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PAAL: A Framework based on Authentication,
Aggregation and Local Differential Privacy for

Internet of Multimedia Things
Muhammad Usman, Member, IEEE, Mian Ahmad Jan∗, Member, IEEE, and Deepak Puthal, Member, IEEE

Abstract—Internet of Multimedia Things (IoMT) applications
generate huge volumes of multimedia data that are uploaded to
cloud servers for storage and processing. During the uploading
process, the IoMT applications face three major challenges, i.e.,
node management, privacy-preserving, and network protection.
In this paper, we propose a multi-layer framework (PAAL)
based on a multi-level edge computing architecture to manage
end and edge devices, preserve the privacy of end-devices and
data, and protect the underlying network from external attacks.
The proposed framework has three layers. In the first layer,
the underlying network is partitioned into multiple clusters to
manage end-devices and Level-One Edge Devices (LOEDs). In the
second layer, the LOEDs apply an efficient aggregation technique
to reduce the volumes of generated data and preserve the privacy
of end-devices. The privacy of sensitive information in aggregated
data is protected through a local differential privacy-based
technique. In the last layer, the mobile sinks are registered with
a level-two edge device via a handshaking mechanism to protect
the underlying network from external threats. Experimental
results show that the proposed framework performs better as
compared to existing frameworks in terms of managing the nodes,
preserving the privacy of end-devices and sensitive information,
and protecting the underlying network.

Index Terms—IoMT, multimedia, multi-level edge computing,
aggregation, privacy.

I. INTRODUCTION

INTERNET of Multimedia Things (IoMT) applications,
e.g., healthcare, transportation management, and surveil-

lance, generate big multimedia data that are processed using
cloud computing platforms [1]. The cloud computing plat-
forms offer computing resources but they cannot deal with
end-user side issues. For example, redundancy in the generated
data requires sufficient amount of bandwidth from sources to
destinations. The processing and storing of redundant data
misuse the computing and storage resources on cloud com-
puting platforms. To deal with these challenges, a Multi-Level
Edge Computing (MLEC) architecture can be utilized [2]. In
this architecture, computationally complex tasks are offloaded
to edge devices on different levels to minimize the cost of
renting and managing computing and storage resources on
cloud computing platforms.
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Data generated by IoMT applications need to be processed
and transmitted with minimum latency which can be controlled
by minimizing the redundancy in the generated data. Further-
more, the privacy of data sources also needs to be protected.
In the MLEC architecture, cluster-based communication can
help in managing edge and end devices, and operates in two
phases, i.e., setup and steady-state phases. During the setup
phase, Level-One Edge Devices (LOEDs) are elected, clusters
are formed, and Time Division Multiple Access (TDMA) slots
are allocated to end-devices. During the steady-state phase,
end-devices forward data to a Level-Two Edge Device (LTED)
via their corresponding LOEDs. The LOEDs and LTED use
different techniques to minimize the redundancy and preserve
the privacy of end-devices [3]. These techniques are efficient,
however, the LOEDs and LTED may not be powerful enough
to execute complex techniques. Therefore, there is a need for
a lightweight technique to minimize the redundancy in the
generated data and preserve the privacy of data sources.

Data generated by IoMT applications may contain sensitive
information that need to be protected in end-to-end com-
munication. Although privacy-preserving techniques help in
protecting the privacy of data sources by hiding their identities,
they cannot hide visual information present in multimedia data.
To protect the privacy of data during transmission, the concept
of Local Differential Privacy (LDP) was proposed [4]. This
concept is based on the concept of differential privacy, i.e.,
adding some noise to the data to protect the privacy. However,
it cannot directly be applied to multimedia data. Therefore,
there is a need for an LDP-based technique that can add noise
to multimedia data. Furthermore, it needs to allow users to
adjust the privacy parameters and control the amount of noise.

In the MLEC architecture, it is possible that the Inter-
net connectivity between the LTED and cloud servers may
temporarily be down due to some technical faults and the
LTED may not be able to forward data to the cloud servers.
Moreover, the LTED is usually dealing with hundreds of
LOEDs, and may not have enough storage space to hold the
data for a longer duration. In this situation, mobile sinks can
be used to collect data from LOEDs and forward to the cloud
servers. However, the credibility of mobile sinks becomes a
challenging task [5]. To deal with this challenge, there is a
need for a technique to register mobile sinks with the LTED in
an offline mode to stop intruders from infiltrating the network
and compromising the performance of IoMT applications.

In this paper, we propose a multi-layer framework to provide
Privacy protection using Authentication, Aggregation and LDP
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(PAAL) for IoMT applications. The proposed framework is
based on the MLEC architecture. In this framework, edge
devices are used to manage end-devices and provide security
and privacy services. The main contributions of this work are
summarized below.

• To the best of our knowledge, this is the first framework
that provides security and privacy services. The security
is provided through a handshaking mechanism while the
privacy is achieved through a combination of aggregation
and LDP-based techniques.

• An efficient and lightweight four-way handshaking mech-
anism is used to select LOEDs in the underlying net-
work. A new set of LOEDs is formed in each round
of simulation, based on their energy levels. A similar
handshaking mechanism is used to register mobile sinks
with the LTED. After the registration is completed, the
mobile sinks are allowed to collect data from LOEDs.

• A lightweight aggregation technique based on frame
matching is proposed to reduce the size of multimedia
data. It also helps in protecting the privacy of end-
devices by hiding their identities and location coordinates
information. The privacy of visual contents is protected
through an efficient LDP-based technique. This technique
preserves the privacy by dynamically adding the noise
to the aggregated data, based on the computed privacy
budget.

The rest of this paper is structured as follows. An overview
of recent literature is provided in Section II. The proposed
framework is explained in Section III. Experimental setup and
simulation results are discussed in Section IV. Finally, the
paper is concluded in Section V.

II. LITERATURE REVIEW

In this section, we provide an overview of recent efforts
made in the edge computing, data aggregation, and differential
privacy domains.

A. Edge Computing

A survey on mobile edge computing was presented in [6].
This survey highlights and discusses various research chal-
lenges for delay-sensitive applications operating in the edge
computing environment. However, a discussion on multimedia
data management and processing is missing in this survey.
An edge computing framework for multimedia processing
was proposed in [7]. This framework is basically designed
to support cooperative processing of video data in the Internet
of things architecture. A quality of experience driven frame-
work for mobile edge computing was proposed in [8]. This
framework is designed to support dynamic and adaptive video
streaming to minimize the cost of downloading from edge
devices. Similarly, a caching framework for edge computing
architecture was proposed in [9]. This framework is designed
to support video streaming demands of mobile users. The
frameworks presented in [7]–[9] support the processing of
video streams in the edge computing environments. However,
these frameworks lack support for real-time processing of
video data.

B. Data Aggregation

A multi-functional aggregation scheme for Wireless Sensor
Networks (WSNs) was proposed in [10]. This scheme uses
homomorphic encryption to secure data in end-to-end com-
munication. An aggregation scheme based on access control
and node authentication for WSNs was proposed in [11]. This
scheme targets sinkhole and Sybil attacks during end-to-end
communication. A compressive aggregation scheme for WSNs
was proposed in [12]. This scheme is based on compressed
sensing and helps in reducing the energy consumption during
the aggregation process. An LOEDs-based aggregation algo-
rithm to efficiently utilize the available bandwidth in WSNs
was proposed in [13]. This algorithm uses mobile sinks to per-
form the aggregation task and supports intra and inter-cluster
aggregations. The schemes presented in [10]–[13] are designed
to efficiently perform the aggregation task. However, these
schemes are basically designed to deal with non-multimedia
data, and may not be feasible for IoMT applications.

C. Differential Privacy

A framework to provide differential privacy during online
distributed learning was proposed in [14]. In this framework,
the video-selection strategy of end-users is used to control
the performance loss and protect the privacy. A framework
to protect graphical data on cloud platforms was proposed in
[15]. This framework adds noise patterns to data to protect the
privacy of data sources. A framework to derive the amount
of required noise was proposed in [16]. This framework uses
Gaussian distribution to select the right amount of noise. A
framework for privacy protection in a crowdsensing scenario
was proposed in [17]. This framework analyzes the privacy
risks and makes recommendations. A framework to protect the
privacy of individuals was proposed in [18]. This framework
uses an anonymity model and allows participating individuals
to decide the privacy constraints. The frameworks presented
in [14]–[18] help in preserving the privacy of data sources.
However, these frameworks are basically designed for cloud-
based systems, and may not be feasible for IoMT applications.

III. PRIVACY PROTECTION USING AUTHENTICATION,
AGGREGATION, AND LOCAL DIFFERENTIAL PRIVACY

In this section, we explain our proposed PAAL framework.
It is a multi-layer framework based on the MLEC architecture
and provides security and privacy services for IoMT applica-
tions. This framework operates in three layers. In the first layer,
clusters are formed in the underlying Wireless Multimedia
Sensor Network (WMSN) as shown in Fig. 1. Each cluster
is represented by an LOED. The LOEDs are elected by an
LTED using a four-way handshaking mechanism. The LOEDs
are responsible to manage end-devices and collect data from
them. In the second layer, the LOEDs apply a lightweight
aggregation technique to reduce the size of generated data and
protect the privacy of end-devices. To protect the privacy of
visual contents during transmission, an efficient LDP-based
technique is applied to the data. In the final layer, the mobile
sinks are registered with the LTED using a similar handshaking
mechanism used to to elect LOEDs. After the registration is
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completed, the mobile sinks are allowed to collect data from
LOEDs. In the following subsections, we explain these layers
in detail.

Cluster

End-Device

LOED

Cluster

LTEDCloud

LDP

ND

AD

LDP

ND

AD

Mobile 
Sink

Mobile 
Sink

AD: Aggregated Data
LDP: Local Differential 
Privacy
ND: Noisy Data

Fig. 1: PAAL Framework

A. Node Management Layer

This layer is based on our previous work published in [19].
Symbols used in this layer are summarized in Table I.

Notation Description

E Average Energy

e Current Energy Level

N Total Number of End-Devices

d Shortest Distance

(x, y) Coordinates of LOEDs

(xn, yn) Coordinates of End-Devices

TABLE I: Symbols of Node Management Layer

In this layer, the underlying WMSN is partitioned into small
clusters. Each cluster is represented by a head node known as
an LOED. The elected LOEDs are responsible to collect data
from member devices and coordinate with a nearby LTED
where the LTED controls the entire network. It also performs
computationally complex tasks and communicates with cloud
servers. The selection of LOEDs is based on a four-way
handshaking process, i.e., LOEDs advertisement, join-request,
LOEDs acknowledge, and neighboring devices’ responses. In
the beginning, all end-devices share their Identities (IDs),
energy levels, and location coordinates information with the
LTED to register themselves and compete for the roles of
LOEDs. After receiving the information, the LTED performs a
comparison based on the received energy levels, and computes
the average energy threshold, i.e., E, using the following
equation.

E =

N∑
n=1

en
N
, (1)

where e and N represent the current energy level of an end-
device and the total number of end-devices in the WMSN,
respectively.

The LTED compares the energies of all end-devices with
the computed threshold. End-devices with energies equal to
or greater than the average energy threshold are shortlisted for
the roles of LOEDs. During the comparison, it is possible that
more than one end-device may have the same energy level. In
this situation, the selection is based on very minor differences
in the energy values of end-devices and can go up to four
decimal places. Moreover, there may be a situation when the
energy levels may exactly be the same. In this situation, end-
devices selected as LOEDs in the past rounds of simulations
are excluded.

Once the LOEDs are shortlisted, the LTED broadcasts a
message containing the IDs and location coordinates informa-
tion of shortlisted LOEDs. Upon receiving the message, the
nominated LOEDs perform the following operations.

1) Retrieving the IDs and location coordinates information
of their neighboring end-devices.

2) Storing the retrieved information in their buffers.
3) Sending an acknowledgment message back to the LTED

to confirm the successful arrival of forwarded informa-
tion.

4) Advertising themselves in their neighborhood by sharing
their location coordinates information.

It is possible that end-devices may receive invitations from
multiple LOEDs simultaneously. In this situation, the end-
devices shortlist LOEDs by comparing their current energy
levels. Once the LOEDs are shortlisted, the end-devices calcu-
late the distance to these LOEDs using the following Euclidean
distance formula.

d =
√

(x− xn)2 − (y − yn)2, (2)

where d represents the shortest distance, and (x, y) and
(xn, yn) are the coordinates of prospective LOEDs and neigh-
boring end-devices, respectively.

It is possible that multiple LOEDs may exactly be at the
same distance from an end-device. In this situation, a join-
request is sent to an LOED with the strongest signal strength.
In the case of a tie, the end-device randomly selects an LOED
and associates itself with it. Alternatively, the end-device may
send the join-request to all LOEDs and associates itself with
the one who replies first. The latter case is beneficial as it is
based on the availability of the TDMA slot with the particular
LOED.

B. Privacy Protection Layer

Traditionally, the LOEDs collect data from end-devices
and forward to the LTED for further processing. Later, the
LTED is responsible to forward the processed data to the
cloud servers. In our proposed framework, we assume that
the Internet connectivity between the LTED and the cloud
servers is temporarily down due to some technical fault and
the LTED is unable to forward the data to the cloud servers. In
this situation, there is a need for external entities, e.g., mobile
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sinks, to collect data from LOEDs and upload data to the cloud
servers. However, the generated data need to be processed
first before sharing with mobile sinks. The privacy protection
layer is subdivided into two layers, i.e., data aggregation
and noise addition layers. In the data aggregation layer, the
LOEDs aggregate collected data to minimize the redundancy
and protect the privacy of end-devices. In the noise addition
layer, some noise is added to the aggregated data to protect
the privacy of visual contents. In the following subsections,
the data aggregation and noise addition layers are explained
in detail. Symbols used in this layer are summarized in Table
II.

Notation Description

S Similarity Index

Hs, Hr Histograms

L1, L2 Levels

r1, r2 Sizes of Regions

ε Privacy Budget

Λ, Q1, Q2 Constants

P Pixels

λ Noise Count

θ Two-Dimensional Standard Deviation

(xp, yp) Coordinates of a Pixel

x̂, ŷ Mean Value of Coordinates

ϑ Privacy Need

TABLE II: Symbols of Privacy Protection Layer

1) Data Aggregation Layer: In a cluster, the end-devices
usually focus on the same event but at different angles. As
a result, data coming from a cluster may contain similar
information captured at different angular positions and cause
redundancy. In this situation, the aggregation techniques can
be used to reduce the size of generated data. Furthermore, the
aggregation techniques also help in protecting the privacy of
data sources.

In this layer, we use a similarity-based aggregation tech-
nique to minimize the redundancy in the captured data. In this
technique, video data coming from a cluster are distributed into
two sets, i.e., standard and redundant sets. Videos captured
by LOEDs are placed in the standard set while the videos
forwarded by end-devices are placed in the redundant set. For a
comparison, videos from both sets are distributed into multiple
groups of frames, and are compared on a frame-by-frame basis
as shown in Fig. 2.

In this comparison, a video frame is divided into multiple
blocks of equal size, i.e., 64 × 64. Blocks of a video frame
from redundant set are compared with the blocks of the
corresponding video frame from standard set using a histogram
normalization technique to compute the similarity index (i.e.,
S). This comparison is performed using the following equa-
tion.

S = Hs × log2

(
Hs

Hr

)
, (3)

Block from Standard 
Video Frame

Redundant Video Frame

Aggregated Video Frame

Fig. 2: Data Aggregation

where Hs and Hr represent the histograms of standard and
redundant video frames, respectively.

The computed similarity index values of all blocks from
redundant video frames are compared against a predefined
threshold (i.e., S̄) where S ∈ (Smin, Smax). If the computed
similarity index values are less than the predefined threshold,
then the blocks are considered dissimilar. A video frame from
redundant set is considered different if it contains at least
25% dissimilar blocks. The LOEDs store all dissimilar frames
and only one sample video from standard set and discard the
remaining videos from redundant set. The dissimilar frames
are combined together to create aggregated videos. Further-
more, the location coordinates information of end-devices in
a cluster is also aggregated by computing the mean value. The
aggregated location coordinates information is associated with
the aggregated videos to complete the aggregation process.
The aggregation of data and location coordinates information
help in reducing the size of data and preserving the privacy
of end-devices.

2) Noise Addition Layer: Adding noise to videos is not
only a time-consuming process, but may also corrupt the
videos. Furthermore, in a video frame, there may be multiple
background or flat regions. These regions usually do not
contain any sensitive information and adding noise to these
regions misuses the available privacy budget. To address
these challenges, video frames need to be partitioned into
multiple levels to add a suitable amount of noise to different
regions. Each level can further be subdivided into multiple
non-overlapping regions to meet the privacy needs. Our noise
addition technique is based on the standard deviation theorem.
This technique dynamically adds noise to different regions of a
video frame. The noise addition technique helps in understand-
ing the privacy-preserving need based on the divergence of
data points in a specific region of a video frame. Furthermore,
the noise addition technique satisfies the ε-differential privacy
and operates in two phases, i.e., distribution of video frames
and addition of noise, as shown in Fig. 3. In the following
subsections, we explain these two phases in detail.
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Level 1

Level 2

Group of Pictures

Video Frame

Noise

Fig. 3: Multi-Level Noise Addition

a) Distribution of Frames: In this phase, aggregated
videos are distributed into multiple Groups of Pictures (GoP).
In our proposed framework, each GoP consists of 10 video
frames. A video frame from a GoP is divided into two levels,
i.e., L1 and L2. Each level is further distributed into a grid of
non-overlapping square-shaped regions. Each region at level
L1 is of size r1× r1. Here, the value of r1 is computed using
the following equation.

ε1 = ε× Λ, (4a)

r1 = max

[
10,

(
1

4

√
P × ε1
Q1

)]
, (4b)

where ε represents the total privacy budget and Λ is a
computing constant where 0 < Λ < 1. It helps in distributing
the privacy budget between two levels. Symbol P represents
the total number of pixels in a region, symbol ε1 is the total
privacy budget set for regions at L1, and symbol Q1 is the
experimental constant for L1 and is set to 10 as recommended
by [20].

Each region at level L1 is subdivided into smaller regions
of size r2 × r2 to make a grid at level L2. The value of r2 is
computed using the following equation.

ε2 = ε− ε1, (5a)

r2 =

√
λ× ε2
Q2

, (5b)

where λ is noise count in the corresponding region at level L1

and Q2 is the experimental constant for level L2 and is set to√
2 as recommended by [20].

b) Addition of Noise: Traditionally, the same amount
of noise is added to whole data based on the allocated
privacy budget. However, this is not feasible for video data
due to the presence of flat regions. These regions do not
contain any sensitive information and addition of noise to these
regions not only misuses the available privacy budget but also
increases the computational cost. To deal with this challenge,
our proposed framework dynamically adds noise to regions

on both levels based on the privacy-preserving requirements.
The noise addition is a four-step process. In the first step,
a two-dimensional standard deviation is computed for each
level to find the convergence of data points with respect to the
mean central value. The two-dimensional standard deviations
of individual regions (i.e., θi) and all regions (i.e., θ) on a
certain level are computed using the following equation.

θi =

√√√√ P∑
p=1

(xp − x̂)2 + (yp − ŷ)2

P − 2
,

θ =

I∑
i=1

θi,

(6)

where (xp, yp) represents the coordinates of a pixel p and
(x̂, ŷ) represent the mean value of coordinates of a particular
region.

In the second step, privacy-preserving need of a particular
region (i.e., ϑi) on a certain level is computed by the following
equation.

ϑi =
θi
θ
. (7)

In the third step, privacy budget of a specific region (i.e.,
εi) on a certain level is computed by the following equation.

εi = ϑi × εj , (8)

where εj represents the total privacy budget of a certain level
j, i.e., L1 or L2.

In the last step, the Laplace noise is added to individual re-
gions after computing the privacy-preserving need and budget
parameters.

C. Sink Registration Layer

In our proposed framework, we use mobile sinks to upload
data to cloud servers. However, the mobile sinks cannot be
fully trusted and need to be registered with the LTED prior
to data collection. In our proposed framework, the registration
process is based on a mutual handshaking mechanism. The
registration process with the LTED is accomplished in four
steps as shown in Fig. 4. Symbols used in this layer are
summarized in Table III.

Notation Description

M Mobile Sinks

η Session Key

a, b, c Random Integers

F Mapping Function

R Registration Request

C Challenge

δ Time-stamp

∆ Authentication Value

R Response to Challenge

TABLE III: Symbols of Sink Registration Layer
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LTED

Mobile 
Sink

Fig. 4: Mobile Sink Registration

Before sending the registration request, a mobile sink (i.e.,
m where m = {1, 2, · · · ,M}) generates a session key (i.e.,
µm) and two random integers (i.e., a and b, where a ∈ Z and
b ∈ Z). Later, an encrypted registration request (i.e., Rm) is
generated by using the following equation and forwarded to
the LTED.

Rm = AES{m, (F(a⊕ µm))}, (9)

where F is a mapping function used to perform a one-way
secure hashing with a value within the range [0 1] and ⊕ is
an XOR operator [21]. For encryption, we use AES-256 bits.

After receiving the encrypted registration request, the LTED
retrieves the embedded values, creates an encrypted challenge
(i.e., C) by using the following equation, and forwards it back
to the mobile sink.

δm = F(m || c), (10a)

∆m = F(m || a || c), (10b)

C = AES{δm,∆m}, (10c)

where δm represents a time-stamp, ∆m represents an authen-
tication value, and c is a random integer where c ∈ Z. The
allocated time-stamp allows the mobile sink to collect data
from LOEDs in the underlying network for a specific period of
time and the authentication value is used to create a response
to the challenge.

After receiving the encrypted challenge, the mobile sink re-
trieves the embedded values and creates an encrypted response
(i.e., Rm) by using the following equation.

Om = F(∆m || F(a⊕ µm) || b), (11a)

Rm = AES{Om, b}. (11b)

After receiving the encrypted response, the LTED verifies
the identity of the mobile sink using Eq. 11a. Once the entire

verification process is completed, the status of mobile sink
changes to registered. The LTED broadcasts the generated
authentication value to all LOEDs and shares the information
of nominated LOEDs with registered mobile sink.

IV. EXPERIMENTAL SETUP

In this section, we evaluate the performance of our pro-
posed framework by comparing it with existing privacy-
preserving frameworks, i.e., SLICER with Transfer on Meet
Up (SLICER-TMU), SLICER with Minimum Cost Transfer
(SLICER-MCT), and Simple Exchanging (SE), [22], [23].
The SLICER-TMU and SLICER-MCT are k anonymity-based
frameworks to preserve the privacy of participating entities.
These frameworks integrate data coding techniques and mes-
sage transfer strategies to preserve the privacy. Similar to
our proposed framework, the SLICER-TMU and SLICER-
MCT frameworks also use multiple algorithms to achieve
the privacy-preserving goal. The SE framework, on the other
hand, uses a decentralized mechanism to preserve the privacy
of location coordinates information. Due to the geo-tagging
feature, the sensed data are exchange between users in order
to jumble the paths followed by the users. The SLICER-TMU,
SLICER-MCT, and SE frameworks are designed to provide
privacy-preserving services, however, they have certain limi-
tations. Firstly, they are designed to preserve the privacy of
location coordinates information of data sources. Secondly,
their scope is limited and they cannot deal with large scale
networks. Thirdly, they lack a support for privacy-preserving
in end-to-end communication. On the other hand, our proposed
framework covers all these limitations as shown in simulation
results in this section. To compare the performances, we
consider three different metrics, i.e., computational overhead,
data load, and relative error. For simulations, we build a
WMSN consisting of 500 randomly distributed Multimedia
Sensor Nodes (MSNs). In each round of simulation, only 5%
MSNs are selected as LOEDs. The simulations are performed
in Matlab 2018a. The mobile sinks are always on the move
with a constant speed and their movement is based on a
random way-point mobility model [24].

In the traditional scenario, the LOEDs are responsible for
three main tasks, i.e., manage member nodes, collect data
from them, and coordinate with a nearby LTED. In our
proposed framework, we introduce two extra tasks for LOEDs,
i.e., aggregation of multimedia data and location coordinates
information, and addition of noise to the aggregated data.
Unlike the aggregation of location coordinates information,
the aggregation of multimedia data and the addition of noise
are computationally complex tasks. Videos are considered as
a source of data in our proposed framework, therefore, the
computational efficiency and extra storage space at LOEDs
are the basic requirements. The computational overhead metric
is used to approximate the total amount of time required to
aggregate the video data and add noise along with performing
other tasks. On average, our proposed framework shows better
performance as compared to the SLICER-TMU and SLICER-
MCT frameworks as shown in Fig. 5. The SE framework adds
noise to the raw data directly and does not aggregate the data.
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As a result, less computational overhead is observed in the
case of SE framework. Initially, all frameworks show similar
performances. However, the computational overhead increases
in the case of SLICER-TMU and SLICER-MCT frameworks
with an increase in the total number of transmitting MSNs.
Furthermore, the targeted frameworks do not include a mech-
anism to manage and verify the identities of member MSNs.
As a result, malicious nodes can easily flood the underlying
WMSN and overload the LOEDs by injecting false data.
Node management technique in our proposed framework not
only helps in reducing the network traffic, but also helps in
minimizing the computational load on LOEDs.
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Fig. 5: Computational Overhead

The next comparison is based on data load. The data load
metric represents the total amount of data transmitted from
LOEDs to the mobile sinks. As shown in Fig. 6, our proposed
framework transmits less amount of data as compared to the
existing privacy-preserving frameworks.
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Fig. 6: Data Load

Our proposed framework uses an efficient aggregation
technique to minimize the redundancy in the collected data.
Without applying an efficient aggregation technique, large size
video data need to be transmitted from sources to destinations
which ultimately requires the availability of large amount of
bandwidth. Furthermore, the video data captured in specific
applications, e.g., surveillance and transportation management,
usually contain repetitive information. As a result, the process-
ing of redundant/repetitive data requires extra computational

and storage resources which is not feasible for resource-
constrained devices in the IoMT architecture.

The relative error metric represents a ratio between absolute
error and the original data. The absolute error is computed by
subtracting the data with noise from original data. A small
amount of relative error means the noise amount is smaller
in the generated results. As a result, the freshness of data, its
accuracy, and privacy-preserving effects are higher. Fig. 7-8
show a comparison based on relative error. In Fig. 7, the block
size is kept fixed with constant and variable amounts of noises
while in Fig. 8, the amount of noise is kept constant with
fixed and variable block sizes. Fig. 7(a) shows a comparison
of relative error when the amount of noise is constant in all
regions of a video frame while Fig. 7(b) shows a comparison
of relative error when the amount of noise changes from
one region to another in a video frame. In either case, our
proposed framework shows a better performance. However,
an improved performance is observed in the case of a variable
amount of noise. Similarly, the block sizes are kept fixed
and variable with constant amount of noise in Fig. 8(a) and
Fig. 8(b), respectively. Again, the overall performance of our
proposed framework is better as compared to the existing
privacy-preserving frameworks. In both Fig. 7-8, it can clearly
be seen that our proposed framework performs better, however,
an improved performance is observed when block size and
the amount of noise are variable. A lower ratio of relative
error can assure the accuracy and the freshness of data without
compromising the privacy factor.

V. CONCLUSION

In this paper, we have proposed a multi-layer privacy-
preserving framework based on the MLEC architecture for
IoMT applications. This framework operates in three layers. In
the first layer, the underlying network is partitioned into mul-
tiple clusters, each represented by an LOED. These LOEDs
are responsible to manage member nodes and collect data
from them. In the second layer, the LOEDs aggregate the
collected data and location coordinates information to preserve
the privacy of data sources. They add noise to the aggregated
data to preserve the privacy of visual contents in end-to-end
communication. In the last layer, prior to data collection from
LOEDs, the mobile sinks are registered with the LTED using a
mutual handshaking mechanism. In experiments, our proposed
framework has shown a better performance as compared to the
existing privacy-preserving frameworks. In future, we aim to
further improve the performance of our proposed framework
by incorporating the use of machine learning algorithms to
speed up data processing and tune the performance of privacy-
preserving algorithms.
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