
Techniques for the Reverse

Engineering of Banking Malware

Paul Black

This thesis is submitted in total fulfilment of the requirement

for the degree of Doctor of Philosophy

School of Engineering, IT, and Physical Sciences

Federation University Australia

PO Box 663

University Drive, Mount Helen

Ballarat, Victoria, Australia 3353

Submitted 16th August 2020

Abstract

Malware attacks are a significant and frequently reported problem, adversely

affecting the productivity of organisations and governments worldwide. The

well-documented consequences of malware attacks include financial loss, data

loss, reputation damage, infrastructure damage, theft of intellectual property,

compromise of commercial negotiations, and national security risks. Mitiga-

tion activities involve a significant amount of manual analysis. Therefore, there

is a need for automated techniques for malware analysis to identify malicious

behaviours. Research into automated techniques for malware analysis covers

a wide range of activities. This thesis consists of a series of studies: an anal-

ysis of banking malware families and their common behaviours, an emulated

command and control environment for dynamic malware analysis, a technique

to identify similar malware functions, and a technique for the detection of

ransomware.

An analysis of the nature of banking malware, its major malware families,

behaviours, variants, and inter-relationships are provided in this thesis. In

doing this, this research takes a broad view of malware analysis, starting with

the implementation of the malicious behaviours through to detailed analysis

using machine learning. The broad approach taken in this thesis differs from

some other studies that approach malware research in a more abstract sense.

A disadvantage of approaching malware research without domain knowledge,

is that important methodology questions may not be considered.

Large datasets of historical malware samples are available for countermea-

sures research. However, due to the age of these samples, the original malware

infrastructure is no longer available, often restricting malware operations to

initialisation functions only. To address this absence, an emulated command

and control environment is provided. This emulated environment provides full

control of the malware, enabling the capabilities of the original in-the-wild

2

3

operation, while enabling feature extraction for research purposes.

A major focus of this thesis has been the development of a machine learn-

ing function similarity method with a novel feature encoding that increases

feature strength. This research develops techniques to demonstrate that the

machine learning model trained on similarity features from one program can

find similar functions in another, unrelated program. This finding can lead to

the development of generic similar function classifiers that can be packaged

and distributed in reverse engineering tools such as IDA Pro and Ghidra.

Further, this research examines the use of API call features for the identi-

fication of ransomware and shows that a failure to consider malware analysis

domain knowledge can lead to weaknesses in experimental design. In this

case, we show that existing research has difficulty in discriminating between

ransomware and benign cryptographic software.

This thesis by publication, has developed techniques to advance the disci-

pline of malware reverse engineering, in order to minimize harm due to cyber-

attacks on critical infrastructure, government institutions, and industry.

Publications by the Author

[1] P. Black, I. Gondal, and R. Layton, “A Survey of Similarities in Bank-

ing Malware Behaviours,” Computers & Security Journal, vol. 77, Impact

factor 3.579, 2018.

[2] P. Black, I. Gondal, P. Vamplew, and A. Lakhotia, “Evolved Similarity

Techniques in Malware Analysis,” 2019 18th IEEE International Con-

ference On Trust, Security And Privacy In Computing And Communi-

cations/13th IEEE International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE). IEEE, ERA A, 2019.

[3] P. Black, I. Gondal, P. Vamplew, and A. Lakhotia, “Function Similarity

Using Family Context,” Electronics Journal, Impact factor 2.412, 2020.

[4] P. Black, I. Gondal, P. Vamplew, and A. Lakhotia, ”Reanimating Historic

Malware Samples”, book chapter in Malware Analysis using Artificial In-

telligence and Deep Learning. Springer, 2020.

[5] P. Black, I. Gondal, P. Vamplew, and A. Lakhotia, “Identifying Cross-

Version Function Similarity Using Contextual Features”, IEEE TrustCom,

IEEE, ERA A, 2020 (Accepted).

[6] P. Black, A. Sohail, I. Gondal, J. Kamruzzaman, P. Vamplew, and P. Wat-

ters, “API Based Discrimination of Ransomware and Benign Cryptographic

Programs”, ICONIP 2020, ERA A, 2020 (Accepted).

4

DECLARATION

I, Paul Black, declare that the PhD thesis entitled “Techniques For The Re-

verse Engineering of Malware” is no more than 100,000 words in length, includ-

ing quotes and exclusive of tables, figures, appendices, bibliography, references,

and footnotes. This thesis contains no material that has been submitted pre-

viously, in whole or in part, for the award of any other academic degree or

diploma. Except where otherwise indicated, this thesis is my own work.

I give permission for the digital version of my thesis to be made available

on the web, via the University’s digital research repository, the Library Search,

and also through web search engines, unless permission has been granted by

the University to restrict access for a period of time.

I acknowledge the support I have received for my research through the

provision of an Australian Government Research Training Program (RTP)

Fee-Offset Scholarship through Federation University Australia

Paul Black

15th November 2020

5

Acknowledgements

I would like to thank Federation University Australia, the Internet Commerce

Security Lab (ICSL), and the School of Engineering, IT, and Physical Sci-

ences (SEITPS) for providing me the opportunity to undertake my Doctor of

Philosophy in Information Technology.

I would like to express my thanks to Prof. Iqbal Gondal and Associate Prof.

Peter Vamplew for guiding me through my research, providing encouragement,

answering many questions, and helping me deal with turbulent emotions during

my PhD candidature. Special thanks are due to Prof. Arun Lakhotia of

the School of Computing and Informatics at the University of Louisiana at

Lafayette for agreeing to be co-supervisor.

I would like to thank Westpac Banking Corporation for providing the fund-

ing for the ICSL research work that has supported me in the latter part of my

part-time Ph.D. The ICSL has given me the privilege of organising the speak-

ers for the Malware and Reverse Engineering (MRE) Conferences for the past

eight years. I have enjoyed the challenge of organising speakers for this con-

ference and building contacts with many security researchers.

6

Table of Contents

Declaration 5

1 Introduction 18

1.1 Motivation . 20

1.2 Research Objectives and Methodologies 23

1.2.1 Review of Banking Malware Behaviours 23

1.2.2 Command and Control Server Emulation 24

1.2.3 Identify Evolved Function Pairs 25

1.2.4 Identify Function Pairs using Machine Learning. 26

1.2.5 Generalisation of Function Context 26

1.2.6 Discriminate Ransomware from Benign Cryptographic

Software . 27

1.3 Contribution . 27

1.4 Thesis Layout . 29

1.5 Conclusion . 30

2 Literature Review 32

2.1 Malware Behaviour . 32

2.2 Emulated Execution Environments 34

2.3 Function Similarity . 37

2.3.1 Graph Isomorphism . 37

2.3.2 Symbolic Execution . 38

2.3.3 Semantic Similarity . 39

2.3.4 Dynamic Analysis . 40

2.3.5 Cross-Architecture Bug Search 40

2.4 Dynamic Analysis for Ransomware Detection 42

2.5 Conclusion . 44

7

TABLE OF CONTENTS 8

3 A Survey of Similarities in Banking Malware Behaviours 45

3.1 Introduction . 46

3.1.1 Evolution and Persistence 48

3.1.2 Contribution . 48

3.2 Related Work . 48

3.3 Malware Behaviours . 48

3.3.1 Persistence . 49

3.3.2 Configuration . 49

3.3.3 Process Injection . 50

3.3.4 Information Stealing and Injection 50

3.3.5 Network Communications 51

3.3.6 Backconnect . 51

3.3.7 Snapshot and Video Capture 51

3.3.8 Anti-analysis . 52

3.4 Malware Families . 52

3.4.1 Zeus Malware . 52

3.4.2 Citadel Malware . 53

3.4.3 Vawtrak Malware . 54

3.4.4 Dridex Malware . 54

3.4.5 Dyre Malware . 55

3.4.6 Rovnix Malware . 56

3.4.7 Carberp Malware . 57

3.5 Analysis of Malware Behaviours 57

3.5.1 Process Injection Rule 1 58

3.5.2 Future Work . 58

3.6 Conclusion . 59

4 Reanimating Historic Malware Samples 63

4.1 Introduction . 64

4.1.1 Motivation . 66

4.1.2 Emulator Architecture 66

4.2 Manual Construction . 67

4.3 Zeus C2 Server Emulator . 68

4.4 Ransomware C2 Server Emulators 71

4.4.1 CryptoLocker C2 Server Emulator 72

TABLE OF CONTENTS 9

4.4.2 CryptoWall C2 Server Emulator 74

4.5 Semi-Automated Generation of C2 Server Emulators 76

4.6 Limitations . 78

4.7 Conclusion . 79

5 Evolved Similarity Techniques in Malware Analysis 81

5.1 Introduction . 82

5.1.1 Evolved Similarity . 82

5.1.2 Contribution . 83

5.2 Related Work . 83

5.2.1 Software Evolution . 83

5.2.2 Malware Lineage . 83

5.2.3 Inline Function Identification 83

5.2.4 Virus Battle . 83

5.2.5 BinDiff . 84

5.3 Research Methodology . 84

5.3.1 Invariant Features . 85

5.3.2 Function Pair Identification 85

5.3.3 Results . 85

5.4 Conclusion . 86

6 Identifying Cross-Version Function Similarity Using Contex-

tual Features 88

6.1 Introduction . 89

6.2 Related Work . 91

6.2.1 BinJuice Function Semantics 91

6.2.2 Machine Learning In Software Similarity 91

6.3 Research Methodology . 92

6.3.1 Function Context . 93

6.3.2 Local Features . 94

6.3.3 Local Feature Ratios . 95

6.3.4 Contextual Features . 97

6.3.5 Contextual Feature Ratios 97

6.3.6 Edit Distance Filtering 99

6.3.7 CVCFS Algorithm . 99

TABLE OF CONTENTS 10

6.4 Empirical Evaluation . 101

6.4.1 Features . 102

6.4.2 SMOTE Oversampling 102

6.4.3 SVM Model Training . 103

6.4.4 Pre-Filtering . 103

6.4.5 Feature Performance . 104

6.4.6 Edit Distance Filtering 105

6.4.7 Future Work . 106

6.5 Conclusion . 107

7 Function Similarity Using Family Context 110

7.1 Introduction . 111

7.2 Related Work . 113

7.2.1 BinJuice Function Semantics 113

7.2.2 Cross-Architecture Bug Search 113

7.2.3 CVCFS . 114

7.3 Function Similarity Using Family Context 114

7.3.1 Experimental Design . 114

7.3.2 Function Context . 115

7.3.3 Features . 116

7.3.4 Feature Extraction . 117

7.3.5 Feature Ratios . 117

7.3.6 Ground Truth . 117

7.3.7 FSFC Algorithm . 118

7.4 Empirical Evaluation . 120

7.4.1 Datasets . 120

7.4.2 Ground Truth . 121

7.4.3 Features . 121

7.4.4 SMOTE Oversampling 122

7.4.5 SVM Model Training . 122

7.4.6 Context Sets . 122

7.4.7 Statistical Significance 123

7.4.8 Zeus Dataset Tests . 123

7.4.9 ISFB Dataset Tests . 124

7.4.10 FSFC Evaluation . 126

TABLE OF CONTENTS 11

7.4.11 Comparison With Previous Research 127

7.4.12 Numeric Feature Encoding 127

7.4.13 Future Work . 128

7.5 Conclusions . 128

8 API Based Discrimination of Ransomware and Benign Cryp-

tographic Programs 131

8.1 Introduction . 132

8.1.1 Command and Control Server Emulation 133

8.1.2 Contribution . 133

8.2 Related Work . 134

8.2.1 Ransomware Detection 134

8.3 Research Methodology . 135

8.3.1 Cross-Validation Approach 136

8.3.2 C2 Emulators . 136

8.4 Feature Selection and Classification 136

8.4.1 Feature Engineering . 137

8.5 Experiments . 137

8.5.1 Comparison With Existing Research 137

8.5.2 Experimental Setup . 139

8.5.3 Feature Selection . 139

8.5.4 Ransomware Against Benign Programs 140

8.5.5 Ransomware Against Benign Cryptographic Programs . 140

8.6 Conclusion . 141

9 Conclusions 144

9.1 Introduction . 144

9.2 Static Analysis and Banking Malware Families 145

9.3 Emulated Execution Environment 146

9.4 Ad-hoc Function Similarity . 146

9.5 Similarity Using Machine Learning 147

9.6 Abstraction of Function Similarity 147

9.7 Contextual Function Similarity 147

9.8 Ransomware and Benign Cryptographic Software 148

9.9 Future Work: . 148

TABLE OF CONTENTS 12

9.10 Research Summary . 149

Bibliography 160

A Appendix 1 161

A.1 An Introduction To Malware Reverse Engineering 161

A.1.1 Packing . 161

A.1.2 Malware Identification 163

A.1.3 Program Structure . 163

A.1.4 Memory Dump Analysis 164

A.1.5 Debugger Selection . 164

A.1.6 Disassembler Selection 165

A.1.7 Reverse Engineering Workflow 165

A.2 Cythereal Semantics . 167

List of Tables

3.1 Banking Malware Relationships 47

3.2 MAEC Capabilities and the Behaviours Used in This Paper . . 49

3.3 Malware Process Iteration Methods 58

3.4 Malware Process Injection Methods 58

3.5 Sample Hashes . 58

5.1 Feature Trigger Values . 85

5.2 Feature Trigger Values When No API Calls Present 85

5.3 Manual Analysis of Zeus Functions With Significant Change . . 86

5.4 Experimental Results for Function Pairs Manually Identified as

Showing Significant Change . 86

6.1 Zeus Sample Details . 101

6.2 Zeus Function Count and Manual Match Count 101

6.3 Numbering For Feature Combination Tests 103

6.4 Individual Feature Performance 105

6.5 Highest Performing Feature Combinations 106

6.6 Ranking of Feature Performance 107

6.7 Edit Metric Filter Performance 107

6.8 Results Following Edit Metric Filtering 108

7.1 Malware Sample Details . 120

7.2 Malware Sample Versions . 120

7.3 Malware Linker Dates . 121

7.4 Function Counts and Manual Match Count 121

7.5 Numbering of Feature Combination Tests 122

7.6 Naming of Context Sets . 123

13

LIST OF TABLES 14

7.7 Zeus Dataset - Training Iteration Performance 123

7.8 Zeus Dataset - Training Context Combinations 124

7.9 Zeus Individual Feature Performance 124

7.10 Zeus Dataset - Highest Performing Feature Combinations 124

7.11 ISFB Dataset - Training Iteration Performance 125

7.12 ISFB Dataset - Training Context Combinations 125

7.13 ISFB Individual Feature Performance 125

7.14 ISFB Dataset - Highest Performing Feature Combinations . . . 125

7.15 Operation Times . 126

7.16 Zeus and ISFB Similarity Using Previous Research 127

7.17 Zeus Previous Numeric Feature Encoding 127

7.18 ISFB Previous Numeric Feature Encoding 127

7.19 Previous Numeric Feature Encoding 128

8.1 Summary of Ransomware Families 138

8.2 Summary of Benign-Cryptograhic Programs 138

8.3 Evaluation Metrics . 139

8.4 Number of Most Significant Features 140

8.5 Average Cross-Validation Evaluation Results 140

List of Figures

2.1 Malware Function Similarity Taxonomy 32

3.1 Rule to Identify Process Iteration 58

3.2 Rule to Identify Process Injection 58

4.1 C2 Emulator Architecture . 67

4.2 Simplified Zeus Configuration 70

4.3 Creation of Encrypted Zeus Configuration 70

4.4 Example Zeus Webinject . 72

4.5 CryptoLocker Ransom Demand 74

4.6 CryptoWall Messages . 75

4.7 CryptoWall Ransom Demand 76

5.1 Evolved Similarity Algorithm 86

6.1 Function Context Extraction Algorithm 100

6.2 Feature Extraction Algorithm 100

6.3 Edit Distance Filtering Algorithm 100

6.4 Function Prologue . 102

7.1 Function Call Relationships . 118

7.2 Function Content Extraction Algorithm 119

7.3 Feature Extraction Algorithm 119

A.1 Example Yara Rule . 163

A.2 Example Disassembled Function 167

A.3 Example Cythereal Semantics 168

15

Acronyms

API Application Programming Interface.

APTA Augmented Prefix Tree Acceptors.

ASEP Auto-Start Extensibility Points.

BEE Botnet Evaluation Environment.

C2 Command and Control.

CFG Control Flow Graph.

CPU Central Processing Unit.

CVCFS Cross Version Contextual Function Similarity.

DFA Deterministic Finite Automata.

DLL Dynamic Link Library.

DNS Domain Name System.

ECVCFS Enhanced Cross Version Contextual Function Similarity.

GED Graph Edit Distance.

GRUNN Gated Recurrent Unit Neural Network.

GUI Graphical User Interface.

HTTP Hypertext Transfer Protocol.

16

Acronyms 17

IDA Interactive Disassembler.

IM Instant Messaging.

IO Input/Output.

IOC Indicators of Compromise.

IoT Internet of Things.

IRC Internet Relay Chat.

IRP Input/Output Request Packet.

kNN k-Nearest Neighbours.

LTPL Linear Temporal Predicate Logic.

MAEC Malware Attribute Enumeration and Characterization.

ML Machine Learning.

NP Non-Polynomial.

OS Operating System.

QEMU Quick Emulator.

RAT Remote Access Trojan.

SEP Symbolic Execution Point.

SMT Satisfiability Modulo Theories.

SSL Secure Sockets Layer.

STP Simple Theorem Prover.

SVM Support Vector Machine.

VFS Virtual File System.

VM Virtual Machine.

Chapter 1

Introduction

Malware attacks are a significant and frequently reported problem, adversely

affecting the productivity of organisations and governments worldwide. Mal-

ware development has grown from a fringe hacker activity to a specialised

cybercrime activity. Recently, ransomware attacks that encrypt user data and

demand payment for decryption have become a substantial problem [1]. The

consequences of malware attacks include financial loss, data loss, reputation

damage, infrastructure damage, theft of intellectual property, compromise of

commercial negotiations, and risks to national security [2].

Reverse engineering is the process of analysis of an artifact in order to

obtain knowledge about its design [3]. Malware analysts perform reverse engi-

neering of a malware program to understand a malware samples’ capabilities,

command interface, relationship with other malware programs, and operating

system interactions. The tools used by malware analysts include techniques for

the disassembly, detection, clustering, static and dynamic analysis, and simi-

larity of malware samples. This thesis has chosen to focus on studying banking

malware and their behaviours, an emulated environment for dynamic malware

analysis, techniques to identify similar malware functions, and a technique for

the detection of ransomware.

Survey of Banking Malware: Malware authors reuse code, incorporate

leaked source code, and build on existing malware products rather than re-

inventing the wheel. As a result, distinct and persistent malware families have

emerged. The literature describing these malware families is fragmented and

industry-based. Reliance on commercial literature may not give the full picture

18

19

as the data may have been lost due to the abandoning of aging webpages,

quality is variable, and reports may not be complete as they are driven by

commercial interests. So, there is a need for a long term, coherent description

of major malware families, their variants, relationships, and information about

source code leakages [4]. In this thesis, this need is addressed by studying

common banking malware families.

Emulated Execution Environment: Large datasets of historical mal-

ware samples are available for countermeasures research. However, due to the

age of these samples and anti-virus activities, their original malware infras-

tructure is no longer available. Dynamic analysis is commonly used for feature

extraction; however, due to the absence of the original malware infrastructure,

historical malware samples no longer exhibit their original capabilities. Partial

execution of historical malware samples in a sandbox results in features that

differ from those extracted in the wild, thus invalidating the results of any

machine learning based on these features. In this thesis, this need is addressed

by studying semi-automatic techniques for the construction of Command and

Control (C2) server emulators, and three examples of manual C2 server emu-

lator construction.

Identification of Similar Functions: Internet security organisations

perform malware analysis to identify malware capabilities and to develop mit-

igation techniques. Function similarity is a central technique for malware anal-

ysis and is used to determine previously analysed malware samples, to identify

updated functions in new malware variants, to exclude unchanged functions in

detailed malware analysis, and to identify code reuse across previously unre-

lated malware families. Function similarity techniques can be used to identify

code reuse in malware families and to identify malware products produced by

specific malware authors.

Machine learning algorithms can be trained using features from objects and

can then classify future instances of these objects in a general manner. Thus

an emerging use of machine learning is to detect malware. A less obvious use

of machine learning is to identify similar function pairs in malware samples.

In this thesis, this need is addressed by the development of function similarity

techniques to identify function pairs in different versions of a program.

20

Ransomware Detection: Ransomware is a widespread class of malware

that encrypts files in a victim’s computer and extorts victims into the payment

of a fee to regain access to their data. Previous research has proposed novel

methods for ransomware detection using machine learning techniques. How-

ever, this research has not examined the precision of ransomware detection.

While existing techniques show overall high accuracy in detecting novel ran-

somware samples. Previous research does not investigate the discrimination

of novel ransomware from common benign programs that share some of the

cryptographic characteristics of ransomware. This is a critical, practical limi-

tation of current research; machine learning based techniques would be limited

in their practical benefit if they generated too many false positives (at best)

or deleted/quarantined critical data (at worst). In this research, this need is

addressed by the development of a machine learning based system for ran-

somware detection and testing of the ability of this technique to discriminate

between ransomware and benign cryptographic programs.

Summary: This thesis studies the malware families that attack banking

systems and their customers. Techniques are developed for the execution of

historical malware families in an emulated C2 environment, techniques for

the identification of similar function pairs are developed, and a technique for

ransomware identification is developed.

1.1 Motivation

This thesis focuses on the development of components for a malware analysis

toolchain. The research highlights the need for techniques based on an analysis

of the behaviours of the targeted malware families, and an overarching need

to build the research methodology on a solid foundation of malware analysis

domain knowledge. Examples of potential problems in research methodol-

ogy are provided in the chapters dealing with Command and Control (C2)

server emulation, and ransomware classification. The identification of simi-

lar functions in malware samples assists analysis by allowing the exclusion of

functions that have been previously analysed. This allows the identification of

new variants, and supports authorship attribution. Machine learning provides

a general-purpose technique for the classification of similar objects. A func-

21

tion similarity technique using an SVM model is provided. The unexpected

finding is that the SVM model can abstract function similarity features from

one pair of program variants to find similar functions in an unrelated pair of

program variants. If validated by a larger study, this new property leads to

the possibility of creating generic similar function classifiers.

Survey of Banking Malware: Malware authors reuse code, incorporate

leaked source code, and build on existing products rather than re-inventing

the wheel. This leads to a situation where distinct, persistent malware fam-

ilies have been developed. For example, Gozi malware was first detected in

2007, and the Gozi ISFB variant continues to be used in attacks on banking

systems [4]. Prior research has focused on malware detection, clustering, and

similarity, but has not focused on specific malware families and the techniques

used to manipulate the operating system. This may be due to the view that

malware instances are ephemeral and will soon be replaced by new and different

malware instances. However, knowledge of persistent and well-established mal-

ware families is relevant to academic and industry-based researchers. Different

families of information-stealing malware possess similar high-level behaviours

and given the finite number of API calls provided by an operating system, this

leads to a limited number of options to implement these behaviours. Analy-

sis of the API calls present in a program allows the identification of malware

behaviours [5].

Emulated Execution Environment: Large datasets of historical mal-

ware samples are available for countermeasures research. However, due to the

age of these samples, their Command and Control (C2) servers are no longer

available [6]. Dynamic analysis is commonly used for feature extraction; how-

ever, due to the absence of their C2 servers, after initialization, malware sam-

ples may exit or loop attempting to establish C2 server connections, and as

a result, no longer exhibit their original capabilities. Partial execution of his-

torical malware samples in a sandbox results in features that differ from those

extracted in the wild, thus invalidating the results of any machine learning

using these features. Our approach to extracting accurate features is to build

an emulated C2 server to provide an environment that allows control of the

full capabilities of the malware in an isolated environment.

Identification of Similar Functions: Internet security organisations

22

identify Indicators of Compromise (IOC) of malware infections and perform

detailed malware analysis to identify the malware’s command protocol and

capabilities [7]. Function similarity techniques are widely used by organisations

performing malware analysis, and are used for malware triage [8], program

patch analysis [9], identification of library functions containing known bugs

[10, 11], identification of similar function pairs in detailed malware analysis

[12], malware authorship analysis [13], and for plagiarism analysis [14].

These organisations process large daily feeds of malware samples. Due to

packing, these malware samples initially appear to be unique. However, after

unpacking, malware sample volumes may be reduced by orders of magnitude

by the use of malware similarity techniques, which reduce the malware feed to

a smaller set of unique malware payloads [15, 16]. Function level similarity can

then be performed on the unique malware payloads to identify known malware

families and new variants.

Following the identification of new malware variants, detailed analysis is

required to determine their capabilities. This is a time consuming and often

manual process that is performed to identify the malware command protocol

and capabilities. Function similarity provides the first stage of this analysis

and allows the elimination of unmodified functions from the reverse engineering

workload [17].

Software vendors periodically provide program patches for security pur-

poses. High-level details of patched vulnerabilities may be provided, but this

may not be sufficient for some organisations. Program patch analysis uses

function similarity methods to identify updated functions. This is the first

step in a reverse engineering process to identify the patched vulnerabilities

[18].

Internet of Things (IoT) devices, including routers and consumer electron-

ics, utilize open-source software and a wide range of Central Processing Unit

(CPU) architectures. When software vulnerabilities are identified in open

source libraries, a wide range of IoT devices become vulnerable. Cross ar-

chitecture bug search is performed on IoT firmware using function similarity

methods that are optimised for searching the same version of source code that

has been compiled with different compilers and CPU architectures [10, 19].

Law enforcement anti-malware efforts prioritise identification of malware

authors. Function similarity techniques are used to identify code reuse in

23

malware families to identify malware products produced by specific malware

authors [13]. Function similarity methods are also used for the analysis of

compiled programs in cases where software plagiarism or breach of licensing

conditions is suspected [14].

Ransomware Detection: Ransomware is a widespread class of malware

that encrypts files in a victim’s computer and extorts victims into the pay-

ment of a fee to regain access to their data. Previous research has proposed

novel methods for ransomware detection using machine learning techniques

[20, 21, 22, 23, 24]. However, this research has not examined the precision of

ransomware detection. While existing techniques show a high overall accuracy

in detecting novel ransomware samples, previous API profile-based research

does not investigate the discrimination of novel ransomware from benign cryp-

tographic programs. This is a critical, practical limitation of current research;

machine learning based techniques would be limited in their practical benefit

if they generated too many false positives (at best) or deleted/quarantined

critical data (at worst).

1.2 Research Objectives and Methodologies

1.2.1 Review of Banking Malware Behaviours

Research Objective 1: Study common banking malware behaviours and

use static analysis to identify the malware techniques that implement these

behaviours.

Banking malware is a class of information-stealing malicious software that

targets the financial industry. Banking malware families have become per-

sistent with new versions released by the original authors or by others using

leaked source code. The literature describing these malware families is frag-

mented and industry-based. Problems which arise from reliance on commercial

literature is that data may be lost due to the abandoning of aging webpages,

quality is variable, and reports may not be complete as they are driven by

commercial interests. There is a need for a long term, coherent description of

major banking malware families, their variants, relationships, and source code

leakages.

24

Malware behaviour can largely be defined in terms of the API calls made

by the execution of a malware sample [25]. Malware behaviours are aggregated

into high-level malware capabilities. However, there is no clear definition of

all high-level malware capabilities. One of the goals of threat intelligence

is to share information about malware attacks. This includes a high-level

definition of malware behaviours. Malware behaviours are defined as high-

level capabilities by existing standards such as Malware Attribute Enumeration

and Characterization (MAEC) [26], but these are broad in scope, and some

individual capabilities are not well-defined. There is a need for a well-defined

specification of high-level malware capabilities.

The behaviours present in a malware sample may be determined, either by

dynamic analysis through execution in a sandbox, or by static analysis of an

unpacked malware sample. Static analysis refers to analysis that is performed

without executing the program, while dynamic analysis refers to analysis that

is performed by executing the program. Static analysis can analyze all program

paths; however, obfuscated or encrypted code hinders static analysis [27]. Dy-

namic program analysis uses program execution to understand it’s behaviours

and actions [28]. Dynamic analysis is not impacted by the code obfuscations

that may hinder static analysis. However, not all program paths are executed,

and the program may detect the analysis environment, and alter its behaviour,

or terminate [29]. A static analysis technique was selected for the identification

of malware behaviours of unpacked code. Thereby providing an analysis of all

program code, and preventing any detection of the analysis environment. Mal-

ware manipulates the Operating System (OS) using techniques based around

the abuse of API calls. The conceptual distance between the low-level details

of API calls and a high-level understanding of malware behaviour is known as

the semantic gap [25]. One of the challenges of malware analysis is to collect

the low-level details obtained through analysis and to make use of these details

to synthesise a high-level view of the capabilities of specific malware samples.

1.2.2 Command and Control Server Emulation

Research Objective 2: Development of emulated C2 servers using manual

methods, and a review of semi-automated techniques for emulated C2 server

construction.

25

Many types of malicious software are controlled by the attacker’s Com-

mand and Control (C2) servers [30]. Anti-virus organisations seek to defeat

malware attacks by requesting the removal of the C2 server Domain Name

System (DNS) records. As a result, the lifespan of most malware samples is

relatively short. Large datasets of historical malware samples are available for

countermeasures research. However, due to the age of these malware samples,

their C2 servers are no longer available. To cope with high volumes of malware

production, malware analysis is increasingly performed using machine learn-

ing techniques. Dynamic analysis is commonly used for feature extraction.

However, due to the absence of their C2 servers, after initialization, malware

samples may exit or loop attempting to establish C2 server connections, and

as a result, no longer exhibit their original capabilities. Therefore, partial exe-

cution of historical malware samples in a sandbox results in features that differ

from those that would be extracted in-the-wild, thus invalidating the results

of any machine learning research based on these features. One approach to

extracting accurate features is to build an emulated C2 server to provide an

environment that allows control of the full capabilities of the malware in an

isolated environment. Building an emulated C2 server is a complex process,

currently this can only be performed by manual or semi-automated techniques

[6].

1.2.3 Identify Evolved Function Pairs

Research Objective 3: Development of a technique to identify similar func-

tions in pairs of malware variants that differ by several versions.

Function similarity methods are used for malware triage, program patch

analysis, the identification of library functions containing known bugs, mal-

ware authorship analysis, identification of similar function pairs in detailed

malware analysis, and for plagiarism analysis. Malware authors are known to

reuse existing code. This development process results in software evolution

and a sequence of versions of a malware family containing functions that show

a divergence from the initial version. Given that many malware families have

become persistent over a relatively long period of time, the functions in some

of these malware variants may no longer show obvious relationships. The chal-

lenge in identifying evolved malware function pairs lies in identifying features

26

that are relatively invariant across evolved functions. One of the functions

being compared may have been modified in an arbitrary manner, and may no

longer provide an obvious match to the original function. Function similarity

ground truth may be established by reverse engineering malware variants and

identifying the corresponding function pairs.

1.2.4 Identify Function Pairs using Machine Learning.

Research Objective 4: Development of a machine learning technique to

identify similar functions in a pair of malware samples.

The identification of similar functions in malware samples assists analy-

sis by allowing the exclusion of functions that have been previously analysed.

This allows the identification of new variants, supports authorship attribution,

and the analysis of malware phylogeny. Machine learning provides a general-

purpose technique for the classification of similar objects. The challenge in

performing machine learning classification on evolved functions in malware

variants is that there may not be obvious similarities between the evolved

functions that are being compared. This research objective requires the de-

velopment of a machine learning system that can identify evolved functions

pairs present in two variants of the same malware family. Features for iden-

tifying evolved function pairs are present inside the functions that are being

compared, but additional contextual features are present in functions that are

related to the functions that are being compared. In this study, demonstrate

that contextual features stay relatively invariant across different malware ver-

sions. Due to the high false positive rates that have been observed in previous

machine learning function similarity studies, a two-stage system for identifying

malware function pairs is acceptable.

1.2.5 Generalisation of Function Context

Research Objective 5: Development of a function similarity technique using

an improved function context to identify similar functions in a pair of unrelated

malware families.

Contextual features are function similarity features extracted from specific

functions closely related to the functions being compared. The extraction of

27

contextual features can substantially improve the strength of function simi-

larity features. This study should identify methods to further improve the

strength of the contextual function similarity features. A measure of the ma-

chine learning system’s performance can be obtained by training on features

extracted from one dataset and performing classification using features ex-

tracted from a second independent dataset. Good classification results from

an independent dataset indicate that machine learning can abstract the train-

ing features. The objective of the research in this chapter is to use the Zeus

Support Vector Machine (SVM) model and apply it to features extracted from

a pair of ISFB malware variants. Successful prediction of function similarity in

the unrelated pair of malware variants will indicate that the machine learning

system is successfully abstracting function similarity features.

1.2.6 Discriminate Ransomware from Benign Crypto-

graphic Software

Research Objective 6: Development of a ransomware detection system that

can discriminate between ransomware and benign cryptographic software.

Ransomware is a widespread class of malware that encrypts files in a vic-

tim’s computer and extorts payment to regain access to the encrypted user

files. Previous research has proposed methods for ransomware detection us-

ing machine learning techniques. While these techniques show an overall high

accuracy in detecting novel ransomware samples, this research has not investi-

gated the discrimination of ransomware from benign cryptographic programs.

The research objective is to build a ransomware detection system and test

its ability to discriminate between ransomware and benign cryptographic soft-

ware. The features used in this research should be taken from the dynamic

analysis logs of a Cuckoo sandbox. Feature engineering will be used to select

the highest performing API call features.

1.3 Contribution

The key contributions of this thesis are as follows:

• Assembling a coherent description of major banking malware families,

28

their variants, relationships, behaviours, and source code leakages.

• Identification that when created, banking malware families become per-

sistent threats, and that knowledge of these malware families is relevant

to academic and industry based malware researchers

• Identification of the limitations of extracting features from historical mal-

ware samples without the use of an emulated C2 server.

• Development of an emulated C2 environment for dynamic malware anal-

ysis.

• Develoment of a machine learning system to identify similar malware

functions.

• Use of feature engineering to develop contextual features, this is a method

of strengthening function similarity features.

• A study into whether a machine learning based ransomware detection

system can confuse ransomware and benign cryptographic programs.

This thesis provides the following additional contributions:

• Identification of a set of key behaviours to allow a high-level comparison

of the techniques used to implement banking malware families.

• Identification of the malware techniques that are used to implement the

identified banking malware behaviours.

• Demonstration that the Pharos Framework can provide identification of

banking malware behaviours using static analysis.

• Creation of three C2 server emulators for the Zeus, Cryptowall and Cryp-

toLocker ransomware families for dynamic analysis.

• Development of Evolved Similarity Techniques (EST), for extracting in-

variant features associated with malware function pairs that differ due

to software development.

• Development of the Cross Version Contextual Function Similarity (CVCFS)

technique for finding similar functions in pairs of malware programs.

29

• Development of a curated dataset of matched functions in three versions

of Zeus malware for use in future research.

• Development of a set of three labelled IDA databases of Zeus malware

versions 2.0.8.7, 2.0.8.9, and 2.1.0.1.

• Development of the Cross Version Function Similarity Using Contextual

Features (CVCFS) technique, a 2-step machine learning based method

for the identification of similar pairs of functions in two variants of a

program.

• The performance of CVCFS numeric features has been increased through

the use of improved feature encoding.

• Development of the Function Similarity Using Family Context (FCSFS)

technique, a one-step method for function similarity that performs well

without pre-filtering and provides a low false positive rate.

• Development of a curated dataset of matched functions in two versions

of ISFB malware for use in future research.

• Development of a set of two labelled IDA databases of ISFB malware

versions 2.04.439, 2.16.861.

• Development of a technique to improve the discrimination of ransomware

from benign-cryptographic programs.

1.4 Thesis Layout

This thesis presents research contributions in the form of published papers and

consists of eight chapters.

• Chapter 1 introduces the need for automated techniques for malware

analysis.

• Chapter 2 provides a literature review of research into automated tech-

niques for malware analysis.

30

• Chapter 3 provides a study of the behaviours of common banking mal-

ware families. This work was published by the Computers and Security

Journal in 2018.

• Chapter 4 provides a study into problems associated with the dynamic

analysis of historic malware samples and proposes the use of C2 emulators

to overcome these problems. Work in this chapter has been accepted as a

book chapter for Malware Analysis using Artificial Intelligence and Deep

Learning, published by Springer in 2020.

• Chapter 5 provides a technique for identifying function pairs in mal-

ware variants, and contributions were published by the IEEE Trustcom

conference in 2019.

• Chapter 6 improves the function similarity technique from chapter 5

using machine learning and has been submitted to the Computers and

Security Journal for review.

• Chapter 7 makes extensive use of contextual feature engineering to pro-

vide a substantial improvement to the performance of the function sim-

ilarity technique. This work was published in the Electronics Journal in

2020.

• Chapter 8 examines the problem of discriminating ransomware from be-

nign programs containing similar cryptographic operations and has been

submitted to the Workshop on Artificial Intelligence and Cybersecurity

(AICS) ICONIP 2020.

• Chapter 9 provides the conclusion and future work.

Detailed bibliography and related appendices are provided at the end of

the thesis.

1.5 Conclusion

This chapter provides an introduction to this thesis and outlines the problems

cause by ongoing malware attacks and the need for a study of banking mal-

ware families, their behaviours, and the techniques for identification of these

31

behaviours. This is followed by an examination of the need for emulated com-

mand and control server for the analysis of historical malware samples. Func-

tion similarity is an important and widely used technique in various stages

of the malware analysis process. Function similarity techniques help in fast

tracking the malware analysis process. This thesis presents techniques that

can operate on the same malware family and across different malware fam-

ilies. This is followed by an overview of the need for a technique to detect

ransomware that frequently targets banking customers by encrypting user files

and demanding payment to decrypt these files. Existing API profile-based re-

search has not examined the discrimination of ransomware from benign crypto-

graphic software. Chapter 2 provides a review of the research literature related

to the topics covered in this introduction.

Chapter 2

Literature Review

This chapter provides a review of the literature related to the main themes

of this thesis that were identified in chapter 1. These themes are a survey

of banking malware and its behaviours, an emulated environment for dynamic

malware analysis, techniques to identify similar malware functions, and a tech-

nique for the detection of ransomware. A taxonomy of malware function sim-

ilarity techniques is shown in Figure 2.1

Function
Similarity

Graph
Isomorphism

Symbolic
Execution

Semantic
Similarity

Dynamic
Analysis

Machine
Learning

Figure 2.1: Malware Function Similarity Taxonomy

2.1 Malware Behaviour

An OS provides a finite number of API calls to allow application programs to

access OS services. Consequently, the set of all possible operations that can be

performed by a finite program using OS services is finite. Malware operates by

manipulating OS behaviour; therefore, malware operations can be represented

32

33

as a finite set of API calls [25]. The monitoring of malware API calls using

dynamic analysis results in a detailed log. This log of malware API calls needs

to be converted into a higher-level representation that would be more easily

understood by an analyst. The conceptual distance from a low-level log of API

calls to a higher level representation is known as a semantic gap. Martignoni et

al [25] bridge this semantic gap by mapping the high-level goals of the malware

into finite sets of API calls. The set of high-level goals is referred to as the

malware’s behaviour [25].

Dynamic analysis of malware behaviour has been used to extract specifi-

cations of malware behaviour [31]. The specifications are derived from API

call profiles obtained from dynamic analysis. These malware specifications are

used for the detection of malware. Malware capabilities labelling, using Linear

Temporal Predicate Logic (LTPL) operating on a dynamic trace of file system

access, has been used to identify malware capabilities as part of a malware

detection system [32].

The malicious behaviours of malware are modelled by using tuples of Sub-

ject, Object, Action, and Function, where subject represents active system

entities, object is a system resource which is used to store information, action

is the malicious behaviour which is initiated by a trigger, and function is the

outcome of the action performed by a subject on an object [33].

An extensible malware taxonomy is built from a set of malware behaviours

grouped into the following classes: Evasion, Disruption, Modification, and

Stealing. The Evasion class contains behaviours pertaining to the removal

of evidence, removal of registries, anti-virus engine termination, and firewall

termination. The Disruption class includes behaviours for the scanning of

known vulnerable services, email sending, Internet Relay Chat (IRC)/Instant

Messaging (IM) known port connection, and IRC/IM unencrypted commands.

The Modification class contains behaviours pertaining to the creation of a

new binary, creation of unusual mutex, modification of name resolution file,

modification of browser proxy settings, modification of browser behaviour, per-

sistence, download of known malware, download of unknown files, and driver

loading. The Stealing class contains behaviours pertaining to the theft of sys-

tem/user data, credential or financial data theft, and process hijacking [34]. It

is noted that the behaviours identified by Grégio et al. are not complete, for

example, gaining control of a command shell or desktop (Backconnect) could

34

be considered to be a member of the Modification class [34].

2.2 Emulated Execution Environments

Research techniques exist for automatic protocol analysis of malware [35].

However, these techniques depend on malware communications with live C2

servers. The usage of the malware capabilities is determined by the malware

operators, and live testing may not reveal the full extent of the malware’s ca-

pability. Other issues related to performing research with live malware include

difficulties in obtaining a consistent supply of live malware, unknown config-

uration, unknown triggering conditions, detection of the analysis IP address

(mitigated by the use of an anonymizing proxy), or the malware operators

gaining access to the analysis VM via malware provided interfaces.

Researchers have recognised the need to prevent malware experiments from

causing harm on the internet. Research systems have been built to provide

containment of malware research [36]. However, these systems do not address

the C2 server problems faced when performing experiments with historical

datasets. Internet simulator programs [37] may be used as part of a malware

analysis environment and can provide generic responses to requests for common

internet services. A malware process may request a connection to a common

website to perform a connectivity check, and an internet simulator may be

able to satisfy this request. However, if a connection to a C2 server or other

attacker-controlled infrastructure is requested, an internet simulator will not

be able to respond with the protocol required by the malware.

The Botnet Evaluation Environment provides an isolated environment for

botnet research with emulated C2 servers for execution of the Agobot, SD-

Bot, GTBot, Phatbot, and Spybot malware [38]. An isolated Waledac botnet

was created by reverse engineering the Waledac malware and identifying the

Waledac botnet protocol. An emulated C2 server was built to support this

protocol, and a 3000 node Waledac botnet was built. This isolated botnet was

used to research security vulnerabilities that could be used to take down the

Waledac botnet [39].

While the ability to automatically generate C2 server emulators for arbi-

trary malware families would be useful, this is not currently feasible, and the

35

recent work in literature is a semi-manual construction process.

The Imaginary C2 program [40] converts captured network traffic into re-

quest definitions that allow C2 HTTP response to be replayed. However, this

traffic replay approach is not suitable for situations where initial network traffic

samples are not available.

One automation approach for the creation of C2 server emulators is pro-

vided in [41]. This research refers to C2 server emulators as Custom Imperson-

ators. Malware samples are executed on a Quick Emulator (QEMU) Virtual

Machine (VM), and instruction traces are collected using DECAF [42], and

the instruction traces are translated into VINE intermediate language [27].

Symbolic execution [43] is performed on the instruction traces, and symbolic

variables are assigned to network input. A Simple Theorem Prover (STP) con-

straint solver [44] is used to determine the values that determine the outcome

of the control flow tests. These values can be used to identify malware control

dependencies controlled by values in the network input [41]. The malware con-

trol flow graph and control dependencies are provided to assist analysts with

the manual construction of C2 server emulators.

Research using ANGR [45], an open source symbolic execution framework,

creates a technique that employs static analysis to determine the C2 com-

mand protocol and associated commands implemented in a common Remote

Access Trojan (RAT). The top-level command processing function of the RAT

is analysed, and for each explored path, a list of the malware API calls and

their arguments, function call relationships, and the network data required

to trigger the path’s execution are provided [46]. Windows API models and

support for the stdcall calling convention were added to ANGR in order to

support the analysis of Windows malware. Heuristics were created to limit the

number of paths explored by the symbolic execution to prevent potential path

explosion problems. Symbolic execution commences at the manually selected

Symbolic Execution Point (SEP), an execution context is needed to provide

precondition values that are generated in malware initialization. In this re-

search, the execution context was generated using two different techniques:

by performing concrete execution, setting a breakpoint at the SEP, taking a

memory dump and extracting the necessary parts of the execution context,

or by moving the SEP backward, allowing initialization of execution context

values. Symbolic execution was used to explore the command processing loop.

36

The report produced by this technique showed the API calls, and the func-

tions called in processing each command as well as the network data required

to trigger the processing of each command. This research targets analysis for a

single RAT, requires manual SEP identification, does not support the analysis

of encrypted protocols, and does not provide support for mining the analysis

report from the tool output [46].

The S2E symbolic execution engine is the basis of research that constructs

C2 servers for RAT [6]. The S2E engine performs symbolic execution of in-

structions and forks execution when branches are taken. A Satisfiability Mod-

ulo Theories (SMT) solver is used to evaluate expressions and obtain concrete

values. To prevent performance problems and scalability issues due to path

explosion, an analyst is required to provide the location of the command pro-

cessing loop and details of how to reach this address. The process used in

this research can be summarised as Trace Generation, Trace Analysis, Spec-

ulation, Validation, and C2 Server Generation. Trace generation uses sym-

bolic execution to explore execution paths and to maximize code coverage. A

number of the recorded traces will cover the RAT command processing code.

The branches taken and API execution details are recorded. Trace analysis

builds Augmented Prefix Tree Acceptors (APTA) that captures API execu-

tion and branches taken along the explored paths. APTA are Deterministic

Finite Automata (DFA) that have been used in the protocol reverse engineer-

ing [47]. The goal of speculation is to generate a small number of paths that

covers all of the commands. Speculative edges are added to the APTA in

an attempt to combine symbolically executed command fragments into paths

containing multiple commands. The symbolic execution engine is then used to

validate speculatively generated paths when speculative edges are validated;

the branches and API calls are recorded. C2 server generation is performed

for each validated path that contains multiple commands. This research gen-

erates a C2 server from the code of a small RAT created for research purposes

[6]. Due to the requirement for manual analysis to provide the location of

the command processing loop as a starting point, this research is classified as

semi-automated.

37

2.3 Function Similarity

The purpose of function similarity is to measure the degree of similarity in

the functions in two compiled programs. The techniques used in the research

literature make use of graph isomorphism, symbolic execution, semantic simi-

larity, dynamic analysis, and machine learning. Cross architecture bug search

is a specialization of function similarity that aims to identify vulnerable library

functions that have been created for a range of IoT devices that utilize different

compilers and CPU architectures.

2.3.1 Graph Isomorphism

One of the first applications of function similarity was in the analysis of vendor

security patches for compiled programs and libraries [9, 18]. This approach

constructs a Control Flow Graph (CFG) for each program, identifies basic

blocks and functions. Graph isomorphism and edge count are used to identify

basic block and function similarity. This structural approach to function simi-

larity does not depend on the contents of each function, which may have been

modified by code updates, or changed compiler settings. Instead, it relies on

the CFG being relatively unchanged by program updates. This research was

used to develop the commercial BinDiff program [48].

BinDiff provides a graph-based analysis of the differences between two ver-

sions of the same program. It was designed to determine the program changes

introduced by security patches [49]. BinDiff uses program structure and syn-

tactic features such as string references when calculating similarity [12]. Bin-

Diff identifies the functions in the two programs and calculates the Control

Flow Graph (CFG) [50] of the functions and uses graph isomorphism to iden-

tify function pairs. Metrics such as edge counts, derived from the CFG are

used to estimate function similarity. BinDiff initially calculates unique func-

tion matches. Additional matches are then found by searching for more unique

matches from unmatched neighbouring functions [51]. The BinDiff user inter-

face displays a ranked list of matching function pairs, a similarity ratio, and

a confidence statistic. BinDiff displays the CFG of selected functions and

identifies matching, differing, and removed basic blocks. BinDiff operates well

when the programs being compared exhibit similar CFGs, however recompil-

38

ing a program with a high optimisation setting changes the CFG sufficiently

to reduce Bindiff’s accuracy to 25 percent [52].

BinSlayer determines pairwise function similarity between malware sam-

ples. It uses the BinDiff algorithm and the Hungarian Algorithm for bi-partite

graph matching. Graph Edit Distance (GED) defines the minimum number of

edit steps required to transform graph A to graph B. GED is a Non-Polynomial

(NP) hard problem, but may be approximated by transforming the problem

into a bipartite graph matching problem which may be solved using the Hun-

garian Algorithm. The matching provided by BinDiff is brittle, and can fail

to match functions that are similar but not identical. The aim of BinDiff is to

match functions that are identical at an abstract level. The aim of BinSlayer

is to match functions which are similar. The concept of matching similar func-

tions is encapsulated by the shortest GED metric. Supplementing the BinDiff

Algorithm by use of the Hungarian Algorithm allows the matching of functions

that are close to identical as well as functions which are similar.

2.3.2 Symbolic Execution

BinHunt identifies matching functions in two programs and extends earlier

work by constructing the CFG for each program, it uses symbolic execution

to identify matching basic blocks, theorem proving is used to test whether the

basic blocks are semantically equivalent. Graph isomorphism is used to identify

matching functions [53]. BinHunt accounts for register renaming by testing

all permutations of registers and variables. As a result, BinHunt requires

significant computing resources [51] [49].

Expose performs identifies similar functions in compiled programs but does

not specifically target malware function similarity. The first step in Expose

processing is a pre-processing step that calculates a matching score based on

input parameter count, out-degree, function size, and cyclomatic complexity.

The pre-filtering step excludes loader functions and unlikely matches. Expose

uses n-gram analysis at the function level to identify functions that are not

suitable for symbolic execution. Symbolic execution is used with a theorem

prover to establish semantic matching. For functions, where a semantic match

cannot be calculated, Expose calculates syntactic function similarity and tests

call relationships. Syntactic function similarity uses n-grams of disassembled

39

code and cosine distance to identify the remaining function pairs [54].

2.3.3 Semantic Similarity

A problem with graph isomorphism based approaches is that this technique

does not scale well, and some use cases seek to identify similar functions in large

datasets. The use of feature hashes avoids the performance issues associated

with graph isomorphism. One approach uses the minhash of the Input/Output

(IO) behaviour of basic blocks in order to cluster similar functions in a large

malware dataset [55]. BinJuice computes abstract semantics for each basic

block of all functions in a compiled program, by a process of disassembly, CFG

generation, symbolic execution, algebraic simplification, and the computation

of function semantics [49]. Four different representations of the unpacked code

are created, these are disassembled code, generalised code, semantics, and

generalised semantics (juice). VirusBattle is built on BinJuice and is used to

identify relationships between malware samples in a large database [56]. Virus-

Battle identifies similar functions by comparing the hashes of the function’s

generalised semantics. This provides a significant performance gain compared

with non-approximate methods, e.g., theorem solvers [57].

BinJuice extracts abstract semantics, called juice, for each basic block of

all functions in a compiled program. The aim of generating abstract seman-

tics is to represent any two equivalent code sequences by the same semantics.

BinJuice computes abstract semantics for each basic block of all functions in

a compiled program, by a process of disassembly, CFG generation, symbolic

execution, algebraic simplification, and the computation of function semantics

[49]. Four different representations of the unpacked code are created, these dis-

assembled code, generalised code, semantics, and generalised semantics (juice).

Disassembly and CFG extraction are performed by existing tools. Basic block

semantics are generated using symbolic interpretation. Symbolic execution

does not involve execution on a physical processor; instead, the effects of the

program instructions can be represented as a set of simultaneous equations.

An algebraic simplifier provides simplification of the symbolic expressions re-

sulting from the symbolic execution. The simplified symbolic expressions are

mapped into a canonical form to ensure that sections of equivalent code having

equivalent symbolic expressions are sorted in the same order.

40

The compilation process that generates equivalent functions will not be

expected to use the same register names or the same memory addresses. To

facilitate the identification of equivalent functions generalisation of code and

semantics is performed by replacing register names and memory addresses

with symbolic values. The instruction mov(eax,dptr(’0x3004’)) would be

represented in gen code as mov(A,B), in semantics as A=pre(memdw(’0x3004’

)), and in gen semantics as E=C. This generalisation of semantics yields an

abstract semantics that is resistant to code variation due to compiler settings

[49]. Logic variables are generated in a consistent manner, so that different

register and memory selections will be reduced to consistent logic variables.

[54, 49, 57].

VirusBattle is built on BinJuice and is designed to identify relationships

between malware samples in a large dataset [56]. VirusBattle identifies similar

functions by comparing the hashes of the function’s generalised semantics.

This provides a significant performance gain compared with non-approximate

methods, e.g., theorem solvers [57]. Basic block similarity can be established

by string comparison of the hash of the block’s juice and does not require

the use of a theorem prover, thereby obtaining a significant performance gain

[57]. VirusBattle has been commercialised by Cythereal Inc and is known as

Cythereal MAGIC.

2.3.4 Dynamic Analysis

Blanket Execution is a dynamic analysis technique for identifying similar func-

tions, by executing function pairs in the two programs being compared. A set

of pseudo-random inputs are provided for each function pair. Features are

taken from the following values: reads or write to the heap, reads or writes

to the stack, calls to library function, system calls, the function return value.

Blanket execution has an accuracy of approximately 77%. An advantage of

this technique is that its performance is independent of compiler toolchain,

and optimization options [52].

2.3.5 Cross-Architecture Bug Search

The proliferation of IoT devices using open source code and a variety of CPU

architectures has led to a research interest in identifying defects in the same

41

source code created with different compilers for several different CPU archi-

tectures. These techniques are optimised for cross-architecture vulnerability

identification within one version of a program.

DiscovRE [10] identifies vulnerable functions across a range of IoT devices.

IoT devices often use open-source code and a variety of CPU architectures.

Vulnerability discovery in an open-source library may impact a range of IoT

devices. The identification of functions containing known vulnerabilities re-

quires the capability to search code generated by different compilers, and

a range of CPU architectures. DiscovRE uses k-Nearest Neighbours (kNN)

machine learning to pre-filter potentially vulnerable functions. The Pearson

product-moment correlation coefficient [58] has been used to select numeric

features that are robust across multiple compilers, compiler options, and CPU

architectures. The following function counts have been used as features: call

instructions, logic instructions, redirection instructions, transfer instructions,

local variables, basic blocks, edges, incoming calls, and instructions. The final

identification of vulnerable functions is performed using maximum common

subgraph isomorphism.

In some scenarios, the DiscovRE pre-screening stage is unreliable [19].

CVSkSA performs cross-architecture searching for vulnerable functions in IoT

device firmware using the kNN algorithm, followed by SVM machine learning

for pre-filtering [19]. Bipartite graph matching [11] is then used to identify vul-

nerable functions from the pre-screened matches. Although the accuracy of the

SVM model for pre-filtering is good, the run time is slow, but kNN pre-filtering

reduces the number of functions to be checked by the SVM model, and this re-

duces execution time by a factor of four with a small reduction in vulnerability

identification performance. CVSkSA uses two levels of features, function level

features are used in the pre-filtering while basic block level features are used

for graph matching. The function level features are call count, logic instruction

count, redirection instruction count, transfer instruction count, local variables

size, basic block count, incoming call count, and instruction count.

Gemini [59] and SAFE [60] use neural networks for cross-architecture bug-

search, as these techniques exhibit better performance characteristics than

graph isomorphism. Gemini performs cross-architecture, binary, software de-

fect search using CFG features. Gemini uses a neural network to extract

features from the CFG of the compiled functions [59].

42

SAFE extracts the instruction sequence from compiled functions and mod-

els them as a natural language [60]. The interaction of the instruction sequence

is captured using a Gated Recurrent Unit Neural Network (GRUNN). An at-

tention mechanism is used to automatically focus on the instructions with the

best performance for the identification of similar functions.

2.4 Dynamic Analysis for Ransomware Detec-

tion

Existing research deals with detecting ransomware using machine learning

[20, 21, 22, 23, 24, 61]. EldeRan [20] demonstrates the importance of fea-

ture selection to reduce the overall complexity of the problem and to improve

the performance of machine learning. EldeRan uses features from the following

classes: API calls, registry key operations, file system operations, file opera-

tions per file extension, directory operations, dropped files, and strings. The

dataset used in this research consisted of 582 samples of ransomware belong-

ing to 11 malware families and 942 benign programs. The benign programs

consisted of generic utilities for Windows, drivers, browsers, file utilities, mul-

timedia tools, developer’s tools, network utilities, paint utilities, databases,

emulator and virtual machine monitors, office tools. While this is a compre-

hensive dataset, it does not specifically target programs with cryptographic

features that could be misclassified as ransomware. Experiments were per-

formed to test the ability of EldeRan to detect known ransomware, and also

to detect novel ransomware. Testing with known ransomware provided an av-

erage accuracy of 0.963 and testing with novel ransomware samples gave a

detection rate of 0.933 with 100 features and a detection rate of 0.871 with

400 features [61].

The research in [23] uses Windows API call data from the Cuckoo sandbox

to generate a vector model of API calls to train an SVM machine learning

model for ransomware detection Two different vector representations are gen-

erated; the first is a vector representation that encoded the API call logs using

a q-gram frequency, and a standardized vector representation. The research

uses 312 samples of benign software; further details of these programs are not

provided. 276 ransomware programs targeting the Windows Operating System

43

are used in this research. This dataset includes ”WannaCry, Cerber, Petya,

CryptoLocker, and so on”, but further details are not provided. The accuracy

of this research using the proposed vector format was 0.9352, and 0.9748 using

the extension to standardized vectors technique. The published results do not

include true positive or false positive values. It is noted that the data was not

divided into malware families before testing, this allows the possibility that

samples of malware families present in the training data were also present in

the test data, raising the apparent average detection accuracy.

RansHunt is a hybrid analysis system that used static and dynamic anal-

ysis for ransomware detection. RansHunt uses the following feature classes:

function length frequency, strings, API calls, registry operations, process op-

erations, and network operations [61]. The dataset used in this research con-

sisted of 360 samples of ransomware from 21 families, 532 different types of

malware, and 460 benign software. Details of the types of benign software in

the dataset were not provided. A 10 fold cross-validation approach was used in

this paper. The selection of a given number of ransomware families for train-

ing and using the remaining families for testing would give a more accurate

understanding of the performance of this research. Feature selection is per-

formed using Mutual Information criteria. The accuracy and precision values

for static analysis were 0.935/0.951, for dynamic analysis was 0.961/0.960 and

were 0.971/0.970 using the hybrid approach. [61] analyses network traffic in

order to detect ransomware by monitoring DNS resolution requests to specific

black-listed domains. They detect dynamically generated C2 servers domain

names to identify Secure Sockets Layer (SSL) key exchange messages.

An analysis of the API calls made by malware samples from 14 malware

families concluded that it may be feasible to identify ransomware behaviour

on the basis of API call profile data alone [22].

CryptoDrop is able to detect ransomware by monitoring changes to user

files [62]. This is performed by monitoring changes to the following: file simi-

larity, file type, file entropy, and file deletion operations.

GURLS [24] uses API call frequency features and machine learning based on

regularized least Squares for ransomware detection. The highest average binary

detection rate of 0.886 was achieved using a radial basis kernel. Multiclass

classification was used to identify each ransomware family with an average

accuracy of 0.867.

44

2.5 Conclusion

The identification and analysis of malware is an important and challenging

task. This chapter has reviewed a number of promising techniques for au-

tomating this process, but several open research questions remain.

The first question relates to the nature of malware. Research has primarily

focused on techniques for malware identification, clustering, and similarity, but

does not focus on the nature of individual malware. This leaves an implied

assumption that existing analysis techniques are best suited for their purpose,

but without an analysis of the behaviours and malware techniques of existing

and new malware families, this assumption cannot be verified.

The second question relates to the dynamic analysis of historic malware

samples. The execution of historic malware samples which no longer have ac-

tive C2 servers results in the execution of the malware initialization functions.

It does not provide the execution of the full malware capabilities. The cre-

ation of an emulated C2 server allows the control of the malware sample and

the execution of its full capabilities. Research into the creation of C2 server

emulators is in its early stages.

The third question relates to the identification of similar function pairs in

two programs. Graph isomorphism techniques have been used for this purpose

but do not scale well as the number of functions in the programs increases.

Symbolic execution and theorem proving techniques perform well to identify

closely matched functions but do not perform well for general function simi-

larity. Machine learning techniques have been used in Cross Architecture Bug

Search research. Machine learning in this application has been used as a pre-

filter due to the high false positive rate. There is a need for a machine learning

technique that can identify function similarity with high accuracy across a

wide range of programs without requiring retraining.

The fourth question relates to the detection of ransomware. While machine

learning techniques for the detection of ransomware have been developed, there

has been no assessment of these techniques’ ability to discriminate ransomware

from benign cryptographic programs. This is an important question for the

practical application of machine learning techniques to ransomware protection

for computers at large.

Chapter 3

A Survey of Similarities in

Banking Malware Behaviours

This chapter explores knowledge specific to banking malware, their history,

families, behaviours, source code leakages, and inter-relationships. A review of

contemporary banking malware families is performed, and it is found that the

literature is fragmented, industry-based, and provided to fulfill commercial

goals. This paper draws together a coherent description of major banking

malware families, identifies malware behaviours present in these families, and

details the implementation of these behaviours. Banking malware families

share common high-level behaviours, and an analysis of these behaviours shows

that their implementation follows specific patterns of abuse of operating system

facilities. This chapter assembles a dataset of malware behaviour details and

then uses the Pharos Framework to bridge the semantic gap between low-level

details and high-level behaviours.

The work in this chapter has been published as a journal paper:

• P. Black, I. Gondal, and R. Layton, “A Survey of Similarities in Banking

Malware Behaviours,” Computers & Security Journal, vol. 77, Impact

factor 3.579, 2018.

45

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

A survey of similarities in banking malware

behaviours

Paul Black

∗, Iqbal Gondal , Robert Layton

Internet Commerce Security Lab, Federation University, Australia

a r t i c l e i n f o

Article history:

Received 30 August 2016

Revised 25 August 2017

Accepted 21 September 2017

Available online 9 October 2017

Keywords:

Malware analysis

Malware components

Banking malware

Malware similarity

Malware capabilities

a b s t r a c t

Banking malware are a class of information stealing malicious software that target the fi-

nancial industry. Banking malware families have become persistent with new versions be-

ing released by the original authors or by others using leaked source code. This paper draws

together a fragmented and industry based literature to provide a coherent description of

major banking malware families, their variants, relationships and source code leakages.

The concept of malware behaviour is well established in the research literature. However,

the literature has not settled on an identification of key malware behaviours. Malware be-

haviours are defined by existing standards, but they are broad in scope and some individual

behaviours are not well defined. This paper identifies a set of malware behaviours that are

present in the selected banking malware families. The conceptual distance between the low

level detail of Application Programming Interface (API) calls and a high level understand-

ing of malware behaviour is known as the semantic gap. This paper assembles a dataset of

malware behaviours and then shows experimental use of the Pharos Framework to bridge

this semantic gap by providing automatic identification of malware behaviour using static

methods.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

This paper uses the term “banking malware” to refer to infor-
mation stealing malware developed by criminal groups, which

are used to attack the financial industry. Banking malware are
known to attack Microsoft Windows and other operating sys-
tems. An industry report states that in 2016 approximately 70
percent of malware samples targeted the Windows Operat-
ing System (OS) (AV-Test, 2017). A significant body of research,
analysis, and reporting exist for malware attacking the Win-
dows OS. The malware considered within this paper is specific
to the Windows OS, however the method described in this pa-
per is applicable to malware targeting any OS.

Current literature describing malware families is largely
produced by commercial organizations. Problems which arise

∗ Corresponding author.
E-mail addresses: paulblack@students.federation.edu.au (P. Black), iqbal.gondal@federation.edu.au (I. Gondal), robertlayton@gmail.com

(R. Layton).

from reliance on a commercial literature is that data may be
lost due to the abandoning of aging webpages, quality is vari-
able and reports may not be complete as they are driven by
commercial interests. Malware research has focused on tech-
niques for malware detection, classification, clustering and

malware similarity (Mohaisen et al., 2015). Prior research has
not focused on specific malware families and the evolution of
these malware families. This may be due to a view that mal-
ware instances are ephemeral and are soon replaced by new

and different malware instances. This paper shows that these
banking malware families have become persistent, are evolv-
ing and that knowledge of these malware families is relevant
to academic and industry based malware researchers.

Dynamic analysis has been widely used to obtain an in-
struction trace or a trace of API calls. A limitation of dynamic
analysis is that it is rarely possible to obtain full execution

https://doi.org/10.1016/j.cose.2017.09.013
0167-4048/© 2017 Elsevier Ltd. All rights reserved.

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2 757

coverage of a malware sample. Static analysis can be used to
extract a graph of API calls from unpacked malware samples.
Static analysis has the advantage of providing full coverage
of the malware sample but may have difficulties determining
API calls made using obfuscation techniques. The API calls de-
tails obtained using either dynamic or static analysis methods
have previously been used for malware detection and mal-
ware classification.

Although many different banking malware families exist,
they share the same high-level goals, that is to enable infor-
mation stealing and financial crime. The aim of this paper is
to examine similarity in the behaviours of this selected set of
malware which serve similar purposes but have different and

somewhat unknown origins. This paper provides an exam-
ple of the use of the Pharos Framework to identify behaviours
which are present in a set of banking malware samples. This
automatic classification of the behaviours present in a mal-
ware sample presents a representation of malware capability
at a higher level of abstraction than has previously been avail-
able.

The requirement for the identification and comparison of
malware behaviours is different from the comparison of sim-
ilarity between malware functions. To establish similarity be-
tween functions it is necessary to show that the actions per-
formed by two functions are equivalent. To compare the be-

haviours of two malware samples, it is necessary to show that
the aggregate behaviour of a group of functions in each sam-
ple is equivalent.

A malware family comprises all the variants of a malware
containing common malicious behaviours (Christodorescu

et al., 2005). To understand the relationship between bank-
ing malware and other types of malware, attempts have been

made to build a malware taxonomy (Grégio et al., 2015). How-
ever these categorisation schemes have been outgrown by the
rapid proliferation of new types of malware.

The structure of this paper is as follows, the literature re-
view examines the concept of malware behaviour, then a re-
view of the selected malware families is given. This is followed

by an overview of the different ways that the selected malware
behaviours may be implemented. The implementation details
of the behaviours of each malware family is given. Finally, an

example of the static identification of malware behaviours is
provided by the use of the Pharos Framework.

This paper provides a survey of the behaviours of the fol-
lowing selection of recent Microsoft Windows banking mal-
ware families: Zeus V2, Citadel, Carberp, Vawtrak, Dridex, Dyre
and Rovnix malware. These malware families were selected

based on prevalence. Table 1 shows a timeline of banking mal-
ware families, the inheritance relationships between variants
and the dates of source code leaks.

Table 1 – Banking malware relationships.

Malware Detected AKA Variant Source Leak

Atmos 2015 Zeus
Banjori 2013 Multibanker BankPatch
Bedep 2014 Rozena
Bolek 2016 Kbot
Buhtrap 2014 2015
Carberp 2010 2013
Carbanak 2015 Anunak Carberp
Chthonic 2014 Zeus
Citadel 2012 Zeus
Corebot 2015
Cridex 2011 Feodo Bugat
Dridex 2014 Bugat Geodo Cridex
Dyre 2014 Dyreza Dyzap Dyranges
Fobber 2015 Tinba
Gameover Zeus 2011 Zeus P2P Zeus
Gozi 2007 Snifula Ursnif 2010
GozNym 2016 Gozi Nymaim

ICE IX 2011 Zeus
ISFB 2015 Ursnif Papras Gozi 2015
Kins 2011 VM Zeus Zberp Zeus
Kronos 2014
Panda 2016 Zeus
Qadars 2013
Qakbot 2009 Qbot
Ramnit 2010
Ranbyus 2012
Rovnix 2011 Carberp
Shiz 2006 Shifu
Tinba 2012 Tinybanker Zusy 2014
Trickbot 2016 TrickLoader
Urlzone 2009 Bebloh Shiotob
Vawtrak 2013 Neverquest Gozi
Zeus 2006 Zbot 2011

758 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2

1.1. Evolution and persistence

Once created, banking malware families have become persis-
tent and have continued to evolve, despite opposition from

law enforcement. This persistence is due to the malware au-
thor’s reuse of source code, the incorporation of leaked mal-
ware source code and a desire to build on existing malware
products rather than re-inventing the wheel. An example of
the persistence of banking malware families is provided by
the Zeus malware. Zeus version 1 was detected in 2006. Zeus
version 2 was detected in 2010. Gameover Zeus was detected

in 2011. The Zeus V2 source code was leaked in April 2011
(Baumhof and Shipp, 2011; Riccardi et al., 2011). Following
the Zeus source code leak Citadel, ICE-IX, Kins, Panda and

Chthonic Zeus variants were developed in a period spanning
from 2011 untill 2016. Leaked source code provides an oppor-
tunity for a malware analyst to increase the insight of their
analysis, however leaked source code also provides an oppor-
tunity for malware authors to improve their products.

1.2. Contribution

The contributions of this paper are as follows:

• Assembling a coherent description of major banking mal-
ware families, their variants, relationships and source code
leakages.

• Identification that when created banking malware fami-
lies are persistent with new versions being released by the
original authors, or by others using leaked malware source
code.

• Identification of a set of key behaviours that allow a high-
level comparison of the techniques used to implement
banking malware families.

• Identification of the techniques that are used to implement
the identified behaviours.

• Demonstration of the Pharos Framework which can pro-
vide behaviour identification by static analysis.

2. Related work

An OS provides a finite number of API calls to allow appli-
cation programs to access OS services. Consequently, the set
of all possible operations that can be performed by a finite
program using OS services is finite. Malware operates by ma-
nipulating OS behaviour; therefore, malware operations can

be represented as a finite set of API calls (Martignoni et al.,
2008). The monitoring of malware API calls using dynamic
analysis results in a detailed log. This log of malware API
calls needs to be converted into a higher level representation

that would be more easily understood by an analyst. The con-
ceptual distance from a low level log of API calls to a higher
level representation is known as a semantic gap. Martignoni
et al. (2008) bridge this semantic gap by mapping the high-
level goals of the malware into finite sets of API calls. The set
of high-level goals is referred to as the malware’s behaviour
(Martignoni et al., 2008).

Dynamic analysis of malware behaviour has been

used to extract specifications of malware behaviour

(Christodorescu et al., 2008). The specifications are de-
rived from API call profiles obtained from dynamic analysis.
These malware specifications are used for the detection of
malware. Malware capabilities labelling, using Linear Tempo-
ral Predicate Logic (LTPL) operating on a dynamic trace of file
system access, has been used to identify malware capabilities
as part of a malware detection system (Mankin, 2013).

Singh (2002) proposes the modelling of the malicious be-
haviours of malware by using tuples of Subject, Object, Action,
and Function, where subject represents active system entities,
object is a system resource which is used to store information,
action is the malicious behaviour which is initiated by a trig-
ger, and function is the outcome of the action performed by a
subject on an object.

Grégio et al. (2015) propose a set of malware behaviours
in order to build an extensible malware taxonomy. These be-
haviours are grouped into classes. The classes are, Evasion,
Disruption, Modification, and Stealing. The Evasion class con-
tains behaviours pertaining to the removal of evidence, re-
moval of registries, anti-verus engine termination, and fire-
wall termination. The Disruption class contains behaviours
for the scanning of known vulnerable services, email send-
ing, IRC/IM known port connection, and IRC/IM unencrypted

commands. The Modification class contains behaviours per-
taining the creation of a new binary, creation of unusual
mutex, modification of name resolution file, modification of
browser proxy settings, modification of browser behaviour,
persistence, download of known malware, download of un-
known files, and driver loading. The Stealing class contains
behaviours pertaining to the theft of system/user data, theft
of credentials or financial data, and process hijacking (Grégio
et al., 2015). It is noted that the behaviours identified by
Grégio et al. are not complete, for example, gaining control of
the command line or desktop (Backconnect) could be consid-
ered to be a member of the Modification class.

3. Malware behaviours

The MAEC language is provided to permit the sharing of
structured information about malware (Kirillov et al., 2014b).
The MAEC language defines low level actions, mid-level be-
haviours, and high-level capabilities in relation to malware.
Low level actions are those actions that can be performed by
malware through OS API calls. Mid-level behaviours aim to or-
ganise and describe the intention behind low level actions. Be-
haviours describe the operation of a malware instance at an

abstract level and consist of groups of low level actions (Lee
et al., 2013). Capabilities provide a description of the full range
of behaviours of malware. MAEC provides a non-exhaustive
list of malware capabilities which are shown in Table 2 (Kirillov
et al., 2014a). The MAEC language not only provides a language
for exchanging information about malware, it formalises the
concepts of malware low-level actions, behaviours, and capa-
bilities. Some of the default MAEC behaviours are broad in

scope and may be difficult to map into low level actions, e.g
the Fraud behaviour.

Banking malware employs the following key capabilities:
command and control, data theft, spying, integrity violation,
data exfiltration, fraud, and persistence. This paper uses the

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2 759

Table 2 – MAEC capabilities and the behaviours used in

this paper.

MAEC Capability Behaviour Name

Command and Control Configuration
Remote Machine manipulation
Privilege escalation
Data theft Info Stealing, Injection
Spying Screenshot, Video Capture
Secondary Operation
Anti-detection Anti-Analysis
Anti-code analysis Anti-Analysis
Infection/Propagation
Anti-behavioural analysis Anti Analysis
Integrity violation Process Injection
Data Exfiltration Network Communications
Probing
Anti-removal Persistence
Security degradation Info Stealing, Injection
Availability violation
Destruction
Fraud Configuration, Info Stealing,

Injection
Persistence Persistence
Machine access/control Backconnect, Network

Communications

following non-exhaustive set of behaviours: Persistence, Con-
figuration, Process Injection, Information Stealing and In-
jection, Network Communications, Backconnect, Screenshot
and Video Capture, and Anti-Analysis. These behaviours were
identified as they represent the core behaviours of the selected

banking malware families. A comparison of the implementa-
tion of these behaviours is used to demonstrate the degree
of similarity between banking malware families. A compari-
son of MAEC capabilities to the behaviours used in this pa-
per is shown in Table 2 . As the MAEC capabilities represent
all malware families, they are a superset of banking malware
behaviours.

The Application Program Interface (API) calls referred to in

this paper are assumed to be Windows OS API calls, the details
of which are provided in Microsoft developer documentation

(Microsoft, 2016).
The remainder of this section discusses how each of the

key malware behaviours might be implemented in the case of
the Windows OS. The following section will then review the
implementation used by each malware in our selection.

3.1. Persistence

Modern OS’s have a function to automatically start pro-
grams, including malware. In the Windows OS, these are
known as Auto-Start Extensibility Points (ASEP) (Blunden,
2012; Wang et al., 2005). When malware is installed, it uses
the OS ASEP capability to ensure that it is started and to
ensure its persistence (Mankin, 2013). The HKLM \ SOFTWARE \
Microsoft \ Windows \ CurrentVersion \ Run registry entry
is often used for malware start-up. The registry entry is com-
monly referred to as the registry run key or the run key (Carvey,
2005; Sikorski and Honig, 2012; Wang et al., 2005).

The HKLM \ SOFTWARE \ Microsoft \ Windows NT \ Current
Version \ Windows \ AppInit_DLLs registry entry contains a

list of Dynamic Link Libraries (DLLs) loaded into every GUI
process when it is started (Blunden, 2012; Carvey, 2009; Wang
et al., 2004, 2005). The winlogon program creates events for ac-
tions such as logon, logoff, start-up, shutdown, and lock screen

(Blunden, 2012). The HKLM \ SOFTWARE \ Microsoft \ Windows
NT \ CurrentVersion \ Winlogon registry entry contains the
name of the DLL that will be called to handle a specific Win-
dows event. This registry entry may be used for malware pur-
poses.

The Windows OS runs system tasks as services, which

are DLL files that are run by the svchost program. It is com-
mon to see several svchost instances running on a Win-
dows OS. The regsvr32 program is used to register DLL files
as Windows services. Malware DLLs are commonly run as a
service using the regsvr32 command or by adding an entry
to HKLM \ SYSTEM \ CurrentControlSet \ Services (Carvey,
2005; Sikorski and Honig, 2012; Wang et al., 2005). A malware
installer may patch (trojanize) an OS program. The patch in-
serts malware code and then returns control to the OS pro-
gram (Sikorski and Honig, 2012). There are many other reg-
istry locations that are used for malware start-up. The Au-
toruns program displays the programs that automatically run

when the Windows OS is started (Sikorski and Honig, 2012). A

malware program can protect its persistence with the use of
a thread or a process that is used to recreate the persistence
mechanism when it is removed from the OS start-up locations
(Malware Digger, 2015a).

The Carberp and Rovnix malware families make use of a
bootkit (contraction of “boot loader” and “rootkit”). The bootkit
allows malware code to load an unsigned driver and maintain

control through the boot process. Bootkit techniques allow the
malware developer to circumvent the Windows signed driver
policy and to maintain persistence when the OS is re-installed

(Rodionov et al., 2014). The malware driver may be used to cre-
ate a hidden, encrypted Virtual Filesystem (VFS). I/O Request
Packet (IRP) filtering is used by the malware driver to prevent
the encrypted filesystem from being read or overwritten. The
malware driver is used to inject malware code from the hid-
den filesystem into a target process (Rodionov et al., 2014;
Rodionov and Matrosov, 2012).

3.2. Configuration

Banking malware uses a configuration (Kolbitsch et al., 2010)
that provides details of the financial institutions that are be-
ing targeted, data to be displayed to the victims, and it may
contain scripts to automatically transfer funds from the vic-
tim’s account. The configuration may contain webinjects data
or include URL links to webinjects scripts. A webinject con-
sists of HTML/Javascript which is injected into a webpage. We-
binjects may be present in the configuration or the config-
uration may link URLs where the webinjects can be down-
loaded. Webinjects are used to defeat the security measures
of a specific bank. Webinjects may be used for a variety of
purposes including automatic funds transfer (Binsalleeh et al.,
2010; Boutin, 2014; Forrester, 2014; Kharouni, 2012). The con-
figuration stored on the victim’s computer is encrypted to
avoid detection. The encryption used by the banking malware
includes AES, TwoFish, RC2, RC4, RC6 and custom encryp-
tion. Custom encryption functions are developed by malware

760 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2

authors using bit and arithmetic operators. Custom encryp-
tion systems do not provide strong encryption, however
they are novel and may cause existing analysis tools to fail
(Kroustek, 2015; Malware Digger, 2015b; Matrosov et al., 2011;
Milletary, 2012; Rodionov and Matrosov, 2012; Rossow et al.,
2012; Wyke, 2011).

Banking malware configuration is generally implemented

as a static configuration within the malware sample, while
a dynamic configuration is downloaded from the attacker’s
Command and Control (C2) server. The static configuration

contains basic details such as the IP addresses or hostnames
of the C2 server, a customer identifier and possibly a cipher
or encryption key (Binsalleeh et al., 2010; Wyke, 2015). The
dynamic configuration may contain details of websites to ig-
nore, websites to target and the actions to be performed when

a specified website is visited. The use of a dynamic con-
figuration gives the attacker flexibility in controlling the at-
tack, thereby allowing configuration changes in response to
bank countermeasures and changing targeting requirements
(Al-Bataineh and White, 2012; Binsalleeh et al., 2010).

A criminal group running a large network of compromised

computers (a botnet) may partition the botnet so that their
criminal “customers” have access to data stolen from a spec-
ified section of the botnet. This is performed by embedding a
customer ID into the configuration of the banking malware.

3.3. Process injection

Process injection is a technique commonly used by malware
in order to hide the malware code by running it within a be-
nign system process. Due to the complexity of process in-
jection, the method used by a malware family may be con-
sidered to be invariant (Barabosch et al., 2014). Process injec-
tion allows the injected malware to utilise the access level of
the target program. Malware code can be injected into a web
browser process in order to obtain internet access (Sikorski
and Honig, 2012). Malware process injection can be performed

using a number of techniques including DLL injection, di-
rect injection, process hollowing, and Asynchronous Proce-
dure Call (APC) injection.

DLL injection is a common method to cause a process
to execute malicious code. DLL injection operates by inject-
ing code into a remote process. When this code is executed,
it calls the LoadLibrary API with the name of the ma-
licious DLL. The OS then loads the malicious DLL and be-
gins execution of the dllmain function. The Windows APIs
most often used in DLL injection are: VirtualAllocEx ,
WriteProcessMemory , GetModuleHandle , GetProcAdd
ress , and CreateRemoteThread (Berdajs and Bosni ́c, 2010;
Kasslin et al., 2005; Sikorski and Honig, 2012; Sun et al., 2006).

Direct injection uses APIs similar to those in DLL injection,
except it is not necessary to force the target process to load

a malicious DLL. The Windows APIs commonly used in direct
injection are: OpenProcess , VirtualAlloc , OpenProcess ,
WriteProcessMemory and CreateRemoteThread. Calls
are made to VirtualAllocEx and WriteProcessMemory
in order to copy the data and code of the malicious program

into the target process. When the injected code begins ex-
ecution, it obtains the addresses of the required APIs using
LoadLibrary and GetProcAddress calls or by using cus-

tom functions. Direct Injection requires a higher skill level on

the part of the malware author (Sikorski and Honig, 2012; Sun

et al., 2006).
Process hollowing starts by creating a benign process in

a suspended state. GetThreadContext is used to obtain a
thread in the process and ReadProcessMemory is used to
read the memory of the process. ZwUnmapViewOfSection
is used to deallocate the memory associated with each

of the program sections. VirtualAllocEx is used to
allocate memory and malware code is copied into the
newly allocated memory using the WriteProcessMemory.
SetThreadContext and ResumeThread are used to start
process execution. An anti-virus program running on the vic-
tim’s machine will see the name and PE header of the be-
nign process and may not detect the executing malicious code
(Sikorski and Honig, 2012).

The APC facility, provided by the Windows OS allows a
function to be called in response to an asynchronous event.
Normal execution of the program is interrupted and the called

function executes as a thread in its own context. APC’s may
be issued for kernel mode or for user mode code (Alexander,
2012; Sikorski and Honig, 2012). The PowerLoader injection

method is an example of APC injection that is used to tar-
get the Windows explorer process. In this technique, a pointer
in the taskbar’s window handling procedure is overwritten. A

handle for the taskbar is obtained using the FindWindow API.
The function pointer for the taskbar’s window handling pro-
cedure is located at the start of the extra window memory. Ex-
tra window memory is accessed using the GetWindowLong
and SetWindowLong APIs. A GetWindowLong call is made
to obtain the address of the taskbar’s window handler func-
tion. A SetWindowLong call is made to set the handler func-
tion pointer to the injected malware function. Finally, a call is
made to the SendNotifyMessage API to cause execution of
the malware function (Author Unknown, 2013; Dietrich, 2014).

3.4. Information stealing and injection

A key characteristic of banking malware is to lower OS in-
tegrity in order to steal user data and to modify data pre-
sented to the user. The lowering of OS integrity is performed

by hooking API calls to alter flow control (Garcia-Cervigon and

Llinas, 2012). The hooking of API calls can be performed in

several places in non-privileged (user-mode) and privileged

execution (kernel mode). User-mode hooking techniques in-
clude the hooking of the Import Address Table (IAT) and in-
line hooking. User-mode hooking is performed on a per pro-
cess basis. However, system mode hooks are applied to all pro-
cesses. System mode hooking is more demanding because it
is not well documented and errors in the hooking software
can cause system failure (Kasslin et al., 2005; Mankin, 2013).
System mode hooking techniques include the hooking of the
System Service Dispatch Table (SSDT), API call patching, Di-
rect Kernel Object Modification (DKOM) and the addition of a
malware file system driver.

There is one IAT per process and each IAT contains pointers
to functions contained in the DLLs that are used by the pro-
cess. The IAT is populated by the OS loader. In IAT hooking,
the malware first saves the original API call function pointer
and replaces it with a call to a malware function. Before the

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2 761

malware function exits, the original API call is made (Berdajs
and Bosni ́c, 2010).

In inline hooking, the first five bytes of an API call are
saved and then overwritten to jump to a malware function.
The saved bytes are then executed at the end of the malware
function in order to call the API call. As the Intel 32 bit architec-
ture uses variable length instructions, a disassembler function

can be used in the hooking process in order to determine in-
struction lengths to ensure that overwriting does not corrupt
instructions and cause a system crash. The inline hooking ap-
proach is also used by the Microsoft Detours library (Berdajs
and Bosni ́c, 2010; Hunt and Brubacher, 1999; Tsaur and Chen,
2010).

When an API call is made by a user-mode program, the API
call provides an interface to the underlying system code oper-
ating in privileged mode. An API call dispatch ID is passed to
the SYSENTER instruction. The SYSENTER instruction is used

to enter ring 0 or privileged mode execution. The API call dis-
patch ID is used as an index to the SSDT to obtain a func-
tion pointer for the required API call. Overwriting of a function

pointer in the SSDT allows hooking of an API call. Unlike non-
privileged hooking methods, SSDT hooking provides hooking
of an API call for all processes (Kasslin et al., 2005; Mankin,
2013).

System code may be patched and patching can be per-
formed on disk or in memory. The patching of the system code
requires a higher skill level and is harder to detect than user-
mode hooking. Patching can be used to disable tests, provide
inline malware code, or to jump to malware code in a separate
memory allocation (Mankin, 2013).

DKOM provides methods to access and modify kernel data
structures relating to processes and drivers, in order to hide
processes or drivers. Windows processes and drivers are rep-
resented as data structures on double linked lists. A process
may be hidden by removing the corresponding data structure
from the process list. One difficulty with the DKOM approach

is that much of the Windows OS kernel internals are not doc-
umented and may be changed by patches or by the release of
OS updates (Kasslin et al., 2005; Mankin, 2013).

Windows provides a layered device driver architecture.
In this architecture, IRPs that represent driver requests are
passed between the objects at different layers of the device
driver stack. The insertion of a malware device driver can be
used to log keystrokes or to hide directories and files by drop-
ping IRPs (Mankin, 2013).

The research by Liang et al. (2008) resulted in the Hook-
Finder program. This program uses dynamic analysis to iden-
tify hooking behaviours in malware samples without prior
knowledge of hooking mechanisms.

3.5. Network communications

Banking malware uses encryption of network traffic in order
to avoid detection by intrusion detection systems (IDS) and in-
trusion prevention systems (IPS). TLS/SSL, RC4, AES, and cus-
tom encryption schemes are commonly used.

Stolen victim credentials and malware statistics are valu-
able information for the attacker. These details are passed

back to a C2 server controlled by the attacker. This process

is known as exfiltration (Al-Bataineh and White, 2012). Cus-
tom protocols are generally used by malware for loading a dy-
namic configuration or exfiltrating stolen data. These proto-
cols frequently use common TCP/IP ports (HTTP, HTTPS and

DNS) as firewalls are often configured to pass data that uses
these ports (Born, 2010).

Banking malware can use a Domain Generation Algorithm

(DGA). A DGA is an algorithm that produces domain names
that may be based on date. The generated domain names
are registered in advance by the attacker. The generated do-
main names are used as a fallback measure in cases where
hardcoded C2 servers are not available (Kolbitsch et al., 2010).
A DGA can generate a large number of domain names. This
may also be an attempt to hinder analysis (Antonakakis et al.,
2012). Replication of date based DGA algorithms can be used to
identify malware related domains. DGA domain names gener-
ated by replication may be used to identify malware instances
and may be used in remediation (Plohmann et al., 2016).

URL redirection can be used to prevent the victim from ac-
cessing an anti-virus vendor’s website. It can also be used to
redirect the victim to a phishing website. URL redirection may
be performed by adding extra entries to the hosts file, by set-
ting up a proxy autoconfiguration file, or by hooking API calls
(Grégio et al., 2015).

3.6. Backconnect

Backconnect provides an attacker with access to the com-
mand line or desktop of an infected computer. Desktop ac-
cess on the victim’s computer allows banking transactions
to be made by the attacker while the victim is connected to
an internet banking session. A backconnect session is initi-
ated when a command is sent from the attacker’s C2 server to
the victim’s computer. Malware installed on the victim’s com-
puter responds by opening a connection to the attacker’s C2
server. Initiating the connection from the victim’s computer
to the attacker’s C2 server bypasses connection problems due
to firewall or Network Address Translation (NAT) connections.
A backconnect facility can be implemented using SOCKS, FTP,
HTTP, Virtual Network Computing (VNC) or Remote Desktop

Protocol (RDP) protocols (Dos Santos, 2012; Sood and Enbody,
2014). An advantage of using the VNC protocol is that VNC al-
lows the victim and attacker to be simultaneously connected

to a compromised computer. If an attacker using the RDP pro-
tocol connects to a compromised computer while the vic-
tim is using the computer, then the victim will be logged out
(Cherepanrov and Lipovsky, 2013).

A SOCKS or HTTP proxy provides the attacker with the abil-
ity to login to an internet banking website which, through the
lens of bank security software, appears as though the bank-
ing session is originating from the IP address of the victim’s
computer.

3.7. Screenshot and video capture

The screenshot behaviour allows an attacker to capture im-
ages of the desktop, showing details such as the use of a
virtual keyboard to enter credentials for a banking session.
Video capture allows recording of a video of the users banking

762 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2

session, providing the attacker with a better understanding of
the victim’s banking session (Milletary, 2012).

3.8. Anti-analysis

Strings in malware are commonly encrypted in order to delay
analysis and prevent simple techniques being used to iden-
tify the malware. Simple custom encryption methods using bit
or arithmetic operations, base64 encoding, and substitution

ciphers are commonly used for string obfuscation (Cannell,
2015; Giuliani and Allievi, 2010; Kroustek, 2015; Sikorski and

Honig, 2012; Trend Micro, 2010). Strings in malware may also
be encrypted with stronger encryption algorithms (Aronov,
2015).

API calls are commonly obfuscated in malware in order to
delay analysis and to prevent simple methods from being used

to understand the malware. Commonly used API call obfusca-
tions include the use of an API call handler function that may
be passed integer or hash values representing the API to be
called. Another technique is to copy API code to a new mem-
ory allocation within the malware program (Cherepanrov and

Lipovsky, 2013; Giuliani and Allievi, 2010; Suenaga, 2009).
There are a number of well-known virtual machine (VM)

detection methods. These methods include Microsoft Virtual
PC detection using custom instruction codes, VMWare detec-
tion using the control port, Interrupt Descriptor Table (IDT)
register testing, checking of system services, checking the
MAC address of the network card, checking for VM specific
hardware devices, filesystem checking, use of the cpuid in-
struction to test for hypervisor execution, checking for VM

specific registry keys and testing the number of CPU cores
(Brand, 2010; Kovacs, 2015; Lau and Svajcer, 2010). The Rovnix
malware creates a system crash by sending an IoControlCode
to a Sysinternals driver that is installed as part of the Rovnix
installation. The aim of this is to halt automated analysis in a
VM (Malware Digger, 2015a).

Malware anti-analysis features may prevent installed mal-
ware samples from being collected and then executed on

a computer different from the installation computer. These
techniques operate by generating data from a feature of the in-
stallation computer and patching the installed malware pro-
gram with this data. When the installed program is executed,
the feature data is checked against the current execution envi-
ronment. An example of this is the use of the hard disk volume
identifier by Zeus malware (Wyke, 2011). When the Citadel
malware detects that it is executing in a VM, it attempts to
connect to a randomly generated C2 address. This is an at-
tempt to mislead analysis into concluding that the sample is
not active (Milletary, 2012; Rahimian et al., 2014).

4. Malware families

This section gives details of the following banking malware
families: Zeus and the Citadel variant, Vawtrak, Dridex, Dyre,
Carberp and Rovnix. Descriptions of the operation of the above
malware families are based on research papers, industry re-
ports, and web pages. These sources describe potentially dif-
ferent versions of malware and, in some instances, present
conflicting details of malware operation.

4.1. Zeus malware

The first version of the Zeus malware (Zeus V1) also known

as Zbot was detected in 2006 (Ligh and S. S. Corporation, 2006;
Riccardi et al., 2011). Zeus was the first banking malware kit. It
was sold publicly and little technical knowledge was required

to create a Zeus botnet. Zeus version two (Zeus V2) was first
detected in 2010. Zeus V2 provided the facility to have multiple
instances of Zeus running on one computer and the use of
RC4 encryption in Electronic Code Book (ECB) mode (Selvaraj,
2010). Zeus V2 malware has the following capabilities:

• Rule based stealing of user data from HTML forms,
• Rule based injection of data into a websites HTML,
• URL redirection to websites controlled by the attacker,
• Capture of the HTML of targeted websites,
• Stealing of cookies,
• Deletion of cookies,
• Stealing of mail and FTP account credentials,
• Download and execution of additional programs and

• Built-in virtual network computing (VNC) console.

Zeus malware achieves persistence by adding the Zeus
program to the HKLM \ SOFTWARE \ Microsoft \ Windows \
CurrentVersion \ Run registry entry (Wyke, 2011).

The Zeus V2 program contains a xor encrypted static con-
figuration that includes a dynamic-configuration-URL. The
dynamic configuration includes the URL where stolen data
can be uploaded, trigger conditions for screenshots, the URL
where the updated versions of the malware can be down-
loaded, URL-masks to control logging, URL redirection pairs,
IP and hostname pairs for URL redirection, and webinjects.
When the dynamic configuration is decrypted, a recursive
xor procedure is performed to decode the decrypted data.
This procedure is known as “visual decrypt”. The decoded

data is then decompressed using UCL (NRV2B) decompression

(Baumhof and Shipp, 2011; Wyke, 2011). The encrypted Zeus
configuration data is stored in a randomly named registry key
(Alvarez, 2013; Wyke, 2011). Stolen data is encrypted using a
second RC4 key. This data is temporarily stored into a file be-
fore being sent to the C2 server. Zeus V2 malware uses three
threads: a thread for receiving network data, a thread that
downloads the configuration data, and a thread that checks
the malware’s start-up key in the Windows registry and re-
places it if it is removed (Wyke, 2011).

Zeus uses a direct injection method to inject its malware
code into other processes. Zeus iterates through processes us-
ing the CreateToolhelp32Snapshot , Process32FirstW ,
and Process32NextW APIs. The system and the Zeus
processes are skipped. A mutex is then created using a
CreateMutexW call. Each selected process is opened with

an OpenProcess call. An access token for this process is
obtained by an OpenProcessToken call with a requested

access of TOKEN_QUERY. If the access token is not avail-
able, iteration continues with the next process. The pro-
cess is then opened using an OpenProcess call. The ac-
cess mode specified on the OpenProcess call checks for
full access to the target process. If the current process is ac-
cessible, then memory is allocated in the target process us-
ing a VirtualAllocEx call. The Zeus malware is copied

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2 763

to the target process using a WriteProcessMemory call.
A handle to the previously created mutex is passed us-
ing a DuplicateHandle call. The injected Zeus code is
then started using a WriteProcessMemory call. The cur-
rent process and the generated mutex are then closed by
CloseHandle calls (Alvarez, 2013).

When a Backconnect command is sent from the attacker to
the compromised computer, a network connection is opened

from the victim’s computer to a server controlled by the at-
tacker. This allows network connections to a firewalled ma-
chine (Falliere and Chien, 2009). The Backconnect facility
provides command line access and allows the use of the
RDP, Socks, and FTP protocols (Falliere and Chien, 2009; Zeus
Author, 2011).

Zeus contains a Virtual Network Computing (VNC) based

facility that allows the attacker to connect to the Graphical
User Interface (GUI) of the victim’s computer and perform

banking transactions from the victim’s IP address and allows
access to hardware based authentication mechanisms used by
the victim (Stevens and Jackson, 2010).

Zeus contains a screenshot facility. The trigger conditions
to take screenshots are provided in the configuration. An ex-
ample would be taking a screenshot of the banking balances
of an internet banking session. The trigger condition would

be the URL used by a specific bank to display balance infor-
mation. Screenshots can be taken by a left mouse click on the
virtual keyboards used by banking websites (Ligh and S. S. Cor-
poration, 2006; Stevens and Jackson, 2010).

Zeus provides a URL redirection facility that is used to take
the victim from the desired website to an attacker controlled

website (Stevens and Jackson, 2010).
An anti-analysis feature of the Zeus malware involves cre-

ating a GUID from the volume identifier of the hard disk on

which the malware is installed. This GUID data is then writ-
ten into the installed malware program. When the Zeus mal-
ware is executed, an action is taken to check the internal
GUID data against a GUID created from the volume identi-
fier of the hard disk from the execution environment. If the
two GUIDs do not match, the malware terminates (Wyke,
2011).

Zeus uses inline hooking of API calls (Ligh and S. S.
Corporation, 2006). Zeus V1 hooks the
NtQueryDirectoryFile API call to hide its files and

uses a simple fixed key encryption algorithm (Wyke, 2011).
Zeus V2 does not hide its files (Wyke, 2011). A weakness
with Zeus V2 is that its configuration data could be directly
downloaded by security researchers and decrypted using the
configuration RC4 key contained within the malware sample.

The source code for the Zeus V2 malware was leaked online
in April 2011 (Baumhof and Shipp, 2011; Rahimian et al., 2014;
Riccardi et al., 2011). The public availability of the Zeus source
code led to the development of a number of Zeus variants in-
cluding Citadel and ICE-IX. Another Zeus variant was the Zeus
Peer to Peer (Zeus P2P) malware, also known as Gameover Zeus
(GOZ).

4.2. Citadel malware

The Citadel malware was derived from the leaked Zeus
V2 source code. Citadel was first detected in January 2012

(Milletary, 2012). Citadel is based on the Zeus source code, so
there are significant similarities between the Zeus malware
and the Citadel malware. The facilities of the Citadel malware
are similar to those of the Zeus malware with the addition of
the following improvements:

• Modified RC4 algorithm,
• Video capture,
• Sandbox detection,
• Support for Google Chrome,
• Securing of the configuration file,
• AES cryptography,
• VM detection,
• Automated DOS command line injection and

• Distributed denial of service attack capability (Milletary,
2012; Rahimian et al., 2014).

Citadel maintains persistence by adding the Citadel
program to the HKLM \ SOFTWARE \ Microsoft \ Windows \
CurrentVersion \ Run registry entry (Rahimian et al., 2014).
Citadel configuration data is stored in the registry in the
same manner as Zeus. Citadel samples contain a 32 byte
“hex as ASCII” value that is referred to as the login key. In

Citadel version 1.3.4.5 the RC4 algorithm was modified by
the addition of xor operations (AhnLab, 2012; Milletary, 2012;
Rahimian et al., 2014). Citadel uses AES 128 bit encryption in

ECB mode (Milletary, 2012). The AES encryption key is created

by taking an MD5 hash of the login key and then using an RC4
key to encrypt this MD5 hash (Milletary, 2012). Version 1.3.4.5
uses a modified RC4 algorithm. The modification consists of
adding extra xor operations to the RC4 encryption function.
In version 1.3.5.1, the AES function was modified by the use
of an additional 128 bit xor key. This key is used to xor each

block of data prior to AES encryption or after AES decryption.
Citadel uses UCL compression as does Zeus. Citadel commu-
nicates with the C2 server using the HTTP protocol with RC4
encrypted data (Milletary, 2012).

The security of the Citadel configuration was improved by
requiring an encrypted request for the configuration. To create
a request to download a Citadel configuration, a new RC4 key
is generated using a modified RC4_init function and static val-
ues embedded within the Citadel program. The new RC4 key is
used to encrypt a configuration request data structure prior to
sending to the Citadel C2 server (Rahimian et al., 2014; Wyke,
2012). Citadel uses the same direct process injection technique
as Zeus (Barabosch et al., 2014).

Citadel uses the same backconnect techniques as Zeus.
Citadel contains a screenshot facility and has a video capture
plugin to provide a live video recording of operations on the
victim’s screen. Citadel contains a VNC server and a SOCKS
server (Milletary, 2012; Sood and Rohit, 2014).

Citadel performs VM detection by checking strings in the
resources section of each process running on the system.
When a VM is detected, Citadel attempts to connect to a ran-
domly generated URL. This is an attempt to deceive analysis
and to indicate that the sample is no longer active (Milletary,
2012; Rahimian et al., 2014). The Citadel malware contains a
list of anti-virus websites which it prevents to by using DNS
redirection (Rahimian et al., 2014).

764 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2

4.3. Vawtrak malware

Vawtrak malware belongs to the Gozi malware family and

is also known as Neverquest or Snifula (Kimberly, 2014b;
Kroustek, 2015; Wyke, 2014). Gozi malware was first detected

in 2007 (Jackson, 2007). Gozi was a competitor to Zeus mal-
ware and used a “Crimeware As A Service” business model
(Wyke, 2014). Vawtrak malware was first detected in August
2013 (Trend Micro, 2015). A new version of the Vawtrak mal-
ware was detected in October 2015 (Huss and Matthew, 2015).
The following description refers to the Vawtrak variant from

2013. Vawtrak has the following facilities:

• Keystroke logging and credential stealing (Kroustek, 2015),
• VNC server, to allow remote control of the victim’s com-

puter (Kroustek, 2015; Wyke, 2014),
• SOCKS server, to allow the attacker to utilize commu-

nications with the IP address of the victim’s computer
(Kroustek, 2015; Wyke, 2014),

• Screenshot and video capture facilities (Kroustek, 2015;
Wyke, 2014),

• A debugging feature that may also be used by malware an-
alysts (Wyke, 2014),

• Ability to hinder anti-virus software by setting a Soft-
ware Restrictions Policy (SRP) in the Windows registry. This
SRP setting restricts the privileges of anti-virus processes
(Kroustek, 2015; Wyke, 2014),

• Ability to disable the IBM Trusteer Rapport security pro-
gram by hooking the VirtualProtect API (Kroustek, 2015),

• Support for information stealing and injection in Inter-
net Explorer, Firefox and Chrome web browsers (Kroustek,
2015).

Vawtrak uses the RegCreateKey and RegSetValueEx
API calls to create HKCU \ Software \ Microsoft \ Windows \
CurrentVersion \ Run registry entry to automatically start
the Vawtrak malware DLL using the regsvr32 program

(Alvarez, 2015; Kroustek, 2015; Wyke, 2014).
Vawtrak uses an RNG function that is similar to the Linear

Congruential Generator (LCG) employed in Visual C++ (Wyke,
2014). The LCG seed is stored in the header of encrypted data.
The stream of pseudorandom numbers generated by the LCG

function are used to perform xor encryption.
Communications with the C2 server use the HTTP protocol

(Kroustek, 2015). Some Vawtrak C2 servers are accessed us-
ing The Onion Router (TOR) protocol. TOR C2 hostnames are
generated using a DGA with hardcoded seed values (Alvarez,
2015). Data sent to the C2 server is obfuscated by a cus-
tom encoding function (Kilman, 2014), and in later versions,
this data is also base64 encoded. Vawtrak configuration data
from the C2 server is encrypted using LCG based encryption

and is compressed using aPLib compression (Asinovsky, 2014;
Ibsen, 2014; Kroustek, 2015). Initial C2 addresses are contained

in the embedded static configuration. When an updated C2
server list is downloaded, signing is verified with an embedded

RSA public key (Kroustek, 2015). Encrypted and compressed

configuration data is stored in a randomly named registry key
(Kroustek, 2015; Wyke, 2014).

The Vawtrak configuration contains a list of target URLs
and the associated webinjects. Following this is a list of so-

cial networking, entertainment, and shopping website URLs.
When these URLs are encountered, credentials are extracted

and sent back to the C2 server. These credentials are used to
further spread the Vawtrak malware. Following the URL list is
a list of banking related phrases. When these phrases are de-
tected, the contents of the webpage are sent to the C2 server
and are used to facilitate the development of webinject scripts
to target additional organisations (Wyke, 2014). The Vawtrak
configuration includes a Project ID that is used to partition

the botnet and is specific to each Vawtrak customer (Kroustek,
2015).

On a 32 bit OS, Vawtrak injects its malware into processes
using direct injection (Kroustek, 2015). On a 64 bit OS, APC in-
jection (Wyke, 2014) using the PowerLoader technique is used

to target the explorer process (Kimberly, 2014b). Vawtrak mal-
ware is injected into all processes at the security level of the
injecting process. The injected code terminates if it is running
in a system process (Kroustek, 2015).

Vawtrak uses inline hooking of user-mode API calls and

contains a basic disassembler which is used to check the
length of instructions prior to overwriting (Kroustek, 2015).

Vawtrak contains a VNC capability that provides the at-
tacker with access to the desktop of the compromised com-
puter. Vawtrak supports communications from the network
address of the compromised computer using a built in SOCKS
server (Kroustek, 2015; Wyke, 2014).

4.4. Dridex malware

Dridex malware was first detected in 2014 (Certeza, 2015;
Sanghavi, 2016). Dridex is also known as Bugat or Geodo
(abuse.ch, 2014; Kimberly, 2014a; Thadani, 2016). Dridex is a
variant of Cridex (abuse.ch, 2014). Cridex was first detected

in 2012 and included a self-propagation capability which is
not present in the Dridex variant (O’Brien, 2014). In order to
make the botnet more resistant to takedown efforts Dridex
implemented a P2P communications topology in November
2014. Dridex communications are multi-layered. The outer-
most layer is composed of compromised computers. Compro-
mised computers which are not behind NAT firewalls may be
used as peer nodes which form the second communications
layer. The third layer is a frontend which handles communi-
cations with the C2 computers which form the fourth layer
(Blueliv, 2015; O’Brien, 2014). Unlike malware which is sold as
crimeware kits, Dridex is a single botnet which is partitioned

into subnets which divide the botnet based on attacker re-
quirements. Dridex subnets are identified by numeric identi-
fiers e.g. botnet 120, botnet 220 (O’Brien, 2014).

Dridex uses the following modules:

• Loader module,
• Main module,
• SOCKS module,
• VNC module,
• MOD4 server module,
• MOD6 server module,

The Dridex loader module is responsible for downloading
the main Dridex module. The loader module contains a static
configuration which includes the IP address to download the

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2 765

main module and the malware configuration. These items are
requested using a RC4 encrypted XML message (O’Brien, 2014).

The main module provides the following functions:

• Backconnect,
• Cookie stealing,
• Credential theft,
• File operations,
• Command line processing,
• Information stealing and injection,
• Keystroke logging,
• Peer node server,
• Stealing of user information from HTML forms,
• Screenshots,
• HTTP redirection,
• Attacks Chrome, Firefox and Internet Explorer web

browsers,

A remote graphical interface to the compromised com-
puter is provided by the VNC module. Command line execu-
tion and file system operations are provided by the SOCKS
module. Execution of new processes is provided by the mod4
module. Spamming using the contact list of the compromised

computer is provided by the mod6 module. Dridex provides 32
bit and 64 bit modules (O’Brien, 2014).

Dridex is started by the creation of a registry run key
(Blueliv, 2015). Dridex uses DLL injection to inject the main

module into the explorer process (Rocha, 2016). When the
Dridex loader runs, it deletes the Dridex run key from the
registry and deletes the Dridex loader from the file system.
The Dridex run key and loader are re-written on system shut-
down (Kimberly, 2014a; Rocha, 2016). Dridex uses obfusca-
tion of strings and API calls. Dridex uses an encrypted XML
based protocol which operates underneath TLS communica-
tions. Dridex contains a hardcoded copy of the C2 public key.
At initialization, Dridex generates a new RSA keypair, the new

public key is encrypted with the C2s public key and sent to
hardcoded layer 3 server. The Dridex modules and a node
list are then requested. All subsequent communications are
made through the peer nodes. The Dridex configuration is
then requested. The Dridex protocol uses RC4 and RSA encryp-
tion. An RC4 key is encrypted using the generated RSA private
key, the remainder of the message is RC4 encrypted. Dridex
uses xor based custom encryption in the protocol for down-
loading modules. Binary data in the protocol is base64 en-
coded. Following module download, Dridex communications
are directed to the Dridex nodes (Blueliv, 2015; O’Brien, 2014).
The Dridex configuration is stored in a randomly named reg-
istry key using custom encryption and aPLib compression (Su,
2015).

4.5. Dyre malware

Dyre malware was first detected in 2014 (Shulman and Dorf-
man, 2015). Dyre is also known as Dyreza, Dyzap or Dyranges
(Stone-Gross and Khandhar, 2014). Dyre malware has the fol-
lowing capabilities:

• Man in the middle attack,
• DGA,

• Invisible Internet Project (I2P) tunnelling support,
• Built-in VNC server,
• 32 bit and 64 bit payloads (Kimberley, 2014b; Stone-Gross

and Khandhar, 2014),
• AES encryption,
• Single partitioned botnet,
• Attacks Chrome, Firefox and Internet Explorer (Kimberley,

2014b),

The first section of the injected Dyre payload con-
tains position independent code that rebuilds the Im-
port Address Table (IAT) (Chiu and Villegas, 2015). The
Dyre installer writes a randomly named executable file
to the “Application Data” directory (Hanel, 2014). A mutex
is created to check whether the malware is already in-
stalled. Persistence is achieved by creating a run key in

HKCU \ Software \ Microsoft \ CurrentVersion \ Run (Hanel,
2014; Kimberley, 2014b; Stone-Gross and Khandhar, 2014). A

call is made to IsWow64Process to determine whether it is
running on a 64 bit system. The Dyre Installer contains re-
sources incorporating 32 bit and 64 bit versions of the Dyre
payload (Stone-Gross and Khandhar, 2014). The Dyre installer
runs and creates a service named “Google Update Service”,
which injects the Dyre payload into the target process, and

then terminates (Chiu and Villegas, 2015; Kuhn et al., 2015;
Symantec Security Response, 2015).

The NtMapViewofSection , VirtualAloc , NtQuery
SystemInformation , OpenThread and NtQueueApc
Thread API calls are used to perform APC injection of the
Dyre payload into an svchost or explorer process (Chiu and

Villegas, 2015; Hanel, 2014; Stone-Gross and Khandhar, 2014;
Symantec Security Response, 2015). Dyre uses inline hook-
ing of system API calls (Hanel, 2014). Dyre contains a table
consisting of the compilation timestamps for the versions of
the wininet DLL and the corresponding hooking offset. This
table is used to identify the wininet version prior to patching.
Unknown copies of wininet.dll are sent back to the C2 server
(Hanel, 2014).

The static configuration is stored in a randomly named pro-
gram resource. The Dyre payload reads the configuration data
and writes an encrypted configuration to a file in the “Appli-
cation Data” directory. The configuration is in an XML format
that differs from the commonly used Zeus configuration for-
mat (Hanel, 2014).

If the infected computer uses a Network Address Transla-
tion (NAT) internet connection, then Dyre uses Session Traver-
sal Utilities for NAT (STUN) to determine the IP address of the
infected computer (Stone-Gross and Khandhar, 2014; Trend

Micro, 2014). Dyre performs a man in the middle attack by redi-
recting website requests through an attacker controlled proxy
server. Webinjects are added when the website response is re-
ceived. Storing the webinjects on an attacker controlled server
has the advantage of hindering efforts to access the webin-
jects for analysis (Kuhn et al., 2015).

Dyre connects to Invisible Internet Project (I2P) nodes
to establish peer to peer tunnelling connections. When

the network connections are established, Dyre uses the
CreateToolhelp32Snapshot , Process32FirstW and

Process32NextW APIs to locate the web browser processes.
The Dyre malware DLL is injected into the Internet Explorer,

766 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2

Firefox and Chrome web browsers. Named pipes are used to
pass commands and data between the Dyre malware and the
Dyre DLL running in the web browser (Hanel, 2014).

If the Outlook email client is installed, then Outlook is hi-
jacked to send emails containing the Dyre installer as attach-
ments. The email recipients are obtained from the C2 server
(Kuhn et al., 2015; Marcos, 2015).

Dyre has a modular architecture, a credential stealing mod-
ule operates by capturing HTTP POST requests which are then

sent to the C2 server. The stolen data is in a plain text for-
mat (Kimberley, 2014a; Shulman and Dorfman, 2015; Stone-
Gross and Khandhar, 2014; Trend Micro, 2014). Dyre uses a VNC

module (Kimberley, 2014a), which has three exported func-
tions, these are ClientSetModule, VncStartServer and VncStop

Server (Hanel, 2014). These functions are present in the VNC

module in the Carberp source code. It is possible that leaked

Carberp source code may have been used by the Dyre author
to create the Dyre VNC facility (Hanel, 2014).

Incoming Dyre data is SSL encrypted. After SSL decryp-
tion, the data is AES encrypted. Configuration data and mal-
ware plugins are RSA signed (Stone-Gross and Khandhar, 2014;
Trend Micro, 2014). Dyre generates a bot-id comprised of the
computer name, the OS version and a 32 byte unique identifier
(Kimberley, 2014a; Shulman and Dorfman, 2015).

Dyre malware contains a Domain Generation Algorithm

(DGA) that uses the date as a key to generate the C2 server’s
IP address and port pairs (Chiu and Villegas, 2015). When the
Dyre malware is initialised, the number of processor cores is
checked. If this number is less than two, the Dyre malware
terminates. This test is an anti-VM test to hinder security re-
searchers (Lemos, 2015).

4.6. Rovnix malware

The Rovnix malware was first detected in 2011 (Harley, 2011).
Rovnix makes use of a 64 bit bootkit that is similar to the
bootkit used by the Carberp malware. The source code of the
Carberp bootkit was leaked as part of the Carberp source code
leak in 2013 (Kruse, 2013).

Rovnix achieves persistence by infecting the Volume Boot
Record (VBR) of the active drive. When a computer running a
Windows OS is started, the Basic Input/Output System (BIOS)
reads the first sector of the bootable hard disk. This sector is
known as the Master Boot Record (MBR). The MBR contains
start-up code and a partition table. The MBR code scans the
partition table and locates the partition with the bootable flag
set. Then the code in the first sector (VBR) of the bootable
partition is executed. File system specific partition start-up

code is stored in the VBR. Rovnix malware infects the VBR

of NTFS boot partitions. At installation, Rovnix compresses
the original VBR code, replaces the original VBR with the
Rovnix start-up code, and appends the compressed VBR start-
up code. When the computer is started, the Rovnix start-up

code obtains control. After the Rovnix start-up code has been

executed, the original VBR code is decompressed and exe-
cuted. The Rovnix start-up code in the VBR is polymorphic
in order to avoid anti-virus detection (Carrier, 2005; Harley,
2011; Matrosov, 2012). In real mode, BIOS functions are ac-
cessed using the INT instruction. BIOS hard disk services are
requested using INT 13h (Carrier, 2005; Scanlon, 1986). The

Rovnix VBR start-up code performs hooking of the BIOS INT

13h handler. Hooking of the INT 13h allows patching of the
ntloader/bootmgr, thereby enabling control to be maintained

after the boot manager is loaded. When the boot manager is
loaded, the original VBR code is decompressed and executed.
During the system start-up process, the start-up code must
switch from real mode to protected mode. In order to maintain

control in the transition from real mode to protected mode,
Rovnix makes use of the IDT. The IDT is a table that is used in

protected mode and contains descriptors that provide access
to interrupt and exception handlers (Blunden, 2012; Harley,
2011; Quist et al., 2006; US Air Force, 2000). The Rovnix mal-
ware copies itself into an unused section of the IDT. The mal-
ware then hooks the INT 1 protected mode debug handler
(Blunden, 2012; Harley, 2011). It sets hardware breakpoints us-
ing the CPU’s debugging registers dr0-dr7 in order to maintain

control during Windows start-up (Brey, 2005; Harley, 2011).
The use of debugging registers allows the malware to gain

control at specific points during the kernel loading process.
This VBR infection technique is complex and requires a skilled

developer. Rovnix malware operates on 32 bit and 64 bit ver-
sions of the Windows OS and allows an unsigned Rovnix
driver to be loaded into the Windows OS (Harley, 2011).

Versions of Rovnix from 2012 used disk sectors near the
end of the partition to create an RC6 encrypted Virtual File Sys-
tem (VFS). In this version, the configuration was stored in the
VFS (Rodionov and Matrosov, 2012). A newer version of Rovnix
from 2014 uses RC4 encryption and stores the VFS in a binary
file (Feng, 2014).

A filtering driver is provided that prevents read or write ac-
cess of the VFS file. If the Rovnix installer detects that full disk
encryption software is installed on the victim’s computer then

the bootkit is not installed and the Rovnix banking malware
is installed in the filesystem of the victim computer (Malware
Digger, 2015a). The NtCreateFile and NtDeleteFile API
calls are hooked to protect the VFS (Feng, 2014).

If the bootkit cannot be installed due to insufficient storage,
it will install and run a copy of the Sysinternals Contig tool to
defragment storage (Malware Digger, 2015a).

The Rovnix installer has the facility to either download

the latest version of the Rovnix banking trojan or to install
a copy of the Rovnix banking trojan from program resources.
The Rovnix installer contains 32 bit and 64 bit versions of the
Rovnix banking trojan. The stored copies of the banking tro-
jan are compressed with a modified version of aPLib compres-
sion (Malware Digger, 2015a). The Rovnix trojan is initialised

by a registry run key or by injection via the unsigned mal-
ware driver. If the Rovnix bootkit was not able to be installed,
then a registry run key is created to start the Rovnix malware.
The version of Rovnix banking trojan that is started from the
filesystem contains a thread that protects the registry run key
(Malware Digger, 2015b).

Rovnix uses a DGA to generate the C2 domain names. The
DGA uses month as the key (Bitdefender, 2014). The Rovnix
malware downloads additional plugins and external programs
from the C2 server (Malware Digger, 2015b; Matrosov, 2012).

The plugins that are downloaded by Rovnix include a bank-
ing trojan known as ReactorDemo (Malware Digger, 2015b), a
TOR client, a password stealer, and a bitcoin stealer. Rovnix
plugins are identified by the Cyclic Redundancy Code (CRC32)

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2 767

value of the plugin. The downloaded plugins are RC2 en-
crypted DLLs. The decrypted data contains a RSA signature.
The hashing algorithm used in this signature is not docu-
mented. Disassembly of a Rovnix sample showed the signa-
ture hashing algorithm to be SHA1. The TOR plugin contains
a DGA that can be used as an alternative to TOR communica-
tions. The password stealer plugin may have been taken from

the Zeus VM (KINS) partial source code leak (Malware Digger,
2015b).

The Rovnix banking trojan runs a server process on the in-
fected computer. This process acts like a proxy server. The
Rovnix banking trojan is injected into the Internet Explorer,
Firefox, and Chrome browser processes. Target processes for
injection are identified by comparing a CRC of the process
name with a set of hardcoded CRC values within the Rovnix
malware. The injected malware hooks a number of functions
within the browser process. The hook routines perform com-
munication with the Rovnix proxy server process. RC2 en-
crypted web-injects are downloaded from the C2 server. The
proxy server process parses the webpages visited by the vic-
tim and performs HTML injection from the web-injects. The
Symantec Anti-Virus company identifies Rovnix malware as
a Carberp variant due to the shared bootkit and similar pro-
gramming techniques (Malware Digger, 2015b).

4.7. Carberp malware

Carberp malware was first detected in June 2010 (Dolmans and

Katz, 2013; Matrosov et al., 2011). The Carberp source code was
leaked in June 2013 (Kruse, 2013). Carberp uses a bootkit that
is similar to the Rovnix bootkit (Matrosov et al., 2011; Tigzy,
2013). It is possible that the same malware developer created

both the Rovnix and Carberb bootkits (Matrosov et al., 2011).
The bootkit allows the Carberp malware to persist after the re-
installation of the Windows OS (Tigzy, 2013). Carberp has the
following facilities:

• Modular design, which is able to download and execute
new modules from the C2 server. Carberp modules have
an executable decryptor and are xor encrypted (Giuliani
and Allievi, 2010),

• Screenshot module,
• Credential stealing module,
• VNC module to allow desktop access,
• A module to remove other banking malware,
• A module to disable anti-virus products,
• A module for generating traffic to perform Distributed De-

nial of Service (DDOS) attacks (Giuliani and Allievi, 2010;
Kalnai, 2013),

• A capability to attack Internet Explorer and Firefox web
browsers.

A Carberp variant was also produced that targeted the An-
droid platform (Kalnai, 2013).

Carberp provides a general mode of attack which is in-
dependent of specific targeting. When a victim logs into an

SSL website, Carberp intercepts the POST request and copies
the victim’s credentials. The stolen credentials are sent back
to the C2 server. Carberp also supports a targeted attack
when specific URLs are used to initiate information stealing

(Trusteer, 2010). During the installation process, Carberp at-
tempts to run privileged mode code to remove SSDT hooks
from a number of operating system API calls. This is done to
prevent anti-virus programs from interfering with the Carberp

installation process (Giuliani and Allievi, 2010). The Carberp

installer also attempts privilege escalation by exploiting sev-
eral vulnerabilities (Matrosov et al., 2011).

A kernel mode driver is loaded by the Carberp bootkit. This
driver injects a malicious DLL into the user-mode address
space of processes running on the system. The bootkit is used

in order to allow loading of an unsigned 64 bit driver on 64 bit
Windows OS, thereby bypassing the driver signing policy of
Windows 64 bit OS (Matrosov et al., 2011). The Carberp bootkit
supports a hidden RC6 encrypted VFS that is allocated in un-
used storage. The VFS is a modified FAT16 file system. A filter
driver is provided that prevents read or write access of the hid-
den virtual file system. The bootkit only supports NTFS parti-
tions. The malicious DLL and other files are stored in the VFS.
The malicious DLL is injected into the target process at sys-
tem start-up (Maor, 2013). The Carberp bootkit generator uses
metamorphism in the creation of the boot code. This provides
a unique signature for the boot code for each Carberp malware
user (Grill et al., 2014; Maor, 2013). Carberp uses function name
hashing to obfuscate API calls (Giuliani and Allievi, 2010).

Carberp injects malware into every process and hooks
the NtQueryDirectoryFile API call in order to hide the
directory containing the Carberp program and configura-
tion (Giuliani and Allievi, 2010). Carberp uses direct injection

and APC injection. Carberp uses inline hooking of API calls
(Trusteer, 2010).

Carberp uses the HTTP protocol for C2 server communi-
cations (Trusteer, 2010). There are two variants of Carpberp

malware making use of RC2 or RC4 encryption. The variant
using RC4 encryption was discontinued after an arrest in 2012
(Kalnai, 2013). The leaked Carberp source code uses RC2 en-
cryption. Carberp also uses MD5 hashing, base64 encoding,
and RC6 encryption (Dolmans and Katz, 2013; Maor, 2013;
Matrosov et al., 2011).

5. Analysis of malware behaviours

The Pharos Static Binary Analysis Framework (SEI CMU, 2017)
is an open source program for the static analysis of malware.
Pharos is based on the Rose compiler infrastructure (Quinlan

and Liao, 2011) which is used for disassembly, control flow

analysis and instruction semantics. A major new version of
the Pharos Framework was released in June 2017 and this re-
search is based on the facilities provided by this new version.
The ApiAnalyzer component of the Pharos Framework pro-
vides the capability to identify malware behaviours by use of
user supplied rules that contain sequences of API calls and the
relationships between the API calls. The behaviours which are
identified by ApiAnalyzer correspond to low level actions in

the MAEC model. ApiAnalyzer uses data flow analysis to ver-
ify the relationships between the API calls, i.e. that the calls
are operating on the same handle.

A limitation of the current version of the Pharos Frame-
work is that API analysis can only be performed on programs
which use an import table to make API calls. The current

768 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2

Fig. 1 – Rule to identify process iteration.

version of the Pharos Framework contains limited configura-
tion data. It was necessary to create a configuration containing
the stack offset and the API ordinal number for each API call
used by each malware sample. The stack offset is the number
of bytes passed on the stack when making a specific API call.

A limited number of example rules are provided with the
Pharos Framework (SEI CMU, 2016). A rule is provided to search

for CreateToolhelp32Snapshot calls , where the han-
dle created by this call is passed to Process32FirstW and

Process32NextW API calls. This rule is used to search for a
behaviour where malware is iterating through running pro-
cesses.

The Zeus, Citadel and Zeus P2P samples were unpacked us-
ing a static unpacker. The Vawtrak and Dyre samples were un-
packed and the import tables rebuilt using OllyDbg and the
Ollydmp plugin. The Dridex and Carberp malware families
use hashed API obfuscation and are not suitable for use with

the current version of ApiAnalyzer. A ReactorBot sample was
dumped using Ollydmp, however this malware is able to de-
feat import table reconstruction. Therefore, the malware fam-
ilies used in this analysis are Zeus, Citadel, Vawtrak and Dyre.

In the experiments conducted for this paper, the unpacked

malware samples were first examined with the IDA disassem-
bler to ensure that API call sequences form behaviours which

correspond to the rule being tested.

5.1. Process injection rule 1

The first rule tested was the example rule provided with

the Pharos Framework (SEI CMU, 2016). This rule, shown

in Fig. 1 searches for all occurrences of the CreateTool
help32Snapshot API and uses dataflow analysis to locate all
Process32FirstW and Process32NextW API calls which

use the handle created by the CreateToolhelp32Snapshot
call.

The results of using the process iteration rule against the
selected malware samples is shown in Table 3 .

Table 3 – Malware process iteration methods.

Malware API Sequence Present Detected

Zeus Yes -
Citadel Yes Yes
Vawtrak Yes -
Dyre Yes Yes

Fig. 2 – Rule to identify process injection.

It is noted that the process iteration rule located the pro-
cess iteration behaviour in the Citadel malware but not in the
Zeus malware, despite the fact that Citadel is a Zeus vari-
ant and the process iteration functions are very similar. The
Vawtrak sample contains a process iteration behaviour corre-
sponding to the rule, but it was not detected. Discussion with

the Pharos Framework developers indicates that the design

philosophy of the program is to avoid false positives, however
some false negatives are considered to be acceptable. The de-
velopment of the program is in progress and the program de-
sign currently contains approximations which may not work
for all malware families.

The rule in Fig. 2 is used to scan an unpacked malware sam-
ple and to locate instances of direction process injection. The
results of using the process injection rule against the selected

malware samples is shown in Table 4 . The Vawtrak sample
contained a process injection behaviour which is not detected.
This sample uses Fastcall parameter passing (Sikorski and

Honig, 2012) which is supported by the Pharos Framework, fur-
ther work is required to determine the cause of this problem.

The Message Digest 5 (MD5) hashes of the samples used for
experiments with ApiAnalyzer are shown in Table 5 .

5.2. Future work

The open source Pharos Framework currently locates API calls
through the static import table. It would be advantageous to

Table 4 – Malware process injection methods.

Malware API Sequence Present Detected

Zeus Yes Yes
Citadel Yes Yes
Vawtrak bit Yes -
Dyre - -

Table 5 – Sample hashes.

Malware MD5 Hash

Zeus 306dd8c10a19c5998e88c7b1de520e2f
Citadel 24547d8e6028b77a5a62b3babc9264ad
Vawtrak 32bit 19f8bc63e882fbe7affccd814602638b
Dyre cc0d5b95b8b30f99c1092b87c869c74c

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2 769

add support for dynamic API loading into the Pharos Frame-
work. Dynamic API loading is performed by LoadLibrary
and GetProcAddress API calls. Support for obfuscated API
loading, where the API is represented by a hash value and an

in-memory DLL is parsed to obtain the API virtual address,
would be valuable.

The utility of the Pharos Framework could be improved

by the identification of cryptographic and compression op-
erations. This would allow rules to be created which could

express common behaviours such as “data downloaded, de-
crypted and decompressed, then written to the registry”.

6. Conclusion

This paper provides a survey of seven banking malware fami-
lies and draws together a fragmented and industry based liter-
ature to provide a coherent description of major banking mal-
ware families, their variants, relationships and source code
leakages.

Banking malware were selected as the basis for this paper
based on their prevalence, persitence, financial damage and

on the lack of literature providing a good description of their
internal operations.

A challenge for malware analysis is that while existing
analysis techniques provide volumes of low level details from

malware samples, there is a need to produce a high level un-
derstanding of malware behaviour. This task of bridging the
semantic gap from low level detail into a high level under-
standing lies at the core of malware reverse engineering and

is largely a manual process.
Although not all malware families use exactly the same

behaviours, malware authors draw from a constrained set of
techniques to build their malware. This allows malware fami-
lies to be described in terms of the techniques which are used

to implement these behaviours. Dynamic analysis techniques
have been used to generate profiles of malware behaviour,
however dynamic analysis has difficulty in achieving full code
coverage.

This paper uses the example of the ApiAnalyzer program

from the Pharos Framework to provide the static identification

of malware behaviours. The use of static analysis techniques
to automatically identify malware behaviours presents a rep-
resentation of malware capability at a higher level of abstrac-
tion than has previously been available.

Acknowledgement

This research was funded in part through the Internet Com-
merce Security Laboratory (ICSL), a joint venture between

Westpac, IBM and Federation University Australia.

R E F E R E N C E S

abuse.ch. Cridex, feodo, geodo dridex, whats next?; 2014 . [Online];
Available from: https://www.abuse.ch/?p=8332 . [Accessed 15
October 2017].

AhnLab. Malware analysis: Citadel. Tech. Rep.; 2012 . [Online].
Available from: https://www.scribd.com/document/
148064130/Citadel- Trojan- Report- eng. [Accessed 15 October
2017].

Al-Bataineh A , White G . Analysis and detection of malicious data
exfiltration in web traffic. In Malicious and Unwanted

Software (MALWARE), 2012 7th International Conference on.
IEEE; 2012. p. 26–31 .

Alexander J . Ghost in the shell: a counter-intelligence method for
spying while hiding in (or from) the kernel with apcs; 2012 .

Alvarez R. Same zeus, different features; 2013 . [Online]. Available
from: https://blog.fortinet.com/2013/12/09/same-zeus-
different-features . [Accessed 15 October 2017].

Alvarez R. Nesting doll: unwrapping vawtrak; 2015 .
https://www.virusbulletin.com/virusbulletin/2015/01/
nesting- doll- unwrapping- vawtrak . [Accessed 15 October
2017].

Antonakakis M , Perdisci R , Nadji Y , Vasiloglou II N , Abu-Nimeh S ,
Lee W , et al . From throw-away traffic to bots: detecting the
rise of dga-based malware. In USENIX Security Symposium;
2012. p. 491–506 .

Aronov I. An example of common string and payload obfuscation

techniques in malware; 2015 . [Online]. Available from:
https://securityintelligence.com/an- example- of- common-
string- and- payload- obfuscation- techniques- in- malware/
[Accessed 15 October 2017].

Asinovsky P. Neverquest malware analysis; 2014 . [Online].
Available from: https://devcentral.f5.com/articles/neverquest-
malware-analysis . [Accessed 15 October 2017].

Author Unknown. Powerloader injection – something truely
amazing; 2013 . [Online]. Available from:
http://www.malwaretech.com/2013/08/
powerloader- injection- something- truly.html . [Accessed 15
October 2017].

AV-Test. Av-test security report 2016/2017. Tech. Rep.; 2017 .
[Online]. Available from: https://www.av-test.org/fileadmin/
pdf/security _ report/AV- TEST _ Security _ Report _ 2016- 2017.pdf.
[Accessed 15 October 2017].

Barabosch T , Eschweiler S , Gerhards-Padilla E . Bee master:
detecting host-based code injection attacks. Detection of
intrusions and malware, and vulnerability assessment.
Springer; 2014. p. 235–54 .

Baumhof A, Shipp A. Zeus trojan update new variants based on

leaked source code; 2011 . [Online]. Available from:
http://www.tidos-group.com/blog/2011/09/30/zeus-
trojan- update- new- variants- based- on- leaked- zeus- source-
code/ . [Accessed 15 October 2017].

Berdajs J , Bosni ́c Z . Extending applications using an advanced

approach to dll injection and api hooking. Softw Prac Exp

2010;40(7):567–84 .
Binsalleeh H , Ormerod T , Boukhtouta A , Sinha P , Youssef A ,

Debbabi M , et al . On the analysis of the zeus botnet crimeware
toolkit,” in Privacy Security and Trust (PST). 2010 Eighth

Annual International Conference on. IEEE; 2010. p. 31–8 .
Bitdefender. Tracking rovnix; 2014 . [Online]. Available from:

http://www.malwaredigger.com/2015/06/
rovnix- payload- and- plugin- analysis.html . [Accessed 15
October 2017].

Blueliv . Chasing cybercrime: network insights of dyre and dridex
trojan bankers; 2015 .

Blunden B . The rootkit arsenal: escape and evasion in the dark
corners of the system. Jones & Bartlett Publishers; 2012 .

Born K. Browser-based covert data exfiltration; 2010 . arXiv
preprint arXiv: 1004.4357 .

Boutin J-I. The evolution of webinjects; 2014 . [Online]. Available
from: https://www.virusbulletin.com/conference/vb2014/
abstracts/evolution-webinjects . [Accessed 15 October 2017].

770 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2

Brand M . Analysis avoidance techniques of malicious software;
2010 [Ph.D. dissertation]. Edith Cowan University .

Brey BB . Intel microprocessors 8086/8088, 80186/80188, 80286,
80386, 80486, pentium, pentium proprocessor, pentium ii, iii,
4; 2005 .

Cannell J. Obfuscation: malware’s best friend; 2015 . [Online].
Available from: https://blog.malwarebytes.org/
threat-analysis/2013/03/obfuscation-malwares-best-friend/ .
[Accessed 15 October 2017].

Carrier B . File system forensic analysis. Addison-Wesley Reading;
2005 .

Carvey H . The windows registry as a forensic resource. Digit
Invest 2005;2(3):201–5 .

Carvey H . Windows forensic analysis DVD toolkit. Syngress; 2009 .
Certeza RA. Dealing with the mess of dridex; 2015 . [Online].

Available from:
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/
web-attack/3147/dealing-with-the-mess-of-dridex . [Accessed

15 October 2017].
Cherepanrov A, Lipovsky R. Hesperbot: a new, advanced banking

trojan in the wild; 2013 . [Online]. Available from:
https://www.welivesecurity.com/wp-content/uploads/2013/
09/Hesperbot _ Whitepaper.pdf. [Accessed 15 October 2017].

Chiu A, Villegas A. Threat spotlight: dyre/dyreza: an analysis to
discover the dga; 2015 . [Online]. Available from:
http://blogs.cisco.com/security/talos/threat- spotlight- dyre .
[Accessed 15 October 2017].

Christodorescu M , Jha S , Seshia S , Song D , Bryant RE . Semantics
aware malware detection. In Security and Privacy, 2005 IEEE
Symposium on. IEEE; 2005. p. 32–46 .

Christodorescu M , Jha S , Kruegel C . Mining specifications of
malicious behavior. In Proceedings of the 1st India software
engineering conference. ACM; 2008. p. 5–14 .

Dietrich C. Through the window: creative code invocation; 2014 .
[Online]. Available from: https://www.crowdstrike.com/blog/
through- window- creative- code- invocation . [Accessed 15
October 2017].

Dolmans R , Katz W . Rp1: Carberp malware analysis; 2013 .
Dos Santos J. Troyan citadel backconnect vnc server manager;

2012 . [Online]. Available from:
http://laboratoriomalware.blogspot.de/2012/12/
troyan- citadel- backconnect- windows.html . [Accessed 15
October 2017].

Falliere N , Chien E . Zeus: King of the bots; 2009 .
Feng C. The evolution of rovnix: new virtual file system (vfs);

2014 . [Online]. Available from:
http://blogs.technet.com/b/mmpc/archive/2014/05/05/
the- evolution- of- rovnix- new- virtual- file- system- vfs.aspx .
[Accessed 15 October 2017].

Forrester J . An exploration into the use of webinjects by financial
malware; 2014 Master’s thesis]; Rhodes University .

Garcia-Cervigon M , Llinas MM . Browser function calls modeling
for banking malware detection. In Risk and Security of
Internet and Systems (CRiSIS), 2012 7th International
Conference on. IEEE; 2012. p. 1–7 .

Giuliani M , Allievi A . Carberp – a modular information stealing
trojan; 2010 .

Grégio ARA , Afonso VM , Fernandes Filho DS , de Geus PL , Jino M .
Toward a taxonomy of malware behaviors. Comput J
2015;58(10):2758–77 .

Grill B , Platzer C , Eckel J . A practical approach for generic bootkit
detection and prevention. In Proceedings of the Seventh

European Workshop on System Security. ACM; 2014. p. 4 .
Hanel A. Dyre infection analysis by alexander hanel; 2014 .

[Online]. Available from: https://rstforums.com/forum/topic/
89344- dyre- infection- analysis- by- alexander- hanel . [Accessed

15 October 2017].

Harley D. ESET. Hasta la vista, bootkit: exploiting the vbr; 2011 .
[Online]. Available from: www.welivesecurity.com/2011/08/23/
hasta- la- vista- bootkit- exploiting- the- vbr . [Accessed 15
October 2017].

Hunt G , Brubacher D . Detours: binary interception of win32
functions. In Usenix Windows NT Symposium; 1999. p. 135–43 .

Huss D, Matthew M. Proofpoint. In the shadows: Vawtrak aims to
get stealthier by adding new data cloaking; 2015 . [Online].
Available from: https://www.proofpoint.com/us/
threat- insight/post/In- The- Shadows . [Accessed 15 October
2017].

Ibsen J. aplib v1.1.1 - compression library; 2014 . [Online]. Available
from: http://ibsensoftware.com/products _ aPLib.html .
[Accessed 15 October 2017].

Jackson D. SecureWorks. Gozi trojan; 2007 . [Online]. Available
from: http://www.secureworks.com/cyber-threat-intelligence/
threats/gozi/ . [Accessed 15 October 2017].

Kalnai P. Banking trojan carberp: an epitaph?; 2013 . [Online].
Available from:
https://blog.avast.com/2013/04/08/carberp _ epitaph/ .
[Accessed 15 October 2017].

Kasslin K , Ståhlberg M , Larvala S , Tikkanen A . Hide’n seek
revisited–full stealth is back. In Proceedings of the 15th Virus
Bulletin International Conference, 2005 .

Kharouni L . Automating online banking fraud. Technical Report,
Trend Micro Incorporated, Tech. Rep.; 2012 .

Kilman D. Decoding vawtrak neverquest traffic; 2014 . [Online].
Available from: http://cybersecuritymave-techie.blogspot.
com.au/2014/07/decoding-vawtrakneverquest-traffic.html .
[Accessed 15 October 2017].

Kimberley. Analysis of dyreza – changes & network traffic; 2014a .
[Online]. Available from:
http://stopmalvertising.com/malware-reports/
analysis- of- dyreza- changes- network- traffic.html . [Accessed

15 October 2017].
Kimberley. Introduction to dyreza, the banker that bypasses ssl;

2014b . [Online]. Available from:
http://stopmalvertising.com/malware-reports/
introduction- to- dyreza- the- banker- that- bypasses- ssl.html .
[Accessed 15 October 2017].

Kimberly. Analysis of dridex / cridex / feodo / bugat; 2014a .
[Online]. Available from:
http://stopmalvertising.com/malware-reports/
analysis- of- dridex- cridex- feodo- bugat.html . [Accessed 15
October 2017].

Kimberly. Analysis of vawtrak; 2014b . [Online]. Available from:
http://stopmalvertising.com/malware-reports/
analysis- of- vawtrak.html . [Accessed 15 October 2017].

Kirillov I, Beck D, Chase P. Mitre Corp. Maec default vocabularies
specification, version 4.1; 2014a . [Online]. Available from:
https://maec.mitre.org/language/version4.1/
MAEC _ Vocabs _ Spec _ v1 _ 1.pdf. [Accessed 15 October 2017].

Kirillov I, Beck D, Chase P. Mitre Corp. The maec language,
overview; 2014b . [Online]. Available from:
http://maecproject.github.io/documentation . [Accessed 15
October 2017].

Kolbitsch C , Holz T , Kruegel C , Kirda E . Inspector gadget:
automated extraction of proprietary gadgets from malware
binaries. In Security and Privacy (SP), 2010 IEEE Symposium

on. IEEE; 2010. p. 29–44 .
Kovacs E . SecurityWeek, Tech. Rep.. Dyre banking trojan counts

processor cores to detect sandboxes; 2015 .
Kroustek J. AVG, Tech. Rep.. Analysis of banking trojan vawtrak;

2015 . [Online]. Available from:
http://now.avg.com/wp-content/uploads/2015/03/
avg _ technologies _ vawtrak _ banking _ trojan _ report.pdf.
[Accessed 15 October 2017].

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2 771

Kruse P. Carberp source code confirmed leaked; 2013 . [Online].
Available from: https://www.csis.dk/en/csis/news/3961/ .
[Accessed 15 October 2017].

Kuhn J, Mueller L, Kessem L. The dyre wolf: attacks on corporate
banking accounts; 2015 . [Online]. Available from:
https://portal.sec.ibm.com/mss/html/en _ US/
support _ resources/pdf/Dyre _ Wolf _ MSS _ Threat _ Report.pdf.
[Accessed 15 October 2017].

Lau B , Svajcer V . Measuring virtual machine detection in

malware using dsd tracer. J Comp Virol 2010;6(3):181–95 .
Lee A , Varadharajan V , Tupakula U . On malware characterization

and attack classification. In Proceedings of the First
Australasian Web Conference-Volume 144. Australian

Computer Society, Inc.; 2013. p. 43–7 .
Lemos R. Dyre malware developers add code to elude detection

by analysis tools; 2015 . [Online]. Available from:
http://www.eweek.com/security/dyre-malware-developers-
add- code- to- elude- detection- by- analysis- tools.html .
[Accessed 15 October 2017].

Liang Z , Yin H , Song D . Hookfinder: identifying and

understanding malware hooking behaviors. Department of
Electrical and Computing Engineering; 2008. p. 41 .

Ligh M . Secure Science Corporation, Tech. Rep.. [prg] malware
case study; 2006 .

Malware Digger. Rovnix dropper analysis
(trojandropper:win32/rovnix.p); 2015a . [Online]. Available
from: http://www.malwaredigger.com/2015/05/
rovnix-dropper-analysis.html . [Accessed 15 October 2017].

Malware Digger. Rovnix payload analysis; 2015b . [Online].
Available from: http://www.malwaredigger.com/2015/06/
rovnix- payload- and- plugin- analysis.html . [Accessed 15
October 2017].

Mankin J . Classification of malware persistence mechanisms
using low-artifact disk instrumentation; 2013 Ph.D.
dissertation; Northeastern University Boston .

Maor E. Carberp source code for sale – bootkit included!; 2013 .
[Online]. Available from: http://securityintelligence.com/
carberp- source- code- sale- free- bootkit- included/#.
VamduZP5s _ s . [Accessed 15 October 2017].

Marcos M. Trend Micro. New dyre variant hijacks microsoft
outlook, expands targeted banks; 2015 . [Online]. Available
from: http://blog.trendmicro.com/trendlabs-security-
intelligence/new- dyre- variant- hijacks- microsoft- outlook-
expands- targeted- banks . [Accessed 15 October 2017].

Martignoni L , Stinson E , Fredrikson M , Jha S , Mitchell JC . A layered

architecture for detecting malicious behaviors. Recent
advances in intrusion detection. Springer; 2008. p. 78–97 .

Matrosov A. Rovnix bootkit framework updated; 2012 . [Online].
Available from: http://www.welivesecurity.com/2012/07/13/
rovnix- bootkit- framework-updated/ . [Accessed 15 October
2017].

Matrosov A, Rodionov E, Volkov D, Harley D. Win32/carberp when

you’re in a black hole stop digging; 2011 . [Online]. Available
from:
https://www.eset.com/ca/business/resources/white-papers/
win32carberp- when- youre- in- a- black- hole- stop- digging.
[Accessed 15 October 2017].

Microsoft. Tech. Rep.. Developer resources: Api index; 2016 .
[Online]. Available from:
https://developer.microsoft.com/en-us/windows . [Accessed

15 October 2017].
Milletary J. Citadel trojan malware analysis; 2012 . [Online].

Available from:
http://botnetlegalnotice.com/citadel/files/Patel/Decl/Ex20.pdf.
[Accessed 15 October 2017].

Mohaisen A , Alrawi O , Mohaisen M . Amal: high-fidelity,
behavior-based automated malware analysis and

classification. Comp Sec 2015;52:251–66 .

O’Brien D. Symantec. Dridex: tidal waves of spam pushing
dangerous financial trojan; 2014 . [Online]. Available from:
www.symantec.com/content/en/us/enterprise/media/
security _ response/whitepapers/dridex- financial- trojan.pdf.
[Accessed 15 October 2017].

Plohmann D , Yakdan K , Klatt M , Bader J , Gerhards-Padilla E . A

comprehensive measurement study of domain generating
malware. In USENIX Security Symposium. USENIX; 2016.
p. 263–78 .

Quinlan D , Liao C . The rose source-to-source compiler
infrastructure. In Cetus users and compiler infrastructure
workshop, in conjunction with PACT, vol. 2011; 2011. p. 1 .

Quist D , Smith V . Offensive Computing. Detecting the presence of
virtual machines using the local data table; 2006 .

Rahimian A , Ziarati R , Preda S , Debbabi M . On the reverse
engineering of the citadel botnet. Foundations and practice of
security. Springer; 2014. p. 408–25 .

Riccardi M , Di Pietro R , Vila JA . Taming zeus by leveraging its own

crypto internals. In eCrime Researchers Summit (eCrime),
2011. IEEE; 2011. p. 1–9 .

Rocha L. Malware analysis – dridex loader – part 2; 2016 . [Online].
Available from: https://countuponsecurity.com/2016/08/28/
malware-analysis-dridex-loader-part-2 . [Accessed 15 October
2017].

Rodionov DE, Matrosov A, Harley D. In VB Conference. Bootkits:
past, present & future; 2014 . [Online]. Available from:
http://static5.esetstatic.com/us/resources/white-papers/
RodionovMatrosov-VB2012.pdf. [Accessed 15 October 2017].

Rodionov E, Matrosov A. ESET. Defeating anti-forensics in

contemporary complex threats; 2012 . [Online]. Available from:
http://go.eset.com/us/resources/white-papers/
RodionovMatrosov-VB2012.pdf. [Accessed 15 October 2017].

Rossow C , Dietrich C , Bos H . Large-scale analysis of malware
downloaders. Detection of intrusions and malware, and

vulnerability assessment. Springer; 2012. p. 42–61 .
Sanghavi M. Symantec. Dridex and how to overcome it; 2016 .

[Online]. Available from: https://www.symantec.com/connect/
blogs/dridex- and- how- overcome- it . [Accessed 15 October
2017].

Scanlon LJ . Assembly language programming for the IBM PC AT.
Brady Communications Company; 1986 .

Selvaraj K. A brief look at zeus/zbot 2.0; 2010 . [Online]. Available
from: http://www.symantec.com/connect/blogs/brief-look-
zeuszbot-20 . [Accessed 15 October 2017].

SEI CMU. Static identification of program behavior using
sequences of api calls; 2016 . [Online]. Available from:
https://insights.sei.cmu.edu/sei _ blog/2016/04/static-
identification- of- program- behavior- using- sequences-
of- api- calls.html . [Accessed 15 October 2017].

SEI CMU . Pharos static binary analysis framework; 2017 . [Online].
Available from: https://github.com/cmu-sei/pharos . [Accessed

15 October 2017].
Shulman A, Dorfman H. Dyre financial malware internals; 2015 .

[Online]. Available from: https://devcentral.f5.
com/d/dyre-malware-internals . [Accessed 15 October 2017].

Sikorski M , Honig A . Practical malware analysis: the hands-on

guide to dissecting malicious software. No Starch Press; 2012 .
Singh PK . A physiological decomposition of virus and worm

programs; 2002 Master’s thesis; University of Louisiana at
Lafayette .

Sood A , Enbody R . Targeted cyber attacks: multi-staged attacks
driven by exploits and malware. Syngress; 2014 .

Sood A, Rohit B. Virus Bulletin. Prosecting the citadel botnet –
revealing the dominance of the zeus descendent: part one;
2014 . [Online]. Available from: https://www.virusbulletin.
com/virusbulletin/2014/09/prosecting- citadel- botnet-
revealing- dominance- zeus- descendent- part- one . [Accessed

15 October 2017].

772 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 5 6 – 7 7 2

Stevens K, Jackson D. Zeus banking trojan report; 2010 . [Online].
Available from: http://www.secureworks.com/
cyber- threat- intelligence/threats/zeus/ . [Accessed 15 October
2017].

Stone-Gross B, Khandhar P. Dyre banking trojan; 2014 . [Online].
Available from: http://www.secureworks.com/
cyber- threat- intelligence/threats/dyre- banking- trojan/ .
[Accessed 15 October 2017].

Su M. Virus Bulletin. Dridex in the wild; 2015 . [Online]. Available
from: https:
//www.virusbulletin.com/virusbulletin/2015/07/dridex-wild .
[Accessed 15 October 2017].

Suenaga M . A museum of api obfuscation on win32. In

Proceedings of 12th Association of Anti-Virus Asia
Researchers International Conference, AVAR, 2009 .

Sun H-M , Tseng Y-T , Lin Y-H , Chiang T . In 2006 International
Computer Symposium, ICS. Detecting the code injection by
hooking system calls in windows kernel mode; 2006 .

Symantec Security Response. Dyre: emerging threat on financial
fraud landscape; 2015 . [Online]. Available from:
http://www.symantec.com/content/en/us/enterprise/media/
security _ response/whitepapers/dyre- emerging- threat.pdf.
[Accessed 15 October 2017].

Thadani R. Report: the dridex trojan is back; 2016 . [Online].
Available from:
http://blogs.quickheal.com/report- the- dridex- trojan- is- back .
[Accessed 15 October 2017].

Tigzy. Carberp bootkit : how self protection is effective; 2013 .
[Online]. Available from: http://www.adlice.com/
carberp- bootkit- how- self- protection- is- effective/ . [Accessed

15 October 2017].
Trend Micro . Trend Micro, Tech. Rep.. File-patching zbot variants

zeus 2.0 levels up; 2010 .
Trend Micro. A closer look at dyre malware, part 1; 2014 . [Online].

Available from:
http://blog.trendmicro.com/trendlabs- security- intelligence/
a- closer- look- at- dyre- malware- part- 1/ . [Accessed 15 October
2017].

Trend Micro . Banking malware vawtrak now uses malicious
macros, abuses windows powershell; 2015 .

Trusteer. Carberp under the hood of carberp: malware &

configuration analysis; 2010 . [Online]. Available from: http:
//www.trusteer.com/sites/default/files/Carberp _ Analysis.pdf.
[Accessed 15 October 2017].

Tsaur W , Chen Y-C . Exploring rootkit detectors’ vulnerabilities
using a new windows hidden driver based rootkit. In Social
Computing (SocialCom), 2010 IEEE Second International
Conference on. IEEE; 2010. p. 842–8 .

US Air Force . Analysis of the intel pentiums ability to support a
secure virtual machine monitor. In Proceedings of
the… USENIX Security Symposium. USENIX Association; 2000.
p. 129 .

Wang Y-M , Roussev R , Verbowski C , Johnson A , Wu M-W ,
Huang Y , et al . Gatekeeper: monitoring auto-start extensibility
points (aseps) for spyware management. in LISA, 4; 2000.
p. 33–46 .

Wang Y-M , Beck D , Vo B , Roussev R , Verbowski C . Detecting
stealth software with strider ghostbuster. In Dependable
Systems and Networks, 2005. DSN 2005. In Proceedings.
International Conference on. IEEE; 2005. p. 368–77 .

Wyke J . Sophos Labs, Tech. Rep.. What is zeus?; 2011 .
Wyke J . Sophos Labs Naked Security Blog, Tech. Rep.. The citadel

crimeware kit – under the microsope; 2012 .
Wyke J . Vawtrak – international crimeware-as-a-service; 2014 .
Wyke J . Technical Report, Sophos, Tech. Rep.. Breaking the

bank(er): Automated configuration data extraction for
banking malware; 2015 .

Zeus Author . Zeus source code; 2011 . [Online]. Available from:
https://github.com/Visgean/Zeus . [Accessed 15 October 2017].

Paul Black is studying a PhD in Information Security at the Internet
Commerce Security Lab (ICSL) at Federation University. His PhD

topic is Techniques for the Reverse Engineering of Banking Mal-
ware. Paul has a Masters of Computing, his research topic was the
reversing of Zeus malware. Paul started his career as a program-
mer in 1981 and has worked in banking, defence, law enforcement
and malware analysis.

Iqbal Gondal is a leading researcher in the area of condition mon-
itoring, sensor information processing, wireless communication

and cyber security. Currently he is Director of Internet Commerce
Security Lab (ICSL), Federation University Australia. ICSL conducts
research in the application of advance analytics techniques for cy-
bersecurity and condition monitoring and provides innovative Cy-
bersecurity solutions to the industry. In the past, he was director
of ICT strategy for the faculty of IT in Monash. He has served in the
capacity of Director of Postgraduate studies for six years, member
faculty board and member of Monash academic board. He is Fel-
low of Engineers Australia.

Robert Layton is a Data Scientist working with text problems in

a number of domains. His research focuses on the methods used

to build cybercrime attacks and the analysis of the outcomes. He
is an Honorary Research Fellow at Federation University Australia
and the inaugural Federation University Young Alumni of the Year
in 2014.

Chapter 4

Reanimating Historic Malware

Samples

Banking infrastructure is constructed using various operating systems and is

configured to resist attack. The computer systems of banking customers have,

at best, a limited security configuration. As a result, banking customer com-

puter systems provide a convenient vector for attack, and this chapter provides

research supporting the dynamic analysis of the full capabilities of these mal-

ware families.

Dynamic analysis is commonly used for the extraction of features from his-

toric malware samples. Malware operations are disrupted by requesting the

removal of the DNS servers of the malware C2 domains. Historic malware

samples execute in a VM until access to the malware C2 network servers is

requested. These malware samples respond to the absence of C2 servers by

retrying the connection or by exiting. As a result, the command interface of

historic malware samples is no longer controlled. This results in the extraction

of features that differ from those that would be extracted in-the-wild, thus in-

validating the results of machine learning based research using these features.

A solution to this problem is to create C2 server emulators for the required mal-

ware families. The process of building a C2 emulator identifies the command

protocol of the malware sample. The construction of the C2 emulator provides

a test environment that allows the full capabilities of the malware sample to be

exercised and accurate behavioural profiles to be created. C2 server construc-

tion techniques are limited to manual or semi-automated methods because

63

64

fully automated construction of C2 server emulators is not possible, and this

technique does not scale to all malware samples.

This chapter provides examples of techniques for the creation of C2 server

emulators for three malware families (Zeus, CryptoWall and CryptoLocker).

Zeus banking malware was selected as it is representative of banking mal-

ware families, and the leaked source code assisted C2 emulator construction.

The Cryptowall and CryptoLocker C2 emulators were selected to support ran-

somware identification research. This chapter illustrates C2 emulator con-

struction using manual reverse engineering techniques, and provides a review

of semi-automated techniques for the construction of C2 server emulators.

The work in this chapter has been accepted as a book chapter for publica-

tion:

• P. Black, I. Gondal, P. Vamplew, and A. Lakhotia, ”Reanimating His-

toric Malware Samples”, Book Chapter in Malware Analysis using Arti-

ficial Intelligence and Deep Learning. Springer, 2020.

4.1 Introduction

Many types of malware, including information-stealing malware, ransomware,

and Remote Access Trojans (RATs) are controlled from an attacker’s Com-

mand and Control (C2) servers [63]. Anti-virus organisations seek to defeat

malware attacks by requesting removal of C2 server Domain Name Server

(DNS) records. For discussion, a historical malware sample is defined as a

malware sample that has had its C2 servers removed. Large datasets of histor-

ical malware samples are available for academic experiments. However, due to

the age of these malware samples, their C2 servers are no longer available. To

cope with high volumes of malware production, malware analysis is increas-

ingly performed using machine learning techniques [64]. Dynamic analysis is

commonly used for feature extraction. However, due to the absence of their

C2 servers, after initialization, malware execution may exit, or loop attempt-

ing to establish C2 server connections. As a result, the command interface of

historic malware samples is no longer controlled. This results in the extraction

of features that differ from those that would be extracted in-the-wild, thus

invalidating the results of machine learning research based on these features.

65

It is noted that research techniques exist for automatic protocol analysis of

malware [35]. However, these techniques depend on malware communications

with live C2 servers. The usage of the malware capabilities is determined by

the malware operators, and live testing may not reveal the full extent of the

malware’s capability. Other issues related to performing research with live

malware include difficulties in obtaining a consistent supply of live malware,

unknown configuration, unknown triggering conditions, detection of the analy-

sis IP address (mitigated by the use of an anonymizing proxy), or the malware

operators gaining access to the analysis VM via malware provided interfaces.

Researchers have recognised the need to prevent malware experiments from

causing harm on the internet. Research systems have been built to provide

containment of malware research [36]. However, these systems do not address

the C2 server problems faced when performing experiments with historical

datasets. Internet simulator programs [37] may be used as part of a malware

analysis environment and can provide generic responses to requests for common

internet services. A malware process may request a connection to a common

website to perform a connectivity check, and an internet simulator may be

able to satisfy this request. However, if a connection to a C2 server or other

attacker-controlled infrastructure is requested, an internet simulator will not

be able to respond with the protocol required by the malware.

The Botnet Evaluation Environment (BEE) provides an isolated environ-

ment for botnet research with emulated C2 servers for execution of the Agobot,

SDBot, GTBot, Phatbot, and Spybot malware [38]. An isolated Waledac bot-

net was created by reverse engineering the Waledac malware and identifying

the Waledac botnet protocol. An emulated C2 server was built to support this

protocol, and a 3000 node Waledac botnet was built. This isolated botnet was

used to research security vulnerabilities that could be used to take down the

Waledac botnet [39].

To illustrate the benefits of building C2 server emulators for machine learn-

ing purposes, this chapter provides examples of techniques for the creation of

C2 server emulators for three malware families (Zeus, CryptoWall and Cryp-

toLocker) using manual reverse engineering techniques. 1 This chapter also

provides a review of semi-automated techniques for the construction of C2

1The datasets and code related to this research are available on request from the corre-
sponding author.

66

server emulators.

4.1.1 Motivation

At a high level, the need to build a C2 server emulator will be the result of

the following requirements:

• The need to perform research using historical malware samples,

• The need to control the full capabilities of a malware sample,

• The need to perform the research in an isolated environment.

The construction of C2 server emulators has the following benefits: the

ability to control the malware through its network interface allows the execu-

tion of the full capabilities of the malware and the extraction of features that

would otherwise not be possible using historical malware samples. Using an

emulated C2 server allows the testing of malware samples in isolation from the

internet, which prevents criminal groups from becoming aware of the research.

4.1.2 Emulator Architecture

The architecture of a C2 server emulator will be similar irrespective of whether

a manual or semi-automated process is used to construct the emulator. A

representative C2 server emulator consists of an isolated network using two

or more virtual machines (VMs). One VM (VM1) is configured to run the

C2 server emulator script and a DNS simulator, while another VM (VM2)

is configured to run the selected malware samples and any related programs

that will be attacked by this malware. The DNS simulator resolves requests

from the malware VM, and malware protocol requests are read by the C2

emulator. An illustration of this architecture is shown in Figure 4.1. C2 server

emulators may be created using either manual or semi-automated construction

techniques. Sections 2-4 discuss manual construction, and section 5 provides

a review of semi-automated construction techniques.

67

DNS
Simulator

C2 Emulator
Script

Malware
Execution

Emulator - VM1 Malware - VM2

Isolated
Virtual

Network
Related

Programs
(web browser)

Figure 4.1: C2 Emulator Architecture

4.2 Manual Construction

The creation of C2 emulators provides a test harness that allows the full ca-

pability of historic malware samples to be controlled in an isolated network.

The process for the manual construction of C2 emulators can be described in

an abstract manner as a process of the guided discovery of the communication

and command processing paths of a malware sample using a debugger and the

corresponding iterative development of a script to generate network traffic to

control this execution path. A difficulty with this high-level description of the

C2 server emulator construction process is that there may be difficulties in

fully understanding how to implement this process. A malware analysis en-

vironment using a manually constructed C2 emulator is described in [65]. To

illustrate the manual construction process, sections 3 and 4 provide examples

of the manual construction of C2 server emulators for a common information-

stealing malware and two ransomware families.

The requirement for the emulation of a malware C2 server arose from a

research project using machine learning for the detection of webinjects. We-

binjects are malicious HTML that are injected into web browser sessions and

are used to steal banking credentials and to illegally transfer funds [66]. Infor-

mation stealing malware targeting banking infrastructure (banking malware,

banking trojans) contain facilities for intercepting credentials prior to encryp-

tion and injecting content into internet banking sessions. This is performed by

injecting malware into the browser process and gaining control of networking

Application Programming Interface (API) functions with the use of user-mode

hooking techniques [4]. Three options were considered for webinject genera-

68

tion:

• The use of live malware to perform webinjects, Zarathustra and Prometheus

performed webinject detection using live malware samples [67, 68],

• The use of Java-Script methods to inject code into the browser session,

• The creation an emulated C2 server that can be used in conjunction with

a historical malware sample to perform user specified webinjects.

The problems associated with using live malware for research purposes

have been discussed previously. While Java-Script methods can be used to

inject HTML code into a browser session, this injected HTML may differ from

webinjects created by malware. The time required to perform the reverse

engineering work is a significant consideration when deciding whether to build

an emulated C2 server. However, this may be offset by the significant benefits

of being able to control the full capabilities of the malware on an isolated

network and the collection of more representative features.

The following sections provide the details of the construction of the C2

server emulators for the Zeus V2, CryptoLocker and CryptoWall malware.

4.3 Zeus C2 Server Emulator

The Zeus v2 malware was selected for this research due to familiarity with

this malware from previous research. The Zeus C2 server emulator provides

the capability to create custom webinjects on an isolated network and to cap-

ture the modified webpages for use in a webinject detection machine learn-

ing system [69]. In the following description, class and function names (e.g.

Core::GetBaseConfig) are taken from the leaked Zeus source code [70]. A Zeus

v2.1.0.1 malware sample with an MD5 hash of a2a21d66f72ee53cfbc2dcfe929ffaba

was used in this research. This malware was unpacked using a custom static

unpacker. The unpacked Zeus sample was loaded into the Interactive Disas-

sembler (IDA). This IDA database was used to record the malware execution

and to determine suitable API calls for breakpoints.

The Zeus v2 malware has an anti-analysis mechanism known as hardware

locking. When Zeus malware infects a computer, a copy of the malware is

69

installed in the filesystem, and a block of encrypted binary data is embedded

into this installed malware. This encrypted data includes the malware’s instal-

lation directory and a Globally Unique Identifier (GUID) that was generated

from the computer’s hard disk [71]. When a previously installed Zeus sample

is executed in an analysis environment, execution on a new computer will be

detected, and the malware will exit.

The hardware locking test was disabled by editing the machine code in

the Core::EntryPoint function, the jump instruction controlling the call to the

ExitProcess API was overwritten with no operation (NOP) instructions. This

was the only change that was made to the Zeus malware.

The guiding principle in building the Zeus C2 server emulator was to per-

form the minimum amount of reverse engineering needed to produce a C2

server emulator. Two VMs were used where VM1 was running the python C2

server emulator and the internet simulator, and VM2 was running the Zeus

malware sample and Internet Explorer version 8 for the webinjects testing.

When the Zeus sample is executed, a copy of this malware is injected into

the Explorer process, and the injected malware attempts to connect to the C2

server.

The Zeus configuration is an encrypted binary data structure containing

text specifying the target URL, injection start pattern, and the correspond-

ing webinjects. The Zeus configuration is created by the Zeus configuration

builder, subject to the malware author’s security controls. To simplify the

researcher workflow, the emulated C2 server uses a simplified text based con-

figuration containing the targeted URLs, injection start patterns, and the cor-

responding webinjects. An example of the simplified configuration used by the

emulated Zeus C2 server is given in Figure 4.2. The C2 server emulator injects

additional JavaScript to dump the DOM of the injected webpage into a shared

host directory for analysis.

An initial C2 server emulator returning a response of 256 null bytes was

created using the python BaseHttpServer class. On VM2, a debugger was

attached to the explorer.exe process, a breakpoint was set at the Interne-

tReadFile API, and the Zeus malware sample was executed. The emulated C2

server returned a response, and the breakpoint on the InternetReadFile API

was hit in the Wininet::DownloadData function. Single stepping in the debug-

ger was continued until the BinStorage::Unpack function was called where the

70

data_before

<title>Savings</title>

end_before

data_inject

<p>ICSL Web Inject test framework</p>

end_inject

url_target

http://redacted.com.au/check.aspx?p=52

end_target

Figure 4.2: Simplified Zeus Configuration

following operations were observed:

• RC4 decryption of the received configuration,

• Recursive XOR decoding of the decrypted configuration Crypt:: visualEncrypt,

• Checking of the MD5 signature stored in the header of the decoded con-

figuration,

• The writing of the encrypted Zeus configuration to the Windows registry.

Based on these observations, the C2 server emulator was updated to use

RC4 encryption, recursive XOR encoding, and MD5 signing of the configu-

ration data. A flowchart showing the steps involved in the creation of the

encrypted Zeus configuration is given in Figure 4.3.

Read simplified text
format webinjects file

Parse webinject data
into trigger URLs,

webinjects and injection
start patterns

Build webInjects
section containing

injection start patterns
and webinjects

Build target URLs
section containing a

URL for each webinject

Build a filters section
using hardcoded data

from Zeus sample

Build unencrypted
configuration from
hardcoded header,

filter, webinjects, and
targets

Build Zeus
configuration header
containing MD5 hash

of unencrypted
configuration,

Encode configuration
with recursive XOR

encoding, RC4
encrypt using key
from Zeus sample

Figure 4.3: Creation of Encrypted Zeus Configuration

71

A full explanation of the Zeus configuration and webinjects processing

would require excessive detail. The following provides a high-level view of

the structure of the Zeus configuration and the operation of the malware in

the browser. The Zeus configuration file consists of the following sections:

header, filters, a number of webinject sections, and an injects list containing

the targeted URLs.

Using a debugger to follow the execution of the injected Zeus code in the

web browser was necessary in order to debug the processing of the encrypted

Zeus configuration created by the C2 server emulator and to determine the

minimum configuration sections required to allow successful webinjects. To

gain control of the Zeus code in Internet Explorer, a debugger was attached

to the Internet Explorer 8 parent process, and a breakpoint was set on the

GetModuleHandleW API. Following the validation of the Zeus configuration

in the Explorer process, Zeus malware is injected into the browser process

to monitor the current webpages, to detect triggering URLs, and to perform

injection of the webinjects.

When executing in the context of a web browser, Zeus hooks the browser’s

HttpSendRequest and InternetReadFile APIs. When the HttpSendRequest

API is called, this results in a call to WininetHook::OnHttpSendRequest to

check the Zeus configuration filter actions. If the filter action is not ”ignore”,

the HTTP request is added to an HTTP connections tracking table. When the

InternetReadFile API is called, this results in a call to WininetHook ::OnInter-

netReadFile to check the HTTP response. If this connection is in the tracked

HTTP connections table, then the HttpGrabber::ExecuteInjects function is

called to determine whether the URL is in the targeted URLs section, and if

required injects the webinject into the HTTP response data. An example of a

Zeus webinject, injected text in red, is shown in Figure 4.4.

4.4 Ransomware C2 Server Emulators

The following section provides details of the construction of a C2 server emula-

tor for the CryptoLocker and CryptoWall ransomware. The reverse engineering

of the CryptoLocker malware was straightforward, and the construction of the

C2 server emulator was simple. However, the reverse engineering of the Cryp-

72

Figure 4.4: Example Zeus Webinject

toWall ransomware was complicated by injection into multiple processes and

API obfuscation.

4.4.1 CryptoLocker C2 Server Emulator

CryptoLocker ransomware was identified in 2013, and the number of infected

computers is not known. The MD5 hash of the CryptoLocker sample used

in this research is fec5a0d4dea87955c124f2eaa1f759f5 [72]. This sample was

obtained from Malpedia [73] and includes an unpacked version of the malware.

CryptoLocker uses the Microsoft CryptoAPI, which simplifies the identification

of cryptographic operations. CryptoLocker encryption of communications and

files uses a randomly generated AES key. This AES key is then RSA encrypted

and is embedded into each encrypted object. CryptoLocker communications

encryption makes use of a public key embedded in the malware and a private

key stored in the C2 server. CryptoLocker file encryption uses a public key

provided by the C2 server. The private key needed to decrypt the files is only

73

provided after the ransom is paid [74, 75].

Running the unpacked malware in a debugger showed that a second mal-

ware process was started, and the first process terminated. Examination of

the malware in IDA showed that the function controlling C2 server communi-

cations and user file encryption was located at address 0x40B2A1. A shortcut

to gaining control of this malware was performed by editing the first two bytes

of this function in the unpacked malware to 0xEBFE. This is a two byte loop

that will cause any process executing this function to loop and will stop the

malware from progressing. The looping process was identified by its high CPU

usage using the task manager. The debugger was then attached to gain control

of the malware. Stepping through the malware with the debugger showed that

the following (before encryption) data was sent to the C2 server "version=1&

id=1&name=USERNAME-06752E85&group=sell03-10&lid=en-US".

The response from the C2 server is intended to be encrypted with a private

key contained in the C2 server. However, the C2 servers are no longer active,

and the private key is not available. Two approaches to address the missing

private key are to edit the CryptoLocker malware and replace the hardcoded

RSA public key with a generated public key, and use the corresponding private

key in the C2 emulator, or create unencrypted responses in the C2 emulator

and modify the CryptoLocker malware to no longer check the decryption status

by replacing a conditional jump with NOP instructions. The latter option was

selected as it was easier to implement.

The unencrypted C2 server response was read using the InternetReadFile

API and was decrypted using the CryptDecrypt API. The conditional jump

instruction testing the return code from the CryptDecrypt API was overwrit-

ten with a NOP instruction, allowing unencrypted C2 server responses to be

processed by the CryptoLocker malware. The malware was observed to test

that the last byte of the decrypted response is zero, and the C2 server emulator

was updated to send a null terminated unencrypted response.

Further use of the debugger showed that a value of 1 in the first byte of the

response results in a call to a function that calls the CryptDecodeObjectEx API

to decode a Privacy Enhanced Mail (PEM) format public key. This public key

is located at byte 3 of the response. The completed C2 server emulator reads

the initial message from the malware and returns a response of 0x01, 0x00,

0x00, followed by a null terminated PEM format public key. A screenshot of

74

the CryptoLocker ransom demand screen displayed after the user files were

encrypted is shown in Figure 4.5.

Figure 4.5: CryptoLocker Ransom Demand

4.4.2 CryptoWall C2 Server Emulator

CryptoWall ransomware was identified in 2014. The MD5 hash of the Cryp-

toWall version 4 sample used in this research is d9993ab7397f5d2a34f786b54fc55b2c.

This sample was obtained from Malpedia [73] and included an unpacked ver-

sion of the malware. Descriptions of the CryptoWall protocol were provided by

industry blogs [72, 76, 77], this information significantly reduced the amount

of reverse engineering required to build the CryptoWall C2 emulator.

Early versions of CryptoWall copied CryptoLocker’s appearance, and the

malware authors adopted the name CryptoWall in May 2014. CryptoWall

was primarily distributed through malicious spam attachments. CryptoWall

deletes volume shadow copies, and the Windows System Restore feature is

disabled. CryptoWall version 4 uses a locally generated AES key to encrypt

user files and filenames, RSA encryption is used to protect the AES key. Cryp-

toWall communications are RC4 encrypted, and the RC4 cipher is passed to

the C2 server in the URL of the infection announcement message [77, 76].

75

CryptoWall version 4 malware injects itself into a newly started explorer

process [72]. The injected malware creates a new svchost process, which is

injected with a copy of the malware [77]. The new svchost process performs

ransomware operations. To gain control of the ransomware, run the analysis

VM before the C2 server emulator is started. This will prevent the C2 server

connection from being established and will keep the ransomware in its initial-

ization state. Before running the CryptoWall ransomware, record a list of the

process identifiers of the svchost processes. Start the CryptoWall malware and

identify the new svchost process, connect to this process and set a breakpoint

at the InternetConnectA API, next start the CryptoWall C2 emulator and

allow the debugger to run the CryptoWall malware.

When the ransomware is executed, an HTTP POST is sent to the C2

server. The C2 server uses the sorted URL parameter as ciphertext to create

an RC4 key [78]. The data passed by the HTTP POST is ASCII encoded

binary data, which is decoded using the Python binascii.unhexlify function.

The decoded data is decrypted using the RC4 key. The decrypted request is

"{1|crypt13001|32DC0066DCE410C9285635F121811FB99|1|2|1}".

The C2 server responds by sending an RC4 encrypted response e.g. "{204|

1}" to the infected computer. The CryptoWall ransomware responds by send-

ing a public key request to the C2 server. The C2 server responds with a mes-

sage containing a public key and a base64 encoded ransom demand graphic.

When this C2 response is received, the ransomware process scans the infected

computer’s storage and encrypts user files. When the user files have been en-

crypted, an infection notification message e.g. "{260|1}", is sent to the C2

server. Finally, a window is displayed on the infected computer to demand

payment [76, 72]. The messages exchanged between the ransomware and the

C2 server emulation are shown in Figure 4.6.

Figure 4.6: CryptoWall Messages

The CryptoWall C2 emulator implements the CryptoWall protocol that

76

allows the ransomware to exercise its full capabilities. A screenshot of a section

of the CryptoWall ransom demand screen displayed after the user files were

encrypted is shown in Figure 4.7.

Figure 4.7: CryptoWall Ransom Demand

4.5 Semi-Automated Generation of C2 Server

Emulators

While the ability to automatically generate C2 server emulators for arbitrary

malware families would be useful, this is not currently feasible, and the recent

work in literature is a semi-manual construction process.

The Imaginary C2 program [40] converts captured network traffic into re-

quest definitions that allow C2 HTTP response to be replayed. However, this

traffic replay approach is not suitable for situations where initial network traffic

samples are not available.

One automation approach for the creation of C2 server emulators is pro-

vided in [41]. This research refers to C2 server emulators as Custom Imperson-

ators. Malware samples are executed on a QEMU VM, and instruction traces

are collected using DECAF [42], and the instruction traces are translated into

VINE intermediate language [27]. Symbolic execution [43] is performed on the

instruction traces, and symbolic variables are assigned to network input. A

Simple Theorem Prover (STP) constraint solver [44] is used to determine the

values that determine the outcome of the control flow tests. These values can

be used to identify malware control dependencies controlled by values in the

network input [41]. The malware control flow graph and control dependen-

cies are provided to assist analysts with the manual construction of C2 server

emulators.

Research using ANGR [45], an open source symbolic execution framework,

creates a technique that employs static analysis to determine the C2 command

77

protocol and associated commands implemented in a common RAT. The top-

level command processing function of the RAT is analysed, and for each ex-

plored path, a list of the malware API calls and their arguments, function call

relationships, and the network data required to trigger the path’s execution

are provided [46]. Windows API models and support for the stdcall calling

convention were added to ANGR in order to support the analysis of Windows

malware. Heuristics were created to limit the number of paths explored by

the symbolic execution in order to prevent potential path explosion problems.

Symbolic execution commences at the manually selected Symbolic Execution

Point (SEP), an execution context is needed to provide precondition values

that are generated in malware initialization. In this research, the execution

context was generated using two different techniques: by performing concrete

execution, setting a breakpoint at the SEP, taking a memory dump and ex-

tracting the necessary parts of the execution context, or by moving the SEP

backward, allowing initialization of execution context values. Symbolic execu-

tion was used to explore the command processing loop. The report produced

by this technique showed the API calls, and the functions called in processing

each command, as well as the network data required to trigger the processing

of each command. This research targets analysis for a single RAT, requires

manual SEP identification, does not support analysis of encrypted protocols

and does not support mining of the analysis report from the tool output [46].

The S2E symbolic execution engine is used as the basis of research that

constructs C2 servers for RATs [6]. The S2E engine performs symbolic exe-

cution of instructions and forks execution when branches are taken. An SMT

solver is used to evaluate expressions and obtain concrete values. To prevent

performance problems and scalability issues due to path explosion, an analyst

must provide the location of the command processing loop and details of how

to reach this address. The process used in this research can be summarised

as Trace Generation, Trace Analysis, Speculation, Validation, and C2 Server

Generation. Trace generation uses symbolic execution to explore execution

paths and to maximize code coverage. A number of the recorded traces will

cover the RAT command processing code. The branches taken and API ex-

ecution details are recorded. Trace analysis builds Augmented Prefix Tree

Acceptors (APTA) that captures API execution and branches taken along the

explored paths. APTA’s are Deterministic Finite Automata (DFA) that have

78

been used in the protocol reverse engineering [47]. The goal of speculation is to

generate a small number of paths that cover all of the commands. Speculative

edges are added to the APTAs in an attempt to combine symbolically executed

command fragments into paths containing multiple commands. The symbolic

execution engine is then used to validate speculatively generated paths, when

speculative edges are validated; the branches and API calls are recorded. C2

server generation is performed for each validated path that contains multiple

commands. This research generates a C2 server from the code of a small RAT

created for research purposes [6]. Due to the requirement for manual analysis

to provide the location of the command processing loop as a starting point,

this research is classified as semi-automated.

4.6 Limitations

Irrespective of the C2 emulator construction technique, some malware sam-

ples require minor modification before they can be executed with a C2 server

emulator. Examples of the modifications required to allow the Zeus V2 and

CryptoLocker malware to run with C2 server emulators are given below.

Zeus v2 is a self-modifying malware with a hardware locking feature that

only allows the installed Zeus malware to execute on the computer that it was

installed on. In the Zeus C2 server emulator, the Zeus malware was unpacked

using a static unpacker, and the jump instruction that controls the hardware

locking test was overwritten with NOP instructions to prevent the malware

from terminating.

The CryptoLocker malware contains a hard-coded RSA public key, and the

C2 server emulator is expected to respond with communications encrypted

with the corresponding private key. Due to the removal of the original C2

servers, this private key is no longer available. The C2 server emulator was

developed to return unencrypted responses, and the unpacked CryptoLocker

malware sample was modified to skip the successful decryption check. The

modified CryptoLocker sample operates in the same manner as the original

ransomware, it connected to the emulated C2 server, scanned the hard disk

for user files, performed file encryption and displayed the ransom demand

window.

79

In both of these cases, a modification of the malware’s machine code al-

lowed a historical malware sample to operate at a high level of fidelity with an

emulated C2 server, allowing the collection of feature sets that are comparable

with malware execution in-the-wild. It is acknowledged that the technique

of manually building an emulated C2 server cannot currently be performed

at scale. However, cases exist where manually building a C2 server emulator

allows academic research projects to be performed that would not otherwise

be possible.

A limitation in the manual construction of C2 emulators is the need for

a skilled analyst to perform manual reverse engineering. Techniques for the

semi-automated generation of C2 server emulators do exist. However, the fully

automatic generation of C2 emulators is not currently feasible due to current

limitations in symbolic execution techniques.

4.7 Conclusion

Academic malware datasets consist of collections of historic malware samples.

The C2 servers of these malware samples no longer exist, and when executed

on a VM, these malware samples perform their initialization functions and

then wait for C2 server connections that no longer exist. This initialization-

only behaviour of historic malware samples provides more limited features

than would be collected when the malware was running in-the-wild. Historic

malware samples running without an emulated environment cannot perform

many of the malware’s original capabilities.

Live malware samples with active C2 servers have been used for research

[67]. This approach is feasible but uncertain due to problems associated with

the short lifespan of malware C2 servers, unknown malware configuration, the

malware being controlled by the malware operator, and the possibility of the

malware operator becoming aware of the research.

The creation of C2 server emulators allows the full capabilities of malware

samples to be fully controlled by researchers in an isolated network. In the case

of historic malware samples, the use of C2 server emulators allows control of

malware capabilities that would no longer be available without emulation. This

chapter discussed methods for the manual reverse engineering of the malware

80

sample’s command protocol and created an emulated C2 server that can control

the full command interface of the malware. Three examples of methods used

for the construction of emulated command and control servers were provided.

Apart from the generation of C2 server emulators, some malware samples

require minor modifications to bypass anti-analysis systems or to compensate

for lost encryption keys. Examples of these modifications were provided for

two malware families.

A review of the literature related to the creation of emulated C2 servers

was undertaken. This review showed that the use of C2 server emulators and

the automated generation of C2 server emulators is a new research topic with

research in the early stages. Existing research provides the semi-automated

generation of C2 server emulators based on individual samples.

The research in this chapter examines factors that need to be considered

when creating an environment for the dynamic analysis of malware samples.

Chapter 8 build on this with research, using dynamic analysis for the identifi-

cation of ransomware. Two of the C2 emulators constructed in this chapter are

used in Chapter 8 to allow CryptoWall and CryptoLocker malware to perform

their full range of capabilities including encryption of user files in the VM.

Chapter 5

Evolved Similarity Techniques

in Malware Analysis

This chapter presents a method for the identification of similar functions in

pairs of malware variants. Malware authors are known to reuse existing code.

This type of development process results in software evolution and a sequence

of versions of a malware family containing functions that show a divergence

from the initial version. The challenge in identifying evolved malware function

pairs lies in identifying features that are relatively invariant across evolved

code. The research in this chapter makes novel use of the function call graph

in feature extraction and develops a method for the identification of evolved

functions using ad-hoc function similarity comparison techniques. This work

builds on the extraction of function similarity features from related parts of

the call graph.

The contribution of this chapter has been published as a conference paper:

• P. Black, I. Gondal, P. Vamplew, and A. Lakhotia, “Evolved Similarity

Techniques in Malware Analysis,” 2019 18th IEEE International Con-

ference On Trust, Security And Privacy In Computing And Communi-

cations/13th IEEE International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE). IEEE, ERA A, 2019.

81

Evolved Similarity Techniques in
Malware Analysis

Paul Black∗ Iqbal Gondal† Peter Vamplew§ Arun Lakhotia‡
∗paulblack@students.federation.edu.au, †iqbal.gondal@federation.edu.au, §p.vamplew@federation.edu.au, ‡arun@louisiana.edu

Abstract—Malware authors are known to reuse existing code,
this development process results in software evolution and a
sequence of versions of a malware family containing functions
that show a divergence from the initial version. This paper
proposes the term evolved similarity to account for this gradual
divergence of similarity across the version history of a malware
family. While existing techniques are able to match functions in
different versions of malware, these techniques work best when
the version changes are relatively small. This paper introduces
the concept of evolved similarity and presents automated Evolved
Similarity Techniques (EST). EST differs from existing malware
function similarity techniques by focusing on the identification
of significantly modified functions in adjacent malware versions
and may also be used to identify function similarity in malware
samples that differ by several versions. The challenge in identi-
fying evolved malware function pairs lies in identifying features
that are relatively invariant across evolved code. The research
in this paper makes use of the function call graph to establish
these features and then demonstrates the use of these techniques
using Zeus malware.

Keywords-malware evolution, malware similarity, Zeus, binary
similarity

I. INTRODUCTION

Malware authors are known to perform development based
on existing code in order to maintain their software devel-
opment efficiency [1], [2]. This development process results
in a sequence of malware samples containing functions that
gradually diverge in similarity from the initial version.

Evolved similarity describes the divergence of similarity
across different versions of a malware family. While this paper
does not compute evolutionary distance [3], it does make
use of the concept of evolutionary distance to refer to the
degree of difference between the functions in two versions of
a malware program. This paper provides initial research in
the development of Evolved Similarity Techniques (EST) that
aim to maximise the evolutionary distance over which function
similarity can be computed. To the best of our knowledge,
this is the first time that malware function similarity research
has considered developing methods with a goal of operating
correctly over evolutionary distance.

New versions of a malware family may have functions
added, functions may be removed, changes may occur due
to compiler settings or software development. These changes
are addressed by existing graph isomorphism or semantic
similarity techniques [4], [5], [6], [7]. The performance of
existing malware function similarity techniques decrease as the
evolutionary distance between the malware samples increases.

Manual reverse engineering of the malware samples used in
this research was performed to identify equivalent functions
to allow assessment of experimental results. Given that this
reverse engineering is used for evaluation purposes during the
development of the research methods, this is a different situa-
tion from manual analysis where manual reverse engineering
is required in each comparison.

This paper develops the concept of evolved similarity and
provides a practical demonstration of the initial research of
EST using two different versions of historic Zeus malware
[8] samples. These Zeus samples were selected due to their
version proximity (2.0.8.7 and 2.0.8.9) to the leaked Zeus
source code (2.0.8.9) [9]. The Zeus malware family was
selected due to the availability of samples, existing analysis,
leaked source code and embedded version numbers in some
variants. Automatic unpacking, disassembly and extraction of
function semantics from the malware samples was performed
using Cythereal MAGIC [10].

A. Evolved Similarity

The first situation where EST are useful arises when two
adjacent or similar versions of malware are being compared.
Here the aim is to identify those functions where software
development has been performed, this allows the identification
of functional changes in a new malware version. Identical
functions, and functions that exhibit minor differences in code
generation due to compiler settings are ignored.

Malware detection requires a basic level of analysis. When
a new version of a malware family is identified, it may no
longer be identified by existing detection techniques. Analysis
of the new version may be necessary in order to determine
why detection is failing.

A more detailed level of malware analysis is required to
identify the command and response elements of the malware’s
network protocol. Analysis of new versions of malware is nec-
essary in order to identify new commands and capabilities, this
frequently requires manual analysis, which is time consuming,
requires skilled analysts and does not scale well [11].

The second situation where EST are useful arises when two
malware variants are being compared, for example Zeus V2
and Zeus P2P [12]. In this case, the older variant may have
already been reverse engineered while the new variant has
not been examined. The goal here is to identify previously
analysed functions in the older variant that are present in a
modified form in the newer variant. This allows knowledge of

404

2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/13th IEEE International Conference On Big Data Science And Engineering

2324-9013/19/$31.00 ©2019 IEEE
DOI 10.1109/TrustCom/BigDataSE.2019.00061

Authorized licensed use limited to: Federation University Australia. Downloaded on June 06,2020 at 02:24:31 UTC from IEEE Xplore. Restrictions apply.

the purpose of these common functions to be read across from
the old variant to the newer variant.

Significant software development may have been performed
in a new variant, and common functions may have been
refactored. One of the goals of EST is to indicate function
similarity between refactored functions. The foundations of
refactored similarity are developed in this research.

A challenge in developing EST lies in the fact that one
of the functions being compared may have been modified
in an arbitrary manner. In order to allow comparison in
this situation, comparison features are taken from the target
function and also from the call graph [13] of the target
function.

B. Contribution

This paper makes the following contributions:
• Development of a technique for extracting invariant fea-

tures associated with malware function pairs that differ
due to software development.

• Development of a technique for identifying malware
function pairs where software development has been
performed.

• Creation of a collection of Interactive Disassembler (IDA)
databases of Zeus malware samples with function la-
belling corresponding to the leaked Zeus source code.

The structure of this paper is as follows: the related work
examines existing research, followed by research methodol-
ogy including invariant features, function pair identification,
analysis of results, and the conclusion.

II. RELATED WORK

A. Software Evolution

Research into software evolution has largely focused on
source code analysis in order to provide an understanding
of program change over time [14]. Low level details of
program evolution can be extracted from source code as
a series of changes to a program’s Abstract Syntax Tree
(AST). The significance of program changes can be measured
in terms of edit distance between AST states. Low level
changes are aggregated to changes in program semantics,
such as refactoring, addition or removal of features, or the
correction of errors in the program. This aggregation of low-
level changes supports reasoning about software evolution at
different levels of abstraction and provides understanding of
change in program semantics from a high-level view down
to an implementation level [15]. Source code based software
evolution approaches are not applicable to the majority of
malware families due to the lack of availability of malware
source code, although there are cases where malware source
code has been made public [9], [16].

B. Malware Lineage

A common approach in malware research is to treat every
packed sample as a distinct version [17]. The majority of
malware samples are packed, the purpose of packing malware
is to obfuscate the original malware and to hinder detection.

While there are a large number of different packed malware
samples, unpacking reveals a significantly smaller set of semi-
nal malware families [17], [18]. Malware exhibits evolutionary
relationship in an analogous manner to software programs in
general. This evolutionary relationship is known as malware
lineage. The research in [17] clusters malware samples by
malware family, divides the samples of each malware family
by version and then establishes the relationships between the
versions and produces a lineage graph of the malware version
lineage. Malware Analysis and Attribution Using Genetic
Information (MAAGI) [11] determines malware similarity by
clustering malware using family relationships, utilises sample
temporal sequences to identify malware lineage, and finally
identifies malware behaviours [8] and purpose.

C. Inline Function Identification

Inlined function and library identification [19] uses the
Execution Flow Graph (EFG) that is a hybrid of control flow
graph and data flow techniques. The EFGs are annotated with
hashes derived from normalised instructions and operands.
Instructions are normalised into the following categories: Data
Transfer, Arithmetic Instruction, Logical Instruction, Control
Transfer, String Instruction, and Default. Graph isomorphism
is used to locate inlined compiler intrinsics and library func-
tions in open source programs. While instruction normalisa-
tion may provide a simple technique for code comparison,
problems may be encountered when instructions are used in
multiple contexts. For example, a register may be zeroed
by either of the following instructions, mov eax,0 or by
sub eax,eax. These alternate instructions may lead to the
instruction zeroing a register being classified as either a data
transfer instruction or as an arithmetic instruction. While
instruction normalisation may be simple to implement, its
limitation in dealing with alternative instruction usage limits
its accuracy.

D. VirusBattle

BinJuice is a tool that extracts abstract semantics, called
juice, from a program executable. Symbolic interpretation of
the basic blocks of each function in the program is used to
generate basic block semantics. The execution of instructions
alters the contents of CPU registers and memory. These
changes in CPU registers and memory can be represented
semantically as a set of simultaneous equations. The code does
not need to be executed in a physical CPU to create this repre-
sentation of code execution; the effects of code execution can
be generated using a technique known as symbolic execution.
The aim of generating abstract code semantics is that any two
equivalent code sequences can be represented by the same
semantics. [7], [20].

VirusBattle [21] provides a facility for the analysis of
malware samples that is built on BinJuice. VirusBattle was
designed to be able to identify equivalent functions. The
compilation process that generates equivalent functions will
not be expected to use the same register names or the same

405

Authorized licensed use limited to: Federation University Australia. Downloaded on June 06,2020 at 02:24:31 UTC from IEEE Xplore. Restrictions apply.

memory addresses. To facilitate the identification of equiva-
lent functions, VirusBattle replaces register names and literal
constants with typed logic variables. This generalisation of
semantics yields an abstract semantics that is resistant to code
variation due to compiler settings. VirusBattle generates logic
variables in a consistent manner, so that different register and
memory selections will be reduced to identical logic variables.
[6], [20].

VirusBattle unpacks the submitted malware sample and
creates four different representations of the unpacked
code. The representations are: disassembled code, gener-
alised code (gen code), semantics and generalised semantics
(gen semantics or juice). Generalisation of code and seman-
tics is performed by replacing register names and memory
addresses with symbolic values. The instruction mov(eax,

dptr(’0x3004’)) would be represented in gen code as
mov(A,B), in semantics as A=pre(memdw(’0x3004’)), and
in gen semantics as E=C. Basic block similarity can be estab-
lished by string comparison of the hash of the block’s juice and
does not require the use of a theorem prover, thereby obtaining
a significant performance gain [20]. VirusBattle has been
commercialised by Cythereal Inc and is known as Cythereal
MAGIC.

E. BinDiff

BinDiff provides a graph-based analysis of the differences
between two versions of the same program, it designed to
determine the program changes introduced by security patches
[6]. BinDiff uses program structure and syntactic features such
as string references when calculating similarity [22]. BinDiff
identifies the functions in the two programs and calculates the
Control Flow Graph (CFG) [23] of the functions and uses
graph isomorphism to identify function pairs. Metrics such
as edge counts, derived from the CFG are used to estimate
function similarity. BinDiff initially calculates unique function
matches. Additional matches are then found by searching for
more unique matches from unmatched neighbouring functions
[24]. The BinDiff user interface displays a ranked list of
matching function pairs, a similarity ratio and a confidence
statistic. BinDiff displays the Control Flow Graph (CFG)
of selected functions and identifies matching, differing and
removed basic blocks.

BinDiff operates well when the programs being compared
exhibit similar CFGs, however recompiling a program with
a high optimisation setting changes the CFG sufficiently to
reduce Bindiff’s accuracy to 25 percent [25].

III. RESEARCH METHODOLOGY

The aim of this research is to determine the signif-
icant differences in function pairs of the same malware
family. Two Zeus malware samples were used in this re-
search. Sample 1 was Zeus version 2.0.8.7 with a MD5
hash of 8a7faa25f23a0e72a760075f08d22a91d2c85f57.
Sample 2 was Zeus version 2.0.8.9 with an MD5 hash
of 21a6db13a23ae35b31c4977a129391da3eac1d2e. The

version of the Zeus samples was taken from the Re-
port::AddBasicInfo function.

Unpacking, disassembly and function semantics of the mal-
ware samples were created using Cythereal MAGIC. Inter-
active Disassembler (IDA) databases were created from each
unpacked sample. IDA identified 577 functions in sample
1 and 553 functions in sample 2. The number of exactly
matching functions in the two samples was 483.

A manual comparison of the two malware samples against
the leaked Zeus source code was performed in order to identify
and label the function pairs. The function pairs were then
examined in order to determine the functions that exhibited
differences due to significant software development. This
manual analysis was based on existing IDA databases and was
performed in order to create a ground truth on which to assess
the automatic methods. While it would have been possible to
compile the leaked Zeus source code to give a Zeus sample
containing symbolic information, this would only provide one
of the two samples that are required for this research. Manual
analysis would still be necessary to label the functions in the
second Zeus sample and to compare the function pairs.

The functions in the two samples were examined on a
pairwise basis to ensure consistent identification. Unidenti-
fied function pairs were labelled with unique names. It was
noted that sample 1 included 11 Zeus functions for stealing
email related information, while sample 2 did not contain
these functions. Sample 2 was found to have the following
inlined functions: Str::FindCharA, Str::FindCharW, and
UserHook::ClearInput. These functions were not inlined
in sample 1. The Zeus malware kit was sold by a market-
ing process which included different capabilities at different
prices. As a result, the modules compiled into Zeus malware
samples vary on a per sample basis.

The research process was as follows. The malware samples
were processed using Cythereal MAGIC, which provided un-
packed malware, disassembly and function semantics. Manual
comparison of the two Zeus samples was performed to identify
the corresponding function pairs in the two samples, and then
to identify those function pairs which exhibited significant
differences. The function pairs were manually assessed as
showing no change, minor change or significant change. The
criteria for manually identifying significant change was a
difference in the number of API calls, a difference in the
number of function calls, or the addition or removal of code.
This criteria is intended to exclude minor changes due to
different compiler settings.

Table III shows the function pairs in the two malware
samples where manual analysis identified significant differ-
ences. The function name column shows the function name
corresponding to the Zeus source code. The remaining two
columns show the Virtual Address (VA) [26] of the functions
in the two samples. These VA’s are provided to assist other
researchers who may seek to replicate this research.

406

Authorized licensed use limited to: Federation University Australia. Downloaded on June 06,2020 at 02:24:31 UTC from IEEE Xplore. Restrictions apply.

A. Invariant Features

When a new malware version is identified, the updated
malware may exhibit machine code modification due to mod-
ification of source code, updated libraries or altered compiler
options. The difficulty here is that there are no restrictions on
the modifications that can be performed in the malware code.
For example, the set of API calls from a function could be
selected as a feature, but the updated malware version may
have a different number of API calls in the corresponding
function.

In relation to a CFG, a function d dominates its call graph
as function d must be called prior to the calling of any of the
functions in its call graph [23]. The term ”dominator set” is
defined as the unique set of all static function calls called by
the target function or its associated callgraph.

In this research, features have been extracted from the
target function’s dominator set. This approach is based on the
incremental nature of software (and malware) development.
While a specific function may have been modified due to
version update, it is unlikely that all of the functions in the
static call graph will also have been modified. It is noted, that
in the case where most of the functions in a new version of
malware have been updated, then this technique will fail.

The following features were extracted from the functions of
the original malware sample and the updated version.

• F1, the concatenated semantics of the target function
dominator set.

• F2, the unique set of API calls made by the target function
dominator set.

• The number of static calls F3S, API calls F3A and
dynamic calls F3D made by the target function dominator
set.

The Difflib SequenceMatcher ratio function [27] is used
to calculate the similarity ratio SimRatio of F1 for the
function pair. SequenceMatcher uses the longest matching
sub-sequence algorithm [28] to determine a similarity ratio
between the sequences. SequenceMatcher is similar to but
predates the Ratcliff/Obershelp Gestalt Pattern Matching al-
gorithm [29].

In the following equations, subscripts o and u refer to
the target function from the original malware and from the
updated malware respectively. The ratio of matching API calls
ApiRatio is calculated from F2 as follows:

ApiRatio = F2o/F2u

The ratio of the products of the function call counts CM is
calculated as follows:

CM = (F3So ∗ F3Ao ∗ F3Do)/(F3Su ∗ F3Au ∗ F3Du)

B. Function Pair Identification

When the functions in original malware version are com-
pared with the functions in the updated version the following
relationships exist:

• The updated function is the same as the original function
(R1).

• The updated function shows minor changes due to com-
piler settings with alternate register selection, instruction
reordering or alternate instruction selection (R2).

• The original function is not present in the updated mal-
ware (R3).

• A new function has been added to the updated malware
(R4).

• The original function shows modifications resulting from
source code changes, but has not been refactored (R5).

• The original functionality is present, but has been refac-
tored in the updated malware (R6).

The aim of this research is to identify function pairs
exhibiting significant change, that is, relationships (R5) and
(R6). Exact matches (R1) and minor changes (R2) are ignored.
Functions which have been added (R4) to or excluded (R3)
from, the updated malware do not form function pairs and
are ignored. Minor changes (R2) are excluded by ignoring
functions with matching basic block counts. Similarity of the
remaining functions is assessed by checking if the features
exceed a trigger value. The trigger values that gave the best
performance were determined by trial and error and are shown
in Table I. Future research will seek to improve the function
pair identification method.

Feature Name Trigger Value
SimRatio 0.08
ApiRatio 50
CM 60

TABLE I
FEATURE TRIGGER VALUES

A special case exists where the target function and its call
graph do not contain any API functions. This is the case for
string, compression and cryptographic functions. In this case,
the features and trigger values are shown in Table II.

Feature Name Trigger Value
SimRatio 0.50
CM 60

TABLE II
FEATURE TRIGGER VALUES WHEN NO API CALLS PRESENT

The pseudocode of the algorithm used to identify the
functions exhibiting evolved similarity is shown in Figure 1.

C. Results

The program for identifying the function pairs showing
evolved similarity identified 123 function pairs. Of these, 106
function pairs were false positives. The remaining 17 matching
pairs contained 13 of the 19 manually assessed function pairs
that show significant change. Two of the remaining 4 pairs
were excluded due to equal basic block count, this points to the
difficulty in exactly aligning manual and automated analysis.
The program which implemented this algorithm was written
in python and executed in approximately 44 seconds on a

407

Authorized licensed use limited to: Federation University Australia. Downloaded on June 06,2020 at 02:24:31 UTC from IEEE Xplore. Restrictions apply.

get call graph for each function
get basic block semantics for each function’s call graph
get API call set for each function’s call graph
get fn call statistics for each function’s call graph
for fn1 in program1

for fn2 in program2
if sha1(fn1) == sha1(fn2)
exclude fn1, fn2 #Exclude exact matches

if sub(fn1 BBlock Count, fn2 BBlock Count)
> 0 #Exclude close matches

break
if SeqMatch.Ratio(basic block semantics fn1, fn2)

> BBlock Sim Threshold
if API Call set matches(fn1, fn2)

> API Threshold
fn call statistic =

#API calls * #static calls * #dynamic calls
if fn call statistic(fn1, fn2) > Fn Call Threshold

Evolved Similarity Match found

Fig. 1. Evolved Similarity Algorithm

3.4 GHz i7-3770 cpu. The experimental results are shown in
Table IV for the 19 functions which were manually assessed
as showing significant development.

The first two columns of Table IV give the VAs for the
functions from sample 1 and sample 2 respectively. The third
column shows the Sequence Matcher ratio for the concatenated
semantics for the functions from the samples. The fourth
column shows the percentage similarity of the unique API calls
for the functions from the samples. The fifth column shows the
percentage ratio of the function calls for the functions from the
samples. The sixth column shows an assessment of whether
the identified function pair represents a True Positive (TP) or
a False Positive (FP).

The second row of Table IV corresponding to Zeus func-
tion Core::GenerateBotId is labelled as ”Decomp Err”.
Investigation of this problem showed that this function was
not decompiled in the results returned from Cythereal. The
13th row of this table contains a blank value for ApiRatio,
this corresponds to Zeus Function SoftwareGrabber::

FtpFlashFxp3Decrypt. This function and its corresponding
call graph do not contain any API calls. The third row of this
table corresponds to Zeus function Core::RunAsBot. The
SimRatio for this function is 0.06, while the ApiRatio is
60 and the CM is 95. Examination of the call graph of this
function shows that significant code refactoring has occurred,
however the API similarity and function count similarity are
good indicators of similarity. This case indicates that the
use of ensemble methods in future research could be worth
investigating [30].

IV. CONCLUSION

This paper examines the divergence of similarity between
functions in an existing and a new malware version, and
develops a method for identifying those function pairs that
have been subject to software development. These functions
correspond to the capabilities added in new malware versions.

In this research, identical functions and those exhibiting
minor changes due to compiler differences, do not represent
the addition of malware capability and are excluded, leaving

Function Name 2.0.8.7 VA 2.0.8.9 VA
Core::DefaultModuleEntry 4112C3 410B00
Core::GenerateBotId 410D3C 410591
Core::InitHooks 410643 40FEE8
Core::RunAsBot 411413 410C3F
DynamicConfig::Download 404FFA 415CDA
DynamicConfig::GetCurrent 404DEA 415AEC
HttpGrabber::AnalizeRequestData 40F5A4 41731D
HttpGrabber::FreeRequestData 40FE58 417C65
HttpTools::CatExtraInfoFromUrlToUrlA 41BC44 40C81C
LocalConfig::GetCurrent 41182B 416835
Nspr4Hook::FillRequestData 40579D 40EE27
Nspr4Hook::HookerPrWrite 4061EC 40F8AF
Registry::GetValueAsBinaryEx 41AD3D 40BA42
SoftwareGrabber::FtpFlashFxp3Decrypt 414784 4111A3
SoftwareGrabber::
FtpFtpCommanderMarkStringEnd 415D5E 41276C

SoftwareGrabber::FtpWinScp 415B16 412AB3
UserHook::AddString 40738E 414181
WininetHook::FillRequestData 412A45 406414
WininetHook::OnHttpSendRequest 412B1F 40652F

TABLE III
MANUAL ANALYSIS OF ZEUS FUNCTIONS WITH SIGNIFICANT CHANGE

2.0.8.7 2.0.8.9 Sim API Calls TP/FN
VA VA Ratio PCT Metric
4112C3 410B00 0.16 35 6 FN
410D3C 410591 Decomp Err
410643 40FEE8 0.52 73 78 TP
411413 410C3F 0.06 60 95 FN
404FFA 415CDA 0.21 56 84 TP
404DEA 415AEC 0.23 100 100 TP
40F5A4 41731D 0.28 72 95 TP
41BC44 40C81C 0.59 100 81 TP
41182B 416835 0.19 100 100 TP
40579D 40EE27 0.28 93 73 TP
4061EC 40F8AF 0.19 68 89 FN
41AD3D 40BA42 0.58 80 75 TP
414784 4111A3 0.58 80 TP
415B16 412AB3 0.34 77 98 TP
40738E 414181 0.17 71 80 TP
412A45 406414 0.09 80 66 TP
412B1F 40652F 0.27 70 98 FN
41AD3D 40BA42 0.58 80 75 TP
40738E 414181 0.17 71 80 TP

TABLE IV
EXPERIMENTAL RESULTS FOR FUNCTION PAIRS MANUALLY IDENTIFIED

AS SHOWING SIGNIFICANT CHANGE

those function pairs that exhibit differences resulting from
software development.

This paper presents research that provides a technique for
extracting invariant features from the call tree of malware
functions. This technique is then used to identify function pairs
that exhibit changes resulting from software development.
To support this research, a collection of IDA databases of
unpacked Zeus samples with function labelling corresponding
to the leaked Zeus source code has been created.

Two Zeus versions were selected for this research due to
their version proximity to the leaked Zeus source code. The
functions in these malware samples were manually labelled
with the function names from the source code. Corresponding
function pairs were manually analysed in order to identify
functions that had been changed in the new malware version.

408

Authorized licensed use limited to: Federation University Australia. Downloaded on June 06,2020 at 02:24:31 UTC from IEEE Xplore. Restrictions apply.

Automated methods were developed through the identification
of invariant features associated with the modified functions.
These invariant features were created from the dominator set
of functions from the call graph.

The malware samples used in this research contained 557
and 553 functions. Manual analysis of the labelled IDA
database identified 17 functions that exhibited significant dif-
ferences. The automated method in this research identified 13
of the 17 manually identified functions along with 106 false
positives.

Based on the research in this paper, there is scope for the
following future research:

• Development of a formal model of evolved similarity.
• Development of metrics to measure the degree of code

evolution between functions.
• Evaluation of the performance of each of the comparison

metrics and the identification of additional metrics with
improved performance.

• The research presented in this paper is performed on
a pair of closely related Zeus malware samples. This
research could be extended using less closely related pairs
of other malware families.

ACKNOWLEDGEMENT

The authors would like to thank Cythereal1 for providing
access to Cythereal MAGIC and to the malware dataset used
in this research. This research was funded in part through
the Internet Commerce Security Laboratory (ICSL), a joint
venture between Westpac, IBM and Federation University
Australia.

REFERENCES

[1] M. Alazab, “Profiling and classifying the behavior of malicious codes,”
Journal of Systems and Software, vol. 100, 2015.

[2] I. Haq, S. Chica, J. Caballero, and S. Jha, “Malware lineage in the wild,”
Computers & Security, vol. 78, pp. 347–363, 2018.

[3] G. Wagener, A. Dulaunoy et al., “Malware behaviour analysis,” Journal
in computer virology, vol. 4, no. 4, pp. 279–287, 2008.

[4] T. Dullien and R. Rolles, “Graph-based comparison of executable objects
(english version),” SSTIC, vol. 5, no. 1, p. 3, 2005.

[5] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding
semantic differences in binary programs,” in Information and Commu-
nications Security. Springer, 2008, pp. 238–255.

[6] A. Lakhotia, M. D. Preda, and R. Giacobazzi, “Fast location of similar
code fragments using semantic ’juice’,” in Proceedings of the 2nd
ACM SIGPLAN Program Protection and Reverse Engineering Workshop.
ACM, 2013, p. 5.

[7] B. H. Ng and A. Prakash, “Expose: Discovering potential binary code re-
use,” in Computer Software and Applications Conference (COMPSAC),
2013 IEEE 37th Annual. IEEE, 2013, pp. 492–501.

[8] P. Black, I. Gondal, and R. Layton, “A survey of similarities in banking
malware behaviours,” Computers & Security, vol. 77, pp. 756–772, 2018.

[9] Zeus Author, “Zeus source code,” 2011. [Online]. Available: https:
//github.com/Visgean/Zeus

[10] Cythereal Inc, “Cythereal MAGIC,” 2018. [Online]. Available:
https://www.cythereal.com

[11] A. Pfeffer, C. Call, J. Chamberlain, L. Kellogg, J. Ouellette, T. Patten,
G. Zacharias, A. Lakhotia, S. Golconda, J. Bay et al., “Malware analysis
and attribution using genetic information,” in Malicious and Unwanted
Software (MALWARE), 2012 7th International Conference on. IEEE,
2012, pp. 39–45.

1Cythereal has licensed VirusBattle from the University of Louisiana at
Lafayette

[12] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos,
“Highly resilient peer-to-peer botnets are here: An analysis of
gameover zeus,” in Malicious and Unwanted Software:” The Ameri-
cas”(MALWARE), 2013 8th International Conference on. IEEE, 2013,
pp. 116–123.

[13] K. Cooper and L. Torczon, Engineering a compiler. Elsevier, 2011.
[14] J. Dagit and M. Sottile, “Identifying change patterns in software history,”

arXiv preprint arXiv:1307.1719, 2013.
[15] R. Robbes, M. Lanza, and M. Lungu, “An approach to software evolution

based on semantic change,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2007, pp. 27–41.

[16] G. Brindisi, “Malware source codes,” 2018. [Online]. Available:
https://github.com/gbrindisi/malware

[17] I. U. Haq, S. Chica, J. Caballero, and S. Jha, “Malware lineage in the
wild,” arXiv preprint arXiv:1710.05202, 2017.

[18] F. C. C. Osorio, H. Qiu, and A. Arrott, “Segmented sandboxing-a novel
approach to malware polymorphism detection,” in 2015 10th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE).
IEEE, 2015, pp. 59–68.

[19] J. Qiu, X. Su, and P. Ma, “Using reduced execution flow graph
to identify library functions in binary code,” IEEE Transactions on
Software Engineering, vol. 42, no. 2, pp. 187–202, 2016.

[20] A. Lakhotia and P. Black, “Mining malware secrets,” in Malicious and
Unwanted Software (MALWARE), 2017 12th International Conference
on. IEEE, 2017, pp. 11–18.

[21] C. Miles, A. Lakhotia, C. LeDoux, A. Newsom, and V. Notani, “Virus-
battle: State-of-the-art malware analysis for better cyber threat intelli-
gence,” in Resilient Control Systems (ISRCS), 2014 7th International
Symposium on. IEEE, 2014, pp. 1–6.

[22] C. LeDoux, A. Lakhotia, C. Miles, V. Notani, and A. Pfeffer, “Func-
tracker: Discovering shared code to aid malware forensics,” in Presented
as part of the 6th USENIX Workshop on Large-Scale Exploits and
Emergent Threats, 2013.

[23] F. E. Allen, “Control flow analysis,” in ACM Sigplan Notices, vol. 5,
no. 7. ACM, 1970, pp. 1–19.

[24] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate comparison
of binary executables,” in Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop. ACM, 2013,
p. 4.

[25] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
Dynamic similarity testing for program binaries and components,” in
USENIX Security Symposium, 2014.

[26] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. No Starch Press, 2012.

[27] D. Hellmann, The Python standard library by example. Addison-Wesley
Professional, 2011.

[28] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest com-
mon subsequence algorithms,” in String Processing and Information
Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Sym-
posium on. IEEE, 2000, pp. 39–48.

[29] J. W. Ratcliff and D. E. Metzener, “Pattern-matching-the gestalt ap-
proach,” Dr Dobbs Journal, vol. 13, no. 7, p. 46, 1988.

[30] E. Menahem, A. Shabtai, L. Rokach, and Y. Elovici, “Improving
malware detection by applying multi-inducer ensemble,” Computational
Statistics & Data Analysis, vol. 53, no. 4, pp. 1483–1494, 2009.

409

Authorized licensed use limited to: Federation University Australia. Downloaded on June 06,2020 at 02:24:31 UTC from IEEE Xplore. Restrictions apply.

Chapter 6

Identifying Cross-Version

Function Similarity Using

Contextual Features

The research in this chapter builds on the EST method from the previous chap-

ter, and replaces the ad-hoc function similarity method with a SVM model,

and expands the set of features used in the EST method. While other machine

learning techniques may offer potentially higher efficiency, the performance of

the SVM model was found to be adequate for research purposes. A function’s

context is a set of functions comprising the function itself, and all the pro-

gram functions that may be executed when this function is called. Contextual

features consist of data that is extracted from the functions contained in the

function context. This chapter identifies function pairs in two programs us-

ing representative features based on both individual functions and function

context. This technique presented in this chapter uses a SVM model to pre-

filter function pairs and then applies an edit distance technique using function

semantics to reduce false positives. A performance analysis of the algorithm

used in this chapter is provided in chapter 7. The contributions of this chapter

are presented as a research paper:

• P. Black, I. Gondal, P. Vamplew, and A. Lakhotia, “Identifying Cross-

Version Function Similarity Using Contextual Features”, IEEE Trust-

Com, IEEE, ERA A, 2020 (Accepted).

88

89

6.1 Introduction

The identification of similar functions in malware assists analysis by supporting

the exclusion of functions that have been previously analysed, enables faster

identification of new variants, supports authorship attribution, and the analy-

sis of malware phylogeny [13]. Similar functions in a pair of malware samples

may be due to the samples being from the same malware family, the samples

being produced by the same malware author, use of shared code, a common

library, or a well-known malware technique [79].

The organisations performing malware analysis face several challenges. The

first is the large number of packed malware samples that must be processed

daily. Unpacking of these malware samples reveals the original malware pro-

gram. A comparison of the unpacked malware programs allows the elimination

of exact matches, thereby reducing the volume of new malware samples by

several orders of magnitude [15, 80]. Clustering may be used to segregate the

unique malware samples into malware variants [81]. Previously analysed vari-

ants are removed from the clustered samples using malware similarity, some of

which use function comparison [82]. Function similarity can be used to exclude

functions that are unchanged and allow analysis to focus on changed functions.

Software evolution occurs in most malware families as a result of malware

development efforts. As new malware versions are released, the machine code

in the malware functions diverges from that of previous versions. Modeling

of the generation and evolution of malware has been performed [79]; how-

ever, matching compiled functions across multiple malware versions remains a

significant research challenge.

This paper presents Cross Version Contextual Function Similarity (CVCFS),

a 2-step method for the identification of similar pairs of functions in two vari-

ants of a program. In the first step, a Support Vector Machine (SVM) model

is used to pre-filter candidate pairs from a set of all pairs of functions from the

two variants. The innovation in this step lies in the use of features that stay

reasonably invariant, even under refactoring and program evolution. These

features termed – contextual features – capture the calling context of a func-

tion. In the second step, false positives from the first step are weeded out by

using edit distance between over function semantics.

A case study is performed where function similarity features for training

90

were extracted from Zeus version 2.0.8.7 and Zeus 2.0.8.9 malware samples.

The compilation dates of these training samples differ by approximately one

month, with minor variations between the functions. The malware samples

were labelled with ground truth function matching labels that were obtained

by manual reverse engineering. An SVM model was trained using the labelled

features. Function pair prediction was tested using Zeus version 2.0.8.9 and

2.1.0.1 malware samples. The compilation dates of these malware samples

differ by approximately six months with significant variation in some of the

functions. A comparison of the SVM model results demonstrates the higher

performance of contextual features. The SVM pre-filtering is followed by the

use of an edit distance technique to filter false-positives. This resulted in a

function pair identification accuracy of 85 percent, this was verified against

the baseline function similarity obtained by manual reverse engineering.

This paper makes the following contribution:

• Introduces a new class of features called contextual features that strengthen

features from individual functions. These are well suited for capturing

similarity between malware samples exhibiting evolutionary changes.

• Cross Version Contextual Function Similarity (CVCFS) technique for

finding similar functions in pairs of programs, malware, or benign.

The following additional contributions are provided:

• A curated dataset of pairs of matched functions in three versions of Zeus

malware for use in future research.

• A set of three labelled IDA databases of Zeus malware versions 2.0.8.7,

2.0.8.9, and 2.1.0.1. 1.

• Creation of labelled Interactive Disassembler (IDA) databases of Zeus

versions 2.0.8.7, 2.0.8.9, 2.1.0.1 malware samples.

The structure of this paper is as follows: Section II presents related work,

Section III presents the research methodology, Section IV presents the empir-

ical evaluation of results, and Section V presents the conclusion.

1The datasets related to this research are available online at
http://federation.edu.au/icsl/evolvedsimilarity

91

6.2 Related Work

6.2.1 BinJuice Function Semantics

BinJuice computes abstract semantics for each basic block of all functions in

a compiled program by a process of disassembly, control flow graph (CFG)

generation, symbolic execution, algebraic simplification, and the computation

of function semantics [49]. The aim of generating abstract semantics is to

represent any two equivalent code sequences by the same semantics [54, 57].

Disassembly and CFG extraction are performed by existing tools. Basic

block semantics are generated using symbolic interpretation. Symbolic execu-

tion does not involve execution on a physical processor; instead, the effects of

the program instructions can be represented as a set of simultaneous equations.

An algebraic simplifier provides simplification of the symbolic expressions re-

sulting from the symbolic execution. The simplified symbolic expressions are

mapped into a canonical form to ensure that sections of equivalent code having

equivalent symbolic expressions are sorted in the same order. The juice opera-

tion addresses the problem of comparing sections of equivalent code containing

different register allocations by renaming register names in the simplified sym-

bolic expressions to consistent logical variables [49].

VirusBattle is built on BinJuice and is used to identify relationships be-

tween malware samples in a large database [56]. VirusBattle unpacks the

submitted malware sample and creates four different representations of the un-

packed code. These representations are disassembled code, generalised code,

semantics, and generalised semantics (juice). VirusBattle identifies similar

functions by comparing the hashes of the function’s generalised semantics,

this provides a significant performance gain compared with non-approximate

methods, e.g., theorem solvers [57]. VirusBattle has been commercialised by

Cythereal Inc and is known as Cythereal MAGIC.

6.2.2 Machine Learning In Software Similarity

The proliferation of IoT devices using open source code and a variety of CPU

architectures has led to a research interest in the identification of known defects

in the same source code compiled for several different CPU architectures. Ex-

amples of this research are provided by Gemini [59] and SAFE [60]. Early ap-

92

proaches to function binary similarity made use of graph isomorphism. These

techniques were effective, but performance becomes an issue with increasing

graph size. Neural networks have been used for cross-architecture bug-search

as these techniques exhibit better performance characteristics than graph iso-

morphism.

Gemini performs cross-architecture, binary, software defect search using

Control Flow Graph (CFG) features. Gemini uses a neural network to extract

features from the CFG of the compiled functions [59].

Cross-architecture function similarity is also addressed by SAFE, which

extracts the instruction sequence from compiled functions and models them as

a natural language [60]. The interaction of the instruction sequence is captured

using a Gated Recurrent Unit Neural Network (GRU-RNN). An attention

mechanism is used to automatically focus on the instructions with the best

performance for the identification of similar functions.

The techniques in the above research use neural networks to locate software

vulnerabilities in the same version of code that has been compiled for different

CPU architectures. These techniques are optimised for cross-architecture vul-

nerability identification within a program of the same software version. The

techniques provided in this paper provide identification of similar functions in

different versions of the same program compiled for a single CPU architecture.

6.3 Research Methodology

This research provides the CVCFS technique that is used to identify functions

that were compiled from different versions of the same malware family. This

technique uses an SVM model to pre-filter function pairs, and then uses an edit

distance technique on the function semantics to filter and significantly reduce

false-positives from the preliminary function pair identification.

Previous research using ad-hoc methods and hard-coded heuristics were

used to identify function similarity [83]. CVCFS builds on this research by

replacing the heuristics and ad-hoc methods with a Support Vector Machine

(SVM) model.

SVM is a machine learning model for binary classification [84]. The SVM

algorithm divides an n-dimensional feature space into two classes using a hy-

93

perplane. The CVCFS program extracts features from functions in the dis-

assembly of two related programs; an SVM model is used to identify similar

function pairs in the two programs.

The Function Similarity Ground Truth (FSGT) dataset contains data defin-

ing the pairing of the functions from the two programs being compared. The

FSGT dataset contains a name that has been assigned to each function pair

and the Relative Virtual Addresses (RVAs) of each function in the pair. The

function names are used for researcher convenience and are not used in the

similarity algorithms.

6.3.1 Function Context

Given a program p containing a set of functions F, the context c(f) of a specific

function f is function f, plus the set of all non-API functions f ’ that can be

reached by walking the call graph starting from function f.

• Control Flow Edge A control flow edge e represents the transfer of

control that occurs when function x calls function y. A control flow edge

e from function x to function y is represented by e = (x,y).

• Call Graph A call graph is represented by the directed graph G =

(V,E), where V is the set of functions in a program, and E is the set of

control flow edge transitions.

• Walk A walk w in G is a finite set of control flow edge transitions that

occur as the result of a sequence of function calls from the execution of

function f.

w(f) = {e0, e1, ..., ei} (6.3.1)

• Path A path w in G is the set of vertices v traversed due to a walk in

a call graph G, this path represents the set of functions f ’ called by the

execution of function f.

w(f) = {v0, v1, ..., vi-1} (6.3.2)

• Function Context The context c(f) of function f is the set of all func-

tions f ’ that can be reached by walking all possible paths in G starting

94

from the vertex representing function f. Recursion and call graph loops

require limiting the walk to paths not previously walked.

c(f) = {f ′ : f ′ ε ∀ p(f)} (6.3.3)

6.3.2 Local Features

The CVCFS technique makes use of local features taken only from function f,

and contextual features taken from the context c(f) of the function. The local

features consist of the following:

• Set of API calls,

• Set of constants,

• Stack size,

• Function callers count.

• Basic block count,

Set of API calls: The system programming interface for the Windows op-

erating system is provided by the Windows Application Programming Interface

(API) [85]. This API provides a dynamic function call interface for Windows

system services. Windows programs use the portable executable (PE) format.

In the case where a call to an API results in calls subsequent API’s, only the

first API call is recorded. Let AL(f,p) be the set of API functions called by

function f in program p.

AL(f,p) = {a0, a1, ... ,an}. (6.3.4)

Set of constants: The goal in extracting a set of constants is to extract

invariant numerical constants from the operands of instructions in functions.

Call and jump instructions were excluded because they have operands that

contain program and stack addresses that are not invariant. Let CL(f,p) be

the set of constants that are not program or stack addresses contained in

function f of program p.

95

CL(f, p) = {c0, c1, ..., cm} (6.3.5)

Stack size: Let SL(f,p) be the stack size s0 of function f in program p.

SL(f, p) = s0 (6.3.6)

Function callers count: Let FL be the count of calls made to function f

in program p.

FL(f, p) = |{c0, c1, ..., cn}| (6.3.7)

Basic block count: A basic block is defined as the maximal sequence

of consecutive instructions that begin execution at the first instruction and

when the block is executed, all instructions in the basic block are executed

sequentially without halting or branching, except for the last instruction in

the block [86]. Let BL be the count of basic blocks in function f.

BL(f, p) = {b0} (6.3.8)

6.3.3 Local Feature Ratios

The CVCFS system calculates feature ratios using the Cartesian product of

all functions in program p1 and all functions in program p2. It is noted

that function similarity is commutative, and the same function pairs will be

identified by comparing programs p1, p2 as would be identified by comparing

program p2, p1. Let F(p) be the set of all functions in program p.

F (p) = {f 0, f 1, ..., f l} (6.3.9)

The set of function pairs FP(p1,p2) of programs p1 and p2 is defined as

follows:

FP (p1, p2) = F (p1)× F (p2) (6.3.10)

Each element of the Cartesian product FP is a function pair fp consisting

96

of one function f1 from program p1 and one function f2 from program p2.

fp = (f1, f2) (6.3.11)

Local API Ratio: Let ALE1 and ALE2 be the sets of API calls extracted

from each of the functions in function pair fp. Let local API ratio ARL, be

the ratio of the magnitude of the intersection of ALE1 and ALE2 to the larger

of the magnitude of ALE1 and ALE2.

ARL = len(ALE1 ∩ ALE2)/max(len(ALE1), len(ALE2)) (6.3.12)

Local Constants Ratio: Let CLE1 and CLE2 be the sets of constants ex-

tracted from each of the functions in function pair fp. Thus CL1 = CLE(fp[0])

and CL2 = CLE(fp[1]). Let local constants ratio LCR be the ratio of the mag-

nitude of the intersection of CLE1 and CLE2 to the larger of the magnitude of

CLE1 and CLE2 .

CRL = len(CLE1 ∩ CLE2)/max(len(CLE1), len(CLE2)) (6.3.13)

Local Stack Ratio: Let SLE1 and SLE2 be the stack sizes extracted from

each of the functions in function pair fp. Let local stack ratio LSR be the

ratio of the magnitude of the absolute value of the difference between SLE1

and SLE2 to the larger of the magnitude of SLE1 and SLE2 .

SRL = abs(SLE1 − SLE2)/max(len(SLE1), len(SLE2)) (6.3.14)

Callers Ratio: Let FCE1 and FCE2 be the function callers counts ex-

tracted from each of the functions in function pair fp. Let FCD be the absolute

value difference between FCE1 and FCE2. Then FCD = abs(FCE1 - FCE2).

Let callers ratio CR, be the ratio of FCD to the larger of FCE1 and FCE2.

CR = FCD/max(FCE1, FCE2) (6.3.15)

Blocks Ratio: Let BLE1 and BCE2 be the basic block counts extracted

from each of the functions in function pair fp. Let blocks ratio BR be the ratio

97

of BLE1 and BLE2.

BR = min(BLE1, BLE2)/max(BLE1, BLE2) (6.3.16)

6.3.4 Contextual Features

The strength of function similarity features can be improved by extracting the

feature across all of the functions contained within the context of the function

under consideration. The contextual features consist of the following:

• Contextual set of API calls,

• Contextual set of constants,

• Contextual stack size,

• Contextual return count,

• Contextual function calls count.

Contextual set of API calls: Let AC be the set of API calls made from

the context c(f) of function f.

Contextual set of constants: Let CC be the set of constants from the

context c(f) of function f.

Contextual stack size: Let SC be the sum of stack sizes from the context

c(f) of function f.

Contextual return count: Let RC be the count of return instructions

from the context c(f) of function f.

Contextual function calls count: Let CS be the count of call instruc-

tions from the context c(f) of function f.

6.3.5 Contextual Feature Ratios

The contextual feature ratios consist of the following:

Contextual API Ratio: Let AC1 and AC2 be the set of API calls made

from the context of each of the functions in function pair fp. Let the contextual

98

API ratio ACR, be the ratio of the magnitude of the intersection of AC1 and

AC2 to the larger of the magnitude of AC1 and AC2.

ACR = len(AC1 ∩ AC2)/max(len(AC1), len(AC2)) (6.3.17)

Contextual Constants Ratio: Let CC1 and CC2 be the set of constants

from the context of each of the functions in function pair fp. Let the contextual

constants ratio CCR be the ratio of the magnitude of the intersection of CC1

and CC2 to the larger of the magnitude of CC1 and CC2 .

CCR = len(CC1 ∩ CC2)/max(len(CC1), len(CC2)) (6.3.18)

Contextual Stack Ratio: Let SC1 and SC2 be the sum of the stack sizes

from the context of each of the functions in function pair fp. Let the contextual

stack ratio SCR be the ratio of the magnitude of the intersection of SC1 and

SC2 to the larger of the magnitude of SC1 and SC2 .

SCR = len(SC1 ∩ SC2)/max(len(SC1), len(SC2)) (6.3.19)

Contextual Returns Ratio: Let RC1 and RC2 be the count of return

instructions from the context of each of the functions in function pair fp. Let

the contextual returns ratio RCR, be the ratio of absolute value difference

between RC1 and RC2 to the larger of RC1 and RC2.

RCR = abs(RC1 −RC2)/max(len(RC1), len(RC2)) (6.3.20)

Contextual Calls Ratio: Let FC1 and FC2 be the count of call instruc-

tions from the context of each of the functions in function pair fp. Let the

callers ratio FCR, be the ratio of absolute value difference between FC1 and

FC2 to the larger of FC1 and FC2.

FCR = abs(FC1 − FC2)/max(FC1, FC2) (6.3.21)

99

6.3.6 Edit Distance Filtering

The function similarity results obtained by the SVM model developed in an

earlier section included a large number of false-positive results. Experimenta-

tion with the SVM model was performed but the false-positive results remained

a problem. Existing research [10, 59] uses machine learning as the first stage

pre-filter in identifying similar functions. To overcome the large number of

false-positives, a decision was taken to use the SVM model as a pre-filter, and

to add an edit distance metric using the BinJuice generalised semantics to

filter out false-positives.

Although it would be possible to remove the pre-filtering step and to solely

use the graph edit distance for the identification of function pairs, this would

not be feasible due to the significant execution time of the edit distance calcu-

lation. In the research in this paper, the SVM pre-filter ran in approximately

two minutes, while the run time for the edit distance filtering could take as

long as 12 hours.

BinJuice function semantics contains four levels of abstraction, where the

most abstract form of the function semantics is the Generalised Semantics. The

Levenshtein edit distance [87] of the Generalised Semantics of each function

was calculated. Edit distance increases with function size and cannot be used

directly to identify matching function pairs. The edit distance was normalised

by dividing the edit distance by the function basic block count to give a Nor-

malised Edit Distance per Basic Block (NEDBB) metric The NEDBB metric

was used to identify matching function pairs from the pre-filtered matches.

6.3.7 CVCFS Algorithm

The algorithm used to extract the function context of a specified function is

shown in Figure 6.1. The algorithm for feature extraction is shown in Figure

6.2. The algorithm used to perform edit distance filtering of the pre-filtered

function pairs is shown in Figure 6.3. In the edit distance filtering algorithm,

the filtervalue is a hardcoded threshold that is tested against the NEDBB

value in order to select the pre-filtered function pairs.

100

Create empty function context

Create empty visited list

From the disassembly of function f

Add static function calls from f to function context

For each function in function context

If function not in visited list

Add function to visited list

Recursively get new static functions called by function

Add new static functions to function context

Add f to function context

Figure 6.1: Function Context Extraction Algorithm

p1 = baseline version of program

p2 = updated version of program

for each function in p1

extract function context for function

for each function in p2

extract function context for function

for each function in p1

calculate individual features for function

calculate contextual features for function

for each function in p2

calculate individual features for function

calculate contextual features for function

for each f1 in p1

for each f2 in p2

calculate locate feature ratios

calculate contextual feature ratios

if f1, f2 in FSGT dataset

set label = "1"

else

set label = "0"

rva1 = rva(f1)

rva2 = rva(f2)

features = map(rva1, rva2, ARL, ARD, FRD,

RRD, CR, LCR, CRD, LSR, LSD, LBR)

Figure 6.2: Feature Extraction Algorithm

let ml_predicted = all fn pairs predicted match

for each fn_pair in ml_predicted

let sem1 = semantics of fn_pair[1]

let sem2 = semantics of fn_pair[2]

let ed = nktk.edit_distance(sem1, sem2)

let bc1 = blocks count fn_pair[1]

let ed_per_block = ed / bc1

if ed_per_block < filter value

match = True

else

match = False

Figure 6.3: Edit Distance Filtering Algorithm

101

6.4 Empirical Evaluation

The malware samples used in this paper are shown in Table 6.1. The un-

packed samples were provided by Cythereal and were disassembled using the

Interactive Disassembler (IDA). The linker date in the Portable Executable

(PE) header is used to indicate the time the malware samples were created,

although the linker date can be modified by the malware author, there are

no inconsistencies that suggest this time has been modified. The linker dates

indicate that sample 2 was produced approximately one month after sample

1, and sample 3 was produced approximately six months after sample 1.

The malware samples were submitted for Cythereal processing. The output

from the Cythereal processing is the unpacked malware sample and a dataset

containing the disassembly and semantics of the unpacked malware sample

[88].

Sample SHA1 Hash Version Date
8a7faa25f23a0e72a760075f08d22a91d2c85f57 2.0.8.7 2010-09-14
706bf4dcf01b8eceedf6d05cf5b55a27e4ff8ef0 2.0.8.9 2010-10-15
30c6bb2328299a252436d2a3190f06a6f04f7e3f 2.1.0.1 2011-03-24

Table 6.1: Zeus Sample Details

Tool Version Count Version Count Match Count
IDA 2.0.8.7 577 2.0.8.9 553 549
Cythereal 2.0.8.7 577 2.0.8.9 553 549
IDA 2.0.8.9 553 2.1.0.1 601 539
Cythereal 2.0.8.9 539 2.1.0.1 601 517

Table 6.2: Zeus Function Count and Manual Match Count

The FSGT dataset identifies the function pairs, function names, and func-

tion RVAs for each malware sample used in this research. Manual analysis

using IDA, the unpacked malware samples, and the leaked Zeus source code

was performed in order to identify the function pairs for the FSGT dataset.

Function identification was performed based on the API calls, constants, and

CFG structure. Function names from the Zeus source code provide a con-

venient identification for researchers but are not used by the research code.

Function RVAs are used to identify functions in the Cythereal semantics and

102

push(ebp)

mov(ebp,esp)

sub(esp,SL)

Figure 6.4: Function Prologue

in the research code. The results of the function name labelling are shown in

Table 6.2. IDA identified 553 functions in sample 3 while Cythereal MAGIC

could only identify 539 functions in sample 3. This discrepancy may be an

artifact of Cythereal processing.

6.4.1 Features

To calculate the local and contextual constant features, constants were ex-

tracted from mov, push, add, cmp, and sub instructions. Ad-hoc analysis

showed that these instructions contained a significant proportion of invari-

ant operands. Program and stack addresses were further filtered by excluding

values greater than the program base address.

The stack size is taken from the function prologue when it is present; oth-

erwise, it is zero. The stack size SL is taken from the sub instruction in the

function prologue shown in Figure 6.4. It is noted that some compilers may

not use the same idiom for their function prologue.

As this research uses static analysis, the non-API function call counts used

in this research are a count of static function calls.

6.4.2 SMOTE Oversampling

The function similarity training dataset was imbalanced due to the use of the

Cartesian product comparison, which resulted in an unstable performance of

the SVM model. Assume that the two versions of the same program are being

compared, and each program contains 500 functions. The maximum number

of matching function pairs is 500. The number of function pairs generated by

the Cartesian product is 250,000, and the minimum number of non-matching

function pairs is 249,500. The use of a Cartesian product in the generation

of training features inherently leads to an imbalanced dataset. The perfor-

mance of the SVM model was improved with the use of Synthetic Minority

Oversampling Technique (SMOTE) [89] to rebalance the training dataset.

103

6.4.3 SVM Model Training

In this paper, sample 1 and sample 2 were used for training as these two

Zeus samples are similar but exhibit a number of minor differences. Function

similarity features for training were calculated using the Cartesian product of

all functions in samples 1 and 2. These features were labelled as matching or

not matching using the FSGT dataset. All possible feature combinations were

used to train a series of SVM models in order to identify the best performing

feature combinations. As 10 features were used, exhaustive testing required

1023 tests to be performed. The features in each of these tests were assigned a

binary identifier, e.g., the first feature is identified as 0000000001, the second

feature was identified as 0000000010. The use of binary identifiers allowed the

numbering of individual tests; these feature identifiers are shown in Table 6.3.

6.4.4 Pre-Filtering

The functions in samples 1 and 3 exhibit more differences due to software

development than the training dataset. A testing set of function similarity

features were created using the Cartesian product of all functions in samples 1

and 3. The previously generated SVM models were used to predict the match-

ing function pairs from the testing feature set. The results of this prediction

were evaluated using the FSGT dataset.

Feat # Vector Description
1 0000000001 Basic Block Ratio
2 0000000010 Contextual Stack Ratio
4 0000000100 Local Stack Ratio
8 0000001000 Contextual Constants Ratio
16 0000010000 Local Constants Ratio
32 0000100000 Contextual Callers Ratio
64 0001000000 Contextual Returns Ratio
128 0010000000 Calls Ratio
256 0100000000 Local API Ratio
512 1000000000 Contextual API Ratio

Table 6.3: Numbering For Feature Combination Tests

The performance of each individual feature was assessed by performing

function similarity classification using SVM models trained for each individual

104

feature. The results of this evaluation are shown in Table 6.4. Although the

prediction of the SVM model was reasonable, the recall performance was not

good resulting in a significant false-positive count. A number of features were

tested in an effort to reduce the false-positive count, ultimately it was decided

to use the SVM model as a pre-filter of function pairs.

The feature combinations which provided the best performance are shown

in Table 6.5. The function pair prediction results in this research vary from

run to run due to the stochastic nature of machine learning.

The F-measure (F1) [90] defined in equation 6.4.1 is used to assess the

precision and recall of results.

F1 = 2 * (Precision * Recall) / (Precision + Recall) (6.4.1)

Referring to the F-measure (F1) in Table 6.5, the best performing feature

combination was test 611 with an F-measure of 0.07. For comparison, a random

classifier would result in a low F-measure due to the unbalanced distribution

of the classes within these datasets (Section 6.4.2). If we consider sample 3,

a random classifier would classify half of the 539 matching function pairs as

matching and half as non-matching, and would similarly split the 323400 non-

matching function pairs between these two classes. This gives a precision score

of 269.5 / (269.5 + 161700)=0.0017, and a recall of 269.5/539=0.5. Combining

these gives an F-measure of 0.0034. The F-measures obtained by this SVM

model are above those that would be expected using random classification.

Feature combination 611 uses the Contextual API ratio, the Contextual Re-

turns Ratio, the Contextual Callers Ratio, the Contextual Stack Ratio, and

the Basic Blocks Ratio, as shown in Table 6.5.

6.4.5 Feature Performance

The relative performance of individual features can be assessed from Table

6.4 or it can be assessed from a count of those features present in the best

performing feature combinations shown in Table 6.5. Table 6.6 summarises the

performance of each of the features, the ”Ind Rank” column ranks individual

feature performance based on the F-Measure with higher numbers indicating

better performance. From this ranking, the Local API Ratio outranked the

105

Test Vector TP FP FN Pr Rc F1
1 00000000001 500 64486 17 0.01 0.97 0.02
2 00000000010 280 19528 237 0.01 0.54 0.03
4 00000000100 265 20460 252 0.01 0.51 0.02
8 00000001000 479 10338 38 0.04 0.93 0.08
16 0000010000 460 18767 57 0.02 0.89 0.05
32 0000100000 378 69778 139 0.01 0.73 0.01
64 0001000000 490 36333 27 0.01 0.95 0.03
128 0010000000 444 65050 73 0.01 0.86 0.01
256 0100000000 279 746 238 0.27 0.54 0.36
512 1000000000 408 6565 109 0.06 0.79 0.11

Table 6.4: Individual Feature Performance

Contextual API Ratio, the Contextual Constants Ratio outranked the Local

Constants Ratio, and the Contextual Stack Ratio outranked the Local Stack

Ratio.

Feature performance was also assessed by observing the number of times

the feature was present in the test runs of the Highest Performing Feature

combinations in Table 6.5. This is shown in Table 6.6 as ”TFP Count” (Top

Performing Feature Count), this value is used to create a rank as shown in the

”TPF Rank” column. In this ranking, the Contextual API Ratio outranks the

Local API Ratio, and the Contextual Stack Ratio outranks the Local Stack

Ratio, the Contextual Returns Ratio performed well with a ranking of 5. The

features based on constants did not rank highly. The Basic Blocks Ratio ranked

equally with the Contextual Stack Ratio.

6.4.6 Edit Distance Filtering

An edit distance metric was used to filter the pre-filtered function pair predic-

tions to reduce the false-positive count from the SVM pre-filtering. The best

performing pre-filter feature combination 611 from Table 6.5 was used in this

edit distance filtering experiment. The results in Table 6.7 show the perfor-

mance variation due to the use of different values of the Edit Metric Filter

(EMF). This shows that two candidates for best performance are obtained with

EMF values of 6 and 7 corresponding to an F-measure of 0.77. EMF value 7 was

selected due to the higher true positive count.

106

Test Vector TP FP FN Pr Rc F1
39 0000100111 510 66327 7 0.01 0.99 0.02
423 0110100111 509 50222 13 0.01 0.98 0.02
475 0111011011 511 25759 6 0.02 0.99 0.04
513 1000000001 510 21120 7 0.02 0.99 0.05
577 1001000001 509 41955 8 0.01 0.98 0.02
579 1001000011 509 21816 8 0.02 0.98 0.04
611 1001100011 509 12661 8 0.04 0.98 0.07
614 1001100110 509 42280 8 0.01 0.98 0.02
643 1010000011 511 42743 6 0.01 0.99 0.02
711 1011000111 509 26980 8 0.02 0.99 0.04
742 1011100110 511 54320 6 0.01 0.99 0.02
769 1100000001 512 69733 5 0.01 0.99 0.01
771 1100000011 511 34024 6 0.01 0.99 0.03
775 1100000111 512 63062 5 0.01 0.99 0.02
838 1101000110 509 32581 8 0.02 0.98 0.03
865 1101100001 511 31977 6 0.02 0.99 0.03
962 1111000010 509 45490 8 0.01 0.98 0.02

Table 6.5: Highest Performing Feature Combinations

In the results shown in Table 6.8, the best performing EMF value of 7 was

used to reject false-positive predictions. The ”ML” identifier in the operation

(”OP”) column denotes the results from the SVM pre-filtering stage. The

”EM” identifier indicates the final results obtained using the edit distance

filtering. Referring to Table 6.8, the highest F-measure (F1) value occurs with

Test 614 with a value of 0.77, and 441 function pairs correctly identified. This

corresponds to a function pair identification accuracy of 85 percent.

6.4.7 Future Work

Work presented in this paper can be extended as follows:

• Extend the concept of function context and its use in program analysis,

• Investigate the performance variation in existing function similarity pro-

grams over increasing evolutionary distance,

• Generalize the techniques used in this paper for identifying function sim-

ilarity,

107

Feature Ind Rank TPF Count TPF Rank
Basic Blocks Ratio 2 13 6
Contextual Stack Ratio 3 13 6
Local Stack Ratio 2 7 3
Contextual Constants Ratio 5 1 1
Local Constants Ratio 4 1 1
Contextual Callers Ratio 1 6 2
Contextual Returns Ratio 3 10 5
Calls Ratio 1 6 2
Local API Ratio 7 8 4
Contextual API Ratio 6 14 7

Table 6.6: Ranking of Feature Performance

Test EMF OP TP FP FN Pr Rc F1
611 ”ML” 508 22248 9 0.02 0.98 0.04

611 5 ”EM” 423 172 94 0.71 0.82 0.76
611 6 ”EM” 438 178 79 0.71 0.85 0.77
611 7 ”EM” 441 184 76 0.71 0.85 0.77
611 8 ”EM” 444 214 73 0.67 0.86 0.76
611 9 ”EM” 452 243 65 0.65 0.87 0.75
611 10 ”EM” 458 279 59 0.62 0.89 0.73
611 11 ”EM” 464 325 53 0.59 0.90 0.71
611 12 ”EM” 469 395 48 0.54 0.91 0.68

Table 6.7: Edit Metric Filter Performance

• Automatically create the FSGT dataset,

• Research function similarity in programs that have been subject to sig-

nificant software development.

6.5 Conclusion

The research in this paper introduces the concept of contextual features and

provides methods for their calculation. A combination of individual and con-

textual features are used in the CVCFS technique for the identification of

similar functions in two related programs. This paper demonstrates that con-

textual features provide improved performance compared to the corresponding

features extracted from individual functions.

108

Test Op TP FP FN Pr Rc F1
39 ML 505 41721 12 0.01 0.98 0.02
39 EM 443 231 74 0.66 0.86 0.74
423 ML 487 42284 30 0.01 0.94 0.02
423 EM 422 164 95 0.72 0.82 0.77
475 ML 496 7353 21 0.06 0.96 0.12
475 EM 429 167 88 0.72 0.83 0.77
513 ML 510 46724 7 0.01 0.99 0.02
513 EM 442 233 75 0.65 0.85 0.74
577 ML 504 14513 13 0.03 0.97 0.06
577 EM 440 183 77 0.71 0.85 0.77
579 ML 509 11928 8 0.04 0.98 0.08
579 EM 441 182 76 0.71 0.85 0.77
611 ML 509 24339 8 0.02 0.98 0.04
611 EM 441 185 76 0.70 0.85 0.77
614 ML 508 33414 9 0.01 0.98 0.03
614 EM 441 175 76 0.72 0.85 0.78
643 ML 423 6536 94 0.06 0.82 0.11
643 EM 360 146 157 0.71 0.70 0.70
711 ML 497 18675 20 0.03 0.96 0.05
711 EM 430 200 87 0.68 0.87 0.76
742 ML 475 15504 42 0.03 0.92 0.06
742 EM 413 154 104 0.73 0.80 0.76
769 ML 412 7199 105 0.05 0.80 0.10
769 EM 345 157 172 0.69 0.67 0.68
771 ML 428 11205 89 0.04 0.83 0.07
771 EM 360 156 157 0.70 0.70 0.70
775 ML 508 29646 9 0.02 0.98 0.03
775 EM 442 229 75 0.66 0.85 0.74
838 ML 507 34360 10 0.01 0.98 0.04
838 EM 440 192 77 0.70 0.85 0.77
865 ML 511 27297 6 0.02 0.99 0.04
865 EM 441 186 76 0.70 0.85 0.77
962 ML 456 16292 61 0.03 0.88 0.05
962 EM 413 173 104 0.70 0.80 0.75

Table 6.8: Results Following Edit Metric Filtering

The technique for the generation of contextual features involves summing

features extracted from the context of each function. This technique of strength-

ening features by summing over the function context is generally applicable to

109

a wide range of machine learning function similarity research.

The CVCFS function similarity technique is presented using a case study;

however, this technique is generally applicable to identifying similar functions

in both malware and benign programs. A comparison of the effectiveness of

the local features and the contextual features was performed using a ranking

based on feature performance and of the frequency of features in the highest

performing feature combinations. This ranking shows that contextual features

outperform local features in four out of six cases.

An edit distance technique was used to filter the false-positives from the

machine learning results and a maximum accuracy of 85 percent identification

of true function pairs was achieved with an F-measure value of 0.77.

Chapter 7

Function Similarity Using

Family Context

The technique presented in this chapter builds on the CVCFS research from

the previous chapter, using feature engineering methods to obtain a substantial

improvement in the accuracy of identifying similar functions in two malware

variants. In this research, the definition of function context is restricted to

the selection of specific sets of features not just from the function itself, but

also, from a limited number of other functions with which it has a caller and

callee relationship. The encoding of numeric features in this research has been

improved. These improvements to the definition of function context and the

improved numeric feature encoding result in a substantial improvement in the

accuracy of function similarity identification, and significantly decrease the

false positive rate, obviating the need for a separate pass for cleaning false

positives. This research uses a Zeus Support Vector Machine (SVM) model

and applies it to the features extracted from a pair of ISFB malware variants.

The successful prediction of function similarity in an unrelated pair of malware

variants indicates that the SVM model is successfully abstracting function

similarity features.

The contributions of this chapter have been published as:

• P. Black, I. Gondal, P. Vamplew, and A. Lakhotia, “Function Similarity

Using Family Context,” Electronics Journal, Impact factor 2.412, 2020.

110

electronics

Article

Function Similarity Using Family Context

Paul Black 1,*, Iqbal Gondal 1, Peter Vamplew 2 and Arun Lakhotia 3

1 Internet Commerce Security Laboratory (ICSL), Federation University, Ballarat 3353, Australia;
iqbal.gondal@federation.edu.au

2 School of Engineering, Information Technology and Physical Science, Federation University, Ballarat 3353,
Australia; p.vamplew@federation.edu.au

3 School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
arun@louisiana.edu

* Correspondence: p.black@federation.edu.au

Received: 4 June 2020; Accepted: 13 July 2020; Published: 17 July 2020
����������
�������

Abstract: Finding changed and similar functions between a pair of binaries is an important problem
in malware attribution and for the identification of new malware capabilities. This paper presents a
new technique called Function Similarity using Family Context (FSFC) for this problem. FSFC trains
a Support Vector Machine (SVM) model using pairs of similar functions from two program variants.
This method improves upon previous research called Cross Version Contextual Function Similarity
(CVCFS) representing a function using features extracted not just from the function itself, but also,
from other functions with which it has a caller and callee relationship. We present the results of
an initial experiment that shows that the use of additional features from the context of a function
significantly decreases the false positive rate, obviating the need for a separate pass for cleaning false
positives. The more surprising and unexpected finding is that the SVM model produced by FSFC
can abstract function similarity features from one pair of program variants to find similar functions
in an unrelated pair of program variants. If validated by a larger study, this new property leads to
the possibility of creating generic similar function classifiers that can be packaged and distributed in
reverse engineering tools such as IDA Pro and Ghidra.

Keywords: malware similarity; malware evolution; function similarity; binary similarity;
Zeus malware; ISFB malware; machine learning

1. Introduction

This paper provides a technique called Function Similarity using Family Context (FSFC). This is
a 1-step method using a Support Vector Machine (SVM) model with a low false positive rate for
identifying similar pairs of functions from two variants of a program. The primary innovation is
to demonstrate that our SVM model abstracts function similarity features in function pairs from
two program variants to find similar functions in an unrelated pair of program variants. A second
innovation is a new technique that extracts features from each function under consideration as well
as specific related functions. These contextual features strengthen the function similarity results and
provide a substantial performance improvement over and above training with features taken from
individual functions. FSFC is a one-step method for function similarity that performs well without
pre-filtering and provides a low false positive rate. FSFC is built on previous research called Cross
Version Contextual Function Similarity (CVCFS) [1].

Function similarity techniques are used for malware triage [2], program patch analysis [3],
identification of library functions containing known bugs [4,5], malware authorship analysis [6],
identification of similar function pairs in detailed malware analysis [7], and for plagiarism analysis [8].

Electronics 2020, 9, 1163; doi:10.3390/electronics9071163 www.mdpi.com/journal/electronics

Electronics 2020, 9, 1163 2 of 20

Organisations performing anti-virus or threat intelligence work process large daily feeds of
malware samples. Due to packing, these malware samples initially appear to be unique. However,
after unpacking malware sample volumes may be reduced by orders of magnitude through the use
of malware similarity techniques to reduce the malware feed to a smaller set of unique malware
payloads [9]. Function level similarity can then be performed on the unique malware payloads for
malware family identification.

Software vendors provide program patches for maintenance and security purposes. High-level
details describing the program patches may be provided, but this level of detail may not be sufficient
for some organisations. Program patch analysis uses function similarity for the identification of
updated functions. This is the first step in a reverse engineering process to identify the vulnerabilities
that have been patched.

Internet of Things (IoT) devices, including routers and consumer electronics, utilize open-source
software and a wide range of Central Processing Unit (CPU) architectures. When software
vulnerabilities are identified in open source libraries, a wide range of IoT devices become vulnerable.
Function similarity techniques are used for cross-architecture bug search purposes to search IoT
firmware for vulnerable functions.

Law enforcement anti-malware efforts prioritize the identification of malware authors. Function
similarity techniques are used to identify code reuse in malware families, which can identify the
malware products produced by specific malware authors [10].

Following the identification of new malware variants, detailed analysis is required to determine
the new malware capabilities. Function similarity provides the first stage of this analysis and allows
the elimination of unmodified functions from the reverse engineering workload [11].

Function similarity methods are also used for the analysis of compiled programs in cases where
software plagiarism or breach of licensing conditions is suspected [8].

This paper provides two studies. The first study uses a Zeus malware dataset; the second study
uses a dataset from a sample of ISFB banking malware [12]. The distinct and independent codebases of
the Zeus and ISFB malware families have both been publicly leaked. The Zeus dataset study highlights
the improved machine learning performance. Previous research [1] was re-run using the same testing
configuration as the other experiments in this paper. This gave an F1 score of 0.19 for Zeus function
similarity using the CVCFS algorithm [1], FSFC gives an average F1 score of 0.44 on the Zeus dataset
with the same SVM model.

The ISFB study uses the training data from the Zeus dataset to predict function similarity in a
dataset taken from a pair of ISFB variants where the compilation dates differ by approximately one
year. In the ISFB study, FSFC gives an average F1 score of 0.34. This study shows that the SVM
model abstracts features from the Zeus dataset sufficiently to predict function pairs in an independent
malware family.

This paper makes the following contributions:

• An SVM model that can abstract function similarity features from one pair of program variants
to identify similar functions in an unrelated pair of program variants.

• A one-step function similarity technique that extracts features from each function under
consideration and specific related functions. This contextual similarity technique strengthens the
function similarity results and provides a substantial performance improvement over and above
training with features taken from individual functions and provides a low false positive rate.

• Improved performance of numeric features through the use of an improved encoding of
these features.

• Run time reduction, as due to the higher performance of FSFC, there is no need for an additional
step to remove false positives.

• Development of a curated dataset of matched functions in two versions of ISFB malware for use
in future research.

Electronics 2020, 9, 1163 3 of 20

• Development of two labelled Interactive Disassembler (IDA) databases for ISFB malware
versions 2.04.439, 2.16.861 (The datasets related to this research are available online at http:
//federation.edu.au/icsl/evolvedsimilarity).

The structure of this paper is as follows: Section 2 presents related work, Section 3 presents the
research methodology, Section 4 presents the empirical evaluation of results, and Section 5 presents
the conclusion.

2. Related Work

2.1. BinJuice Function Semantics

BinJuice computes abstract semantics for each basic block of all functions in a compiled program,
by a process of disassembly, Control Flow Graph (CFG) generation, symbolic execution, algebraic
simplification, and the computation of function semantics [13]. The aim of generating abstract
semantics is to represent any two equivalent code sequences by the same semantics [14,15].

Existing tools are used to perform Disassembly and CFG extraction. Symbolic execution is used
to generate basic block semantics. Symbolic execution does not involve execution on a physical
processor; instead, the effects of the program instructions can be represented as a set of simultaneous
equations. An algebraic simplifier provides simplification of the symbolic expressions resulting from
the symbolic execution. The simplified symbolic expressions are mapped into a canonical form to
ensure that sections of equivalent code having equivalent symbolic expressions are sorted in the same
order. The juice operation addresses the problem of comparing sections of equivalent code containing
different register allocations by renaming register names in the simplified symbolic expressions to
consistent logical variables [13].

VirusBattle is built on BinJuice and is used to identify relationships between malware samples in
a large database [16]. VirusBattle unpacks the submitted malware sample and creates four different
representations of the unpacked code. These representations are disassembled code, generalised code,
semantics, and generalised semantics (juice). VirusBattle identifies similar functions by comparing the
hashes of the function’s generalised semantics. This provides a significant performance gain compared
with non-approximate methods, e.g., theorem solvers [15]. VirusBattle has been commercialised by
Cythereal Inc and is known as Cythereal MAGIC.

Cythereal function similarity aims to identify similar functions using semantic hashes derived
from symbolic execution. Cythereal similarity makes use of the abstraction of each function, and if
a pair of functions are similar but have different purposes, then Cythereal will still identify these
as function pairs. The design goals of FSFC are to be able to identify function similarity in evolved
variants of malware families [17] and so it aims to match function pairs, including those that differ as a
result of software development. The use of contextual features allows FSFC to differentiate similar
functions with different purposes due to their different position in the call tree. A further point of
difference is that due to FSFC’s use of machine learning, there is the potential that this research could
lead to a general-purpose function similarity engine that can identify similar functions in a broad
range of programs.

2.2. Cross-Architecture Bug Search

DiscovRE [4] identifies vulnerable functions across a range of IoT devices. IoT devices often use
open-source code and a variety of CPU architectures. Vulnerability discovery in an open-source
library may impact a range of IoT devices. The identification of functions containing known
vulnerabilities requires the capability to search code generated by different compilers, and a range
of CPU architectures. DiscovRE uses k-Nearest Neighbors (kNN) machine learning to pre-filter
potentially vulnerable functions. The Pearson product-moment correlation coefficient [18] has
been used to select numeric features that are robust across multiple compilers, compiler options,
and CPU architectures. The following function counts have been used as features: call instructions,

Electronics 2020, 9, 1163 4 of 20

logic instructions, redirection instructions, transfer instructions, local variables, basic blocks, edges,
incoming calls, and instructions. The final identification of vulnerable functions is performed using
maximum common subgraph isomorphism.

In some scenarios, the DiscovRE pre-screening stage is unreliable [19]. CVSkSA performs
cross-architecture searching for vulnerable functions in IoT device firmware using the kNN algorithm,
followed by SVM machine learning for pre-filtering [19]. Bipartite graph matching [5] is then used to
identify vulnerable functions from the pre-screened matches. Although the accuracy of the SVM model
for pre-filtering is good, the run time is slow, but kNN pre-filtering reduces the number of functions to
be checked by the SVM model, and this reduces execution time by a factor of four with a small reduction
in vulnerability identification performance. CVSkSA uses two levels of features; function level features
are used in the pre-filtering while basic block level features are used for graph matching. The function
level features are call count, logic instruction count, redirection instruction count, transfer instruction
count, local variables size, basic block count, incoming call count, and instruction count.

The above research techniques locate software vulnerabilities in one version of code, compiled for
different CPU architectures. These techniques are optimised for cross-architecture vulnerability
identification within one version of a program. The research in this paper provides identification of
similar functions in different versions of a program compiled for a single CPU architecture.

2.3. CVCFS

This paper builds on an earlier research work called CVCFS [1], that identifies similar function
pairs in two variants of the same program. There are three areas where FSFC has improved on CVCFS.
The first is an improved definition of function context, the second is a rationalisation of the features,
and the third is an improved encoding of numeric features. In CVCFS, a function context was defined
as the set of non Application Programming Interface (API) functions that can be reached by walking
the call graph starting from the selected function. This definition could lead to a large number of
functions in a function context. FSFC restricts function context and limits the call graph depth for
feature extraction. This use of smaller function contexts results in substantially higher performance.
CVCFS makes use of the following local features from individual functions: the set of API calls,
the set of constants, stack size, function callers count, and basic block count. The following contextual
features were extracted: set of API calls, set of constants, stack size, return instruction release count,
and call instructions count. CVCFS uses local and contextual features that are similar but are not fully
aligned. For example, CVCFS local features contain function callers count, and the contextual features
contain a call count feature. FCFS removes the distinction between local and contextual features
and uses six consistent features, as defined in Section 3.3. In CVCFS, numeric features from each
function in the context are summed, while API call names and constants are stored in sets. During the
testing of CVCFS, the performance of the numeric features was low. In FCFS, numeric features are
stored as a set, and each element in the set consists of a value from the function context. In CVCFS,
20,000 training iterations were used, FCFS research found that better performance resulted from
100,000 training iterations. This paper demonstrates the substantial performance improvements
obtained in FCFS by using an improved definition of function context, improved encoding of numeric
features, and increased training iterations.

3. Function Similarity Using Family Context

The FSFC research is introduced in the following order, experimental design, function context
definition, feature definition, feature extraction, feature ratios, ground truth, and the FSFC algorithm.

3.1. Experimental Design

The FSFC method uses an SVM model to classify similar function pairs from a pair of program
variants. Both the training and classification steps use features that are calculated from the pairwise
comparison of all of the functions in two program variants. These features are calculated using the

Electronics 2020, 9, 1163 5 of 20

feature ratios described in Section 3.5. The Function Similarity Ground Truth (FSGT) table (see
Section 4.2) contains the Relative Virtual Addresses (RVAs) of each matching function pair in the
training and testing datasets.

The FSGT table is used to label the training data. Due to the pairwise feature generation,
many of the training features correspond to unmatched function pairs, and a smaller set of features
correspond to matching function pairs. As a result, the training dataset is unbalanced, and this is
discussed further in Section 4.4. The training features represent exact and approximate function
matches. The SVM model training uses the feature labels to identify the features corresponding to
matching function pairs. The trained SVM model contains weights and biases that can be used to
classify similar functions. The SVM model classification indicates whether the features from each
pairwise function pair correspond to a similar function. The FSGT table is used to identify whether
the similarity classification is correct for each function pair. The function pairs classified correctly as
similar functions are added to the True Positive (TP) count. Similarly, the correctly classified dissimilar
function pairs are added to the True Negative (TN) count. Function pairs that are incorrectly identified
as similar are added to the False Positive (FP) count, and function pairs that are incorrectly identified
as dissimilar are added to the False Negative (FN) count. Precision and recall are calculated from the
TP, TN, FP, and FN counts. Precision and recall [20] are defined in Equations (1) and (2), respectively.

Precision = TP/TP + FP (1)

Recall = TP/TP + FN (2)

The F1 score (F1) [20] defined in Equation (3) is used to assess the quality of the results in terms
of precision and recall.

F1 = 2× (Precision× Recall)/(Precision + Recall) (3)

3.2. Function Context

In FSFC, function context is defined as: Self (S), Child (C), Parent (P), Grandchild (GC),
Grandparent (GP), Great-grandchild (GGC) and Great-grandparent (GGP). Each of these function
contexts is a set of associated functions.

The Self (S) context of function f is the set of the non-API functions that are called from function f .

S(f) = {s0, s1, ..., si} (4)

The set of functions in the Child C context of f can be obtained by iterating through each of the
functions in the Self context of f and extracting the non-API functions.

C(f) = {s(f ′) ∀ f ′ in S(f)} (5)

The functions in the Grandchild GC context of function f can be obtained by iterating through
each of the functions in the Child context of f and extracting the non-API functions.

GC(f) = {s(f ′) ∀ f ′ in C(f)} (6)

The functions in the Great-Grandchild GGC context of f can be obtained by iterating through each
of the functions in the Grandchild context of f and extracting the non-API functions.

GGC(f) = {s(f ′) ∀ f ′ in C(f)} (7)

The functions in the Parent P context of f is the set of non-API functions that call function f.

P(f) = {p0, p1, ..., pj} (8)

Electronics 2020, 9, 1163 6 of 20

The functions in the Grandparent GP context of f can be obtained by identifying the callers of
each of function in the Parent context of f.

GP(f) = {P(f ′) ∀ f ′ in P(f)} (9)

The functions in the Great-Grandparent GGP context of f can be obtained by identifying the
callers of each of function in the Grandparent context of f.

GGP(f) = {P(f ′) ∀ f ′ in GP(f)} (10)

3.3. Features

FSFC extracts the following features from each function in the context of function f :

• API calls,
• Function calls count,
• Return release count,
• Constants,
• Stack size,
• Basic block count.

API calls: The system programming interface for the Windows operating system is provided
by the Windows API [21]. The API provides a dynamic function call interface for Windows system
services. Windows programs that use the portable executable (PE) format. Let AC(f , p) be the set of
API functions called by function f in a program p.

AC(f , p) = {a0, a1, ..., ak} (11)

Function calls count: Let FC be the count of function call instructions c within function f in
program p.

FC(f , p) = |{c0, c1, ..., cl}| (12)

Return release count: Let rc be the byte release count of any return instruction within function f,
and let m be the count of return instructions within f. If rc is 0, then rc is set to 1. Let RC, the return
release count, be the sum of the release count rc of all return instructions within function f in program p.

RC(f , p) =
i=m

∑
i=0

max(rci, 1) (13)

Constants: The goal in extracting a set of constants is to extract invariant numerical constants
from the operands of instructions in functions. Call and jump instructions were excluded because they
have operands that contain program and stack addresses that are not invariant. Let CS(f , p) be the set
of constants that are not program or stack addresses within function f in program p.

CS(f , p) = {c0, c1, ..., cn} (14)

Stack size: Let SS(f , p) be the stack size of function f in program p.

SS(f , p) = s0 (15)

Basic block count: A basic block is defined as the maximal sequence of consecutive instructions
that begin execution at the first instruction, and when the block is executed, all instructions in the basic
block are executed sequentially without halting or branching, except for the last instruction in the
block [22]. Let BB be the count of each basic block b within function f in program p.

Electronics 2020, 9, 1163 7 of 20

BB(f , p) = |{b0, b1, ..., bq}| (16)

3.4. Feature Extraction

CVCFS [1] summed numeric features, e.g., stack size, function callers count, function calls count,
and basic block count to an individual number. In FSFC, all features are extracted from the context
of a function and are stored in sets, with one value from each function in the context. For example,
a context of three functions with stack sizes of 12, 0, and 24 bytes, in the earlier research, the stack
size feature would be summed to 36 bytes, but in FSFC, the stack size feature would be {12, 0, 24}.
Jaccard indexes provide an efficient measure of set similarity and have been used extensively in
previous similarity research [2,23]. Jaccard indexes are calculated from the contextual features for each
function in the pair being compared. This calculation of Jaccard indexes for all features has simplified
FSFC implementation.

3.5. Feature Ratios

Feature ratios use the Cartesian product of all functions in program p1 and all functions in
program p2. It is noted that function similarity is commutative, and the same function pairs will be
identified by comparing programs p1 and p2 as would be identified by comparing program p2 and
p1. The following features definitions provide names for the features that are used in subsequent
algorithms. Let F(p) be the set of all functions in program p.

F(p) = { f 0, f 1, ..., f l} (17)

The set of function pairs FP(p1, p2) of programs p1 and p2 are defined as follows:

FP(p1, p2) = F(p1)× F(p2) (18)

Each element of the Cartesian product FP is a function pair fp consisting of one function f 1 from
program p1 and one function f 2 from program p2.

f p = (f 1, f 2) (19)

API Ratio: Let AC1 and AC2 be the sets of API calls extracted from the context of each function in
function pair fp. Let the API ratio ACR be the Jaccard index of AC1 and AC2.

Function Calls Ratio: Let FC1 and FC2 be the sets of the call instructions counts extracted from the
context of each function in function pair fp. Let the function calls ratio FCR be the Jaccard index of FC1

and FC2.
Return Release Count Ratio: Let RC1 and RC2 be the sets of return release counts extracted from

the context of each function in function pair fp. Let the return release count ratio RCR be the Jaccard
index of RC1 and RC2.

Constants Ratio: Let CS1 and CS2 be the sets of constants extracted from each of the context of
each function in the function pair fp. Let the constants ratio CSR be the Jaccard Index of CS1 and CS2.

Stack Ratio: Let SS1 and SS2 be the sets of stack sizes extracted from the context of each function
in the function pair fp. Let the stack ratio SSR be the Jaccard index of SS1 and SS2.

Blocks Ratio: Let BB1 and BB2 be the sets of basic block counts extracted from the context of each
of the functions in the function pair fp. Let the blocks ratio BBR be the Jaccard index of BB1 and BB2.

3.6. Ground Truth

As a supervised machine learning method, FSFC requires labelled data both for training the
SVM model, and for the evaluation of the system performance. To support this, the FSGT table was
constructed via manual reverse engineering of the malware samples against leaked malware source

Electronics 2020, 9, 1163 8 of 20

code. The FSGT table contains data defining the pairing of the functions of the programs being
compared. The FSGT table contains the RVAs of the function pairs.

3.7. FSFC Algorithm

The FSFC algorithm only operates on static non-API function calls. Figure 1 illustrates the
relationships between the functions being processed. The function currently being processed is
referred to as the current function. The self context contains those functions called by the current
function. The child functions are those functions called from the self context functions. The child
context consists of the function calls made from each of the child functions. The callers of the current
function are referred to as parent functions. The parent context consists of the callers of each of the
parent functions. The other relationships and contexts are identified in a similar manner and are
defined in Section 3.2.

Parent Fn Parent Fn

Child Fn Child Fn Child Fn

GC Fn GC Fn

Current Fn

GP Fn GP Fn

GGC Fn

GGP Fn

Figure 1. Function Call Relationships.

The function context extraction algorithm is shown in Figure 2. For each function f in the program
being analysed, the self context is the set of static non-API function calls made by f. The child context is
the set of all static non-API function calls made by each function in the self context. The grandchild and
great-grandchild contexts are calculated in a similar manner. The parent contexts are built in a similar
manner by walking up the call tree. The parent context p1 is the set of all static non-API function
calls made to each function in the self context. The grandparent and great-grandparent contexts are
calculated from the parent and grandparent contexts in a similar manner.

Electronics 2020, 9, 1163 9 of 20

Electronics 2020, xx, 5 9 of ??

function calls made to each function in the self context. The grandparent and great-grandparent
contexts are calculated from the parent and grandparent contexts in a similar manner.

For each function f in program
Build function callers map

For each function f in program
S context c0 = static calls in f
For each function f1 in self context c0

C context c1 += static calls in f1
For each f2 in child context c1

GC context c2 += static calls in f2
For each f3 in grandchild context c3

GGC context c3 += static calls in f3
From function callers map

Build parent context P from f
From p1

Build grandparent context GP from P
From p2

Build great-grandparent context GGP from~GP

Figure 2. Function Context Extraction Algorithm.

The Cythereal output includes unpacked malware, disassembled code, generalized code,
semantics, and generalized semantics. The FSFC algorithm reads the disassembly of the unpacked
malware, extracts the functions from the disassembly, builds a map of function callers, and then iterates
through each function in the program and builds the function context sets.

The algorithm for feature extraction is shown in Figure ??. This algorithm reads the Cythereal
disassembly of each of the programs being compared. Next, it extracts the function contexts for each
function in programs p1 and p2, and then calculates the features, AC, FC, RC, CS, SS, BB for the context
of each function. For each function in program 1, and for each function in program 2, calculate the
Jaccard Index of the features to produce the feature ratios ACR, FCR, RCR, CSR, SSR, BBR , then label
each function combination using the FSGT table.

p1 = baseline version of program
p2 = updated version of~program

for each function in p1
extract function context for~function

for each function in p2
extract function context for~function

for each function in p1
calculate features AC1, FC1, RC1, CS1, SS1, BB1 for function~context

for each function in p2
calculate features AC2, FC2, RC2, CS2, SS2, BB2 for function~context

for each f1 in p1
for each f2 in p2

#calculate feature ratios
ACR = jaccard(AC1, AC2)
FCR = jaccard(FC1, FC2)
RCR = jaccard(RC1, RC2)
CSR = jaccard(CS1, CS2)
SSR = jaccard(SS1, SS2)
BBR = jaccard(BB1, BB2)
if f1, f2 in FSGT table

set label = ‘‘1’’
else

set label = ‘‘0’’

rva1 = rva(f1)
rva2 = rva(f2)
features = map(rva1, rva2, ACR, FCR, RCR, CSR, SSR, BBR)

Figure 3. Feature Extraction Algorithm.

Figure 2. Function Context Extraction Algorithm.

The Cythereal output includes unpacked malware, disassembled code, generalized code,
semantics, and generalized semantics. The FSFC algorithm reads the disassembly of the unpacked
malware, extracts the functions from the disassembly, builds a map of function callers, and then iterates
through each function in the program and builds the function context sets.

The algorithm for feature extraction is shown in Figure 3. This algorithm reads the Cythereal
disassembly of each of the programs being compared. Next, it extracts the function contexts for each
function in programs p1 and p2, and then calculates the features, AC, FC, RC, CS, SS, BB for the context
of each function. For each function in program 1, and for each function in program 2, calculate the
Jaccard Index of the features to produce the feature ratios ACR, FCR, RCR, CSR, SSR, BBR , then label
each function combination using the FSGT table.

Electronics 2020, xx, 5 9 of ??

function calls made to each function in the self context. The grandparent and great-grandparent
contexts are calculated from the parent and grandparent contexts in a similar manner.

For each function f in program
Build function callers map

For each function f in program
S context c0 = static calls in f
For each function f1 in self context c0

C context c1 += static calls in f1
For each f2 in child context c1

GC context c2 += static calls in f2
For each f3 in grandchild context c3

GGC context c3 += static calls in f3
From function callers map

Build parent context P from f
From p1

Build grandparent context GP from P
From p2

Build great-grandparent context GGP from~GP

Figure 2. Function Context Extraction Algorithm.

The Cythereal output includes unpacked malware, disassembled code, generalized code,
semantics, and generalized semantics. The FSFC algorithm reads the disassembly of the unpacked
malware, extracts the functions from the disassembly, builds a map of function callers, and then iterates
through each function in the program and builds the function context sets.

The algorithm for feature extraction is shown in Figure ??. This algorithm reads the Cythereal
disassembly of each of the programs being compared. Next, it extracts the function contexts for each
function in programs p1 and p2, and then calculates the features, AC, FC, RC, CS, SS, BB for the context
of each function. For each function in program 1, and for each function in program 2, calculate the
Jaccard Index of the features to produce the feature ratios ACR, FCR, RCR, CSR, SSR, BBR , then label
each function combination using the FSGT table.

p1 = baseline version of program
p2 = updated version of~program

for each function in p1
extract function context for~function

for each function in p2
extract function context for~function

for each function in p1
calculate features AC1, FC1, RC1, CS1, SS1, BB1 for function~context

for each function in p2
calculate features AC2, FC2, RC2, CS2, SS2, BB2 for function~context

for each f1 in p1
for each f2 in p2

#calculate feature ratios
ACR = jaccard(AC1, AC2)
FCR = jaccard(FC1, FC2)
RCR = jaccard(RC1, RC2)
CSR = jaccard(CS1, CS2)
SSR = jaccard(SS1, SS2)
BBR = jaccard(BB1, BB2)
if f1, f2 in FSGT table

set label = ‘‘1’’
else

set label = ‘‘0’’

rva1 = rva(f1)
rva2 = rva(f2)
features = map(rva1, rva2, ACR, FCR, RCR, CSR, SSR, BBR)

Figure 3. Feature Extraction Algorithm.
Figure 3. Feature Extraction Algorithm.

Electronics 2020, 9, 1163 10 of 20

4. Empirical Evaluation

The FSFC research is presented as two case studies. The first case study uses the Zeus dataset
from the previous CVCFS research and provides a measure of the improvement in FSFC performance.
The second case study uses the Zeus SVM model to predict similarity in a pair of ISFB malware
variants. In the first experiment, the optimal number of training iterations is determined; the second
experiment determines the context set that provides the best performance. The third experiment tests
the performance of individual features. The fourth experiment evaluates all feature combinations
to identify the highest performing feature combinations. A fifth experiment is performed using the
CVCFS algorithm with the same iteration count as the FSFC research. This provides a comparison of
the performance of the CVCFS and FSFC algorithms. A final experiment is performed to compare
the performance of the numeric feature encoding method from CVCFS with the new numeric feature
encoding in FSFC. These tests are run for the Zeus dataset and the ISFB dataset. This section concludes
with a discussion of future research.

4.1. Datasets

Two malware datasets are used to evaluate FSFC; the first dataset is a Zeus dataset, and the
second dataset is an ISFB dataset. Training features were extracted from Zeus samples 1 and 2.
Function similarity prediction was performed on the features from Zeus samples 2 and 3 to show
that the SVM model can abstract function similarity features from one pair of program variants to
identify similar functions from later versions of the same malware family. Testing features were then
extracted from ISFB Samples 4 and 5, and function similarity prediction was performed using the
training features from the Zeus samples 1 and 2. This test was performed to show the ability of the
SVM model to identify similar functions in a pair of malware variants from a different malware family.
Table 1 gives the Secure Hash Algorithm 1 (SHA1) hashes identifying the malware samples used in
this paper, and Table 2 shows the malware version numbers associated with these malware samples.

Cythereal provided the unpacked Zeus samples, and Malpedia provided the unpacked ISFB
samples [24]. These samples were disassembled for manual analysis using IDA. The linker date in the
Portable Executable (PE) header was used to indicate the time the malware samples were created.
Although the linker date can be modified by the malware author, there are no inconsistencies that
suggest that the linker date has been modified. The linker dates associated with the malware samples
used in this paper are shown in Table 3. The linker dates provide the following development timeline:
sample 2 was compiled one month after sample 1, sample 3 was compiled six months after sample 2,
and sample 5 was compiled one year after sample 4.

Table 1. Malware Sample Details.

Sample SHA1 Hash Version

8a7faa25f23a0e72a760075f08d22a91d2c85f57 Zeus 2.0.8.7
706bf4dcf01b8eceedf6d05cf5b55a27e4ff8ef0 Zeus 2.0.8.9
30c6bb2328299a252436d2a3190f06a6f04f7e3f Zeus 2.1.0.1
ee0d9a91f52de9b74b8de36e25c2de91d008cee5 ISFB 2.04.439
3ec5a5fe4c8e6b884b2fb9f11f9995fdaa608218 ISFB 2.16.861

Table 2. Malware Sample Versions.

Sample Identifier Version

Zeus Sample 1 Zeus 2.0.8.7
Zeus Sample 2 Zeus 2.0.8.9
Zeus Sample 3 Zeus 2.1.0.1
ISFB Sample 4 ISFB 2.04.439
ISFB Sample 5 ISFB 2.16.861

Electronics 2020, 9, 1163 11 of 20

Table 3. Malware Linker Dates.

Sample Identifier Linker Date

Zeus Sample 1 14 September 2010
Zeus Sample 2 15 October 2010
Zeus Sample 3 24 March 2011
ISFB Sample 4 17 September 2015
ISFB Sample 5 14 September 2016

4.2. Ground Truth

The FSGT table identifies the function pairs, function names, and the function RVA for each
malware sample used in this research. Manual analysis of the unpacked malware samples, using the
leaked Zeus [25] and ISFB [26] source code was performed to identify the function pairs for the
FSGT table. Function identification was performed based on the API calls, constants, and CFG
structure. Function RVAs are used to identify functions in the Cythereal disassembly and in the
research code. A summary of the function name labelling is shown in Table 4. Cythereal identified
1035 and 1133 functions in the ISFB samples, while manual analysis identified 1007 and 1098 functions
in the ISFB samples. This difference arises from Cythereal’s identification of code fragments that
perform a jump to a system call as functions. In this research, these code fragments are regarded as
compiler artifacts and are excluded from the analysis. A total of 998 function pairs were identified that
were common to the two ISFB samples. Of these 998 functions, 985 function pairs were present in both
the Cythereal disassembly and in the manual function pair identification.

Table 4. Function Counts and Manual Match Count.

Tool Version Count Version Count

IDA
Zeus

2.0.8.7 577
Zeus

2.0.8.9 553

Cythereal
Zeus

2.0.8.7 577
Zeus

2.0.8.9 539

IDA
Zeus

2.0.8.9 553
Zeus

2.1.0.1 601

Cythereal
Zeus

2.0.8.9 539
Zeus

2.1.0.1 601

IDA
ISFB

2.04.439 1007
ISFB

2.16.861 1098

Cythereal
ISFB

2.04.439 1035
ISFB

2.16.861 1133

4.3. Features

FSFC uses the following features:

• Set of API calls
• Set of constants
• Stack size
• Call instruction count
• Return release count
• Basic block count

The above features are extracted from the context of each function. Constants are extracted from
mov, push, add, cmp, and sub instructions in each function and were stored in the set of constants
feature. Ad-hoc analysis showed that these instructions contained a significant proportion of invariant

Electronics 2020, 9, 1163 12 of 20

operands. Program and stack addresses were further filtered by excluding values greater than the
program base address. As this research is based on static analysis, the non-API function call counts
used in this research are a count of static function calls. Stack size is taken from the function prologue
when it is present; otherwise, it is zero. The stack size SS is taken from the sub instruction in the
function prologue shown in Figure 4. It is noted that some compilers may not use the same idiom for
their function prologue.

Electronics 2020, xx, 5 12 of ??

operands. Program and stack addresses were further filtered by excluding values greater than the
program base address. As this research is based on static analysis, the non-API function call counts
used in this research are a count of static function calls. Stack size is taken from the function prologue
when it is present; otherwise, it is zero. The stack size SS is taken from the sub instruction in the
function prologue shown in Figure ??. It is noted that some compilers may not use the same idiom for
their function prologue.

push(ebp)
mov(ebp,esp)
sub(esp,SS)

Figure 4. Function Prologue

4.4. SMOTE Oversampling

The function similarity training dataset in FSFC is imbalanced due to the use of the Cartesian
product comparison, which results in an unstable performance of the SVM model. Assume that the
two versions of the same program are being compared, and each program contains 500 functions.
The maximum number of matching function pairs is 500. The number of function pairs generated by
the Cartesian product is 250,000, and the minimum number of non-matching function pairs is 249,500.
The use of a Cartesian product in the generation of training features inherently leads to an imbalanced
dataset. The SVM model’s performance was improved using the Synthetic Minority Oversampling
Technique (SMOTE) [?] to rebalance the training dataset.

4.5. SVM Model Training

Zeus samples 1 and 2 are used for SVM model training, as these two Zeus samples are similar
but exhibit minor differences. Function similarity ratios are calculated for the Cartesian product of
all functions in the training samples. These features are labelled as matching or not matching using
the FSGT table. The SVM model is used to predict function similarity between Zeus samples 2 and 3,
and to predict function similarity between ISFB samples 4 and 5.

Tests are performed for the Zeus and ISFB function similarity datasets to identify the following
machine learning parameters:

• Iteration count,
• Best context combination,
• Individual feature performance,
• Best feature combination.

The features in each of these tests were assigned a binary identifier, e.g., the first feature is
identified as 000001, and the second feature was identified as 000010. The use of binary identifiers
allowed the numbering of individual tests, and these feature identifiers are shown in Table ??.

Table 5. Numbering of Feature Combination Tests.

Feat # Vector Description

1 000001 API Ratio
2 000010 Calls Ratio
4 000100 Return Release Ratio
8 001000 Constants Ratio
16 010000 Stack Ratio
32 100000 Blocks Ratio

4.6. Context Sets

A function’s context is the set of functions associated with a specific function. This paper tests the
question of whether it is possible to improve performance by creating sets composed of the sum of

Figure 4. Function Prologue.

4.4. SMOTE Oversampling

The function similarity training dataset in FSFC is imbalanced due to the use of the Cartesian
product comparison, which results in an unstable performance of the SVM model. Assume that the
two versions of the same program are being compared, and each program contains 500 functions.
The maximum number of matching function pairs is 500. The number of function pairs generated by
the Cartesian product is 250,000, and the minimum number of non-matching function pairs is 249,500.
The use of a Cartesian product in the generation of training features inherently leads to an imbalanced
dataset. The SVM model’s performance was improved using the Synthetic Minority Oversampling
Technique (SMOTE) [27] to rebalance the training dataset.

4.5. SVM Model Training

Zeus samples 1 and 2 are used for SVM model training, as these two Zeus samples are similar
but exhibit minor differences. Function similarity ratios are calculated for the Cartesian product of
all functions in the training samples. These features are labelled as matching or not matching using
the FSGT table. The SVM model is used to predict function similarity between Zeus samples 2 and 3,
and to predict function similarity between ISFB samples 4 and 5.

Tests are performed for the Zeus and ISFB function similarity datasets to identify the following
machine learning parameters:

• Iteration count,
• Best context combination,
• Individual feature performance,
• Best feature combination.

The features in each of these tests were assigned a binary identifier, e.g., the first feature is
identified as 000001, and the second feature was identified as 000010. The use of binary identifiers
allowed the numbering of individual tests, and these feature identifiers are shown in Table 5.

Table 5. Numbering of Feature Combination Tests.

Feat # Vector Description

1 000001 API Ratio
2 000010 Calls Ratio
4 000100 Return Release Ratio
8 001000 Constants Ratio

16 010000 Stack Ratio
32 100000 Blocks Ratio

4.6. Context Sets

A function’s context is the set of functions associated with a specific function. This paper tests the
question of whether it is possible to improve performance by creating sets composed of the sum of

Electronics 2020, 9, 1163 13 of 20

different contexts. The context sets used in this research consist of the sum of the functions from the
context sets shown in Table 6.

Table 6. Naming of Context Sets.

Name Components

First Context Set Self

Second Context Set Self, Child, Parent

Third Context Set
Self, Child, Parent,

Grandchild, Grandparent

Fourth Context Set
Self, Child, Parent,

Grandchild, Grandparent,
Great-Grandchild, Great-Grandparent

4.7. Statistical Significance

Due to the stochastic nature of machine learning, the function similarity prediction results vary.
To address this variation, each test in this paper is repeated 20 times, unless stated otherwise, and an
average F1 score is calculated. There are cases where we need to determine whether a specific test
configuration provides better results than another. To answer this question, we need to determine
whether the test results are normally distributed. The three sets of Zeus function similarity results
from Table 7 were tested to see if they followed a normal distribution. A Shapiro-Wilk test [28] was
performed, and a p-value of 0.0173 indicated that we must reject the null -hypothesis and conclude
that the results were not normally distributed. As a result, a two-tailed Wilcoxon signed-rank test [29]
was used to determine whether selected test results differ at a 95% level of confidence.

4.8. Zeus Dataset Tests

The functions in Zeus samples 1 and 3 exhibit more differences due to software development
than the training dataset. A testing set of function similarity features were created from the Cartesian
product of all functions in samples 1 and 3. The SVM model was used to predict the matching function
pairs from the testing feature set. The results of this prediction were evaluated using the FSGT table.
Due to the stochastic nature of machine learning, the results from individual tests vary. The F1 score
is used to assess the accuracy of the results.

The function similarity tests shown in Table 7 show the effect of varying the training iteration
count. The column titled “S.D” indicates whether the current row was significantly different from the
preceding row. The “p-value” column gives the p-value from the two-tailed Wilcoxon signed-rank
test for this comparison. These tests show that performance increased with increasing training
iterations and reached a maximum at 100,000 training iterations, which gave an average F1 score
of 0.44. The two-tailed Wilcoxon signed-rank test indicated that the F1 score with 100,000 training
iterations was not significantly different from the test using 50,0000 iterations.

Table 7. Zeus Dataset—Training Iteration Performance.

Iterations Average F1 S.D p-Value

50,000 0.31 - -
100,000 0.44 N 0.05238
150,000 0.44 N 0.72634

The function similarity tests are shown in Table 8 and test the effect of varying combinations of
function context. The tests used 100,000 training iterations and different combinations of function
contexts. These results show that the best results were obtained using the second context set, giving an

Electronics 2020, 9, 1163 14 of 20

average F1 score of 0.44. The F1 score of the second context set test was significantly different from
the first context set test.

Table 8. Zeus Dataset—Training Context Combinations.

Context Set Average F1 S.D. p-Value

First 0.14 - -
Second 0.44 Y 0.00008
Third 0.29 Y 0.0091

Fourth 0.26 N 0.5619

The performance of individual features was assessed by performing function similarity
classification using SVM models trained for each feature. These tests used 100,000 training iterations
and the second context set. The results of this evaluation are shown in Table 9.

Table 9. Zeus Individual Feature Performance.

Test Feature Average F1

1 API Ratio 0.23
2 Calls Ratio 0.14
4 Return Release Ratio 0.08
8 Constants Ratio 0.10
16 Stack Ratio 0.03
32 Blocks Ratio 0.21

The best performing feature combinations are shown in Table 10. The function pair prediction
results in this research vary from run to run due to the stochastic nature of machine learning. Owing to
the time taken to run the SVM model for all 64 feature combinations of both datasets, the assessment
of all feature combinations was only run five times.

Table 10. Zeus Dataset—Highest Performing Feature Combinations.

Test Vector Average F1

15 001111 0.47
37 100101 0.43
41 000111 0.40
44 101001 0.43
46 101110 0.43
47 101111 0.43
51 110011 0.44
53 110101 0.44
54 110110 0.40
63 111111 0.45

4.9. ISFB Dataset Tests

The second set of tests performed in this paper determines whether ISFB function similarity can
be predicted from the Zeus SVM model. The functions in ISFB samples 4 and 5 exhibit differences
due to approximately one year of software development. The SVM model was used to predict the
matching function pairs in the ISFB data set. The function pair matches in the FSGT table were used to
evaluate the prediction results.

The function similarity tests are shown in Table 11 and test the effect of varying the training
iteration count. The tests were repeated 20 times using the second context set. The F1 score of
0.34 from 100,000 training iterations was significantly different (S.D.) from the F1 score of 0.22 for
50,000 training iterations and was not significantly different from the F1 score of 0.43 for 150,000
training iterations.

Electronics 2020, 9, 1163 15 of 20

Table 11. ISFB Dataset—Training Iteration Performance.

Iterations Average F1 S.D. p-Value

50,000 0.22 - -
100,000 0.34 Y 0.0455
150,000 0.43 N 0.0703

The function similarity tests shown in Table 12 show the effect of varying combinations of function
context. The tests were repeated 20 times using 100,000 training iterations and different combinations
of function contexts. The second context set gives the best performance for both the Zeus and
ISFB datasets.

Table 12. ISFB Dataset—Training Context Combinations.

Context Set Average F1 S.D. p-Value

First 0.11 - -
Second 0.38 Y 0.00008
Third 0.26 Y 0.0096

Fourth 0.16 Y 0.02642

The performance of each feature was assessed by performing function similarity classification
using SVM models trained for each feature. The function pair prediction was run with
100,000 iterations and the second context set. The results of this evaluation are shown in Table 13.

Table 13. ISFB Individual Feature Performance.

Test Feature Average F1

1 API Ratio 0.10
2 Calls Ratio 0.12
4 Return Release Ratio 0.11
8 Constants Ratio 0.14
16 Stack Ratio 0.01
32 Blocks Ratio 0.20

The feature combinations that provided the best performance are shown in Table 14. The function
pair prediction was run with 100,000 iterations and the second context set. Owing to the time taken
to run the SVM model for all 64 feature combinations of both datasets, the assessment of all feature
combinations was only run five times.

Table 14. ISFB Dataset—Highest Performing Feature Combinations.

Test Vector Average F1

7 000111 0.46
44 101100 0.49
46 101110 0.45
47 101111 0.44
54 110110 0.41
58 111010 0.40
59 111011 0.41
60 111100 0.41
61 111101 0.42
62 111110 0.43
63 111111 0.45

Electronics 2020, 9, 1163 16 of 20

4.10. FSFC Evaluation

The F1 score for function similarity performance for the Zeus dataset shows an average value of
0.44, and for the ISFB dataset, an average value of 0.34. For comparison, a random classifier would
result in a low F1 score due to the unbalanced distribution of the classes within these datasets. If we
consider Zeus dataset 2, a random classifier would classify half of the 539 matching function pairs
as matching and half as non-matching, and would similarly split the 323400 non-matching function
pairs between these two classes. This would give a precision score of 269.5/(269.5 + 161700) = 0.0017,
and a recall of 269.5/539 = 0.5. Combining these gives an F1 score of 0.0034. For the ISFB dataset with
1035 matching function pairs, a random classifier would give a precision score of 0.0009 and a recall
score of 0.5, giving an F1 score of 0.0018. Thus, the F1 scores obtained by FSFC are well above those
that would be expected using random classification.

The FSFC F1 scores provide a 57–65 percent improvement over the CVCFS algorithm. Table 8
shows the Zeus experiment with the second context set, resulting in an average of 480 true positive
matches and 1384 false positive matches. Table 12 shows the ISFC experiment with the second context
set, resulting in an average of 943 true positive matches and 4075 false positive matches. In the manual
generation of the FSGT table, the time required to identify the function pairs in these two datasets
was approximately two days for the Zeus dataset and four days for the ISFB dataset. The use of this
research to generate a list of candidate similar function pairs is potentially of substantial benefit to a
malware analyst.

Next, we examine the execution time performance of FSFC and show that the execution time is
proportional to the product of the number of functions in the two malware variants. FSFC research
made use of representative historical malware samples. Therefore, the timings reported are indicative
of computational costs likely to occur with further malware analysis.

The experiments in this research were conducted on a workstation using an Intel i7-3770 3.40 GHz
CPU with 32 GB of RAM. The SVM machine learning software was TensorFlow v1.15. Training features
were generated using the Cartesian product of all functions in both training programs. The function
counts in Table 4 from the Cythereal disassembly were used to calculate the total function pairs.
All features were included in the training, 100,000 training iterations, and the second context set
were used to obtain the timing details shown in Table 15. The time for SMOTE oversampling was
59 s. A summary of the feature extraction and machine learning times for the FSFC experiments is
shown in Table 15. The column headings provide the following information: “Op” shows whether
training or classification is being performed, “Dataset” shows the dataset, “Fn Pairs” shows the
function pair count, “Feat Extr (s)” shows the feature extraction time in seconds, “Extr/Pair (µs)”
shows the feature extraction time per function pair in microseconds, “SVM (s)” shows the total SVM
execution time in seconds, and “SVM/Pair (µs)” shows the total SVM execution time per function pair
in microseconds. The FSFC Operation times in Table 15 show that the FSFC training time corresponds
to 91% of the execution time for the Zeus Dataset 2 classification and 77% of the execution time for
ISFB Dataset 1 classification. The training and classification use features created by the pairwise
combination of functions in the two malware variants. This use of the pairwise combination of
functions results in execution times that are proportional to the product of the number of functions in
the two malware variants.

Table 15. Operation Times.

Op Dataset Fn Pairs Feat Extr (s) Extr/Pair (µs) SVM (s) SVM/Pair (µs)

Train Zeus Dataset 1 311,003 13 42 1330 4276
Classify Zeus Dataset 2 323,939 14 43 112 346
Classify ISFB Dataset 1 1,172,655 37 32 357 304

Electronics 2020, 9, 1163 17 of 20

4.11. Comparison With Previous Research

The Zeus and ISFB similarity experiments were re-run using the algorithm from the CVCFS
research [1]. These tests used 100,000 training iterations, all features, and were repeated 20 times.
The results of these tests are shown in Table 16. These test results are compared with the Zeus iterations
test from Table 11 that gave an average F1 score of 0.44, and the ISFB Iterations test from Table 11
that gave an average F1 score value of 0.34. The difference between these results is statistically
significant and shows that the techniques used in this paper provide a significant improvement over
the CVCFS research.

Table 16. Zeus and ISFB Similarity Using Previous Research.

Dataset Average F1 S.D. p-Value

Zeus 0.19 Y 0.00038
ISFB 0.12 Y 0.00030

4.12. Numeric Feature Encoding

This paper encodes numeric features as a set of values taken from each function in the context;
this allows the use of a Jaccard Index for the comparison of numeric features. For example, consider a
context containing three functions with 5, 3, and 6 basic blocks. The updated numeric feature encoding
encodes the blocks feature as the set 5, 3, 6, while the CVCFS method represented the blocks feature
as the sum of the basic block counts, which is 14. Individual feature performance using an earlier
summed numeric encoding method is shown for the Zeus dataset in Table 17, and for the ISFB dataset
in Table 18. These tests used 100,000 training iterations and the second training context; 20 tests were
run for each dataset. These results were compared with the individual feature performance using
the new numerical feature encoding in Table 9. This comparison shows that excepting the Stack Ratio
feature, the new numerical feature encoding performs significantly better than the CVCFS method.
In the case of the Stack Ratio feature, the Wilcoxon test was unable to calculate an accurate p-value.

Table 17. Zeus Previous Numeric Feature Encoding

Feature Average F1 S.D. p-Value

Calls Ratio 0.03 Y 0.00008
Return Release Ratio 0.02 Y 0.00008

Stack Ratio 0.02 - -
Blocks Ratio 0.02 Y 0.00008

Table 18. ISFB Previous Numeric Feature Encoding.

Feature Average F1 S.D. p-Value

Calls Ratio 0.01 Y 0.00014
Return Release Ratio 0.01 Y 0.00008

Stack Ratio 0.01 - -
Blocks Ratio 0.01 Y 0.00008

The combined feature performance using the summed numeric encoding method for the Zeus
and ISFB datasets is shown in Table 19. This test used 100,000 training iterations and the second
training context; all features enabled, 20 tests were run for each dataset. The “Delta F1” column shows
the difference from the corresponding FSFC F1 scores. A comparison of these results with the results
using the improved numeric feature encoding in Tables 7 and 11 shows that the new numeric feature
encoding method substantially improves the identification of similar function pairs.

Electronics 2020, 9, 1163 18 of 20

Table 19. Previous Numeric Feature Encoding.

Malware Average F1 Delta F1 S.D. p-Value

ISFB 0.22 −0.11 Y 0.00906
Zeus 0.27 −0.17 Y 0.01046

4.13. Future Work

Work presented in this paper can be extended as follows:

• Investigate the limits of the generality of this research,
• Further improvement of features and feature encoding,
• Test this research on datasets exhibiting a higher degree of software evolution.

5. Conclusions

The ability to match compiled functions with similar code is important for malware triage,
program patch analysis, identification of library functions containing known bugs, malware authorship
analysis, identification of similar function pairs in detailed malware analysis, and for plagiarism
analysis. This paper uses function similarity features from one pair of program variants (Zeus malware)
to find function pairs in another unrelated program (ISFB malware). SVM models are trained on
contextual features that are extracted not just from the function itself, but also, from a limited set
of other functions with which it has a caller and callee relationship. These new contextual features
improve the accuracy in detecting function pairs and substantially reduce the false positive rate,
removing the need for an additional pass to remove false negatives. The improved numerical feature
representation in FSFC results in an improvement in function similarity accuracy, and allows the use
of a Jaccard Index for feature ratio comparison, and simplifies the FSFC algorithm.

A major finding of this research is that the SVM model produced by FSFC can abstract function
similarity features from one pair of program variants to find function pairs in another unrelated
program. This new property leads to the possibility of creating generic similar function classifiers.
The Zeus training dataset is relatively small, consisting of approximately 550 function pairs. However,
the SVM model trained on features from this dataset was able to predict similarity in the ISFB malware
family, with an average F1 score of 0.34 for the ISFB function pair identification. The same training
iteration count and context set gave the best results for both the Zeus and ISFB datasets. This result
indicates that the FSFC method can abstract function similarity features from Zeus malware and
successfully detect similar function pairs in a pair of ISFB malware variants. Future work will examine
the ability of this approach to generalise across multiple independent programs.

Author Contributions: P.B. is the main author of this paper. P.B. contributed to the development of the ideas,
design of the study, theory, analysis, and writing. P.B. designed and then performed the experiments I.G., P.V.,
and A.L. reviewed and evaluated the experimental design and the paper. All authors read and approved the final
manuscript.

Funding: This research was performed in the Internet Commerce Security Lab (ICSL), which is a joint venture
with research partners Westpac, IBM, and Federation University Australia.

Acknowledgments: The authors would like to thank Cythereal (Cythereal has licensed VirusBattle from the
University of Louisiana at Lafayette) for providing access to Cythereal MAGIC [30] and to the Zeus malware
dataset used in this research. Paul Black is supported by an Australian Government Research Training Program
(RTP) Fee-Offset Scholarship through Federation University Australia.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2020, 9, 1163 19 of 20

References

1. Black, P.; Gondal, I.; Vamplew, P.; Lakhotia, A. Identifying Cross-Version Function Similarity Using Contextual
Features; Technical Report; Federation University, Internet Commerce Security Lab.: Ballarat, Australia,
2020. Available online: https://federation.edu.au/icsl/tech-reports/icsl_techrep_2020_01.pdf (accessed on
15 July 2020).

2. Jang, J.; Brumley, D.; Venkataraman, S. Bitshred: Feature hashing malware for scalable triage and semantic
analysis. In Proceedings of the 18th ACM Conference on Computer And Communications Security, Chicago,
IL, USA, 21 October 2011; pp. 309–320.

3. Flake, H. Structural comparison of executable objects. In Proceedings of the 2004 Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA 2004), Dortmund, Germany, 6–7 July 2004.

4. Eschweiler, S.; Yakdan, K.; Gerhards-Padilla, E. discovRE: Efficient Cross-Architecture Identification of
Bugs in Binary Code. In Proceedings of the 2016 Network and Distributed System Security (NDSS 2016),
San Diego, CA, USA, 21–24 February 2016.

5. Feng, Q.; Zhou, R.; Xu, C.; Cheng, Y.; Testa, B.; Yin, H. Scalable graph-based bug search for firmware images.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 24–28 October 2016; pp. 480–491.

6. Alrabaee, S.; Debbabi, M.; Wang, L. On the feasibility of binary authorship characterization. Digit. Investig.
2019, 28, S3–S11. [CrossRef]

7. LeDoux, C.; Lakhotia, A.; Miles, C.; Notani, V.; Pfeffer, A. Functracker: Discovering shared code to aid
malware forensics. In Proceedings of the 6th USENIX Workshop on Large-Scale Exploits and Emergent
Threats, Washington, DC, USA, 12 August 2013.

8. Luo, L.; Ming, J.; Wu, D.; Liu, P.; Zhu, S. Semantics-based obfuscation-resilient binary code similarity
comparison with applications to software plagiarism detection. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, Hong Kong, China, 16-22 November
2014; pp. 389–400.

9. Osorio, F.C.C.; Qiu, H.; Arrott, A. Segmented sandboxing-A novel approach to Malware polymorphism
detection. In Proceedings of the 2015 10th International Conference on Malicious and Unwanted Software
(MALWARE), Fajardo, Puerto Rico, 20–22 October 2015; pp. 59–68.

10. Hong, J.; Park, S.; Kim, S.W.; Kim, D.; Kim, W. Classifying malwares for identification of author groups.
Concurr. Comput. Pract. Exp. 2018, 30, e4197. [CrossRef]

11. Jilcott, S. Scalable malware forensics using phylogenetic analysis. In Proceedings of the 2015 IEEE
International Symposium on Technologies for Homeland Security (HST), Waltham, MA, USA, 14–16 April
2015; pp. 1–6.

12. Black, P.; Gondal, I.; Layton, R. A survey of similarities in banking malware behaviours. Comput. Secur. 2018,
77, 756–772. [CrossRef]

13. Lakhotia, A.; Preda, M.D.; Giacobazzi, R. Fast location of similar code fragments using semantic ‘juice’.
In Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse Engineering Workshop, Rome,
Italy, 26 January 2013; p. 5.

14. Ng, B.H.; Prakash, A. Expose: Discovering potential binary code re-use. In Proceedings of the 2013 IEEE
37th Annual Computer Software and Applications Conference (COMPSAC), Kyoto, Japan, 22–26 July 2013;
pp. 492–501.

15. Lakhotia, A.; Black, P. Mining malware secrets. In Proceedings of the 2017 12th International Conference on
Malicious and Unwanted Software (MALWARE), Fajardo, Puerto Rico, 11–14 October 2017; pp. 11–18.

16. Miles, C.; Lakhotia, A.; LeDoux, C.; Newsom, A.; Notani, V. VirusBattle: State-of-the-art malware analysis
for better cyber threat intelligence. In Proceedings of the 2014 7th International Symposium on Resilient
Control Systems (ISRCS), Denver, CO, USA, 19–21 August 2014; pp. 1–6.

17. Black, P.; Gondal, I.; Vamplew, P.; Lakhotia, A. Evolved Similarity Techniques in Malware Analysis.
In Proceedings of the 2019 18th IEEE International Conference On Trust, Security and Privacy in
Computing and Communications/13th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), Rotorua, New Zealand, 5–8 August 2019; pp. 404–410.

18. Puth, M.T.; Neuhäuser, M.; Ruxton, G.D. Effective use of Pearson’s product–moment correlation coefficient.
Anim. Behav. 2014, 93, 183–189. [CrossRef]

Electronics 2020, 9, 1163 20 of 20

19. Zhao, D.; Lin, H.; Ran, L.; Han, M.; Tian, J.; Lu, L.; Xiong, S.; Xiang, J. CVSkSA: Cross-architecture
vulnerability search in firmware based on kNN-SVM and attributed control flow graph. Softw. Qual. J. 2019,
27, 1045–1068. [CrossRef]

20. Lipton, Z.C.; Elkan, C.; Naryanaswamy, B. Optimal thresholding of classifiers to maximize F1
measure. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 225–239.

21. Russinovich, M.E.; Solomon, D.A.; Ionescu, A. Windows Internals; Pearson Education: New York, NY, USA,
2012.

22. Lam, M.; Sethi, R.; Ullman, J.; Aho, A. Compilers: Principles, Techniques, and Tools; Pearson Education:
New York, NY, USA 2006.

23. Bayer, U.; Comparetti, P.M.; Hlauschek, C.; Kruegel, C.; Kirda, E. Scalable, behavior-based malware
clustering. In Proceedings of the NDSS 2009, San Diego, CA, USA, 8–11 February 2009; Internet Society:
Reston, VA, USA, 2009; Volume 9, pp. 8–11.

24. Plohmann, D.; Clauss, M.; Enders, S.; Padilla, E. Malpedia: A Collaborative Effort to Inventorize the Malware
Landscape. J. Cybercrime Digit. Investig. 2018, 3, 1–19

25. Zeus Author. Zeus Source Code. 2011. Available online: https://github.com/Visgean/Zeus (accessed on
15 July 2020).

26. ISFB Author. ISFB Source Code. 2010. Available online: https://github.com/t3rabyt3/Gozi (accessed on
15 July 2020).

27. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

28. Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965,
52, 591–611. [CrossRef]

29. Wilcoxon, F.; Katti, S.; Wilcox, R.A. Critical values and probability levels for the Wilcoxon rank sum test and
the Wilcoxon signed rank test. Sel. Tables Math. Stat. 1970, 1, 171–259.

30. Cythereal Inc. Cythereal MAGIC. Available online: http://www.cythereal.com (accessed on 15 July 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Chapter 8

API Based Discrimination of

Ransomware and Benign

Cryptographic Programs

An understanding of malware internal operations is a prerequisite to the exper-

imental design of malware research. Benign cryptographic programs may have

some features of ransomware, and then these benign programs could be misclas-

sified as ransomware. Previous research has proposed methods for ransomware

detection using machine learning techniques. However, this research has not

examined the precision of ransomware detection. While existing techniques

show an overall high accuracy in detecting novel ransomware samples, previ-

ous research does not investigate the discrimination of novel ransomware from

benign cryptographic programs. Machine learning based techniques would be

limited in their practical benefit if they generated too many false positives, or if

they deleted/quarantined critical data. This chapter implements a ransomware

detection system based on an SVM model using API profile features and then

examines the ability of existing API profile-based machine learning techniques

to discriminate novel ransomware from benign-cryptographic programs.

The contributions of this chapter are presented as a research paper:

• P. Black, A. Sohail, I. Gondal, J. Kamruzzaman, P. Vamplew, and

P. Watters, “API Based Discrimination of Ransomware and Benign Cryp-

tographic Programs,” ICONIP 2020, ERA A, 2020 (Accepted).

131

API Based Discrimination of Ransomware
and Benign Cryptographic Programs

Paul Black1(B), Ammar Sohail1, Iqbal Gondal1, Joarder Kamruzzaman1,
Peter Vamplew1, and Paul Watters2

1 Internet Commerce Security Lab, Federation University, Ballarat, Australia
{p.black,iqbal.gondal,joarder.kamruzzaman,p.vamplew}@federation.edu.au,

ammarsohail@gmail.com
2 Cybersecurity and Networking Group, Latrobe University, Melbourne, Australia

p.watters@latrobe.edu.au

Abstract. Ransomware is a widespread class of malware that encrypts
files in a victim’s computer and extorts victims into paying a fee to
regain access to their data. Previous research has proposed methods for
ransomware detection using machine learning techniques. However, this
research has not examined the precision of ransomware detection. While
existing techniques show an overall high accuracy in detecting novel ran-
somware samples, previous research does not investigate the discrimi-
nation of novel ransomware from benign cryptographic programs. This
is a critical, practical limitation of current research; machine learning
based techniques would be limited in their practical benefit if they gen-
erated too many false positives (at best) or deleted/quarantined criti-
cal data (at worst). We examine the ability of machine learning tech-
niques based on Application Programming Interface (API) profile fea-
tures to discriminate novel ransomware from benign-cryptographic pro-
grams. This research provides a ransomware detection technique that
provides improved detection accuracy and precision compared to other
API profile based ransomware detection techniques while using signif-
icantly simpler features than previous dynamic ransomware detection
research.

Keywords: Ransomware · Machine learning · Internet security and
privacy · Dynamic analysis

1 Introduction

Ransomware seeks to encrypt user data or lock the victim’s computer and
then extort money to regain access. Although early ransomware programs were
detected in 2006, the frequency of ransomware attacks have recently acceler-
ated and have become a significant information security problem [1]. The UK
National Health Service (NHS) suffered a ransomware attack in 2017, 80 out of
236 NHS trusts were infected by ransomware; the full cost of this attack is not
known [2].

c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12533, pp. 1–12, 2020.
https://doi.org/10.1007/978-3-030-63833-7_15

2 P. Black et al.

Tangible and non-tangible losses due to ransomware extend the impact
beyond reported cash losses. These costs include investigation, new anti-
ransomware strategies, data recovery, forensic costs, legal costs, crisis communi-
cation, fines, revenue loss, and reputational damage [3].

Prior research [4–8] has shown that novel ransomware families may be
detected through the use of machine learning techniques trained on the fea-
tures of existing ransomware samples. However, this research does not consider
that some common programs perform similar cryptographic operations to ran-
somware. While existing techniques show an overall high accuracy in detecting
novel ransomware samples, to the best of our knowledge, none of the previous
research investigates the discrimination of ransomware from common programs
that share some of the cryptographic characteristics of ransomware. This is a
critical, practical limitation of current research; machine learning based tech-
niques would be limited in their practical benefit if they generated too many
false positives (at best) or deleted/quarantined critical data (at worst).

The research in this paper provides significantly improved accuracy and pre-
cision in ransomware detection when compared with existing Application Pro-
gramming Interface (API) profile based techniques [7] and does so using sim-
plified features. The experiments in this paper were performed using dynamic
analysis of ransomware and benign programs in a Cuckoo sandbox. An SVM
model was trained using the API profile extracted from the Cuckoo results for
each program. Feature selection was used to select the highest performing API
features.

1.1 Command and Control Server Emulation

Historical ransomware samples were used in this research; a Command and Con-
trol (C2) server is used by a ransomware sample to obtain a public encryption
key and to report successful infections. A common technique to disable a ran-
somware attack is to remove the Domain Name Server (DNS) entry for the C2
server. A consequence of this is historical ransomware samples may be executed
in a virtual machine (VM), but network access to the C2 server will not be avail-
able. A C2 emulator is a program that is written to emulate the operation of the
absent C2 server. This use of a C2 emulator allows a historical malware sample to
exchange the required information with the emulated C2 server and to proceed
to searching for and encrypting user files. Running historical malware samples
with a C2 emulator provides accurate API profiles containing API calls related
to initialization, network communication, file searching, and file encryption.

1.2 Contribution

The contributions of this paper are as follows:

– This research is the first to consider whether machine learning API profile
based ransomware detection techniques could distinguish common crypto-
graphic programs from ransomware. In neglecting this question, previous

API Based Discrimination 3

research has focused on detection accuracy but has failed to consider pre-
cision as a performance metric.

– Development of techniques to improve the discrimination of ransomware from
benign-cryptographic programs. Experimentation showed that API based
machine learning has difficulties in discriminating ransomware from benign-
cryptographic programs.

– C2 emulators for Cryptowall and CryptoLocker were developed to allow sam-
ples of these ransomware families to be run in a simulated environment and
to perform the full range of operations that were possible when the malware
attack was active.

The remainder of the paper is organized as follows: related work is reviewed in
Sect. 2, Sect. 3 presents our research methodology. Section 4 covers feature selec-
tion and machine learning. We perform a detailed evaluation of our methodology
in Sect. 5, and Sect. 6 concludes the paper.

2 Related Work

Malware analysis may be performed using either static or dynamic analysis. Both
static and dynamic analysis techniques have been used to extract specifications of
malware behaviour [9,10]. The methodology proposed in this paper uses dynamic
analysis.

2.1 Ransomware Detection

Existing research deals with detecting ransomware using machine learning [4–
8,11]. EldeRan [4] demonstrates the importance of feature selection to reduce the
overall complexity of the problem and to improve the performance of machine
learning. EldeRan uses features from the following classes: API calls, registry
key operations, file system operations, file operations per file extension, direc-
tory operations, dropped files, and strings. The dataset used in this research
consisted of 582 samples of ransomware belonging to 11 malware families and
942 benign programs. The benign programs consisted of generic utilities for Win-
dows, drivers, browsers, file utilities, multimedia tools, developer’s tools, network
utilities, paint utilities, databases, emulator and virtual machine monitors, office
tools. While this is a comprehensive dataset, it does not specifically target pro-
grams with cryptographic features that could be misclassified as ransomware.
Experiments were performed to test the ability of EldeRan to detect known
ransomware, and to detect novel ransomware. Testing with known ransomware
provided an average accuracy of 0.963, and testing with novel ransomware sam-
ples gave a detection rate of 0.933 with 100 features and a detection rate of 0.871
with 400 features [11].

The research in [7] uses Windows API call data from the Cuckoo sandbox to
generate a vector model of API calls to train an SVM machine learning model for
ransomware detection. This research uses a vector representation that encoded

4 P. Black et al.

the API call logs using a q-gram frequency and a standardized vector represen-
tation. The research uses 312 samples of benign software, further details of these
programs are not provided, 276 ransomware programs targeting the Windows
Operating System are used in this research. This dataset includes WannaCry,
Cerber, Petya, and CryptoLocker, but further details are not provided. The accu-
racy of this research using the proposed vector format was 0.9352, and 0.9748
using an extension to vector encoding technique. The published results do not
include true positive or false positive values. It is noted that the malware samples
were not divided into malware families before splitting for training/testing, this
allows the possibility that samples of malware families present in the training
data were also present in the test data, raising the apparent average detection
accuracy.

RansHunt is a hybrid analysis system that used static and dynamic analysis
for ransomware detection. RansHunt uses the following feature classes: function
length frequency, strings, API calls, registry operations, process operations, and
network operations [11]. The dataset used in this research consisted of 360 sam-
ples of ransomware from 21 families, 532 different types of malware, and 460
benign software. Details of the types of benign software in the dataset were not
provided. This paper uses a 10 fold cross-validation approach. Performing coss-
validation selection at the ransomware family level would give a better under-
standing of research performance. This would avoid the possibility of having
samples of the same malware families in both the train and test datasets. Fea-
ture selection was performed using Mutual Information criteria. The accuracy
and precision values for static analysis were 0.935/0.951, for dynamic analysis
was 0.961/0.960 and were 0.971/0.970 using the hybrid approach.

An analysis of the API calls made by malware samples from 14 malware
families concluded that it may be feasible to identify ransomware behaviour on
the basis of API call profile data alone [6].

GURLS [8] uses API call frequency features and machine learning based on
Regularized Least Squares (RLS) for ransomware detection. The highest average
binary detection rate of 0.886 was achieved using a radial basis (RBF) kernel.
Multiclass classification was used to identify each ransomware family with an
average accuracy of 0.867.

3 Research Methodology

The user mode programming interface for the Windows operating system is pro-
vided by the Windows API [12]. API calls in malware are readily identified by
dynamic analysis techniques. This allows the creation of API profiles for detec-
tion and classification [13]. The proposed method is based on the observation
that malware samples execute a unique sequence of API calls that can be used
to distinguish them from other programs. Our approach uses API call profiles
as features and uses feature selection to determine the most significant features.

An SVM machine learning model is used as a classifier to distinguish ran-
somware from benign programs and benign-cryptographic programs. API calls

API Based Discrimination 5

traces are taken from three datasets (ransomware, benign programs, and benign-
cryptographic programs) using the Cuckoo sandbox. The Windows API calls,
and the native functions calls are extracted from the API calls trace and
are represented as a vector of API call frequency values that are labelled as
ransomware/non-ransomware. Mutual Information Criteria (statistical models)
is used to extract the most significant features. SVM machine learning is per-
formed on the labelled API call frequency data. The trained model is used to
predict whether a sample is ransomware or non-ransomware. The motivation for
the use of SVM for learning and classifying ransomware is that, for binary clas-
sification, SVM has a high generalization rate and is designed to process large
datasets with large feature spaces [7,14]. In our setting, the number of features
is relatively high, so linear classifiers are a better choice [15,16].

3.1 Cross-Validation Approach

A cross-validation approach was used where the ransomware samples from one
malware family and an equal number of benign programs were used for testing.
The remaining ransomware samples and benign programs were used for training.
This process was repeated for each ransomware family, and 10 experiments were
performed for each ransomware family.

3.2 C2 Emulators

These emulators allow experimentation with historical ransomware samples by
providing an emulation of the C2 server used by the malware family. Simulated
DNS responses were provided by the Apate DNS simulator [17]; this permits the
ransomware process to perform the necessary communications with the emulated
C2 server and then continue and encrypt the user files in the test environment.
This emulation exercises more of the ransomware capabilities and allows a com-
plete API profile to be collected. C2 emulators were developed for the CryptoWall
and CryptoLocker ransomware families.

4 Feature Selection and Classification

The machine learning method consists of two parts: feature selection and classi-
fication. Feature selection is performed using statistical and model-based tech-
niques. For the statistical technique, we used Mutual Information Criteria
[18] using Python’s Scikit-learn library and Information Gain using the Weka
machine learning tool [19]. For the model-based technique, we utilized decision
trees (Random Forest) [20]. These techniques enable us to choose the most sig-
nificant features API features.

6 P. Black et al.

4.1 Feature Engineering

The detection of ransomware activities may be performed by analysing their API
calls. API call frequency profiles are employed to identify ransomware behaviour
in a controlled environment. Feature selection is used to identify the most sig-
nificant features, allowing the generation of simpler machine learning models,
reducing the training and prediction time, and helping to counteract the problem
of overfitting. These techniques are not always used in machine learning malware
detection approaches [15,21]. The most significant API calls are selected based
on the required level of significance using Mutual Information Criteria. After
carrying out several experiments, we found that the highest accuracy could be
achieved by utilizing 60% of the most significant selected features.

An API call frequency profile is required for our experiments. This API call
profile can be represented by vectors, where each entry is a frequency of a given
API function. Let S = {a1, a2, a3..., an} be a set of all selected features (API
calls). A log of an application execution can be recorded as a sequence of API
calls of length l, denoted as A = {a1, a2, ...al} where ai ∈ S and l ≤ n.

Let ϕ be the frequency of a Windows API function, we define a function Ψ
that maps A to S and transforms each program’s API calls profile to a vector
of dimension |S| as shown in Eq. 1.

v(A) = Ψ(a)a∈S (1)

where

Ψ(a) =

{
ϕ, Frequency of an API call if present

0, otherwise
(2)

5 Experiments

In this section, we implement our SVM model and test its ability to discriminate
novel ransomware from benign programs and benign-cryptographic programs.
We collected 162 benign programs and 14 benign-cryptographic programs. We
collected 101 ransomware samples from 15 ransomware families targeting the
Windows operating system from Malpedia [22]. The ransomware families used in
this research are summarized in Table 1. We collected a dataset of 162 benign pro-
grams and 14 benign-cryptographic applications; these include Winzip, SHA256,
Crc32, Putty, and John the Ripper. The benign-cryptographic programs that
were used in this research are summarized in Table 2.

5.1 Comparison with Existing Research

To evaluate the effectiveness of our SVM model, we selected a comparison with
Takeushi’s SVM based ransomware detection work [7]. This research was selected
for comparison due to its relatively simple ransomware detection techniques, that
are still representative of current ransomware detection research. To perform

API Based Discrimination 7

Table 1. Summary of ransomware families

Family Year # Samples

TorrentLocker 2014 4

CryptoFortress 2015 2

TeslaCrypt 2015 9

Locky 2016 20

CryptXXXX 2016 6

CryptoMix 2016 4

CryptoLocker 2013 4

DirCrypt 2014 5

Petya 2016 4

Cerber 2016 10

WannaCrypto 2017 5

CryptoShield 2017 2

CryptoWall 2013 21

Cryptorium 2016 2

PadCrypt 2016 3

Table 2. Summary of Benign-cryptographic programs

Family # Samples

Cryptographic hashing 03

Error detection 02

File compression 03

Secure data removal 02

Password cracking 02

Secure network file sharing 02

this comparison, we replicated Takeuchi’s Extension To Standardized Vectors
encoding technique [7]. For the remainder of this paper, we refer to this encoding
technique as the Takeuchi technique. Although we replicated the vector encoding
techniques, we continued to use our cross-validation approach. We were not able
to obtain a copy of the dataset used in the Takeuchi research. This dataset
contained 276 ransomware samples. The ransomware families of these samples
are not specified in the paper, and it is assumed that the families of the individual
samples are not known. The result of splitting this dataset for machine learning
is that training may be performed on ransomware samples that are also present
in the test dataset, and this may overstate the accuracy of the technique. The
ransomware dataset used in our research contained 101 ransomware samples from

8 P. Black et al.

15 ransomware families. We performed cross-validation using one ransomware
family at a time for testing.

5.2 Experimental Setup

A Ubuntu 16.04 LTS host operating system and a virtual machine (VM) using
host-only networking were used to ensure the containment and isolation of the
malware experiments. This research used a TensorFlow version 1 linear SVM
model, and an Adam optimizer with a learning rate of 0.001, and 20,000 training
iterations. The samples were executed in a Cuckoo sandbox [23] using a Windows
XP VM. A second Windows XP VM was used to run the emulated C2 server
and an emulated DNS service.

Evaluation Metrics. Each of the programs in our dataset was submitted to
the Cuckoo sandbox and an API profile were extracted from the sandbox anal-
ysis report. API frequency statistics were calculated, and supervised machine
learning was used to predict whether the program was ransomware. The detec-
tion was recorded as successful when a ransomware sample was identified cor-
rectly (true positive) or benign/benign-cryptographic program was detected as
a “not-ransomware” (true negative). The detection fails if ransomware was iden-
tified as a “not-ransomware” (false negative) or a benign/benign-cryptographic
program was identified as ransomware (false positive). We evaluated the perfor-
mance using 4 metrics: accuracy, precision, recall, and F1-Score. These metrics
are summarized in Table 3.

Table 3. Evaluation metrics

Metrics Expression Description

Accuracy
No. of correct predictions

Total no. of predictions
Correct fraction of predictions

Precision
TP

(TP + FP)
Rate of relevant results (Trues)

Recall
TP

(TP + FN)
Sensitivity for the most relevant results

F1-Score 2 × Recall × Precision

Recall + Precision
Estimate of entire system performance

5.3 Feature Selection

Over several experiments, we found that Mutual Information and Random For-
est techniques are comparable and outperformed Information Gain for feature
selection. Use of the Mutual Information Criteria from Python’s Scikit-learn
machine learning library provided an 11% increase in accuracy compared with
the Information Gain algorithm from Weka. We performed several experiments

API Based Discrimination 9

to determine the most significant features and evaluated our SVM model. We
observed that our machine learning model performed best when the top 60% of
the features were selected after being ranked by the mutual information criteria.
While this machine learning approach is able to identify the highest performing
set of API features, this approach does not identify the highest performing indi-
vidual API features. Table 4 summarizes the number of most significant features
selected in our experiments.

Table 4. Number of most significant featuress

Experiment type # Features selected

Ransomware/Benign Programs 118

Ransomware/Benign Cryptographic Programs 90

5.4 Ransomware Against Benign Programs

In this experiment, we test the ability of our technique to distinguish ransomware
from benign programs and compare the results with the replicated Takeuchi vec-
tor encoding technique. Table 5 provides the accuracy, precision, recall, and F1-
Score measures of both the methods. Our model substantially outperformed our
replication of the Takeuchi technique with an improvement of 6.2% in accuracy,
6.2% improvement in precision, and an improvement of 11.1% in recall.

Table 5. Average cross-validation evaluation results

Ransomware/Benign Ransomware/Cryptographic

Metric Our method Takeuchi method [7] Our method Takeuchi method [7]

Accuracy 93.3% 87.1% 67.3% 57%

Precision 96.2% 90% 67.1% 60%

Recall 90.1% 79% 71.2% 60%

F1-Score 92.2% 82.1% 67.4% 60%

5.5 Ransomware Against Benign-Cryptographic Programs

In this experiment, we test the ability of our technique to distinguish ransomware
from benign-cryptographic programs and compared this to the results from the
replicated Takeuchi vector encoding technique. The summary of these results is
shown in Table 5. In this experiment, our model substantially outperformed the

10 P. Black et al.

Takeuchi technique with an improvement of 10.3% in accuracy, 7.1% improve-
ment in precision, and an improvement of 11.2% in recall. Our research indicates
an accuracy rate of 67.3% in distinguishing ransomware from benign crypto-
graphic programs. Two factors that may account for this relatively low result
are, firstly our dataset contained a low number (11) of benign-cryptographic pro-
grams, and secondly, our cross-validation approach of testing against program
features that were excluded from training, emphasises the need for the machine
learning to generalise. This gives a conservative estimate of model accuracy.
We acknowledge these limitations but note that our model outperforms existing
research.

6 Conclusion

In this research, we developed a technique that detects ransomware with sub-
stantially simpler features than existing research. The Takeuchi vector encoding
technique [7] was replicated, and our model was evaluated against it. The eval-
uation results demonstrate that our research improves prediction accuracy and
is better able to discriminate ransomware from benign-cryptographic programs.

Future research could investigate why the API profiles from some ransomware
families and the use of C2 emulators resulted in lower detection rates.

Based on our research, we conclude that machine learning trained on API
profile features is limited in its ability to discriminate between ransomware and
benign cryptographic programs due to the significant overlap of API calls pro-
files.

Acknowledgement. This research was funded in part through the Internet Com-
merce Security Laboratory (ICSL), a joint venture between Westpac, IBM, and Fed-
eration University Australia. Paul Black is supported by an Australian Government
Research Training Program (RTP) Fee-Offset Scholarship through Federation Univer-
sity Australia. This research was partially supported by funding from the Oceania
Cyber Security Centre (OCSC).

References

1. Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., Kirda, E.: Cutting the
gordian knot: a look under the hood of ransomware attacks. In: Almgren, M.,
Gulisano, V., Maggi, F. (eds.) Detection of Intrusions and Malware, and Vulner-
ability Assessment. DIMVA 2015. Lecture Notes in Computer Science, vol. 9148,
pp. 3–24. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20550-2 1

2. Morse, A.: Investigation: Wannacry Cyber Attack and the NHS. National Audit
Office, London 31, 2017 (2017)

3. Layton, R., Watters, P.A.: A methodology for estimating the tangible cost of data
breaches. J. Inf. Secur. Appl. 19(6), 321–330 (2014)

4. Sgandurra, D., Muñoz-González, L., Mohsen, R., Lupu, E.C.: Automated dynamic
analysis of ransomware: benefits, limitations and use for detection. arXiv preprint
arXiv:1609.03020 (2016)

API Based Discrimination 11

5. Al-rimy, B.A.S., Maarof, M.A., Shaid, S.Z.M.: A 0-day aware crypto-ransomware
early behavioral detection framework. In: Saeed, F., Gazem, N., Patnaik, S., Saed
Balaid, A., Mohammed, F. (eds.) Recent Trends in Information and Communica-
tion Technology. IRICT 2017. Lecture Notes on Data Engineering and Communi-
cations Technologies, vol. 5, pp. 758–766. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-59427-9 78

6. Hampton, N., Baig, Z., Zeadally, S.: Ransomware behavioural analysis on windows
platforms. J. Inf. Secur. Appl. 40, 44–51 (2018)

7. Takeuchi, Y., Sakai, K., Fukumoto, S.: Detecting ransomware using support vec-
tor machines. In: Proceedings of the 47th International Conference on Parallel
Processing Companion, p. 1. ACM (2018)

8. Harikrishnan, N., Soman, K.: Detecting ransomware using gurls. In: 2018 Second
International Conference on Advances in Electronics, Computers and Communi-
cations (ICAECC), pp. 1–6. IEEE (2018)

9. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware
malware detection. In: 2005 IEEE Symposium on Security and Privacy (S&P’05),
pp. 32–46. IEEE (2005)

10. Black, P., Gondal, I., Layton, R.: A survey of similarities in banking malware
behaviours. Comput. Secur. 77, 756–772 (2018)

11. Hasan, M.M., Rahman, M.M.: RansHunt: a support vector machines based ran-
somware analysis framework with integrated feature set. In: 2017 20th Interna-
tional Conference of Computer and Information Technology (ICCIT), pp. 1–7.
IEEE (2017)

12. Russinovich, M.E., Solomon, D.A., Ionescu, A.: Windows internals. Pearson Edu-
cation (2012)

13. Qiao, Y., Yang, Y., He, J., Tang, C., Liu, Z.: CBM: free, automatic malware analysis
framework using api call sequences. In: Sun, F., Li, T., Li, H. (eds.) Knowledge
Engineering and Management. Advances in Intelligent Systems and Computing,
vol. 214, pp. 225–236. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-37832-4 21

14. Islam, R., Tian, R., Batten, L.M., Versteeg, S.: Classification of malware based on
integrated static and dynamic features. J. Netw. Comput. Appl. 36(2), 646–656
(2013)

15. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables
in the wild. J. Mach. Learn. Res. 7, 2721–2744 (2006)

16. Shafiq, mz., Tabish, S.M., Mirza, F., Farooq, M.: PE-miner: mining structural
information to detect malicious executables in realtime. In: Kirda, E., Jha, S.,
Balzarotti, D. (eds.) Recent Advances in Intrusion Detection. RAID 2009. Lecture
Notes in Computer Science, vol. 5758, pp. 121–141. Springer, Berlin, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04342-0 7

17. Apatedns:control your responses. https://www.fireeye.com/services/freeware/
apatedns.html

18. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York
(2012)

19. Weka 3 data mining with open source machine learning software in java. https://
www.cs.waikato.ac.nz/ml/weka/

20. Feature selection using random forest. https://towardsdatascience.com/feature-
selection-using-random-forest-26d7b747597f

21. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)

12 P. Black et al.

22. Plohmann, D., Clauss, M., Enders, S., Padilla, E.: Malpedia: a collaborative effort
to inventorize the malware landscape. J. Cybercrime Digit. Invest. 3(1) (2018).
https://journal.cecyf.fr/ojs/index.php/cybin/article/view/17

23. Cuckoo foundation: Cuckoo sandbox - automated malware analysis. https://
cuckoosandbox.org/

Chapter 9

Conclusions

9.1 Introduction

This thesis focuses on automated techniques for the analysis of banking mal-

ware and their behaviours, an emulated environment for dynamic malware

analysis, techniques to identify similar malware functions, and a technique for

the detection of ransomware. The first step in this analysis is a literature

review focusing on banking malware. The specifics of malware families and

their operation are largely found in commercial literature. A problem with a

reliance on commercial literature lies in the commercial motivation, as data

may be lost due to the abandoning of aging webpages when they no longer

meet commercial goals. Further, quality is variable, and reports may not be

complete. A review of existing literature found that malware authors reuse

code and provide well-defined products, resulting in the development of dis-

tinct and persistent malware families. The research in this thesis identifies the

major banking malware families, their variants, source code leakages, inter-

relationships, and provides related static analysis techniques

An emulated command and control infrastructure is needed for the dy-

namic analysis of malware to allow analysis of the malware capabilities. Large

datasets of historical malware samples are available for countermeasures re-

search. However, due to the age of these samples and previous anti-virus

activities, their original malware infrastructure is no longer available. Dy-

namic analysis of historical malware samples results in the execution of the

initialization functions. However, due to the absence of the original malware

144

145

infrastructure, historical malware samples exit or repeatedly attempt to con-

nect to network resources that no longer exist. The execution of historical

malware samples can result in features that differ from those extracted in the

wild, thus invalidating the results of any machine learning based on these fea-

tures. A solution to these problems is the creation of C2 server emulators that

support the execution of historical malware samples’ full capabilities in a safe,

isolated environment.

Existing program similarity techniques are used to filter previously anal-

ysed malware samples. Function similarity techniques identify a finer grained

similarity at the level of compiled functions, and are widely used in security

analysis to identify program updates in security patches, to identify related

and updated functions in new malware variants, to exclude unchanged func-

tions, and to identify code reuse across previously unrelated malware families.

This thesis develops a machine learning based function similarity technique in

three stages. An ad-hoc function similarity technique is developed in EST.

In CVCFS, the ad-hoc similarity methods are replaced with an SVM model,

improving generality. FSFC uses feature engineering to substantially improve

performance. A major focus of this thesis has been the development of ma-

chine learning based function similarity methods with novel feature encoding

techniques that increase feature strength and can identify similar functions in

programs unrelated to the training set.

9.2 Static Analysis and Banking Malware Fam-

ilies

Chapter 3 provides the first contribution of this thesis. This contribution

documents six banking malware families, their timeline, behaviours, variants,

relationships, implementation, and source code leaks. Malware research has

focused on techniques for malware detection, classification, clustering, and

malware similarity. Prior research has not focused on specific malware fami-

lies and the evolution of these malware families. Chapter 3 shows that banking

malware families have become persistent, are evolving, and that knowledge of

these malware families is relevant to both academic, and industry-based mal-

ware researchers. This chapter identifies the information longevity problems

146

associated with reliance on commercial malware analysis literature and pro-

vides an analysis of selected malware families. Chapter 3 identifies 14 critical

malware behaviours, specifies how these behaviours are implemented in the se-

lected banking malware families, and then presents implementation of a static

analysis technique that identifies API misuse.

9.3 Emulated Execution Environment

Chapter 4 provides the second contribution of this thesis. This contribution

identifies and addresses a common problem encountered when using dynamic

analysis to extract features from historic malware families. This problem arises

from the removal of the malware C2 servers by anti-virus operations. A failure

to consider the absence of the historical malware samples’ C2 servers limits

the collection of features to malware initialization; this results in the collection

of features that differ from those extracted in-the-wild. Chapter 4 provides

a study on the limitations of semi-automated methods for the creation of C2

servers and offers detailed examples of the construction of C2 emulators for

three malware families by dynamic analysis.

9.4 Ad-hoc Function Similarity

Chapter 5 develops a technique for strengthening function similarity features

when the variants being compared may differ due to software development.

This technique provides the origin of the contextual features, which are devel-

oped in chapters 6 and 7. Chapter 5 provides an evolved similarity technique

(EST) to identify function similarity in two variants of a malware family. A

challenge in developing EST lies in the fact that one of the functions being

compared may have been modified in an arbitrary manner. The solution to

this problem is to extract features from the set of all non-API function calls

made by the function under consideration and its associated call graph.

147

9.5 Similarity Using Machine Learning

Chapter 6 provides research called Cross-Version Function Similarity Using

Contextual Features (CFCFS). The contribution of CVCFS is a new type of

feature encoding called contextual features. The context of a specific function

f is function f, plus the set of all non-API functions that can be reached

by walking the call graph starting from function f. Contextual features are

built from each of the functions in the function context. CVCFS results show

that contextual feature encoding provides higher performance than features

extracted from individual functions. Additional contributions are the creation

of a set of labelled IDA databases for Zeus malware versions 2.0.8.7, 2.0.8.9,

and 2.1.0.1 and the development of a ground truth table of matching function

pairs, which will be of value for facilitating future research on malware function

similarity.

9.6 Abstraction of Function Similarity

Chapter 7 provides research called Function Similarity Using Family Context

(FSFC). The SVM model produced by FSFC by training on function pairs

of one program (Zeus) generalizes to find similar functions in other, unrelated

programs (ISFB). This new property, if validated by a larger study, leads to the

possibility of creating generic similar function classifiers that can be packaged

and distributed in reverse engineering tools such as IDA Pro and Ghidra.

9.7 Contextual Function Similarity

FSFC provides a formulation of function context based on an identified depth

of the call graph. Specific sets of function context provide higher performance

than individual function contexts and previous work. These new contextual

features strengthen the function similarity results and substantially improve

the performance over and above training with features taken from individual

functions.

148

9.8 Ransomware and Benign Cryptographic Soft-

ware

Chapter 8 provides research using dynamic analysis that extracts API call fea-

tures for the identification of ransomware. This research focuses on the ability

of ransomware detection programs to discriminate between ransomware and

benign cryptographic software. Prior research using API features for ran-

somware detection was replicated for comparison purposes. The research pre-

sented in chapter 8 substantially outperformed previous API feature based

ransomware detection research with improved accuracy, precision, and recall.

Our research demonstrated that further improvement is needed in API profile-

based techniques for ransomware detection to avoid misclassification of benign

cryptographic software as ransomware.

9.9 Future Work:

The research in this thesis demonstrates that an SVM model trained on func-

tion pair features from a Zeus dataset was able to predict function pairs in an

unrelated ISFB malware dataset. This suggests the possibility of building a

generic machine learning function similarity classifier. The first step towards

this classifier would be to validate the research findings in this thesis with a

larger study. This proposed study does not need to be performed on malware

datasets as it will be investigating similarity in general compiled programs.

This research could involve the compilation of open source code with a variety

of compilers. Symbolic debugging symbols from the compiled code could be

used in the automatic creation of the function similarity ground truth table.

This study would examine the function similarity process, test training and

prediction with software compiled by different compilers, and different CPU

architectures.

While previous studies have used features that capture information about

each function, the refinement of the contextual features in this thesis improved

the performance of function similarity identification by adding information

from related functions and substantially decreased the false positive rate. The

further development of contextual features to capture additional call graph

149

information will lead to further improvement of this technique.

This thesis argues that the dynamic analysis of historical malware samples

without C2 server emulation may only capture features from the malware

initialisation and does not support execution of the full malware capabilities.

While this may fulfill the needs for machine learning based malware detection,

there are use cases where an emulated C2 server is needed to provide control of

the full capabilities of the malware sample. Semi-automated methods for the

creation of C2 server emulators is a new research area that merits attention.

9.10 Research Summary

The research in this thesis starts with an analysis of the nature of banking

malware, and examines the major malware families, behaviours, variants, and

interrelationships. In doing this, this thesis takes a broader view than other

research that treats malware in a more abstract sense as only a source of

features. The disadvantage of approaching malware analysis without domain

knowledge is that important questions may not be considered. This thesis

provides two examples where previous research has failed to consider analysis

requirements adequately. The first example uses dynamic analysis to extract

features from historical malware samples. A failure to recognise the malware’s

interaction with previously removed malware infrastructure will result in the

malware executing only its initialization functions and not exhibiting its full

capabilities. A second example occurs where a machine learning technique

is used to identify ransomware without considering whether common benign

programs may exhibit characteristics that are similar to ransomware programs

and as a result may be misclassified.

The work in this thesis shows that a failure to consider malware analysis

domain knowledge can lead to weaknesses in experimental design that may

result in misleading conclusions. It is desired that the outcomes of the work

in this thesis will lead to a closer collaboration between academic researchers

and industry-based malware analysts.

Bibliography

[1] A. O. Almashhadani, M. Kaiiali, S. Sezer, and P. O’Kane, “A multi-

classifier network-based crypto ransomware detection system: A case

study of locky ransomware,” IEEE Access, vol. 7, pp. 47 053–47 067,

2019.

[2] G. Wangen, “The role of malware in reported cyber espionage: a review

of the impact and mechanism,” Information, vol. 6, no. 2, pp. 183–211,

2015.

[3] P. Samuelson and S. Scotchmer, “The law and economics of reverse en-

gineering,” Yale LJ, vol. 111, p. 1575, 2001.

[4] P. Black, I. Gondal, and R. Layton, “A survey of similarities in banking

malware behaviours,” Computers & Security, vol. 77, pp. 756–772, 2018.

[5] J. Suaboot, Z. Tari, A. Mahmood, A. Y. Zomaya, and W. Li, “Sub-curve

hmm: A malware detection approach based on partial analysis of api call

sequences,” Computers & Security, vol. 92, p. 101773, 2020.

[6] L. Borzacchiello, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Recon-

structing c2 servers for remote access trojans with symbolic execution,”

in International Symposium on Cyber Security Cryptography and Ma-

chine Learning. Springer, 2019, pp. 121–140.

[7] M. J. Haber and D. Rolls, “Indicators of compromise,” in Identity Attack

Vectors. Springer, 2020, pp. 103–105.

[8] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred: feature hashing

malware for scalable triage and semantic analysis,” in Proceedings of

150

BIBLIOGRAPHY 151

the 18th ACM conference on Computer and communications security.

ACM, 2011, pp. 309–320.

[9] H. Flake, “Structural comparison of executable objects,” 2004.

[10] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient

cross-architecture identification of bugs in binary code.” in NDSS, 2016.

[11] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable

graph-based bug search for firmware images,” in Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security,

2016, pp. 480–491.

[12] C. LeDoux, A. Lakhotia, C. Miles, V. Notani, and A. Pfeffer, “Func-

tracker: Discovering shared code to aid malware forensics,” in Presented

as part of the 6th USENIX Workshop on Large-Scale Exploits and Emer-

gent Threats, 2013.

[13] S. Alrabaee, M. Debbabi, and L. Wang, “On the feasibility of binary

authorship characterization,” Digital Investigation, vol. 28, pp. S3–S11,

2019.

[14] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based

obfuscation-resilient binary code similarity comparison with applications

to software plagiarism detection,” in Proceedings of the 22nd ACM SIG-

SOFT International Symposium on Foundations of Software Engineer-

ing, 2014, pp. 389–400.

[15] F. C. C. Osorio, H. Qiu, and A. Arrott, “Segmented sandboxing-a novel

approach to malware polymorphism detection,” in 2015 10th Interna-

tional Conference on Malicious and Unwanted Software (MALWARE).

IEEE, 2015, pp. 59–68.

[16] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani,

D. Balzarotti, G. Vigna, and C. Kruegel, “When malware is packin’heat;

limits of machine learning classifiers based on static analysis features,”

in Network and Distributed Systems Security (NDSS) Symposium 2020,

2020.

BIBLIOGRAPHY 152

[17] S. Jilcott, “Scalable malware forensics using phylogenetic analysis,” in

2015 IEEE International Symposium on Technologies for Homeland Se-

curity (HST). IEEE, 2015, pp. 1–6.

[18] T. Dullien and R. Rolles, “Graph-based comparison of executable objects

(english version),” SSTIC, vol. 5, no. 1, p. 3, 2005.

[19] D. Zhao, H. Lin, L. Ran, M. Han, J. Tian, L. Lu, S. Xiong, and J. Xiang,

“Cvsksa: cross-architecture vulnerability search in firmware based on

knn-svm and attributed control flow graph,” Software Quality Journal,

vol. 27, no. 3, pp. 1045–1068, 2019.

[20] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, “Au-

tomated dynamic analysis of ransomware: Benefits, limitations and use

for detection,” arXiv preprint arXiv:1609.03020, 2016.

[21] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid, “A 0-day aware

crypto-ransomware early behavioral detection framework,” in Interna-

tional Conference of Reliable Information and Communication Technol-

ogy. Springer, 2017, pp. 758–766.

[22] N. Hampton, Z. Baig, and S. Zeadally, “Ransomware behavioural anal-

ysis on windows platforms,” Journal of information security and appli-

cations, vol. 40, pp. 44–51, 2018.

[23] Y. Takeuchi, K. Sakai, and S. Fukumoto, “Detecting ransomware us-

ing support vector machines,” in Proceedings of the 47th International

Conference on Parallel Processing Companion. ACM, 2018, p. 1.

[24] N. Harikrishnan and K. Soman, “Detecting ransomware using gurls,”

in 2018 Second International Conference on Advances in Electronics,

Computers and Communications (ICAECC). IEEE, 2018, pp. 1–6.

[25] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell,

“A layered architecture for detecting malicious behaviors,” in Recent

Advances in Intrusion Detection. Springer, 2008, pp. 78–97.

[26] I. Kirillov, D. Beck, and P. Chase, “The maec language, overview,”

2014. [Online]. Available: http://maecproject.github.io/documentation

BIBLIOGRAPHY 153

[27] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,

Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A

new approach to computer security via binary analysis,” in International

Conference on Information Systems Security. Springer, 2008, pp. 1–25.

[28] P. Shijo and A. Salim, “Integrated static and dynamic analysis for mal-

ware detection,” Procedia Computer Science, vol. 46, pp. 804–811, 2015.

[29] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic analysis of

malicious code,” Journal in Computer Virology, vol. 2, no. 1, pp. 67–77,

2006.

[30] T. Wüchner, M. Ochoa, M. Golagha, G. Srivastava, T. Schreck, and

A. Pretschner, “Malflow: Identification of c&c servers through host-

based data flow profiling,” in Proceedings of the 31st Annual ACM Sym-

posium on Applied Computing, 2016, pp. 2087–2094.

[31] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of

malicious behavior,” in Proceedings of the 1st India software engineering

conference. ACM, 2008, pp. 5–14.

[32] J. Mankin, “Classification of malware persistence mechanisms using low-

artifact disk instrumentation,” Ph.D. dissertation, Northeastern Univer-

sity Boston, 2013.

[33] P. K. Singh, “A physiological decomposition of virus and worm pro-

grams,” Master’s thesis, University of Louisiana at Lafayette, 2002.

[34] A. R. A. Grégio, V. M. Afonso, D. S. Fernandes Filho, P. L. de Geus,

and M. Jino, “Toward a taxonomy of malware behaviors,” The Computer

Journal, vol. 58, no. 10, pp. 2758–2777, 2015.

[35] C. Y. Cho, D. Babi ć, E. C. R. Shin, and D. Song, “Inference and analy-

sis of formal models of botnet command and control protocols,” in Pro-

ceedings of the 17th ACM conference on Computer and communications

security, 2010, pp. 426–439.

[36] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson, “Gq: Practi-

cal containment for measuring modern malware systems,” in Proceedings

BIBLIOGRAPHY 154

of the 2011 ACM SIGCOMM conference on Internet measurement con-

ference, 2011, pp. 397–412.

[37] Inetsim.org, “Inetsim: Internet services simulation suite,” 2020.

[Online]. Available: https://www.inetsim.org

[38] P. Barford and M. Blodgett, “Toward botnet mesocosms.” HotBots,

vol. 7, pp. 6–6, 2007.

[39] J. Calvet, C. R. Davis, J. M. Fernandez, J.-Y. Marion, P.-L. St-Onge,

W. Guizani, P.-M. Bureau, and A. Somayaji, “The case for in-the-lab

botnet experimentation: creating and taking down a 3000-node botnet,”

in Proceedings of the 26th Annual Computer Security Applications Con-

ference, 2010, pp. 141–150.

[40] F. Weyne, “Imaginary c2,” 2020. [Online]. Available: https:

//github.com/felixweyne/imaginaryC2

[41] A. Alwabel, H. Shi, G. Bartlett, and J. Mirkovic, “Safe and automated

live malware experimentation on public testbeds,” in 7th Workshop on

Cyber Security Experimentation and Test ({CSET} 14), 2014.

[42] A. Henderson, L. K. Yan, X. Hu, A. Prakash, H. Yin, and S. McCamant,

“Decaf: A platform-neutral whole-system dynamic binary analysis plat-

form,” IEEE Transactions on Software Engineering, vol. 43, no. 2, pp.

164–184, 2016.

[43] J. C. King, “Symbolic execution and program testing,” Communications

of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[44] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and

arrays,” in International Conference on Computer Aided Verification.

Springer, 2007, pp. 519–531.

[45] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,

A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state

of) the art of war: Offensive techniques in binary analysis,” in 2016 IEEE

Symposium on Security and Privacy (SP). IEEE, 2016, pp. 138–157.

BIBLIOGRAPHY 155

[46] R. Baldoni, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Assisting

malware analysis with symbolic execution: A case study,” in Interna-

tional Conference on Cyber Security Cryptography and Machine Learn-

ing. Springer, 2017, pp. 171–188.

[47] M. Bugalho and A. L. Oliveira, “Inference of regular languages using

state merging algorithms with search,” Pattern Recognition, vol. 38,

no. 9, pp. 1457–1467, 2005.

[48] G. McGraw, “Silver bullet talks with halvar flake,” IEEE Security &

Privacy, vol. 9, no. 6, pp. 5–8, 2011.

[49] A. Lakhotia, M. D. Preda, and R. Giacobazzi, “Fast location of sim-

ilar code fragments using semantic ’juice’,” in Proceedings of the 2nd

ACM SIGPLAN Program Protection and Reverse Engineering Work-

shop. ACM, 2013, p. 5.

[50] F. E. Allen, “Control flow analysis,” in ACM Sigplan Notices, vol. 5,

no. 7. ACM, 1970, pp. 1–19.

[51] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate compari-

son of binary executables,” in Proceedings of the 2nd ACM SIGPLAN

Program Protection and Reverse Engineering Workshop. ACM, 2013,

p. 4.

[52] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:

Dynamic similarity testing for program binaries and components,” in

USENIX Security Symposium, 2014.

[53] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding

semantic differences in binary programs,” in Information and Commu-

nications Security. Springer, 2008, pp. 238–255.

[54] B. H. Ng and A. Prakash, “Expose: Discovering potential binary code re-

use,” in Computer Software and Applications Conference (COMPSAC),

2013 IEEE 37th Annual. IEEE, 2013, pp. 492–501.

[55] W. Jin, S. Chaki, C. Cohen, A. Gurfinkel, J. Havrilla, C. Hines, and

P. Narasimhan, “Binary function clustering using semantic hashes,” in

BIBLIOGRAPHY 156

Machine Learning and Applications (ICMLA), 2012 11th International

Conference on, vol. 1. IEEE, 2012, pp. 386–391.

[56] C. Miles, A. Lakhotia, C. LeDoux, A. Newsom, and V. Notani, “Virus-

battle: State-of-the-art malware analysis for better cyber threat intel-

ligence,” in Resilient Control Systems (ISRCS), 2014 7th International

Symposium on. IEEE, 2014, pp. 1–6.

[57] A. Lakhotia and P. Black, “Mining malware secrets,” in Malicious and

Unwanted Software (MALWARE), 2017 12th International Conference

on. IEEE, 2017, pp. 11–18.

[58] M.-T. Puth, M. Neuhäuser, and G. D. Ruxton, “Effective use of pearson’s

product–moment correlation coefficient,” Animal behaviour, vol. 93, pp.

183–189, 2014.

[59] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-

based graph embedding for cross-platform binary code similarity detec-

tion,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security. ACM, 2017, pp. 363–376.

[60] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Quer-

zoni, “Safe: Self-attentive function embeddings for binary similarity,” in

International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment. Springer, 2019, pp. 309–329.

[61] M. M. Hasan and M. M. Rahman, “Ranshunt: A support vector ma-

chines based ransomware analysis framework with integrated feature

set,” in 2017 20th International Conference of Computer and Informa-

tion Technology (ICCIT). IEEE, 2017, pp. 1–7.

[62] N. Scaife, H. Carter, P. Traynor, and K. R. Butler, “Cryptolock (and

drop it): stopping ransomware attacks on user data,” in 2016 IEEE 36th

International Conference on Distributed Computing Systems (ICDCS).

IEEE, 2016, pp. 303–312.

[63] A. Azab, M. Alazab, and M. Aiash, “Machine learning based botnet

identification traffic,” in 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE,

2016, pp. 1788–1794.

BIBLIOGRAPHY 157

[64] A. Azab, R. Layton, M. Alazab, and J. Oliver, “Mining malware to

detect variants,” in 2014 Fifth Cybercrime and Trustworthy Computing

Conference. IEEE, 2014, pp. 44–53.

[65] J. Hakkarainen, “Malware analysis environment for windows targeted

malware,” 2015.

[66] J. I. Forrester, “An exploration into the use of webinjects by financial

malware,” Ph.D. dissertation, Rhodes University, 2014.

[67] A. Continella, M. Carminati, M. Polino, A. Lanzi, S. Zanero, and

F. Maggi, “Prometheus: Analyzing webinject-based information steal-

ers,” Journal of Computer Security, vol. 25, no. 2, pp. 117–137, 2017.

[68] F. BOSATELLI, “Zarathustra: detecting banking trojans via automatic,

platform independent webinjects extraction,” 2013.

[69] M. Moniruzzaman, A. Bagirov, I. Gondal, and S. Brown, “A server

side solution for detecting webinject: A machine learning approach,”

in Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Springer, 2018, pp. 162–167.

[70] Zeus Author, “Zeus source code,” 2011. [Online]. Available: https:

//github.com/Visgean/Zeus

[71] J. Wyke, “What is zeus?” Sophos Labs, Tech. Rep., 2011.

[Online]. Available: https://www.sophos.com/en-us/threat-center/

technical-papers/what-is-zeus.aspx

[72] Dell Secureworks Counter Threat Unit, “Cryptowall ransomware threat

analysis,” 2014. [Online]. Available: https://www.secureworks.com/

research/cryptowall-ransomware

[73] D. Plohmann, M. Clauss, S. Enders, and E. Padilla, “Malpedia:

A Collaborative Effort to Inventorize the Malware Landscape,” The

Journal on Cybercrime & Digital Investigations, vol. 3, no. 1,

2018. [Online]. Available: https://journal.cecyf.fr/ojs/index.php/cybin/

article/view/17

BIBLIOGRAPHY 158

[74] K. Jarvis, “Cryptolocker ransomware,” 2013. [Online]. Available:

https://www.secureworks.com/research/cryptolocker-ransomware

[75] Panda Security, “Cryptolocker: What is and how to avoid

it,” 2015. [Online]. Available: https://www.pandasecurity.com/

mediacenter/malware/cryptolocker

[76] A. Allievi, H. Unterbrink, and W. Mercer, “Cryptowall 4 - the evolution

continues,” 2015. [Online]. Available: https://blog.talosintelligence.

com/2015/12/cryptowall-4.html

[77] Sophos, “The current state of ransomware: Cryptowall,”

2015. [Online]. Available: https://news.sophos.com/en-us/2015/12/

17/the-current-state-of-ransomware-cryptowall

[78] K. Cabaj and W. Mazurczyk, “Using software-defined networking for

ransomware mitigation: the case of cryptowall,” Ieee Network, vol. 30,

no. 6, pp. 14–20, 2016.

[79] A. Walenstein and A. Lakhotia, “A transformation-based model of mal-

ware derivation,” in 2012 7th International Conference on Malicious and

Unwanted Software. IEEE, 2012, pp. 17–25.

[80] I. U. Haq, S. Chica, J. Caballero, and S. Jha, “Malware lineage in the

wild,” arXiv preprint arXiv:1710.05202, 2017.

[81] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,

“Scalable, behavior-based malware clustering.” in NDSS, vol. 9. Cite-

seer, 2009, pp. 8–11.

[82] T. Kim, Y. R. Lee, B. Kang, and E. G. Im, “Binary executable file

similarity calculation using function matching,” The Journal of Super-

computing, vol. 75, no. 2, pp. 607–622, 2019.

[83] P. Black, I. Gondal, P. Vamplew, and A. Lakhotia, “Evolved similar-

ity techniques in malware analysis,” in 2019 18th IEEE International

Conference On Trust, Security And Privacy In Computing And Com-

munications/13th IEEE International Conference On Big Data Science

And Engineering (TrustCom/BigDataSE). IEEE, 2019, pp. 404–410.

BIBLIOGRAPHY 159

[84] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,

vol. 20, no. 3, pp. 273–297, 1995.

[85] M. E. Russinovich, D. A. Solomon, and A. Ionescu, Windows internals.

Pearson Education, 2012.

[86] M. Lam, R. Sethi, J. Ullman, and A. Aho, Compilers: Principles, tech-

niques, and tools. Pearson Education, 2006.

[87] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-

tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.

707–710.

[88] Cythereal Inc, “Cythereal magic,” 2018. [Online]. Available: https:

//www.cythereal.com

[89] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” Journal of artificial intel-

ligence research, vol. 16, pp. 321–357, 2002.

[90] C. J. Van Rijsbergen, Information retrieval. Citeseer, 1979.

[91] F. Guo, P. Ferrie, and T.-C. Chiueh, “A study of the packer problem

and its solutions,” in International Workshop on Recent Advances in

Intrusion Detection. Springer, 2008, pp. 98–115.

[92] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On

Guide to Dissecting Malicious Software. No Starch Press, 2012.

[93] T. Jenke, D. Plohmann, and E. Padilla, “Roamer: Robust automated

malware unpacker,” 2019.

[94] Infosec Institute, “Yara: Simple and effective way of dissecting

malware,” 2015. [Online]. Available: http://resources.infosecinstitute.

com/yara-simple-effective-way-dissecting-malware/#gref

[95] Yara, “Yara: The pattern matching swiss knife for malware researchers,”

2017. [Online]. Available: https://virustotal.github.io/yara

BIBLIOGRAPHY 160

[96] A. Zhdanov, “Generation of static yara-signatures using genetic algo-

rithm,” in 2019 IEEE European Symposium on Security and Privacy

Workshops (EuroS&PW). IEEE, 2019, pp. 220–228.

[97] Yara Rules, “The yara rules project,” 2017. [Online]. Available:

https://github.com/Yara-Rules/rules

[98] A. Kleymenov and A. Thabet, Mastering Malware Analysis: The com-

plete malware analyst’s guide to combating malicious software, APT,

cybercrime, and IoT attacks. Packt Publishing Ltd, 2019.

[99] E. Eilam, Reversing: Secrets of Reverse Engineering. John Wiley &

Sons, 2011.

[100] Volatility Foundation, “Volatility foundation,” 2017. [Online]. Available:

http://www.volatilityfoundation.org

[101] A. Margosis and M. E. Russinovich, Windows Sysinternals administra-

tor’s reference. Pearson Education, 2011.

[102] C. Sanders, Practical packet analysis: Using Wireshark to solve real-

world network problems. No Starch Press, 2017.

[103] X64DBG Authors, “x64dbg - an open-source x64/x32 debugger for

windows,” 2020. [Online]. Available: https://x64dbg.com/#start

[104] C. Eagle, The IDA Pro Book: the unofficial guide to the worldś most

popular disassembler. No Starch Press, 2008.

[105] National Security Agency, “Ghidra,” 2020. [Online]. Available:

https://www.nsa.gov/resources/everyone/ghidra

Appendix A

Appendix 1

A.1 An Introduction To Malware Reverse En-

gineering

Performing academic malware analysis without knowledge of malware inter-

nals and the basics of reverse engineering may lead to results that are not

optimal. A situation considered in this thesis involved a case where machine

learning is used for malware detection. In this situation, a sandbox is used

for dynamic malware analysis of historic malware samples. There are two po-

tential problems that may arise in this scenario. The first problem is that the

malware C2 servers may have been removed, the second problem is that due

to the malware samples being packed (encrypted), the same malware families

may be present in the training and test data, and this can lead to inflated

detection accuracy. A solution to these problems in experimental design may

be found in providing researchers with a better understanding of the nature of

malware and basic reverse engineering techniques.

A.1.1 Packing

Packing is a process where an executable program is encrypted. Packers may

be used to protect intellectual property in commercial software, packers are

widely used to prevent anti-virus programs from readily identifying malware.

Packers are defined as Programs that transform an input binary’s appearance

without affecting its execution semantics [91].

161

162

Packing a program hinders static analysis by encrypting,or compressing the

original program, thereby hiding the machine code and internal data of the

original program. The packing operation appends an unpacking stub to the

start of the packed program to allow the original program to be reconstructed

and executed. Different packers may employ various strategies. A common

strategy is to unpack the whole program to memory, while another unpacking

strategy is to unpack instructions just before execution. When a packed pro-

gram is executed, the unpacking stub may iterate through the packed data,

decoding it to memory, rebuilding the import address table (IAT) of the orig-

inal executable, and finally executing the malware from the Original Entry

Point (OEP) [92].

A high percentage of malware samples are packed [91]. A program’s entropy

provides an indication of whether a program is packed. Common methods

to unpack a malware sample are to manually unpack the malware using a

debugger, to run the program in a sandbox and dump the program memory,

or to use an automatic unpacker. Large numbers of packed malware samples

are identified every day. Many of these malware samples are duplicates that

appear unique due to encryption. When these malware samples are unpacked,

the number of unique malware samples is reduced by orders of magnitude [15].

Datasets of historical malware samples generally consist of packed malware

samples. The use of packed malware datasets has two problems. The malware

family may not be known, and packed malware datasets frequently contain

duplicates. In machine learning experiments, malware packing may result in

the same malware variants being present in both the training data and the

test data. A result of this unintentional duplication is to inflate the accuracy

of test results. A more robust methodology may be to unpack the malware

samples in the dataset and ensure that variants present in the training data

are not also present in the test data.

Automatic unpackers operate by identifying the memory allocation that the

unpacked malware was written to. While several automatic malware unpackers

have been created, they are generally not publicly accessible. However, the

RoAMer unpacker is available on Github [93]. Malpedia provides a curated

collection of a large number of packed, and unpacked samples of malware

families, their variants, and yara detection rules. [73].

163

rule Zeus_Ice_IX

{

meta:

author = "p.black@federation.edu.au"

version = "0.01"

description = "This rule detects Zeus Ice IX malware, memdumps only, Core::InitLoadModules"

strings:

$mod_rc4 = {80 [2] 03 0F B6 [2] 8A 14 06 8D 4A 07 00 4D FE 0F B6 [2] 8A 1C 01}

condition:

$mod_rc4

}

Figure A.1: Example Yara Rule

A.1.2 Malware Identification

Malware family identification is commonly performed using yara rules; these

rules are regular expressions that operate on unpacked malware or memory

dumps [94, 95]. Yara rules can be created manually or by using yara rule

generators [96]. Yara rules are available on Malpedia [73] or in yara rule

exchange forums [97]. A yara rule for detecting ICE IX malware is shown in

Figure A.1.

A.1.3 Program Structure

Reverse engineering is enabled by understanding and making use of the bi-

nary structures created by the operating system and compiler authors. In the

Windows operating system, the program structure is provided by the Portable

Executable (PE) format [98]. The Portable Executable (PE) format is the

executable file format for the Windows Operating System. The PE format

supports both 32 bit and 64 bit programs. The PE format defines a header

called the PE Header [99]. A program using the PE format contains two head-

ers followed by a series of program sections. The first header is the legacy

DOS header, identified by the ”MZ” signature at the start of the header, this

is followed by the PE header identified by the ”PE” signature. The sections

table follows the PE Header. The values in the PE header are used by the Win-

dows loader to load the program into memory on program execution. Simple,

practical uses of the PE header include identifying programs in memory using

the DOS and Portable Executable signatures, location of the program entry

point, and identification of compilation date. A comprehensive introduction

to Windows program structures is provided in [98].

164

A.1.4 Memory Dump Analysis

Malware analysis is commonly performed within a VM. Benefits of using a VM

include simplified physical memory dumps, and fast restoration back to an un-

infected state. The Volatility Framework [100] is an open-source tool that sup-

ports the analysis of memory dumps from Windows, Mac, and Linux operating

systems. The Volatility Framework uses operating system data structures to

identify processes, network connection, open files, open registry keys, and to

extract process memory. There are two distinct phases of malware analysis.

The initial phase is performed before a yara rule is available, the second phase

is performed once a yara rule has been created. In malware analysis, when a

yara rule for the malware is not available, analysis is focused on the identifi-

cation of the process that the malware has been injected into and on locating

an unpacked copy of the malware in memory. An automatic unpacker can be

used in straightforward malware analysis to extract an unpacked copy of the

malware. This unpacked malware can be used to create a yara rule for the

identification of the malware. In a less straightforward situation, the malware

may be able to evade the VM and/or automatic unpacker, and a manual un-

packing process may be required. The Volatility Framework assists in locating

the malware injection target by identifying open file, open registry keys, and

unexpected network connections. When the process containing injected mal-

ware is located, the Volatility Framework provides commands to extract the

memory allocations associated with the process. One of the memory alloca-

tions of an injected process will contain an unpacked copy of the malware. In

the case where a yara signature is available for the malware family, a dump

of the memory allocations of all processes can be extracted, and the yara rule

can be used to identify the processes that contain injected malware.

A.1.5 Debugger Selection

Basic dynamic analysis of malware can be performed by running malware

samples and using tools to analyse their execution. This includes tracking

process execution with the SysInternals tools [101], analysis of memory dumps

using the Volatility Framework, and network traffic analysis using Wireshark.

[102]. A deeper level of malware analysis can be performed using a debugger

to control the the execution of the sample and to observe its interaction with

165

the operating system. The WinDbg debugger is provided with Debugging

Tools For Windows. The Windbg debugger can be used to debug kernel mode

and user-mode code, unfortunately Windbg is a complex debugger. Due to

operating system improvements, a lot of malware operates in user-mode; this

allows malware analysis to be performed using a user-mode debugger. X64dbg

is a popular user-mode debugger for 32bit and 64 bit Windows programs [103].

A.1.6 Disassembler Selection

Disassemblers represent compiled programs using the functions contained within

the program and the instructions comprising the functions. A description of

the disassembly process and the associated challenges is provided by Sikorski

et al [92]. Modern disassemblers are interactive tools that support an itera-

tive process of understanding the disassembled program. As the disassembled

program’s behaviours are understood, the disassembler provides features to

capture that understanding, e.g. by assigning a name to a function, naming

a global variable, or adding comments explaining the purpose of disassembled

code within a function. Modern disassemblers incorporate database technol-

ogy and propagate naming and type changes throughout the disassembly. The

Interactive Disassembler (IDA) [104] was one of the first modern disassemblers,

although a free demonstration version is provided, the full product cost may

be prohibitive for researchers. Recently a new disassembler called Ghidra [105]

has been released as an open source program by the National Security Agency

(NSA). Ghidra is free, multi-platform, supports decompilation, disassembly,

and a wide range of CPU architectures.

A.1.7 Reverse Engineering Workflow

The process of manual reverse engineering can provide a deep understanding

of a program’s design and operation. However, reverse engineering can be a

time consuming and expensive process. It follows that the goals of reverse en-

gineering should be formulated to avoid unnecessary work. An example of this

practice includes jumping over packer code by setting a debugger breakpoint

on an API called after completion of unpacking. This avoids time consuming

and unnecessary packer analysis. Another example is provided by the identifi-

cation of complex library functions. For example, the Zlib compression library

166

is readily identified, and the library interface functions can be labelled with the

source code function names, while the internal functions can be quickly labelled

as Zlib internal functions, this quick identification of library functions can save

analysis time. A further example of restricting the scope of reverse engineering

is given by the construction of a C2 server emulator for an information stealing

malware. The malware behaviours that require reverse engineering are mal-

ware initialisation, static configuration decryption, C2 server protocol analysis,

and configuration download. Malware functions that do not implement these

behaviours do not require analysis.

While some researchers only require a high-level view of malware reverse

engineering, we will now provide an overview of the workflow and tools needed

for manual reverse engineering. Basic malware analysis includes an examina-

tion of program strings, imported functions, and program sections. A quick

review of program strings may reveal that the sample is a misidentified be-

nign program. A high-level understanding of a program’s function may be

obtained by considering the imported functions. Analysis of program sections

may reveal a resource section that contains malicious code.

A common scenario occurs when a malware sample is not able to be un-

packed by the sendbox or automatic unpacker. This leads to a situation where

manual analysis is needed to obtain an unpacked copy of the malware. A

manual analysis technique that is widely used involves setting a breakpoint on

code following the OEP of the original code. While the address of the OEP in

memory is not known ahead of time, it is often possible to guess some common

API call that are called in malware initialisation. Candidate API calls for this

method are LoadLibrary, GetProcAddress, InternetOpen, and so on. Break-

points are set on these common API’s and the malware samples is executed to

see if a break can be obtained either in the latter stages of packing or in the

unpacked malware. This process of setting breakpoints on common APIs can

be used to brute force packer execution and obtain an unpacked sample. At

this stage of a reverse engineering process, web pages from security companies

providing some of the reverse engineering details for the malware family can

be helpful and may provide snippets of disassembled, unpacked code. Situa-

tions also arise where packers contain anti-analysis functions that detect the

VM or debugger and require additional reverse engineering time. Manual re-

verse engineering generally gives good results, but lengthy analysis can be a

167

problem.

A.2 Cythereal Semantics

Malware samples were uploaded to Cythereal and when these samples had

been processed, then the unpacked sample and the Cythereal semantics were

downloaded. Cythereal semantics consist of disassembled code (’code’), gen-

eralised code (’gc’), semantics (’sem’) and generalised semantics (’gc’). An

example disassembled function is shown in Figure A.2 The format used to

store the downloaded Cythereal semantics for this function is shown in Figure

A.3.

00410371 Core__InitDefaultCallUrlData proc near ; CODE XREF: DynamicConfig__TryToUpdateBot+80↓p
00410371 ; DynamicConfig__Download+31↓p ...

00410371 push 30h ; ’0’

00410373 push 0

00410375 push esi

00410376 call Mem__Set

0041037B call loc_41035D

00410380 mov eax, lpszAgent

00410385 and dword ptr [esi+24h], 0

00410389 mov word ptr [esi], 501h

0041038E mov dword ptr [esi+4], 1388h

00410395 mov dword ptr [esi+28h], 0A00000h

0041039C mov [esi+0Ch], eax

0041039F retn

0041039F Core__InitDefaultCallUrlData endp

Figure A.2: Example Disassembled Function

168

{’fn_data’:

{’fn_hash’: ’ce85e885f9d22851e0947b2298eca49a’,

’fn_name’: ’’,

’fn_rva’: ’0x10371’,

’api_calls’: [],

’fn_block_count’: 3},

’fn_blocks’:

[

{’code’: ["push(’0x30’)", ’push(0)’, ’push(esi)’, "call(’0x7894’)"],

’gs’: [’A=B+pre(C)’, ’C=A’, ’memdw(A)=pre(D)’, ’memdw(E+pre(C))=F’,

’memdw(G+pre(C))=H’],

’gs_hash’: ’2\xbf@.S\xb6\x05\x14\xc1\r\x13\x98v\x0bmz’,

’block_rva’: ’0x10371’,

’gc’: [’push(A)’, ’push(B)’, ’push(C)’, ’call’],

’sem’: [’esp=A’, ’A= -12+pre(esp)’, ’memdw(A)=pre(esi)’,

’memdw(-8+pre(esp))=0’, "memdw(-4+pre(esp))=’0x30’"],

’fn_rva’: ’0x10371’

},

{’code’: ["call(’0x1035d’)"],

’gs’: [],

’gs_hash’: ’\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00’,

’block_rva’: ’0x1037b’,

’gc’: [’call’],

’sem’: [],

’fn_rva’: ’0x10371’

},

{’code’: ["mov(eax,dptr(’0x229a4’))", "and(dptr(esi+’0x24’),0)",

"mov(wptr(esi),’0x501’)", "mov(dptr(esi+4),’0x1388’)",

"mov(dptr(esi+’0x28’),’0xa00000’)",

’mov(dptr(esi+12),eax)’, ’retn’],

’gs’: [’A=pre(memdw(B))’, ’C=A’, ’memdw(D+pre(E))=F’, ’memdw(G+pre(E))=A’,

’memdw(H+pre(E))=I’, ’memdw(J+pre(E))=K’, ’memw(pre(E))=L’],

’gs_hash’: ’\xc8\xdd\xd91^\xc4\xf7\xa6\xf0G\x01w\xbb\xc8J>’,

’block_rva’: ’0x10380’,

’gc’: [’mov(A,B)’, ’and(C,D)’, ’mov(E,F)’, ’mov(G,H)’, ’mov(I,J)’, ’mov(K,A)’,

’retn’],

’sem’: [’eax=A’, "A=pre(memdw(’0x229a4’))", "memdw(4+pre(esi))=’0x1388’",

’memdw(12+pre(esi))=A’, "memdw(’0x24’+pre(esi))=0",

"memdw(’0x28’+pre(esi))=’0xa00000’", "memw(pre(esi))=’0x501’"],

’fn_rva’: ’0x10371’

}

]

},

Figure A.3: Example Cythereal Semantics

