth hidden layer in encoders
Bk The biases of kth hidden layer in encoders
W ′

k The weights of kth hidden layer in decoders
B′

k The biases of kth hidden layer in decoders
K The number of hidden layers in encoders/decoders
θ The set of parameters to be learned
� The Hadamard product of matrices
‖ ‖F Frobenius norm

A. Graph and Motif

We denote a graph as G = (V,E), where V denotes the set
of all vertices and E denotes the set of all edges in G, i.e.,
(vi, vj) ∈ E if vi and vj are connected. A motif is defined
as a connected subgraph with a small number of vertices.
Formally, we denote a motif as M = (VM , EM ). If a motif
is a connected subgraph from graph G, (vi, vj) ∈ E for any
(vi, vj) ∈ EM . A motif is not merely any subgraph. It exists in
a type of networks significantly more frequently than a random
subgraph, reflecting an underlying process specific to the type
of networks. For example, feed-forward loops are known to
be prevalent and has functional significance in Protein–protein
interaction networks.

In general, network motif search is NP-hard. Higher-order
motifs require more time to find and more space to store.
Aiming at reducing the time complexity and space complexity,
we only consider all three-node and four-node motifs in this
paper. Besides, our proposed approach can also be extended
to arbitrary-node motifs. In Fig. 1, we draw all types of three-
node and four-node motifs. Note that a motif Mxy represents
the type of motif with order x and number y. Efficient
algorithms are available for finding motifs in a network [28],
[47].

Fig. 1: All three-node and four-node motifs. Circles represent
vertices, and lines represent edges.

B. First-order Proximity and Second-order Proximity

First-order proximity: The first-order proximity is directly
defined on pair-wise vertices. If vi and vj reside at the same
motif, there exists the first-order proximity between vi and vj .
Otherwise, the proximity is 0. The more motifs both vi and
vj reside at are, the larger the first-order proximity between
vi and vj is.

The way to define the first-order proximity is different from
the definition in LINE [22] and SDNE [8]. LINE and SDNE
define the first-order proximity on two connected vertices,
while we define it on any two vertices in a motif, despite
whether they are connected. Taking M43 in Fig. 1 as an
example, we attach the first-order proximity on any two
diagonal vertices and any two connected vertices as they all
reside at M43. However, LINE and SDNE do not attach the
first-order proximity on two diagonal vertices since they are
not connected. It is worth noting that our way defining the
proximity covers the definition in LINE and SDNE. If we only
consider two-node motifs, the two definitions are equivalent.
Since the first-order proximity exists between any two vertices
in a motif, the relationship of intra-motif can be strengthened.

In this paper, let Ni = {wi1, wi2, . . . , win} denote the first-
order proximity of vi and other vertices. wij ∈ R (R >= 0)
denotes the first-order proximity of vi and vj , which is defined
as the number of motifs where vi and vj occur simultaneously.
Second-order proximity: The second-order proximity is de-
fined on neighbors of two vertices. It is founded on the
cognition that the more common neighbors two vertices have,
the more similar the two vertices are [8], [22]. In this paper,
we redefine the neighbors of every two nodes via a specific
motif.

According to the first-order proximity we defined, the
second-order proximity of vi and vj can be calculated by the
similarity of Ni and Nj . If vi and vj share a great number
of same neighbors, the two nodes and their neighbors will be
close in the vector space, which leads to the two motifs of vi
and vj become close.

C. Autoencoder

Autoencoder, introduced first in [48] by Hinton et al., is a
non-linear way of reducing the data dimension by multi-layer
neural network.

A universal framework of autoencoder is shown in Fig. 2.
An autoencoder consists of two parts, one part compressing
high-dimensional data x to low-dimensional data y and the
other part decompressing y to high-dimensional data x′ seen
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as reconstructed x. Each part is actually a multi-layer neural
network with a large number of non-linear activation functions.
We use fθ and gθ′ to denote the encoding and decoding func-
tion respectively, thus the process of encoding and decoding
is equal to address the function arg minθ,θ′ `(x, gθ′(fθ(x))),
wher `(x, x′) is the function measuring the difference of x
and x′, e.g., Euclidean distance.

Fig. 2: A universal framework of autoencoder. The left part is
an encoder and the right part is a decoder. In the autoencoder,
x is the input vector, y is the output vector, and x′ is the
reconstructed vector of x.

D. Problem Definition

Motif-based Embedding: Given all motifs with a specific
type in a network, we need to learn a mapping function
f : V → y ∈ Rd, where d � n. We hope that learned
mapping function can preserve well higher-order structures
in original networks, i.e., the similarity of intra-motif and
relationships between motifs.

Link prediction: Link prediction aims to predict missing
edges or edges that will appear in the future. A graph G =
(V,E) can be regarded as G = {(vi, vj) ∈ E} ⊆ V × V , a
subset of all possible edges. In practice, we may not be able
to model every edge, particular those considered weak ties.

The objective of link prediction is to find a scoring function
S : V × V 7→ [0, 1] such that S(vi, vj) is high if (vi, vj) ∈
E and S(vi, vj) is low if (vi, vj) 6∈ E. That is, we aim to
maximize∑

(vi,vj)∈E

logS(vi, vj) +
∑

(vi,vj) 6∈E

log(1− S(vi, vj)).

Since we use a d-dimensional vector to represent each
vertex in this paper, we can use the cosine similarity of yi
and yj to indicate the score that there is an underlying edge
between vi and vj . That is

S(vi, vj) = cos(yi,yj).

IV. DESIGN OF MODEL

In this section, we first give the overall framework of
proposed algorithm MODEL. Subsequently, We introduce how
to preserve higher-order structures, i.e., the second-order prox-
imity and the first-order proximity, and how to optimize them
by sampling negative nodes. Last, we conclude the complexity
of training the model.

A. Framework

To learn a mapping that preserves higher-order structures in
networks, we perform the next two steps: First, we construct
a vector representation for each vertex by their neighbors. A
simple way is that we directly use Ni as a vector to represent
vi. However, due to its high sparsity, discrete values and the
large dimension, the vector is inappropriate for downstream
network tasks. In practice, we can compress Ni to a low-
dimensional vector with entries being real values to address
the problem. In the process of compression, we employ an
autoencoder that enjoys non-linearity and flexibility [8], [49],
[50]. Second, considering the first-order proximity, we need to
attach a loss term on vector representations of all vertices in
a motif. An effective and widely used way is to minimize the
Euclidean distances of vectors of any two vertices in a motif.
For taking better advantage of the power of the first-order
proximity, neighbors of all vertices in a motif are inputted to
encoder simultaneously, so that vectors of the vertices can be
obtained at the same time.

We show the framework of the proposed approach in Fig. 3.
The model consists of four autoencoders which share the same
weights, biases and activation functions. The part below is
encoder and the one above is decoder. Given a motif composed
of vi, vj and vk, the model first input neighbor vectors xi,
xj and xk, corresponding to vi, vj and vk respectively. By
encoding and decoding, yi, yj and yk are obtained as vector
representations, which can reflect the second-order proximity
between these vertices. Due to the first-order proximity in a
motif, a loss term is attached to regularise vector representa-
tions. To optimize the model, an autoencoder for a negative
vertex vl is added. We hope the model can distinguish yi, yj
and yk from yl in the vector space.

The Model in Fig. 3 is drawn based on three-node motifs,
so that there are only four auto-encoders, in which vi, vj , and
vk compose a three-node motif and vl is a negative vertex.
Even so, the model can be transformed easily to be of four-
node motifs and even higher-order motifs. For example, we
can add another autoencoder sharing the same parameters, so
that the new model can be applied to four-node motifs. All next
introductions about the proposed algorithm are based on three-
node motifs. Meanwhile, we list some key symbols of the
model in Table I. Note that a vector with subscript i represents
the specific vector to vi, e.g., xi is the input vector of vi.

Next, we detail how our model learns a vector representation
for each vertex to preserve the second-order proximity and the
first-order proximity, and how to add noise to optimize the
model.

B. Preserving Second-order Proximity

For preserving the second-order proximity, we first need to
obtain neighbors of each vertex according to Section III. These
neighbors are stored in N(i) and seen as the input vector xi
of vi in encoders. Through Equation 1 and 2, where σ denotes
the activation function, such as sigmoid, we can obtain output
vectors of encoders as vector representations. The more similar
two input vectors are, the more similar two output vectors are.

y1i = σ(W1xi +Bi) (1)
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Fig. 3: The overall framework of MODEL. The model first selects a motif composed of vi, vj and vk, and a negative vertex vl.
The vectorized neighbors of the four vertices are inputted simultaneously into four autoencoders sharing the same parameters.
The outputs of autoencoders, yi, yj , yk and yl, serve as learned features of their corresponding vertices. Due to the first-order
proximity, a loss term is added for yi, yj and yk. Meanwhile, a separate loss term is used to distinguish a motif from a negative
vertex in the vector space.

yki = σ(Wky
k−1
i +Bk) k = 2, . . . ,K (2)

After compression, decoders accept output vectors of en-
coders as input vectors and then reconstruct input vectors of
encoders. Through Equation 3 and 4, we can obtain recon-
structed vector x′i of vector xi. In Equation 3, y0i is the input
vector of decoders and also the output vector of encoders.

yki = σ(W ′ky
k−1
i +B′k) k = 1, . . . ,K − 1 (3)

x′i = yKi = σ(W ′Ky
K−1
i +B′K) (4)

In the process of encoding and decoding, we minimize the
distances of original vectors and reconstructed vectors, i.e.,
‖xi − x′i‖22 for input vector xi. Given all motifs denoted by
{M} in a network, the loss function is Equation 5, where ‖ ‖2
denotes the Euclidean norm.

`2nd =
∑

M∈{M}

∑
i∈M
‖xi − x′i‖22 (5)

Due to the high sparsity in a lot of networks, a large number
of elements in x are zero, so that autoencoders are prone to
reconstruct these elements with value zero [8]. To address this
problem, we add a penalty vector zi for input vector xi in
Equation 5. If xji > 0, zji = β (β > 1), else zji = 1. Through
Equation 6 that gives more weight to non-zero elements than
zero elements, autoencoders are prone to reconstruct non-zero
elements of input vector x.

`2nd =
∑

M∈{M}

∑
i∈M
‖(xi − x′i)� zi‖22 (6)

In the above equation, � denotes the Hadamard product which
represents element-wise multiplications for matrices.

C. Preserving First-order Proximity

Besides the second-order proximity, we need to capture the
intra-motif similarities, i.e., the first-order proximity between
vertices. Given a motif consisting of vi, vj , and vk, we can
obtain vector representations yi, yj , and yk by autoencoders.
Because of the existence of the first-order proximity between
any two vertices in vi, vj , and vk, we need to minimize
the Euclidean distances of vector representations of any two
vertices. The equation is:

` = ‖yi − yj‖22 + ‖yi − yk‖22 + ‖yj − yk‖22 (7)

Through the above equation, vector representations of all
vertices residing in the same motif are close to each other. Note
that for three-node motifs, there are three Euclidean distances
in Equation 7. If we consider four-node motifs, there will be
six Euclidean distances. Given all motifs denoted by {M} in
a network, the loss function is Equation 8.

`1st =
∑

M∈{M}

∑
i,j∈M,i6=j

‖yi − yj‖22 (8)

From the above equation, we can find that the more the
number of motifs both vi and vj reside in is, the closer yi and
yj are.

D. Negative Sampling

In Section 4.3, we only strengthen intra-motif relationships.
As a result, the algorithm may converge to the solution that
all motif-wise relationships are similar and cannot distinguish
a motif from other motifs, which harms experimental per-
formance. In the study of [31], an effective approach called
negative sampling is proposed. The main idea of this approach
is to distinguish right from noises. Inspired by this approach,
we hope to distinguish what vertices can compose a motif from
a noise. The noise can be sampled randomly or based on the
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number of motifs each vertex resides in. The distinguishing
process can be formulated as follows:

`dis = max(λ+
∑

i,j∈M,i6=j

‖yi − yj‖22 − µ
∑
i∈M

‖yi − yl‖22, 0) (9)

where we denote a noise by vl. A balance factor µ is added in
Equation 9, since the number of Euclidean distances in the first
integral sum may be greater than that in the second integral
sum. For three-node motifs, µ is one while it is 3/2 for four-
node motifs. λ is a slack parameter that represents the margin
by which the second sum should exceed the first sum.

Combined with Equation 9, the Equation 8 is transformed
to Equation 10:

`1st =
∑

M∈{M}

`dis (10)

E. Optimization

From Section 4.2 and 4.3, we obtain two loss functions
to preserve the first-order proximity and the second-order
proximity respectively. Meanwhile, to prevent overfitting, a
loss function of the regularization on weights of autoencoders
needs to be added [8]. The loss function is Equation 11:

`reg =

K∑
k=1

(‖Wk‖2F + ‖W ′k‖2F ) (11)

where ‖ ‖F denotes the Frobenius norm.
Combining Equation 5, 10 and 11, we can obtain a joint

loss function as follows:

`loss = `2nd + α`1st + γ`reg (12)

where α and γ are the weights of the first-order proximity and
the regularization respectively.

To minimize Equation 12 and make the algorithm converge
fast, we use Adam algorithm [51] and back-propagation [52]
to optimize our model. We summarize the process of our
approach in Algorithm 1.

In Algorithm 1, we first need to look for all motifs {M}
with type M and then obtain neighbors for each vertex accord-
ing to Section III. At step 3, to prevent the model suffering
from local optimality, we use DBN [53] to pre-train parameters
θ at first.

F. Complexity Analysis

When looking for all motifs, we resort to FANMOD [28]
which is easy to implement and can quickly enumerate all
motifs.

In the process of training our model, the data used is a small
batch of motifs. Therefore, the time complexity is O(c∆dTK)
where c is the order of a motif. Since only the three-node and
four-node motifs are considered, c is either 3 or 4. T is the
maximal iteration number, and is set as 200 in all experiments.
d is the dimension of vector representations, and K is the
number of layers in encoders or decoders. At last, it is easy
to find that the time complexity is linear to the number of
motifs. During experiments, only a small portion of all motifs
in a network is needed, which avoids the problem that some
networks contain tens of thousands of motifs.

Algorithm 1: MODEL
Input: a network G = (V,E), motif type M, parameters α, γ,
β, λ, batch size ∆, learning rate δ
output: vector representations y of all vertices
1: Look for all motifs {M} with type M in G
2: Obtain redefined neighbors for each vertex in G
3: Initiate parameters θ = {Wk, Bk,W

′
k, B

′
k}

K
k=1

4: Repeat:
5: Randomly select a subset {M}∆ with size ∆ from {M}
6: Calculate `loss according to Equation 12
7: Update parameters θ by back-propagation and

Adam with the learning rate δ
8: Until convergence

V. EXPERIMENTS AND ANALYSIS

A. Datasets

In this paper, we select six networks with three distinct types
to comprehensively evaluate the effectiveness of our proposed
algorithm. The six networks are introduced as follows.

Youtube [54] and LiveJournal [54] are social networks
where vertices denote users and each edge indicates the
friendship between corresponding two vertices. In the two
networks, we randomly select 5,346 vertices in Youtube and
2,456 vertices in LiveJournal as our experimental datasets and
ensure that there are not isolated vertices in the two datasets.

Bio-sc-cc [55] and Bio-sc-ht [55] are biological networks
where vertices denote genes and each edge indicates the
interaction between corresponding two genes. Bio-sc-cc has
2,223 vertices and 34,879 edges, and Bio-sc-ht has 2,084
vertices and 63,027 edges.

DBLP [54] and Ca-GrQc [56] are academic networks where
vertices denote scholars and each edge indicates the collabo-
ration between the corresponding two scholars. We randomly
select 4,424 vertices from the original DBLP network as our
experimental dataset and ensure that there are not isolated
vertices in the dataset. Ca-GrQc has 4,158 vertices and 13,422
edges.

Some detailed statistics about the six network datasets are
summarized in Table II.

TABLE II: Statistics of the six datasets

datasets |V | |E| Avg. Degree Network Type

Youtube 5,246 24,121 9.02 Social
LiveJournal 2,456 188,490 153.49 Social
Bio-sc-cc 2,236 34,879 31.2 Biological
Bio-sc-ht 2,084 63,027 60.49 Biological

DBLP 4,424 12,169 5.5 Academic
Ca-GrQc 4,158 13,422 6.46 Academic

B. Baseline Algorithms

Although there are a large number of algorithms on network
embedding, only small of them illuminate their effectiveness
for link prediction. In this paper, we use the following algo-
rithms as baselines, including three traditional methods that
can achieve good performance in link prediction [6].

DeepWalk [29]: It randomly samples many vertex sequences
via random walk and generates vector representations of
vertices using Skip-Gram on these vertex sequences.
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Node2vec [7]: It can be seen as the extended DeepWalk
and randomly samples vertex sequences via 2nd order random
walk with two parameters p and q.

SDNE [8]: It employs an autoencoder as a deep model to
generate vector representations of vertices. The autoencoder
inputs the adjacent vector of each vertex and adds the first-
order proximity as supervised information.

HONE [9]: It considers all types of motifs from two-
node to four-node, and generates a local k-step embedding
for each motif. At last, it concatenates all local embeddings
for all motifs in k steps, and obtains low-dimensional vector
representations via matrix factorization.

SCAT [39]: It uses a Gaussianized graph scattering trans-
form as an encoder and a fully connected network as a decoder.
The decoder is adapted to link prediction.

RGCN [40]: It produces latent feature representations by an
encoder and predicts label edges by a decoder that is a tensor
factorization model exploiting these representations.

Traditional methods [6]: Common Neighbors (CN) defines
the similarity of vertex i and j as |N(i)

⋂
N(j)|. Jaccard’s

Coefficient (JC) defines them as |N(i)
⋂
N(j)|

|N(i)
⋃
N(j)| . And Adamic-

Adar (AA) Score defines them as
∑
t∈N(i)

⋂
N(j)

1
log |N(t)| .

C. Evaluation Metrics

For link prediction, precisionK, AUC, and Avg. Rank are
three widely used evaluation metrics [6]. In our experiments,
we use these metrics to evaluate the performance of our
proposed algorithm and other algorithms. The detailed intro-
duction about the three metrics is as follows: Let D+ denote
the set of positive examples, D− denote the set of negative
examples, and P (e)(e ∈ D+∪D−, D+∩D− = ∅) denote the
probability that e ∈ D+. Based on P , a decreasing ordered
list, denoted by RANK, can be obtained. RANK(e), from 1
to |D+| + |D−|, represents the rank of e. We hope elements
in D+ can be ranked in front of these elements in D−.

PrecisionK is the proportion of elements from D+ in the
top-K elements. It is calculated as follows:

PrecisionK=
|{e|RANK(e) 6 K, e ∈ D+}|

K
(13)

AUC is related to the ranking quality of all examples. It is
calculated as follows:

AUC = 1− 1

|D+||D−|
∑

e+∈D+

∑
e−∈D−

(†(RANK(e+) <

RANK(e−)) + 0.5 † (RANK(e+) = RANK(e−))) (14)

where †(x) is 1 if x is true, else it equals to 0. From the
equation 14, we can know that AUC always exceeds 0.5 or
equals to 0.5.

Avg. Rank is the average rank of elements in D+. It is
calculated as follows:

Avg.Rank =

∑
e∈D+ RANK(e)

|D+|
(15)

D. Experimental Settings

Before doing experiments, we first randomly hide some
edges truly existing in original networks as D+ and ensure
that the degree of each vertex is greater than zero. In the
meantime, we randomly select some edges not existing as D−

and ensure that |D+| = |D−|. During the process of training,
hidden edges are not used. For sparse networks, 20% edges
are hidden in DBLP and 30% edges are hidden in Youtube
and Ca-GrQc. For dense networks, 60% edges are hidden in
Bio-sc-cc, 80% edges are hidden in Bio-sc-ht and 90% edges
are hidden in LiveJournal. In experiments, we need to predict
which edges are from D+ in D+ ∪D−.

We compare our proposed algorithm with those baseline
algorithms introduced in Section 5.2. For embedding based
algorithms, we set all embedding dimension to 128. For
DeepWalk and Node2vec, we set walks per node r=10, walk
length l=80, and context size k=10. The optimal p and q are
selected from {0.25, 0.5, 1, 2, 4} for Node2vec. For HONE,
we also consider all motifs with 2-4 vertices and select step K
from {1, 2, 3, 4}. According to [8] and [39], we use two-layers
encoders for SDNE and SCAT. The dimensions of hidden
layers are set to 1000 and 512, respectively. For RGCN, we
use two-layers graph convolutional networks with 512 and 128
hidden units, and regard existent and nonexistent edges as two
types of edges. In the studies [9] and [39], there are four
variants of HONE and two variants of SCAT. In experiments,
we only show the best performance in these variants for the
comparison.

For our proposed algorithm, different types of motif have
different performance. We conduct experiments over all motif
types from M31 to M46 and show the best performance in
them. In section 5.6, we show the influence of motif types on
experiments. We select a negative vertex based on the number
of motifs it resides in. The hyper-parameters α, β, λ and γ
are set 20, 30, 30 and 0.0001 respectively. The learning rate is
set 0.001 and the size of a batch is set 500. All encoders are
single-layer neural networks. We select tanh as the activation
function, because we hope that the final vector representations
contain both positive and negative values. All experiments run
10 times and these results are averaged.

After obtaining the vector representation of each vertex,
the cosine value of vectors of two vertices represents the
similarity of them. A good algorithm for link prediction can
rank elements in D+ in front of elements in D− based on the
similarity.

E. Experimental Results

In this section, we use AUC and precisionK to compare
our proposed algorithm with nine baseline algorithms over six
networks. The experimental results for AUC and precisionK
are shown in Table III and Fig. 4, respectively. In Table III,
the best performance is highlighted in bold.

Table III shows that our algorithm, MODEL, outperforms
other related algorithms in most cases. Furthermore, the su-
periority of MODEL for percisionK is shown in Fig. 4. On
the two social networks Youtube and LiveJournal, MODEL
outperforms these embedding-based algorithms which do not
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TABLE III: Comparisons of ten algorithms on AUC

Algorithm Youtube LiveJournal Bio-sc-cc Bio-sc-ht DBLP Ca-GrQc

MODEL 0.843 0.919 0.793 0.841 0.944 0.820
DeepWalk 0.684 0.724 0.677 0.746 0.901 0.761
Node2vec 0.699 0.736 0.685 0.747 0.922 0.781

SDNE 0.662 0.747 0.692 0.717 0.913 0.807
HONE 0.624 0.535 0.709 0.609 0.937 0.841
SCAT 0.812 0.930 0.718 0.826 0.931 0.815
RGCN 0.808 0.848 0.721 0.786 0.883 0.805

Common Neighbors (CN) 0.631 0.818 0.711 0.679 0.881 0.732
Jaccard’s Coefficient (JC) 0.624 0.816 0.702 0.678 0.883 0.733

Adamic-Adar (AA) 0.637 0.819 0.715 0.68 0.884 0.725

TABLE IV: Influences of motif types on AUC

Motif type Youtube LiveJournal Bio-sc-cc Bio-sc-ht DBLP Ca-GrQc

M31 0.826 0.911 0.781 0.840 0.937 0.813
M32 0.832 0.895 0.786 0.819 0.913 0.793

M41 0.838 0.912 0.786 0.841 0.833 0.819
M42 0.819 0.919 0.777 0.841 0.942 0.820
M43 0.843 0.902 0.793 0.832 0.931 0.802
M44 0.833 0.913 0.787 0.840 0.944 0.807
M45 0.839 0.899 0.787 0.824 0.909 0.781
M46 0.824 0.891 0.755 0.821 0.899 0.787

TABLE V: Average number of motifs each vertex resides in

Motif type Youtube LiveJournal Bio-sc-cc Bio-sc-ht DBLP Ca-GrQc

M31 198.23 357.78 323.545 403.01 29.58 36.56
M32 11.83 45.78 50.12 82.33 13.15 22.14

M41 6733.23 18058.09 15118.55 28366.22 519.67 1073.97
M42 55,003.23 25,824.65 43,435.38 50,762.38 946.32 1,550.54
M43 101.78 665.07 359.82 738.77 34.97 66.08
M44 4,768.39 9,777.80 13,718.34 29,609.21 1,063.26 3,002.26
M45 39.11 155.38 179.61 308.36 43.99 82.43
M46 14.81 16.64 163.02 204.42 47.13 174.10

consider motifs by up to 18.1% and 19.5% for AUC, respec-
tively. Moreover, as K increases, MODEL consistently exceeds
these algorithms to a large percentage for percisionK. On the
two social networks, though considering motifs, HONE has
the worst performance in the eight algorithms, particularly
on LiveJournal. From Fig. 4, we can see that when K is
relatively small, HONE has a good performance, particularly
on Youtube. With K increasing, the precisionK of HONE
drastically drops. On the two biological networks Bio-sc-cc
and Bio-sc-ht, MODEL obtains a maximal gain of 11.6%
and 12.4% over these embedding-based algorithms which
do not consider motifs, respectively. Besides, MODEL still
consistently outperforms the three algorithms for precisionK,
which is evidenced by (b) and (c) in Fig. 4. We also notice that
HONE outperforms DeepWalk, Node2vec and SDNE, but is
inferior to MODEL. In the two academic networks DBLP and
Ca-GrQc, the maximal gain over embedding-based algorithms
is 6.1% and 5.9% respectively, which is lower than that of
social networks and biological networks. On the two networks,
MODEL is not that superior to HONE.

Table III and Fig. 4 also show that embedding-based al-
gorithms are comparable to traditional similarity-algorithms
for link prediction. Traditional algorithms achieve better
performance on LiveJournal and Bio-sc-cc, compared with

embedding-based algorithms. It is worth noting that MODEL
outperforms the three traditional algorithms over the six net-
works.

One noticeable finding is that traditional algorithms outper-
form embedding-based algorithms when K is not very big.
Traditional algorithms measure the similarity between two
vertices by their neighbors. According to homophily [57],
the similarity from neighbors greatly reflects whether two
vertices are potentially connected or not. As a result, tradi-
tional algorithms give two vertices that share some common
neighbors a high similarity score, whereby they can predict
accurately some links. However, when vertices share few or
no common neighbors, traditional algorithms cannot work.
For example, common neighbors give two vertices that are
connected but have no common neighbors a similarity score of
zero. Thus, traditional algorithms only can predict a portion of
links, which explains the phenomenon that their performance
abruptly becomes poor when K exceeds a threshold. Examples
include Youtube, where their PrecisionKs drop drastically
when K is over 4000. Embedding-based algorithms use overall
network structure, keeping better balance between vertices
that have some and others that have no common neighbors.
Although embedding-based algorithms may not give a higher
score to two vertices that have more common neighbors, they
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(a) Youtube (b) LiveJournal (c) Bio-sc-cc

(d) Bio-sc-ht (e) DBLP (f) Ca-GrQc

Fig. 4: Comparisons of ten algorithms on PrecisionK.

give a reasonable score to two vertices that have no common
neighbors. Thus, Embedding-based algorithms outperform tra-
ditional algorithms in most cases when K is the maximum
value.

F. Influence of Motif Types
In the above section, we show the superiority of our pro-

posed algorithm. In this section, we investigate the influence
of motif types on the six networks. The experimental results
for AUC are shown in Table IV and the best performance is
highlighted in bold.

Table IV shows that the most appropriate motif type is
one among M42, M43, and M44. For the six networks, M32,
M45, and M46 always achieve bad performance. The reasons
may be as follows: 1) From Fig. 1, we notice that M32,
M45, and M46 are close-knit cliques, and even there is not
another edge in M32 and M46. As a result, leveraging them
cannot better capture missing edges than leveraging sparser
cliques. 2) The average number of motifs that each vertex
resides in can be related to experimental results. To validate
the assumption 2, we conduct an experiment to investigate the
average number of motifs each vertex resides in. The result is
shown in Table V. From Table V, we can see that the three
smallest number is M32, M45, and M46 in social networks
and biological networks. In academic networks, the number
of these three motif types is more than M43, but less than
M42 and M44. From the above two findings, we can conclude
that the influence of motifs on experiment is related to their
sparsity and number.

From the above experiments, we know that the number
and sparsity of a motif type have an impact on performance.
Therefore, we can use a small number of vertices to estimate
the number of a sparse motif, such as M42, thereby finding
the most appropriate motif type.

G. Weak Ties

For link prediction, a serious problem is how to effectively
predict potential weak ties as their two endpoints share a
small number of common neighbors. However, the problem is
always ignored by existing algorithms. Defining the strength
of an edge is beyond the scope of this study, but we can use
the number of common neighbors to define the strength of an
edge according to [19].

To evaluate the effectiveness in predicting potential weak
ties, we first select all hidden edges whose two endpoints share
a few common neighbors as positive examples. In this paper,
a hidden egde is selected if the number of neighbors shared
by its two endpoints is less than three. The new test examples
consist of the selected positive examples and all negative ex-
amples used for experiments in Section Experimental Results.
We sort the scores of elements in the new test examples by
decreasing, and report the average rank of selected positive
examples. A smaller average rank implies a better prediction
of weak ties. We show the results in Fig. 5.

From Fig. 5, we can see that when the number of com-
mon neighbors is zero, embedding-based algorithms achieve
the best performance, and three traditional similarity-based
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(a) Youtube (b) LiveJournal (c) Bio-sc-cc

(d) Bio-sc-ht (e) DBLP (f) Ca-GrQc

Fig. 5: Avg. Rank of potential weak ties.

algorithms, Common Neighbors (CN), Jaccard’s Coefficient
(JC) and Adamic-Adar (AA), achieve always the worst per-
formance. Moveover, MODEL always ranks at the top and
achieve the best performance in Bio-sc-ht, DBLP and Ca-
GrQc. However, when the number is one or two, traditional
algorithms all achieve the best performance. Even so, MODEL
still achieves great performance, no big gap compared to
traditional algorithms. The above phenomenon may be due to
that traditional algorithms only focus on direct neighbors to
derive the similarity of two vertices. Thus, when the number of
common neighbors is zero, the derived similarity of potentially
connected vertices is zero, which is the same as the similarity
of most unconnected vertices. MODEL addresses the problem
of no common neighbors by redefining vertices’ neighbors,
thus it significantly outperforms traditional algorithms when
no common neighbors exist. If two vertices have common
neighbors, the number of common neighbors can be a good
indicator for predicting edges. Fig. 5 also shows that MODEL
outperforms embedding-based algorithms regardless of the
number of common neighbors.

H. Parameter Sensitivity

In this section, we investigate the parameter sensitivities
of α and the number of dimensions, and report how the
two hyper-parameters affect experimental results. we select a
network Youtube and motif type M43 to conduct experiments.
The experimental results are shown in Fig. 6.

The number of embedding dimensions: In experiments,
it is necessary to choose an appropriate number of embedding

dimensions. A vector space with higher dimensions is more
capable of encoding more useful information in original net-
works. However, it is more difficult to train models to learn
higher-dimensional vector representations since time complex-
ity is higher. In this experiment, we choose five different
number of dimensions (16, 32, 64, 128, 256). From Fig. 6a,
we can see that the value of AUC increases rapidly as the
dimension goes from 16 to 128. However, when the dimension
increase from 128 to 256, the value increases gently, and is
insensitive to the change of dimension. Overall, we can achieve
a good performance in a low-dimensional space.

Balance between the first-order proximity and the
second-order proximity: In the proposed algorithm, α is used
to control the balance between the first-order proximity and
the second-order proximity. From Fig. 6b, we can see that
the performance of α > 0 is better than that of α = 0.
This is due to the reason that we only preserve the second-
order proximity when α = 0. With α increasing, the weight
of the first-order proximity becomes large gradually, and the
performance becomes better. We also see that the performance
declines slightly and keeps stable at last when α > 20, which
demonstrates that we must make a trade-off between the two
proximities.

I. Time Complexity

To compare the time complexity of baselines, we run
experiments of the running time on a large network Youtube
and a small network Bio-sc-cc. Note that we compare the
running time over baselines that need to train corresponding
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(a) #dimension

(b) α

Fig. 6: Sensitivity w.r.t. dimension and α

models. Traditional algorithms are omitted here because they
directly use the network structure and need no time to train a
model. The results are shown in Fig. 7.

From Fig. 7, it can be seen that MODEL has less running
time, compared with these baselines. In Bio-sc-cc, the running
time of MODEL is only more than that of SCAT, and the time
of MODEL is lowest in larger network Youtube. These results
suggest that MODEL achieve satisfactory performance in time
complexity. We can notice that the running time of HONE
is highest in the two networks. Furthermore, in Youtube it
significantly exceeds the running time of SDNE, the second
most time. This reason is that HONE has a great number
of matrix computations and uses all two-node and four-node
motifs.

VI. CONCLUSION

We proposed a motif-based algorithm to learn node embed-
ding for link prediction. The algorithm uses motifs, through
defining two levels of proximity in autoencoders, to capture the
higher-order structure and alleviate the problem of predicting
weak ties. Experiments on six real-world networks, covering

(a) Bio-sc-cc

(b) Youtube

Fig. 7: The running time of seven algorithms

social, biological and academic networks, demonstrate that
the proposed algorithm significantly outperforms the state-of-
the-art baseline algorithms. The maximal gain on AUC over
embedding-based algorithms can be up to 19%, and up to 20%
over traditional similarity-based algorithms. In addition, we
have also investigated the influence of motif types on the link
prediction performance, which hasn’t studied before. From the
experimental results, we obtained insights on how to select the
most appropriate motif type for a specific task in networks.

In the future, we will consider sampling importance motifs
so as to apply this method to large networks.
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J. Kertész, and A.-L. Barabási, “Structure and tie strengths in mobile
communication networks,” Proceedings of the national academy of
sciences, vol. 104, no. 18, pp. 7332–7336, 2007.

[20] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “On facebook, most
ties are weak,” Communications of the ACM, vol. 57, no. 11, pp. 78–84,
2014.

[21] L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed social network
embedding,” IEEE Transactions on Knowledge and Data Engineering,
vol. 30, no. 12, pp. 2257–2270, 2018.

[22] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2015, pp. 1067–1077.

[23] U. Alon, “Network motifs: theory and experimental approaches,” Nature
Reviews Genetics, vol. 8, no. 6, p. 450, 2007.

[24] W. N. Grundy, T. L. Bailey, C. P. Elkan, and M. E. Baker, “Meta-meme:
motif-based hidden markov models of protein families,” Bioinformatics,
vol. 13, no. 4, pp. 397–406, 1997.

[25] F. Xia, H. Wei, S. Yu, D. Zhang, and B. Xu, “A survey of measures for
network motifs,” IEEE Access, vol. 7, pp. 106 576–106 587, 2019.

[26] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex networks,”
Science, vol. 298, no. 5594, pp. 824–827, 2002.

[27] S. Wernicke, “A faster algorithm for detecting network motifs,” in
International Workshop on Algorithms in Bioinformatics. Springer,
2005, pp. 165–177.

[28] S. Wernicke and F. Rasche, “Fanmod: a tool for fast network motif
detection,” Bioinformatics, vol. 22, no. 9, pp. 1152–1153, 2006.

[29] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[30] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in International Conference on
Learning Representations (ICLR), 2013.

[31] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[32] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with
global structural information,” in Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management.
ACM, 2015, pp. 891–900.

[33] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix
factorization,” in Advances in neural information processing systems,
2014, pp. 2177–2185.

[34] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec: Learning
node representations from structural identity,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2017, pp. 385–394.

[35] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Deep inductive network
representation learning,” in Companion of the The Web Conference
2018 on The Web Conference 2018. International World Wide Web
Conferences Steering Committee, 2018, pp. 953–960.

[36] Z. Wang, C. Chen, and W. Li, “Predictive network representation
learning for link prediction,” in Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 2017, pp. 969–972.

[37] C. Tu, X. Zeng, H. Wang, Z. Zhang, Z. Liu, M. Sun, B. Zhang, and
L. Lin, “A unified framework for community detection and network
representation learning,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 6, pp. 1051–1065, 2018.

[38] L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed social network
embedding,” IEEE Transactions on Knowledge and Data Engineering,
vol. 30, no. 12, pp. 2257–2270, 2018.

[39] D. Zou and G. Lerman, “Encoding robust representation for graph
generation.” in International Joint Conference on Neural Networks
(IJCNN), 2019.

[40] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in 15th International Conference on Extended Semantic Web
Conference, ESWC 2018, 2018, pp. 593–607.

[41] J. Chen, J. Zhang, X. Xu, C. Fu, D. Zhang, Q. Zhang, and Q. Xuan,
“E-lstm-d: A deep learning framework for dynamic network link predic-
tion,” IEEE Transactions on Systems, Man, and Cybernetics, pp. 1–14,
2019.

[42] Q. Xuan, J. Wang, M. Zhao, J. Yuan, C. Fu, Z. Ruan, and G. Chen,
“Subgraph networks with application to structural feature space expan-
sion.” arXiv preprint arXiv:1903.09022, 2019.

[43] C. Fu, M. Zhao, L. Fan, X. Chen, J. Chen, Z. Wu, Y. Xia, and Q. Xuan,
“Link weight prediction using supervised learning methods and its
application to yelp layered network,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 8, pp. 1507–1518, 2018.

[44] Y. Yu, Z. Lu, J. Liu, G. Zhao, and J. rong Wen, “Rum: Network
representation learning using motifs,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE), 2019, pp. 1382–1393.

[45] M. R. Dareddy, M. Das, and H. Yang, “motif2vec: Motif aware node
representation learning for heterogeneous networks.” arXiv preprint
arXiv:1908.08227, 2019.

[46] G. AbuOda, G. D. F. Morales, and A. Aboulnaga, “Link prediction via
higher-order motif features.” arXiv preprint arXiv:1902.06679, 2019.

[47] E. Wong, B. Baur, S. Quader, and C.-H. Huang, “Biological network
motif detection: principles and practice,” Briefings in bioinformatics,
vol. 13, no. 2, pp. 202–215, 2011.

[48] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[49] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[50] Z. Wang, Y. Zhang, H. Chen, Z. Li, and F. Xia, “Deep user modeling for
content-based event recommendation in event-based social networks,” in
IEEE Conference on Computer Communications (INFOCOM). IEEE,
2018, pp. 1304–1312.

https://epubs.siam.org/doi/abs/10.1137/1.9781611975321.35
https://epubs.siam.org/doi/abs/10.1137/1.9781611975321.35


14 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 0, NO. 0, AUGUST 2019

[51] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015.

[52] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[53] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[54] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42,
no. 1, pp. 181–213, 2015.

[55] R. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

[56] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM Transactions on Knowledge
Discovery from Data, vol. 1, no. 1, p. 2, 2007.

[57] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Review of Sociology, vol. 27, no. 1, pp.
415–444, 2001.

Lei Wang received the BSc degree in software
engineering from Dalian University of Technology,
China, in 2018. He is currently working toward the
master’s degree in the School of Software, Dalian
University of Technology, China. His research in-
terests include data mining, analysis of complex
networks, and machine learning.

Jing Ren received the BSc degree in software engi-
neering from Huaqiao University, Xiamen, China.
She is currently pursuing the master’s degree in
software engineering in Dalian University of Tech-
nology, China. Her research interests include big
scholarly data, network science, and computational
social science.

Bo Xu received the BSc and PhD degrees from the
Dalian University of Technology, China, in 2007 and
2014, respectively. She is currently an Associate Pro-
fessor in School of Software at the Dalian University
of Technology. Her current research interests include
data science, network analysis and natural language
processing.

Jianxin Li received the PhD degree in computer
science from the Swinburne University of Technol-
ogy, Australia, in 2009. He is an Associate Professor
in the School of Info Technology, Deakin Univer-
sity. His research interests include database query
processing & optimization, social network analytics,
and traffic network data processing.

Wei Luo is a Senior Lecturer in Data Science at
Deakin University. Wei’s recent research focuses
on machine learning and its application in health,
sports, and cybersecurity. Wei has tackled a number
of key information challenges in healthcare delivery
and has published more than 50 papers in peer-
reviewed journals and conferences. Wei holds a PhD
in computer science from Simon Fraser University,
where he received training in statistics, machine
learning, computational logic, and modern software
development.

Feng Xia Feng Xia (M’07-SM’12) received the
BSc and PhD degrees from Zhejiang University,
Hangzhou, China. He is currently an Associate Pro-
fessor and Discipline Leader in School of Science,
Engineering and Information Technology, Federation
University Australia, and on leave from School of
Software, Dalian University of Technology, China,
where he is a Full Professor. Dr. Xia has published 2
books and over 300 scientific papers in international
journals and conferences. His research interests in-
clude data science, knowledge management, social

computing, and systems engineering. He is a Senior Member of IEEE and
ACM.


	MODEL Motif-Based Deep Feature copyright
	FedUni ResearchOnline
	https://researchonline.federation.edu.au


	MODEL  motif-based deep feature learning for link prediction
	Introduction
	Related Work
	Motif
	Network Embedding
	Pair-wise Connectivity
	Higher-order Structure

	Link Prediction
	Tradititonal Similarity-based Algorithms
	Embedding-based Algorithms

	Similar Work

	Preliminaries
	Graph and Motif
	First-order Proximity and Second-order Proximity
	Autoencoder
	Problem Definition

	Design of MODEL
	Framework
	Preserving Second-order Proximity
	Preserving First-order Proximity
	Negative Sampling
	Optimization
	Complexity Analysis

	Experiments and Analysis
	Datasets
	Baseline Algorithms
	Evaluation Metrics
	Experimental Settings
	Experimental Results
	Influence of Motif Types
	Weak Ties
	Parameter Sensitivity
	Time Complexity

	Conclusion
	References
	Biographies
	Lei Wang
	Jing Ren
	Bo Xu
	Jianxin Li
	Wei Luo
	Feng Xia



