

 Page 1 of 1

FedUni ResearchOnline
https://researchonline.federation.edu.au
Copyright Notice

This is the pre-peer reviewed version of the following article:

Yongchareon, S., Liu, C., & Zhao, X. (2020). UniFlexView: A unified framework for
consistent construction of BPMN and BPEL process views. Concurrency and
Computation: Practice and Experience, 32(11)

Which has been published in final form at:

https://doi.org/10.1002/cpe.5646

This article may be used for non-commercial purposes in accordance with Wiley
Terms and Conditions for use of Self-Archived versions.

CRICOS 00103D RTO 4909

https://researchonline.federation.edu.au/
https://doi.org/10.1002/cpe.5646
http://olabout.wiley.com/WileyCDA/Section/id-828039.html
http://olabout.wiley.com/WileyCDA/Section/id-828039.html

For Peer Review

UniFlexView: A Unified Framework for Consistent
Construction of BPMN and BPEL Process Views

Journal: Concurrency and Computation: Practice and Experience

Manuscript ID CPE-18-1294.R2

Editor Selection: Prof. David Walker

Wiley - Manuscript type: Research Article

Date Submitted by the
Author: 26-Nov-2019

Complete List of Authors: Yongchareon, Sira; Auckland University of Technology, IT and Software
Engineering
Liu, Chengfei; Swinburne University of Technology
Zhao, Xiaohui; Federation University Australia

Keywords:

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView: A Unified Framework for Consistent Construction of
BPMN and BPEL Process Views

Sira Yongchareon1,2, Chengfei Liu2, and Xiaohui Zhao2,3

1Department of IT and Software Engineering
Auckland University of Technology, New Zealand

sira.yongchareon@aut.ac.nz
2Department of Computer Science and Software Engineering

Swinburne University of Technology, Australia
cliu@swin.edu.au

3 School of Science, Engineering and Information Technology
Federation University Australia

x.zhao@federation.edu.au

Abstract. Process view technologies allow organizations to create different granularity levels of abstraction
of their business processes, therefore enabling a more effective business process management, analysis,
inter-operation, and privacy controls. Existing research proposed view construction and abstraction
techniques for block-based (i.e., BPEL) and graph-based (i.e., BPMN) process models. However, the existing
techniques treat each type of the two types of models separately. Especially, this brings in challenges for
achieving a consistent process view for a BPEL model that derives from a BPMN model. In this paper, we
propose a unified framework, namely UniFlexView, for supporting automatic and consistent process view
construction. With our framework, process modelers can use our proposed view definition language to specify
their view construction requirements disregarding the types of process models. Our UniFlexView’s system
prototype has been developed as a proof of concept and demonstration of the usability and feasibility of our
framework.

Keywords: Business process models; process views; process model abstraction; workflow management

1. INTRODUCTION
A concept of workflow or process views adapted from database view has been
considered as a necessary capability that should be applied for inter-organizational
business processes since it helps driving business process management technology to
thrust more supports in cooperation, autonomy, and openness [22]. Workflows or
process views are considered a promising conceptual approach to selectively hide
details of private workflows, whilst providing a process-oriented interface to facilitate
the state-oriented communication between trading partners [33, 41].

The implementation of process-view technologies, as part of Process-Aware
Information Systems (PAISs), allows each business partner in its collaboration
network to restrict how much of its own private (local) business processes can be
revealed to other partners in the collaboration [9, 13, 37]. A process view inherited
from a complete business process provides less detailed or more abstracted than the
base process. Apart from workflow and process view perspective, business process
modeling techniques are also in the interest of how those process view concepts can be
realized and implemented in the real world based on current industry’s standards,
such as Business Process Execution Language (BPEL) and its Web-Service version
(WS-BPEL) [2] and Business Process Modeling Notation (BPMN) [23]. These process
modeling standards are used for model business processes in a Web Service

Page 1 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

2
environment. While there are continuous changes in business conditions among
partners to stay competitive in the market, they play a very vital and important role
in facilitating and cooperating business processes among business partners in a loosely
coupled relationship.

In practice, BPMN is commonly used to define business processes at a conceptual
level while BPEL is used to define service execution. Different stakeholders may use
different meta-models and/or different modeling tools to create and maintain their
version of the process model [49]. As a result, there could be a potential inconsistency
between a process view of BPEL and another view of BPMN where both derive from
the same process model. Especially the issue becomes more complicated as BPEL
process models tend to be more structured but process models defined using BPMN
can be unstructured. Yet we can perform manual (or semi-automatic) consistency
checking, however, it can be time-consuming and could result in errors. To address
these challenges, we propose a unified framework for supporting process view
construction for both the languages. Our framework allows process modelers to define
a single process view definition that can be applied to both BPMN and BPEL to create
two consistent versions of a process view.

The main contributions of this work can be summarized as follows.
—We propose a unified framework named UniFlexView that consists of a business

process model, a process view model and a comprehensive set of rules that can be
used to guarantee the consistency between a derived process view and its original
process model defined by BPEL and BPMN considering unstructuredness.

— We propose a unified language, namely View Definition Language (VDL), to define
business process views regardless of process modeling languages used. The
language has been developed based on an XPath-liked syntax.

— We have developed a UniFlexView’s system prototype as a proof of concept to
evaluate the feasibility and usability of our framework.
The remainder of this paper is organized as follows. Section 2 discusses the

background and related work. Section 3 introduces our proposed UniFlexView
framework. Section 4 discusses our view definition language and view operations used
within the framework. Section 5 presents the implementation of our UniFlexView
system and case studies. Finally, the conclusion and future work are provided in
Section 6

2. BACKGROUND AND RELATED WORKS
In this section, we reviewed related process views and business process modeling
research.

2.1 Workflow and Process Views
Chiu et al. [32] adapted the concepts of views from databases to workflows which help
balance trust and security by meaning that only information necessary for process
enactment, enforcement and monitoring of the service can be made available to
participating parties in a fully controlled and comprehensive manner and employed a
virtual workflow view for the inter-organizational collaboration instead of the real
instance, to hide internal information. In addition, each party requires only minor, or
none, modification to its own workflow to successfully meet at a commonly agreed upon
and interoperable interface. Since an organization is required to interoperate with
many other different organizations, different views of a workflow can be used in order
to provide different organizations with individual views according to their
requirements. Based on a conceptual model for workflow views and their theoretical

Page 2 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 3

bases as the fundamental support for workflow interoperability and visibility by
external parties, a workflow view is an externally accessible subset of a private
workflow.

Later, Schulz and Orlowska [33] proposed a model for tiering business processes
into the private business processes of the organization and those shared business
processes that interconnect them. Private business processes can expose interaction
points, and shared processes can link to these points so that an overall business process
may span two or more organizations. The interaction points can selectively expose
information about the processes and process tasks of an organization. This workflow
view model is provided for multi-granular privacy for workflows, given they believe
that a workflow view needs to be protected from the unauthorized interaction. Finally,
they used a Petri-net based representation for the basis for consideration of state
dependencies between tasks in a workflow and the adjacent task in a workflow view.

Similar to [33], Jiang et al. [41] proposed a process-view and timed-colored Petri net
(TCPN) combined approach to manage cross-organizational workflows. Their approach
includes the mapping from TCPN workflow models to process-view workflow models
in which the aspects of control flow and data flow are considered together and the
collaborative execution mechanisms of cross-organizational workflow instances. They
have developed a hybrid P2P based decentralized workflow management system
combined with the process-view approach to providing a flexible and scalable
architecture for cross-organizational workflows management.

Van der Aalst [13], Chebbi et al. [37], and Lin [9] proposed similar designs and
architectures for inter-organizational workflows based on the notion of local process
views. Each collaborating partner defines its own local process view. Similarly, Eshuis
et al. [42] proposed a collaboration framework that supports the outsourcing of
business processes between parties based on process views. The framework considers
both the construction of public process views by projection (via principles of hiding,
omitting and aggregation) of internal processes and the matching of consumer and
provider views to measure their similarity. Liu and Shen [36] presented an algorithm
to construct a process view with an ordering-preserved approach from a given workflow,
but they did not discuss its correctness with respect to inter-organizational workflows.
Chie et al. [32] also proposed that the interoperation model is consistent if it satisfies
the criteria of integrity and correctness. The integrity criteria concern the consistency
between workflow views and their parent workflows, while the correctness criteria
concern the consistency between workflow views and their target communication
scenarios. Grefen and Eshuis [12] proposed a formal approach to construct a
customized process view on a business process. The approach consists of two main
phases: a process provider constructs a process view that hides private internal details
of the underlying business process, and the second phase lets a consumer constructs a
customized process view tailored to its needs to filter out unwanted process
information. The customized process view reveals only those activities requested by
the consumer; the remaining activities of the underlying process view are hidden or
omitted. However, this approach focuses on a block-structured process model only and
it does not consider a graph structure since they claim that block-structured process
models have the advantage of not containing structural errors such as deadlocks.
Therefore, it allows for a simple and efficient (tractable) procedure for constructing
customized views. They also defined a set of construction rules for aggregation of nodes
(activities) as consistency criteria between a generated process view and its base
business process.

Zhao et al. [43] presented a framework to support view abstraction and
concretization of WS-BPEL processes with a rigorous view model proposed to specify

Page 3 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

4
the dependency and correlation between structural components of process views with
emphasis on the characteristics of WS-BPEL, and a set of rules are defined to
guarantee the structural consistency between process views during transformation.
Then, [44] extended [43] to incorporate role dependencies into process view derivation
in order to support organizational privacy protection, authorization control, and
runtime updates to the process view perceivable to a user with specific view-merging
operations. However, both approaches are designed to support only a block-structured
language, WS-BPEL in this case, constructing views for un-structured workflows is
not possible with these approaches. Our UniFlexView framework presented in this
paper extends the framework presented in [43] to fully support constructing process
views from structured and non-structured typed workflow modeling languages.

Eshuis et al. [48] developed a formal approach to propagate consistency-preserving
changes from an internal business process to its derived process view. It allows a
process view to evolve while maintaining its consistency with its underlying internal
processes. Their definitions of process models and process views are based on BPEL,
while our framework is not confined to only BPEL. On the order hand, Küster et al.
[49] proposed a Shared Process Model that provides different stakeholder views at
different abstraction levels and that synchronizes changes made to any view. However,
their approach only supports BPMN models.

2.2 BPEL vs. BPMN
BPEL and BPMN are entirely different yet complementary standards. BPEL is an
execution language designed to provide a definition of web services orchestration.
BPEL defines only the executable aspects of a process when that process is dealing
exclusively with web services and XML data. BPEL is a block-structured programming
language [1, 20, 38] and the structure can be represented by a tree model. The node of
a tree represents each activity and a control flow dependency between activities hold
by its parent. For example, a sequence node containing a set of ordered activities
(which represents that all children of this sequence node) are executed sequentially.
Concurrent processing is modeled using a flow element with a set of concurrent
activities defined as children of the element.

On the other hand, BPMN is conceived of as a graph-structured language with
additional concepts to handle blocks [5, 14, 19, 38]. Routing between activities is
handled by transitions between them. Unlike BPEL activities, the activities in a
BPMN process are delineated as the nodes of a directed graph, with the transitions
being the edges connecting between each set of two nodes. Conditions associated with
the transitions determine at execution time when activity or activities should be
executed next. BPEL does not define the graphical diagram, human-oriented processes,
sub-process, and many other aspects of a modern business process. It simply was never
defined to carry the business process diagram. This nature distinguishes BPMN from
BPEL which focuses exclusively on the executable aspects of the process.

According to Shaprio [38], there is no significant difficulty when translating
blocked-structured flow control in BPEL into a graph structure like in BPMN, but the
reverse is very problematic. There are some works proposing a transformation of BPEL
process to Petri Nets [15], and XPDL to Petri Nets [14], as well as the reverse
transformation from Petri Nets and graph structure to BPEL [16, 17, 18] in order to
do a formal analysis of the process structure. Note XML Process Definition Language
(XPDL) is a format standardized by the Workflow Management Coalition (WfMC) to
interchange business process definitions between different workflow products [5]. One
of the earlier work [46] has proposed a view mechanism and a set of process consistency
rules for constructing BPMN process views and our research presented in this paper

Page 4 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 5

is extended based on that work. In [24], the transformation strategies between graph-
oriented and block-oriented process modeling languages are proposed but they are
restricted to a structured process graph. Although there is one recent research work
proposing a tool named WFTXB [19] for translating between XPDL and BPEL
proposed for providing mapping algorithms between them, however, it does not
consider the poorly structured XPDL process model unlike the work for BPEL in [16].
More recently, [45] studied the problem of transforming a process model with an
arbitrary topology into an equivalent well-structured process model using refined
process structure trees [47] and a mathematical approach to reason about equivalences
of restructured process models. The proposed method has been implemented as a tool
that supports BPMN and EPC process notations. However, their work does not
consider BPEL specifications, especially the synchronization link characteristic which
makes view constructions for BPEL not straightforward.

3. UNIFLEXVIEW FRAMEWORK

3.1 Business Process Model
Workflow and business process models are typically modeled by Petri nets because of
their formal semantics, graphical representation benefits, expressiveness, analysis
techniques, and tools for modeling and analyzing workflow processes [10, 13]. In this
research the process view model might frequently change by consistency checking
procedures, aiming at process structure adjustment and rectification for correctness
and consistency according to its underlying base process model as a similar reason to
[9], therefore, flexibility is the most crucial factor of choosing the workflow or process
model. Hence, our process graph model is developed to represent all aspects of a
process view model and its behavior rather than Petri nets.

Here, we define a process model to capture a structural component of a business
process representing how activities are structured. A process model is represented by
an enclosed block structure that has only one start activity at the beginning of its
structure and only one end activity at the ending of its structure. Such activities can
be an atomic activity or a gateway. A gateway is defined as an atomic activity
representing a structure of control flow. There are eight types of gateways, namely OR-
Split, OR-Join, XOR-Split, XOR-Join, AND-Split, AND-Join, LOOP-Begin, LOOP-End.
The OR-Split/Join and LOOP-Begin/End gateways may contain the conditions for
restriction of the control flow.

Definition 1: (Process model). Let p denote a process model and it is a tuple (A, G,
E, L, ,), where 𝑚𝑠 𝑚𝑒

—A is a set of atomic activities,
—G is a set of gateways and function ({AND-Split, OR-𝑔𝑎𝑡𝑒𝑤𝑎𝑦_𝑡𝑦𝑝𝑒: 𝐺→𝑇𝑦𝑝𝑒 𝑇𝑦𝑝𝑒 ∈

Split, XOR-Split, AND-Join, OR-Join, XOR-Join, LOOP-Begin, LOOP-End})
—E is a set of directed edges and corresponds to the control dependency 𝑒 = (𝑛𝑥, 𝑛𝑦) ∈ 𝐸

between nodes and , where ,𝑛𝑥 𝑛𝑦 𝑛𝑥, 𝑛𝑦 ∈ 𝐴 ∪ 𝐺
—L is a set of synchronization links that represent the synchronization dependency

between two activities or gateways on different branches in AND-Split and AND-
Join gateways,

— and are the start activity and the end activity of the process, respectively.𝑚𝑠 𝑚𝑒

We can construct a new process model to mimic the model that uses synchronization
links by replacing the links with AND-Split/Join gateways structure. The semantics of

Page 5 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

6
synchronization links are based on the existing BPEL standard [1]. An example of this
substitution is shown in Figure 1.

AND
SPLIT

a1

a3

a2

a4

a5

a6

AND
JOIN

l1

(a)

AND
SPLIT

a1

a3

a2

a4

a5

a6

AND
JOIN

(b)

AND
SPLIT

AND
JOIN

link l1
from a2 to a5

l2

AND
SPLIT

AND
JOIN

link l2
from a5 to a3

Figure 1. Synchronization link equivalent constructs

A synchronization link can be used within the AND-Split and AND-Join gateways,
and between two structures nested inside such that gateways, as shown in Figure 2. A
synchronization link is invalid if there is a link which is sourcing from an activity in a
branch of an OR-Split gateway and targeting at an activity in another branch in AND-
Split gateway in which both of them are nested inside the outer AND-Split/Join
structure. In BPEL, uses of synchronization links are possible and can result in having
a non-block-structure inside an AND-Split/Join structure but allowing more modeling
flexibility. For example, a link sourcing from an activity in an AND-Split branch to a
target activity in an OR-Split branch is considered valid in BPEL.

Page 6 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 7

AND
SPLIT

a1

a3

a2

a4

a5

a6

AND
JOIN

l1

AND
SPLIT

AND
JOIN

l3

OR
SPLIT

a7

a9

a8

a10

a11

a12

OR
JOIN

(a)

l2

a13

l4

l4 is invalid

Figure 2. an example of invalid synchronization link between branches of split gateways

Process model functions

—A common split gateway predecessor (CSP), g, of a set of activities, AxA, denotes a
split gateway such that g is a predecessor of each activity in Ax.

—Function CSP(Ax) returns a set of common split gateway predecessors of all activities
in AxA; otherwise returns null if there is no common split gateway predecessor.

—Function LCSP(Ax) returns the least common split gateway predecessor of all
activities in AxA; otherwise return null if not found.

—Function LCJD(Ax) returns the least common join gateway descendent of all
activities in AxA; otherwise return null if not found.
Note that the least common (split or join) gateway of activities is the closest gateway

(if exists) that all the activities are structured under.

Next, we define a process path to represent a sequence of activities and gateways
such that from each of its activities there is an edge to the next activity in which they
are possibly executed from a start activity (predecessor activity) to an end activity
(successor activity).

Definition 2: (Process Path). Let T denote a process path which is a set of paths and
it is a tuple (ms, me,), where
—msAG represents a start activity of T,
—me AG represents an end activity of T,
— denotes a set of all possible paths starting from ms and ending with me,

Page 7 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

8
Note that T(ms, me,) is valid only if ms exists as the first activity of all paths, and

me exists at the last order of all paths. A process model p is valid if every activity in a
process model exists in the process path T starting from ms ending at me are in A.

In addition, we also define a function activity_within_path (p, a, a') which returns
a set of nodes N' including all the activities and gateways lying between the paths
leading from a start activity to an end activity a' for a process model p. 𝑎
Correspondingly, activity_within_path-1(N') = (a, a') is an inverse function.

Next, we define a structured activity for representing an enclosed block structure
of a set of atomic or compound activities consisting of one couple of gateways (in order
to define a boundary of the structure and activities reside in it). There are four couples
of gateways used to construct structured activities: OR-Split and OR-Join, XOR-Split
and XOR-Join, AND-Split and AND-Join, LOOP-Begin and LOOP-End. Structured
activity is well constructed by having a strictly enclosed block structure of at least one
couple of gateways. It can contain nested structured activities.

Definition 3: (Structured activity). Let Š denote a structured activity in a process
model p and it is a tuple (A', G', E', L', ms, me), where A'p.A, G'p.G, E'p.E, and
L'p.L are defined for a structured activity (as a set of activities), a set of gateways, a
set of directed edges, and a set of synchronization links, respectively. ms is defined for
a start activity of the structure such that msp.G, gateway_type(ms){AND-Split, OR-
Split, XOR-Split, LOOP-Begin}, and me is defined for an end activity of the structure
such that mep.G, gateway_type(me){AND-Join, OR-Join, XOR-Join, LOOP-End}.

In addition, we write Š(ms, me) in short to denote a structured activity of a start
gateway ms and an end gateway me where Š.A'=activity_within_gateway(p, ms, me),
Š.G'=gateway_within_gateway(p, ms, me). Note that any synchronization link in an
AND-Split/Join structured activity can connect between two activities or gateways
either within its structure or between two nested AND-Split/Join structures within the
outer parent AND-Split/Join structure.

To check whether a structured activity is an enclosed-block structure, we define a
function isEnclosed_structure(Š) which returns true only if all possible paths leading
from the start activity cease at the end activity in Š. If there is any path leading from
ms and it does not end at me, and any reversing paths starting from me and not ending
at ms, then the function returns false. In other words, if there is an edge that contains
a dependency between two activities, in which any of them is not in Š. A' Š.G', then
Š is not enclosed. Nevertheless, this function does not guarantee that its inner
structures of Š are valid as an enclosed block structure. It may comprise invalid
enclosed block structures but altogether, considered as a whole structure, is valid.

3.2 Process View Model and Consistency Rules
A process view model represents a part of an actual business process model. Process
owners can see the most detailed, or concreted, process model, in which all activities
are revealed, while other process viewers may partially see an abstract process model
of its base process model, called a process view model. As activities can be hidden or
aggregated in a process view model.

Definition 4: (Process View Model). Let V denote a set of process view models
defined for a corresponding base process model p, where V= {v1, v2,…, vx}, vi  V(1≤i≤x).
The structure of v can be modelled as an extended directed graph in a form of a tuple
(A, G, E, L, ms, me), where A, G, E, L, ms, and me are defined as a set of activities, a set

Page 8 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 9

of gateways, a set of directed edges, and a set of synchronization links, a start activity,
and an end activity, respectively.

To construct a process view, a structured activity or a set of activities (and their
edges) in its original process is abstracted into an edge or a composite activity (dummy
activity) in the view. We also call an edge a dummy branch if the edge is used as a
branch in a Split/Join or Loop structure such that the branch contains no activity but
only one edge. Only a single dummy branch can exist in a Split/Join structure. If there
are two or more dummy branches, they are not distinguishable because they represent
nothing but edges. Semantically, a dummy branch can be used in OR/XOR-Split/Join
and Loop structures (not in AND-Split/Join structures) in order to represent an
alternative way in a process view.

It is important to guarantee the consistency between a corresponding derived
process view model and its underlying process model. According to Donghui Lin [9],
because an organization may have different local process views defined, the
incompatibility analysis is necessary for verifying an incompatibility of interaction
protocols and business processes with the detection algorithms. Liu and Shen [11]
proposed an order-preserving approach for deriving a structurally consistent process
view from a base process. Add to that, Eshuis and Grefen [12] proposed a series of
construction rules for validating the structural consistency. In our research, we define
a set of consistency rules based on the order-preserving approach proposed in [11].

Given two process views v1 and v2 where v2 is constructed based on v1, we said that
v2 is a consistent view of v1 if all the view consistency rules defined below are satisfied.

Consistency Rule 1: (Execution path preservation). An execution order of every pair
of two activities that exist in both process views v1 and v2 are consistent, i.e.,

If a1, a2  v1.A  v2.A and a process path T(ms, me,) defines a set of possible
paths  leading from a start activity ms to an end activity me such that,
—|activity_within_path(v1, v1.a1, v1.a2)|  2, where T(v1.a1, v1.a2,1) is valid, and
—|activity_within_path(v2, v2.a1, v2.a2)|  2, where T(v2.a1, v2.a2,2) is valid,
where 1 is a set of all possible paths that v1.a2 can be reached from v1.a1 and 2 is a set
of all possible paths that v2.a2 can be reached from v2.a1.

Consistency Rule 2: (Branch preservation). For all activities belonging to process
views v1 and v2, the branch subjection relationships of the activities are consistent, i.e.,

If a1, a2  v1.A v2.A and g CSP(a1, a2) in v1, g CSP(a1, a2) in v2 such that (g,
a1, a2) in v1 , then (g, a1, a2) in v2 , where {same_branch,same_branch}.

Consistency Rule 3: (Synchronization dependency preservation). If a view operation
involves any activity that contains synchronization links, the synchronization links
may be rearranged, if applicable, in order to preserve the synchronization dependency
within an And-Split/Join structure. This rule has three sub-rules: Consistency Rules
3.1, 3.2 and 3.3. The first one is used when an activity is hidden, the second one is used
when a set of sequential activities is aggregated, and the last one is used for an AND-
Split/Join structure.

Consistency Rule 3.1: When an activity is hidden
If an activity axv1.A is to be hidden (by deletion) and represented by a dummy edge

in a process view v2, then the following set of actions described below needs to apply.

Page 9 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

10
—If a source activity ax contains outgoing synchronization links, then the source

activity of the links are moved up from the hidden activity to the direct predecessor
activity if it exists and is not the least common split gateway predecessor (LCSP) of
all activities referred in those links. Otherwise, if its direct predecessor is AND-Split
which is the least common split gateway predecessor, then such those links are
removed.

—If a target activity ax contains incoming synchronization links, then the target
activity of the links are moved down from the hidden activity to the direct successor
activity if it exists and is not the least common join gateway descendant (LCJD) of
all activities referred in those links. Otherwise, if its direct successor is AND-Split,
which is the least common join gateway descendant, then those links are removed.

AND
SPLIT

a1

a3

a2

a4

a5

a6

AND
JOIN

l1

AND
SPLIT

AND
JOIN

l3

AND
SPLIT

a7

a9

a8

a10

a11

a12

AND
JOIN

l2

(a)

l5

l6

a13

AND
SPLIT

a1

a3

a2

a4

a6

AND
JOIN

l1

AND
SPLIT

AND
JOIN

l3

AND
SPLIT

a7

a9

a10

a11

a12

AND
JOIN

l2

(b)

l5

l6

a13

Figure 3. an example of synchronization links within, and between two AND-Split structures, and (b) the
change when activities with links in and between AND-Split structure are hidden

Figure 3 (a) shows an example of a process model that consists of two inner AND-
Split/Join structures nested in the outer AND-Split/Join structure. There are
synchronization links inside inner AND-Split/Join structures as well as between two
inner structures. There are five synchronization links l1, l2, l5, and l6 used to connect
activities residing in inner AND-Split/Join structures, and l3 is used to link between
two activities from different AND-Split/Join structures.

 Figure 3 (b) shows a change outcome after applying Consistency Rule 3.1 when
activities a5 and a8 are hidden. It can be seen that the target activity of link l1 is moved
down from a5 to the direct successor activity a6 and the source activity of link l2 is moved
up from a8 to the direct predecessor activity a7. Consequently, the link l3 between the
two inner AND-Split/Join structures is taken into account; therefore, it is changed
accordingly where the source of l3 is moved up and its target is moved down.

Page 10 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 11

AND
SPLIT

a1

a3

a2

a6

AND
JOIN

l1

AND
SPLIT

AND
JOIN

l3

AND
SPLIT

a7 a10

a11

a12

AND
JOIN

l2

(c)

a13

Figure 4. the change when a target activity in an inner AND-Split structure was hidden

Figure 4 (c) provides an example where activities a4 and a9 in Figure 3 (b) are hidden.
The former contains two outgoing links targeting at its inner AND-Split/Join structure,
l5, and on the other AND-Split/Join structure l3, while the latter contains two incoming
links sourcing from its inner AND-Split/Join structure, l6, and on the other AND-
Split/Join structure l3. The result of after having a4 hidden shows that the link l5 is
removed since the direct predecessor activity is the least common split gateway
predecessor of the activities of link l5. Similarly, the result of removing a9 also shows
that the link l6 is removed since the direct successor activity is the least common join
gateway descendant of the activities of the link l6. Apart from those two links, the link
l3 between two AND-Split/Join structures needs to be changed. The source activity of
l3 is moved up to AND-Split gateway, and since LCSP(a4) LCSP(a9) so the link is
removed. Similarly, the target activity of l3 also needs to change from a9 to its direct
successor activity, which is its AND-Join gateway.

Consistency Rule 3.2: When a set of sequential activities are aggregated
When an aggregation of a set of sequential activities Ag v1.A in the view v1 occurs,

new dummy activity d is constructed in the resulted view v2. To preserve the
synchronization link consistency between the base model v1 and the transformed model
v2 (with a set of synchronization links Lv2), the consistency rules below are required to
apply.
—All incoming synchronization links to the earliest executed activity of a set of

sequential activities that are aggregated remain in the resulted process view where
a dummy activity d is a target activity of such the links after the completion of
aggregation. All outgoing links from such the activity are removed.

Page 11 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

12
—All outgoing synchronization links from the latest executed activity of a set of

sequential activities that are aggregated remain in the resulted process view where
a dummy activity d is a source activity of such the links after the completion of
aggregation. All incoming links to such the activity are removed.

—All outgoing or incoming synchronization links of activities that exist between the
earliest and latest executed activities are removed.
Figure 5 shows an example of an aggregation of a set of sequential activities Ag={ a1,

a2, a3, a4} with synchronization links L={l1, l2, l3, l4, l5, l6} to a new dummy activity d1.
After having Consistency Rule 3.2 applied, the resulted view has the new dummy
activity d1 with the only two remaining synchronizations. One is an incoming link l1,
and another one is an outgoing link l6. Note that l1 and l6 in the base view are not
identical to l1 and l6, respectively, in the resulted view after aggregation. This is
because the source and target activities of them have changed.

Ag

AND
SPLIT

a1

a3

a2

AND
JOIN

l6

l4

l3

l2

a4

l5

l1

(a)

AND
SPLIT

d1

AND
JOIN

l6

l1

(b)

Figure 5. an aggregate with the remaining links

Figure 6 shows an example of a change of synchronization links of activities
aggregation occurring in AND-Split/Join structure. Figure 6 (a) represents a process
model p with an AND-Split gateway g. Dummy activities c1 and c2 in Figure 6 (b) are
the result of an aggregation of a1 with a2 and a3 with a4 in Figure 6 (a), respectively.
While Figure 6 (c) shows an alternative way of aggregation, activities a1 and a2 are
aggregated and a new dummy activity c1 is constructed. Similarly, a dummy activity c3
is the result of aggregating a7 and a8. Figure 6 (d) demonstrates the result of both
alternatives in Figure 6 (b) and Figure 6 (c), the dummy activity c4 comes from an
aggregation of activities a5 and a6 whether from the process model in Figure 6 (b) or
in Figure 6 (c). Furthermore, both dummy activities c2 and c3 in Figure 6 (d) come
from the result of aggregation in Figure 6 (b) and Figure 6 (c).

Page 12 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 13

AND
SPLIT

a1

a3

a2

a5

a6

a7

AND
JOIN

l6

l4

l3

l2

a4 a8

l5

l1

AND
SPLIT

c1 a5

a6

a7

AND
JOIN

l6
c2 a8

l1

(a) (b)

AND
SPLIT

c1 c4

AND
JOIN

c2 c3

(d)

AND
SPLIT

c1

a3

a5

a6

AND
JOIN

l4

a4 c3

l1

(c)

Figure 6. the changes when aggregating activities with links

Consistency Rule 3.3: When an AND-Split/Join structure is hidden or aggregated.
When a whole AND-Split/Join structured activity is hidden or aggregated, all the

synchronization links contained within the structure are removed. In addition, if there
is any link connecting between two nested AND-Join/Split structures within an outer
parent structure and if one or both of the structures are hidden or aggregated, then
such the link is removed.

Note that hiding a whole structure can be done differently. Consistency Rule 3.1 is
reused to hide every activity one by one in an AND-Split/Join structure. As a result,
after having all the activities hidden, all the links in the structure are also removed.

Š0

Š2Š1

AND
SPLIT

a1 a2

AND
JOIN

l2

AND
SPLIT

AND
JOIN

AND
SPLIT

a3 a4

AND
JOIN

l1
a4

l3

Figure 7. an example of synchronization link inside and between structures

Figure 7 shows an example of an AND-Split/Join structure Š0, which contains two
nested AND-Split/Join structures Š1 and Š2. If the AND-Split/Join structure Š1 is
hidden, then both l1 and l2 are removed. Similarly, both l2 and l3 are removed if the
whole structure Š2 is aggregated.

Page 13 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

14
Consistency Rule 4: (Dummy branch in OR/XOR-Split/Join structures). If an OR-

Split/Join structure in a process view contains a dummy branch, then the dummy
branch remains to indicate the existence of an alternative execution path. If an
OR/XOR-Split/Join structure contains multiple dummy branches, then they are
merged into a single dummy branch.

Figure 8 (a) shows an example of an OR-Split/Join structure in a base process model.
When a set of activities {a2, a3, a4} of the middle branch are all hidden in a process view,
the dummy branch b1 is used to represent an empty branch in the structure, as shown
in Figure 8 (b). Furthermore, in Figure 8 (c) if activities {a7, a8, a9} are hidden, the
structure is supposed to have two dummy branches, b1, b2; by following the rule, these
dummy branches are merged into one dummy branch b3.

OR
SPLIT

a1

a3

a2

a7

a8

a9

OR
JOIN

(a) (b)

a4

a3

a2

a1

a3

a2

a7

a8

a9

OR
JOIN

[b1]

(c)

a1

a3

a2

OR
JOIN

[b1,b2]

OR
SPLIT

OR
SPLIT

Figure 8. an example of Split/Join structure with dummy branch(es) and activities

Consistency Rule 5: (No empty Split/Join or Loop structures). If any kind of
Split/Join or loop structure does not contain any activity or if it contains only dummy
branches or edges, then the structure is collapsed and replaced with a new edge. As a
result, the new edge links between the activity before the structure and the activity
after the structure.

Figure 9 shows an example of empty OR-Split/Join and loop structures after having
all activities residing in the structures hidden (see Figure 9 (c) and Figure 9 (e)). Figure
9 (b) shows a case when a set of activities {a1, a2, a3} in Figure 9 (a) are hidden. The
dummy branch b3 replaces those hidden activities. Moreover, because of Consistency
Rule 4, all the dummy branches are merged into a single dummy branch. After that,
Consistency Rule 5 is applied so the entire structure is collapsed, as shown in Figure
9 (c). Similarly, Figure 9 (d) and Figure 9 (e) show that a loop structure is collapsed
when all activities in the loop are hidden.

Page 14 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 15

(a)

a1

a3

a2 [b1,b2]

OR
JOIN

[b1,b2,b3]

(b)

OR
SPLIT

OR
SPLIT

OR
JOIN

[b4]

Loop
Begin

Loop
End

(d)

a1

a3

a2

Loop
Begin

Loop
End

(e)

[b1,b2,b3]

OR
SPLIT

OR
JOIN

(c)

Figure 9. an example of empty OR-Split/Join and Loop structures

Consistency Rule 6: (No dummy branch in AND-Split/Join structures). If an AND-
Split/Join structure contains dummy branches, then such the dummy branches are
hidden.

Figure 10 represents a case of having a dummy branch b1 in an AND-Split/Join
structure (a) and the branch is hidden when this rule applies.

(a)

a1

a3

a2
[b1]

AND
SPLIT

AND
JOIN

a4

a6

a5

a1

a3

a2

AND
SPLIT

AND
JOIN

a4

a6

a5

(b)

Figure 10. an example of a dummy branch in an AND-Split/Join structure

Consistency Rule 7: (No single branch in Split/Join structures). If any kind of
Split/Join structure contains only one single branch, such the structure is collapsed to
a single sequence. Consequently, both split and join gateways are removed from its
structure.

Consistency Rule 8: (Structured activity as a whole is atomic). If an entire
structured activity is hidden, then all its internal activities, edges, gateways and
synchronization links are hidden. Similarly, if an entire structured activity is
aggregated, all elements within it are aggregated.

Page 15 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

16
It is also worth mentioning that based on our thorough observations and process

model simulations based on varying complexity levels of process models (including
random generations) ranging from basic structured BPEL/BPMN models to very
complex process models including unstructured BPMN models, our framework can
correctly and consistently generate process views from their underlying process models.
While our simulations may not cover all possible complex scenarios, we believe that
we had attempted as much as what we could potentially think of w.r.t our knowledge.
Our consistency rules proposed can be considered complete based on the two following
grounds. First, our rules are developed based on the extension of the base approach
proposed [11] which claimed to be complete. Second, based on our model simulations,
we did not find any case where the generated view is inconsistent.

4. VIEW DEFINITION LANGUAGE AND OPERATIONS
This section presents two mechanisms of how a process view can be created based on
an underlying process model. We propose a View Definition Language (VDL) together
with its set of operational functions which play a major role in a process view
transformation process.

4.1 View Definition Language (VDL)
Aiming at providing a simple and semantic definition language for process view
operations, our proposed process view definition language shall meet the below
requirements.
—The language shall provide process modelers a simple structure and systematic

method of defining process views using a primitive set of view operations.
—The language shall be generic and independent from specific process modeling

standards including BPEL and BPMN (via the use of XPDL). This means that when
changes to the standards should not make the language invalid.

—The language shall be extensible for additional view operations that might be added.

Here, we propose a View Expression Language (VDL) based on adopting the XML
Path Language (XPath) standard [6]. The VDL is expressed in a slightly similar way
to the XPath expression language in such a way that any node in an XML document
can be selected by means of a hierarchic navigation path through the document tree
via the XPath language. Similarly, an activity in a business process or view model
could be determined and located by using the XPath approach. Although the XPath
can be used only for the conformed data model created based on the XML standard [7],
however, the VDL is not restricted by this limitation.

VDL Expressions
Based on the XPath language syntax and semantics, the VDL applies the XPath’s
concept of a location path, which is how a path in a structure can be navigated and an
activity can be located using “/” or “//” notations. The former, when placed anywhere in
a path, means that the activity after it must directly follow the activity before it, while
the later represents that the activity after it must follow the activity before it in
somewhere in the path.

A bracket notation “[]” is used to identify an activity name in a process model to be
operated. The bracket can consist of a location path within it and this means every
activity existing in that location path is selected and operated. Apart from that, the
bracket can contain some available functions provided to facilitate a variety of ways of
activity selection operations. The bracket with contents inside must follow by any of

Page 16 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 17

the following mandatory notations (i.e., view operators): “-” for a deletion operator and
“>” for an aggregation operator.

In order to concisely express the VDL, the Syntactic meta-language Extended BNF
abbreviated EBNF [4] is used. A set of grammars used in VDL expressions is developed
and expressed using the Extended Backus-Naur Form (EBNF), which is a meta-syntax
notation used to express context-free grammars as defined in Table 1.

Table 1. VDL expression grammars in EBNF
path ::= {step};
step ::= axis, node;
axis ::= “/” | “//”;
node ::= element name | operation;
operation ::= (“[“, relative path del, “]-“) | (“[“, relative path agg, “]>”, element name);
relative path ::= (element name, [{step}]);
relative path agg ::= relative path | element list | agg function;
relative path del ::= relative path | del function;
del function ::= “(“,regular exp,”)”;
agg function ::= “(“,starting gateway name, ”,”,[ending gateway name], element list, ”)”;
element list ::= “(“,{element,[”,”]},”)”;
element ::= element name | “EMPTY”;

In addition, a set of activities matched by Regular expression [3] can be used for
selective deletion. This feature enables flexible activity selection in a path and provides
an alternative way to identify activities to be deleted.

4.2 VDL Operation functions
The functions used in the VDL expression are classified by the purposes of operations
which are deletion and aggregation.

Deletion functions
 (1) Single activity deletion function

Syntax: [a]-
Result: Only an activity whose name exactly matched with a is to be deleted.

(2) Sequential range deletion function
Syntax: [ax//ay]-
Result: All the activities in the sequential range starting from a start activity

ax to an end activity ay is to be deleted
(3) Selective deletion function

Syntax: [(regular exp)]-
Result: Delete all activities whose names matched with the regular expression,

regular exp, in the parentheses.

Aggregation functions
 (1) Structure aggregation function

Syntax: [g0] >c
Result: Return a dummy activity c, which is a result of an aggregation of a

structured activity having any Split-typed gateways or a LOOP-Begin
gateway named g0 as a start activity of the structure.

Condition: This function can be used only if a Split-typed gateway or LOOP-Begin
gateway named g0 has its couple join gateway so that a couple
Join/LOOP-End gateway is not required to be identified in the function.
Otherwise, if there is no couple gateway of g0 (in some cases where g0

Page 17 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

18
and its structure is not well-constructed), then the branch aggregation
function (3) is used.

(2) Sequential range aggregation function
Syntax: [ax//ay]>c
Result: Return a dummy activity c, which is a result of an aggregation of a set

of activities and gateways starting from a start activity ax to an end
activity ay. If there are any nested Split/Join structures in a sequential
range, then they are collapsed and aggregated with other activities in
the range.

(3) Branch aggregation function
Syntax 1: [(g0, (a0, a1, …, an))]>c
Result: Return a dummy activity c, which is a result of the aggregation of a set

of branches starting from a split gateway g0, and can be delegated by
activity a0, a1,…, an. An EMPTY can be expressed in an activity list in
the same way as an activity name in order to locate a dummy branch
under a split gateway g0. For example, [g, (a0, a1, EMPTY)]>c means
that aggregation of branches having activity a0 and a1, and a dummy
branch in a split gateway g.

Condition: This function can be used only if a split gateway g0 has its couple join
gateway so that a coupled Join gateway is not required to be identified
in the function. Otherwise, if there is no couple gateway of g0 (in some
cases where g0 and its structure is not well-constructed), then use
branch aggregation Syntax 2 below.

Syntax 2: [(g0, g1, (a0, a1, …, an))]>c
Result: Similar to Syntax 1, this function returns a dummy activity c, which is

a result of the aggregation of a set of branches leading from a split
gateway g0 to a join gateway g1 and can be delegated by activity a0,
a1,…, an.

Syntax 3: [(a0, a1, …, an)]>c
Result: Return a dummy activity c, which is a result of the aggregation of a set

of branches of the least common split gateway predecessor (LCSP) and
the least common join gateway descendent (LCJD) of all activities Â =
{a0, a1,…, an}. The function determines the LCSP(Â) and LCJD(Â), and
then find a set of branches where each activity in Â lies on. If LCSP(Â)
and LCJD(Â) is located, then those branches are aggregated.

4.3 Use cases
To illustrate how the VDL expression can be used to construct view operations, we
show some usage examples, as shown in Table 2.

Table 2. an example of VDL expressions
1. //[a1//a3]-
2. /[a4//a6]>c1
3. /a10/[(a1.*[^234])]-/[a36]-/a4
4. /a10//[(a7,a8,a23)]>a7810
5. /a1//[(switch1,(a12,EMPTY))]>aEMPTY//a12
6. //[(g1,g2,(a10,a11))]>dummy//[a7//a10]>a710

The first statement contains "[a1//a3]-" which expresses a sequential range deletion
function for all activities lying on the sequential range from a1 to a3 existing in
anywhere in the process model because it begins with “//”.

Page 18 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 19

The second statement contains "/[a4//a6]>c1" which is a sequential aggregation
function aggregating all activities lying on the sequential range from a4 to a6 in which
a4 is the start activity of the process model. If this is true, then a new dummy activity
named c1 is constructed.

The third expression contains two operations: first one is "[(a1.*[^234])]-" for
deleting all activities where the name matched a1 following by any number of
characters except ‘2’ or ‘3’ or ‘4’ where those activities must lie on the path between a10
and a36, and the second one is "[a36]-" for deleting single activity a36 which lies on the
path between a set of activities a1.*[^234] and a4.

The fourth expression contains "[(a7, a8, a23)]>a7810" which shows the use of
branch aggregation function. A branch where activity a7 sitting in and a branch where
an activity a8 sitting in, and a branch where an activity a23 sitting in, in which such
branches exist anywhere after an activity a10, are all aggregated to a new dummy
activity named a7810.

The fifth one contains "[(switch1, (a12, EMPTY))]>aEMPTY" which shows another
branch aggregation function. Branches where an activity a12 and a dummy branch
(EMPTY) of a split gateway switch1 sitting in are aggregated to a new dummy activity
named aEMPTY only if the switch1 exists in between the path of an activity a1 to a12.

The last statement contains two aggregation operations in the path. One is
“//[(g1,g2,(a10,a11))]>dummy”. Two branches of a10 and a11 in a structured activity of
a split gateway g1 and a join gateway g2 are aggregated into an activity named dummy.
Second one is “[a7//a10]>a710”. All activities existing in a path starting from an
activity a6 to an activity a10 are aggregated into a710, but those activities in the path
must exist after a structured activity Š(g1,g2).

4.4 VDL Limitations
As our VDL is built based on XPath’s meta syntax and the use of regular expression
semantics, some of the limitations inherit the XPath’s limitations such as ordering and
reoccurrence problems. Also, not all the standard XPath expressions are supported in
the VDL, this includes a query with multi-valued attributes, and we find that this
feature is not useful or beneficial to our work from our perspective. As previously
discussed in Section 3, we performed a number of model simulations based on different
complexity levels of BPEL and PBMN models (including unstructured BPMN models)
to test our view framework w.r.t to the correctness and completeness of our consistency
rules and the capability and potential limitations of the VDL (by defining various VDL
patterns). Apart from those points discussed above, there is no evidence of other known
limitations we found from our simulations. Furthermore, at the current stage, only
BPMN (via XPDL) and BPEL modeling languages are supposed as these two languages
are mostly used by both academics and industry in practice for defining a business
process from both conceptual (by BPMN) and implementation (by BPEL) aspects.
Other languages such as YAWL and EPC are less prominent to the industry however
these languages can be translated to work on our framework (i.e., conversion between
different process modeling languages are possible using existing model transformation
techniques as briefly discussed in Section 2.2). All in all, we believe that these
limitations do not significantly affect the usability and effectiveness of our framework
and they can be addressed in our future work.

5. UNIFLEXVIEW SYSTEM
This section introduces and discusses our system architecture and implementation of
the proposed process view framework.

Page 19 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

20

5.1 UniFlexView’s System Architecture
The critical part of UniFlexView system architecture is process-view transformation.
The architecture provides an overview of the system, components required for the
system, procedures, and rules for operating the system. The purposed system aims to
generate a defined set of process views from a given original business process model.
All the constructed process views are guaranteed consistent with their original process
model and all their inherited process views. Process modelers can define a set of
process view operations for each constructed process view. Defining process view
operations can be done by expressing the operations in a Process View Definition
Language (PVDL) document, which contains a set of views, and corresponding VDL
expressions to be operated. Apart from that, we also use a Process View
Transformation Definition (PVTD) document as an alternative to defining a low-level
language that can be used by the system. However, a PVTD file is not used if a PVDL
file is present. The structure of a PVDL/PVTD document is developed based on the
XML markup language, which makes the file content simplified, readable, editable,
and well-structured. The overall process view system architecture is depicted in Figure
11.

Process View System

«subsystem»
Process Importer

Business
Process Model File

«subsystem»
View Importer

Base Process
Model repository

Process View
Definition Language

(PVDL) file

Process View
Transformation

Definition (PVTD) file

View transformation
definition repository

«subsystem»
Process View Transformer

«subsystem»
Process Exporter

Business Process
View File

Process View
Instance repository

Figure 11. UniFlexView System Architecture

In a PVDL/PVTD document, a process modeler defines a set of view operations for
a particular process model. When the system starts, the document is loaded and stored
in the View Transformation Definition repository. Then, the transformation process is
initiated by the Process View Transformer, which is the heart of the process view

Page 20 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 21

system. After the transformation is completed, the resulted process view is generated
and saved into a designated file by the Process Exporter system. The Process view
Transformer applies the process view construction methodology and the concept of
process view consistency altogether to produce a correct and consistent process view
model.

5.1.1 Defining views in a PVDL document
The content of a PVDL document describes how process views are generated based on
an input process model. In each process view model defined in a PVDL document, there
is a set of view operations to construct such that the process view model. Table 3
illustrates the Document Type Definition (DTD) for a PVDL document.

Table 3. Process View Definition Language (PVDL) document Structure
<!DOCTYPE pvdl [
 <!ELEMENT pvdl (view+)>
 <!ELEMENT view (vdl+)>
 <!ELEMENT vdl EMPTY>
 <!ATTLIST pvtl
 name CDATA #REQUIRED
 schema (BPEL|XPDL) #REQUIRED
 processname CDATA #REQUIRED
 processfile CDATA #REQUIRED>
 <!ATTLIST view
 name CDATA #REQUIRED
 parentview CDATA #REQUIRED
 viewfile CDATA #IMPLIED
 aggtargetelement CDATA #REQUIRED>
 <!ATTLIST vdl
 exp CDATA #REQUIRED>
]>

Table 4. an example of a PVDL document
<pvdl name="PVDL1" schema="BPEL" processname="process1" processfile="process1.bpel">
 <view name="v1" parentview="Root-View" viewfile="process1-v1.bpel" aggtargetelement="empty">
 <vdl exp="/[a1//a3]- " />
 <vdl exp="/[a4//a6]>c1" />
 </view>
 <view name="v2" parentview="v1" viewfile="process1-v2.bpel" aggtargetelement="empty">
 <vdl exp="/a10/[(a1.*[^234])]-/[a36]-/a4" />
 <vdl exp="/a10/[(a1[234])]-/[a36]-/a4" />
 </view>
 <view name="v3" parentview="v2" viewfile="process1-v3.bpel" aggtargetelement="empty">
 <vdl exp="/[switch1]>aSwitch1" />
 </view>
 <view name="v4" parentview="v3" viewfile="process1-v4.bpel" aggtargetelement="empty">
 <vdl exp="/a10/[(a7,a8,a23)]>a7810" />
 <vdl exp="/a1/[(switch1,(a12,EMPTY))]>aEMPTY" />
 </view>
</pvdl>

From Table 4, the PVDL document defines four process views: v1, v2, v3, and v4.
Each view has its own set of PVDL expressions, defined in a <vdl> tag, as required for
a transformation from a base process model to a process view, or from an existing
process view to a new process view.

Page 21 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

22
A process view v1 derived from the base process model contains two PVDL

expressions. The first one is "[a1//a3]-" which expresses a sequential range deletion
function for all activities lying on the sequential range from a1 to a3. The second one
is "/[a4//a6]>c1" which is a sequential aggregation function aggregating all activities
lying on the sequential range from a4 to a6, then it constructs a new dummy activity
named c1.

A process view v2 derived from the process view v1 contains two PVDL expressions.
The first expression contains two deletion operations. One is "[(a1.*[^234])]-" for
deleting all activities where their name match a1 following by any number of
characters except ‘2’ or ‘3’ or ‘4’, another one is "[a36]-" for deleting single activity a36.
The second expression contains two deletion operations, the first one is "[(a1[234])]-",
for deleting all activities where their names match a1 following by only single
character ‘2’ or ‘3’, or ‘4’, and the second one is "[a36]-"for deleting the activity a36.
Since the activity a36 is already deleted in the first expression, hence no action is taken
place by the second expression.

A process view v3 derived from the process view v2 contains only one PVDL
expression which is "/[switch1]>aSwitch1". It expresses a structure aggregation
function used for aggregating a whole structure of a split gateway named switch1 into
a new dummy activity named aSwitch.

A process view v4 derived from the process view v3 contains two PVDL expressions.
The first one is "[(a7, a8, a23)]>a7810" which shows the use of the branch aggregation
function. A branch where an activity a7 sitting in and a branch where an activity a8
sitting in, and a branch where an activity a23 sitting in are all aggregated to a new
dummy activity named a7810. The second one is "[(switch1, (a12,
EMPTY))]>aEMPTY" which shows another branch aggregation function. Branches
where an activity a12 and a dummy branch (EMPTY) of a split gateway switch1 sitting
in are aggregated to a new dummy activity named aEMPTY.

5.2 Case Studies
In this section, two real-world BPEL and BPMN business process models are used as
case studies. There is a series of view operations in one VDL expression to demonstrate
how the operations perform on activities and their outcomes. Our proposed view
consistency rules are applied to ensure that every result process view model is
consistent with its underlying process models.

5.2.1 A case study for BPEL process model
This section presents a case study using a customer service process model based on
BPEL, as shown in Table 5 followed by demonstrating a variety of VDL expressions
that are applied to the base process model and its generated views.

Table 5. Customer Service BPEL process code
<process name="CustomerService">
 <sequence>
 <invoke name="SendOrder" />

<switch name="Cancel_order?">
 <case condition="not cancel">

<sequence>
<receive name="Receive_Confirmation"/>

<switch name="re issue order?">
<case condition="to re issue">

<invoke name="re-issue order"/>
</case>
<case condition="not re issue">

Page 22 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 23

<sequence>
 <invoke name="arrange payment"/>
 <invoke name="pay order"/>
</sequence>

</case>
</switch>

</sequence>
 </case>
 <case condition="to cancel">

<sequence>
<invoke name="Send Cancellation"/>
<receive name="Receive Confirmation"/>

</sequence>
 </case>

 </switch>
 </sequence>
</process>

Table 6. An example of view construction for BPEL process
VDL expression and explanation Transformed process view

Page 23 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

24
View 1 : derives the base process
//[Arrange payment//Pay Order]-

Hide all activities in a sequential range starting
at “Arrange payment” activity and ending at
“Pay Order” activity.
Two activities are found in the range, so they are
removed.
SEQ4 is collapsed.
CASE4 branch contains no activity, so it is to be
collapsed, but one dummy branch must exist, so
The new branch of OTHERWISE1 is created
with an EMPTY activity in the branch.

<SEQ1>

<SEQ2> <SEQ3>

Receive Confirm<receive1> Send cancelation <invoke5>

<Switch2>
Re issue order?

<case3> To re issue <otherwise1>Otherwise

Re issue order<invoke2>

<case2>Cancel<case1> Not cancel

<switch1>
Cancel order?

Send Order <invoke1>

Receive confirm <receive2>

</SEQ3>

</SEQ1>

</switch1>

</switch2>

<empty1>EMPTY

</SEQ2>

Page 24 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 25

View 2 : derives View 1
//[Send cancelation//Receive confirm]>Cancel
process

Aggregate all activities in a sequential range
starting at “Send cancelation” activity and
ending at “Receive confirm” activity, then create
the dummy activity named “Cancel process”.
Two activities are found in the range, so they are
aggregated into the “Cancel process” activity.
SEQ3 contains only one activity, so it is
collapsed.

<SEQ1>

<SEQ2>

Receive Confirm<receive1>

<Switch2>
Re issue order?

<case3> To re issue <otherwise1>Otherwise

Re issue order<invoke2>

<case2>Cancel<case1> Not cancel

<switch1>
Cancel order?

Send Order <invoke1>

<empty2>

</SEQ1>

</switch1>

</switch2>

<empty1>EMPTY

Cancel
process

</SEQ2>

Page 25 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

26
View 3 : derives View 2
//[(Switch2, (Reissue order, EMPTY)]>Issue
order

Aggregate two branches of Switch2, one contains
the “Reissue order” activity and another one is a
dummy branch, into the new dummy activity
named “Issue order”.
Two branches are found in Switch2 and then
they are aggregated.
Switch2 contains only one branch, so it is
collapsed.

<SEQ1>

<SEQ2>

Receive Confirm<receive1>

<case2>Cancel<case1> Not cancel

<switch1>
Cancel order?

Send Order <invoke1>

<empty2>

</SEQ1>

</switch1>

<empty3> Issue order
Cancel
process

</SEQ2>

View 4 : derives View 3
//[SEQ2]>Not cancel process

Aggregate a whole structure of SEQ2 into a new
dummy activity named “Not cancel process”
A sequence structure SEQ2 is found, so it is
aggregated.

<SEQ1>

<case2>Cancel<case1> Not cancel

<switch1>
Cancel order?

Send Order <invoke1>

<empty2>

</SEQ1>

</switch1>

<empty4> Not cancel
process

Cancel
process

Page 26 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 27

5.2.2 A case study for BPMN process models
This section presents a BPMN case study, which is a problem resolving process, shown
in Figure 12. We define a group of VDL expressions for generating different process
views for the process model and its constructed views.

Figure 12. A problem resolver process model

Process View 1: derives from an original business process
VDL Expression: //[Receive Email RE Problem//Send Email Confirmation]-
Explanation: Hide all activities lying on the path between the start activity

named “Receive Email RE Problem” and the end activity
named “Send Email Confirmation”.

Result: There are only two activities, “Receive Email RE Problem” and
“Send Email Confirmation”, lying on that sequential path, thus
those are deleted and a dummy branch is then created to link
an XOR-Split gateway named “Type of report?” to an XOR-Join
gateway named “g3”. The result is shown in Figure 13.

Figure 13. Process View 1

Process View 2: derives from the process view 1

Page 27 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

28
VDL Expression: //[Reproduce Problem]-
Explanation: Hide one activity named “Reproduce Problem”.
Result: Although there is only a single activity named “Reproduce

Problem” is to be hidden, however, this activity contains an
embedded XOR-Join gateway, therefore the gateway is
detached from the activity and then an activity can be deleted.
The result is shown in Figure 14.

Figure 14. Process View 2

Process View 3: derives from the process view 2
VDL Expression: //[Type of user?//g3]>dummy_a1
Explanation: Aggregate all activities between the path starting at activity

named “Type of user?” and ending at activity named “g3”.
Result: Both “Type of user?” and “g3” are XOR typed gateways, then

the structure aggregation with the enclosed block verification
process is to be taken place for this case. If it is valid, the new
dummy activity named “dummy_a1” is created and placed to
the process view. The result is shown in Figure 15.

Figure 15. Process View 3

Page 28 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 29

Process View 4: derives from the process view 3
VDL Expression: //[(g9,g10,(Audit and Record, Communicate

Results))]>dummy_a2
Explanation: Aggregate two branches, containing activities named “Audit

and Record” and “Communicate Results”, of a Split gateway
named “g9” and a join gateway named “g10”.

Result: The branch having an activity named “Audit and Record” and
the other branch containing an activity named “Communicate
Results” are aggregated into a new dummy activity named
“dummy_a2”. In this case, there is no other branch left after
the aggregation, thus the structure of Split/Join gateways g9
and g10 is then collapsed. The result is shown in Figure 16.

Figure 16. Process View 4

6. CONCLUSION AND FUTURE WORK
Our research addresses the unsolved issues in the area of business process view
construction approach, i.e., there is a need for a unified process view framework on the
two different process modeling standards: BPEL and BPMN. The research focuses on
how process views can be automatically realized and deal with the different nature of
the two standards in a consistency way. Our framework consists of a comprehensive
set of process components and related functions to construct a process view, as well as
necessary consistency rules required to guarantee the consistent structure between a
process view and its base business process model. With our framework, process
modelers exercise on a simplified language to defining process views regardless of
modeling standards they use. In the future, further investigation is to be carried out
to refine the organization-oriented view solution with an extended set of inter-
organizational process view consistency rules and an extension to current process view
operations and VDL expression.

REFERENCES

1. ‘OASIS Web services Business Process Execution Language (BPEL) version 2.0, 2007,
OASIS, April, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Page 29 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

For Peer Review

30
2. ‘Business Process Execution Language for Web Services Version 1.1’, S. Thatte, et al.,

BEA, IBM, Microsoft, SAP and Siebel, May 2003.
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf

3. ‘Regular Expression, The Single UNIX ® Specification, Version 2’, 1997, The Open
Group, http://www.opengroup.org/onlinepubs/007908799/xbd/re.html

4. ISO/IEC 14977:1996, Information technology - Syntactic metalanguage - Extended BNF
5. ‘WFMC XML Process Definition Language (XPDL) version 2.0’, 2005, Workflow

Management Coalition, October, WFMC-TC-1025,
http://www.wfmc.org/standards/documents/TC-1025_xpdl_2_2005-10-03.pdf

6. ‘XML Path Language (XPath) 2.0’, 2007, World Wide Web Consortium, January,
http://www.w3.org/TR/xpath20/

7. ‘Extensible Markup Language (XML) 1.0 (Fourth Edition)’, 2006, World Wide Web
Consortium, August, http://www.w3.org/TR/2006/REC-xml-20060816/

8. BizAgi Process Modeler, 2008, BizAgi Ltd, July, http://www.bizagi.com/eng/
9. Lin, D, “Compatibility Analysis of Local Process Views in Interorganizational Workflow”,

2007, The 9th IEEE International Conference on E-Commerce Technology and The 4th
IEEE International on Enterprise Computing, IEEE computer Society, July, pp.149-156.

10. van der Aalst, W.M.P., ‘Interorganizational Workflows: An Approach based on Message
Sequence Charts and Petri Nets’, 1999, Systems Analysis - Modelling - Simulation, vol. 34,
pp.335-367.

11. Liu, D.-R., Shen, M, ‘Workflow modeling for Virtual Processes: An Order-Preserving
Process-View Approach’, 2003, Information systems, vol. 28, pp. 505-532.

12. Eshuis, R., Grefen, P., ‘Constructing Customized Process Views’, 2008, Data &
Knowledge Engineering, vol. 64, pp. 419-438.

13. van der Aalst, W.M.P., ‘Inheritance of interorganizational workflows to enable business-
to-business e-commerce’, 2002, Electronic Commerce Research, vol. 2(3), pp. 195-231.

14. Zha, H, Yang, Y, Wang, J, and Wen, L, ‘Transforming XPDL to Petri Nets’, 2008, BPM
2007 Workshop, LNCS 4928, pp. 197-2007.

15. Dun, H, Xu, H, and Wang, L, ‘Transformation of BPEL Processes to Petri Nets’, 2008,
2’nd IFIP/IEEE International Symposium on Theoretical Aspects of Software Engineering,
IEEE computer Society, June, pp. 166-173.

16. van der Aalst, W.M.P., Lassen, K.B., ‘Translating Unstructured Workflow Processes to
Readable BPEL: Theory and Implementation’, 2008, Information and Software
Technology, vol. 50, no.3, February, pp. 131-159.

17. van der Aalst, W.M.P., Ouyang, C, Dumas, M, and ter Hofstede, A.H.M., ‘Pattern-Based
Translation of BPMN Process Models to BPEL Web Services’, 2007, International Journal
of Web Services Research.

18. van der Aalst, W.M.P., Ouyang, C, Dumas, M, and ter Hofstede, A.H.M., ‘From BPMN
Process Models to BPEL Web Services’, 2006, Proceeding of the 4th International
Conference on Web Services, IEEE computer Society, September, pp.285-292.

19. Yuan, P, Jin, H, Yuan, S, Cao, W, and Jiang, L, ‘WFTXB: A Tool for translating Between
XPDL and BPEL’, 2008, The 10th IEEE International Conference on High Performance
computing and Communications, IEEE computer Society, September, pp. 647-652.

20. Ouyang, C, Verbeek, E, van der Aalst, W.M.P., Breutel S, Dumas, M, and ter Hofstede,
A.H.M., ‘Formal Semantics and Analysis of Control Flow in WS-BPEL’, 2007, Science of
Computer Programming, vol.67, no. 2-3, July, pp. 162-198.

21. Eshuis, R, Grefen, P, ‘Structural matching of BPEL Processes’, 2007, Fifth European
Conference on Web services, Nov, IEEE computer Society, Nov, pp.171-180.

22. Zhao, X., Liu, C., and Yang, Y., ‘An Organisational Perspective on Collaborative Business
Processes’, 2005, In Proceedings of the 3rd International Conference on Business Process
Management, Nancy, pp.17-31.

23. ‘Business Process Modeling Notation, V1.1’, 2008, Object Management Group, January,
http://www.omg.org/spec/BPMN/1.1/PDF

Page 30 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://www.opengroup.org/onlinepubs/007908799/xbd/re.html
http://www.wfmc.org/standards/documents/TC-1025_xpdl_2_2005-10-03.pdf
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.bizagi.com/eng/
http://www.omg.org/spec/BPMN/1.1/PDF

For Peer Review

UniFlexView : A Unified Framework for Constructing Workflow Process Views 31

24. Mendling, J, Lassen, K.B., and Zdum, U, ‘Transformation Strategies between Block-
Oriented and Graph-Oriented Process Modelling Languages’, 2006, Multikonferenz
Wirtschaftsinformatik 2006. Band 2, pp.297-312.

25. White, S, ‘Using BPMN to Model a BPEL Process’, 2005, BPTrends, vol.3 (3), pp.1-18.
26. Shapiro, R.M., ‘XPDL 2.0: Integrating Process Interchange and BPMN’, 2006, 2006

Workflow handbook including business process management, Future Strategies Inc, USA,
pp.183-194.

27. van der Aalst, W.M.P., ‘Patterns and XPDL: A Critical Evaluation of the XML Process
Definition Language’, 2003, QUT Technical report FIT-TR-2003-06, Queensland
University of Technology, Brisbane, Australia.

28. Hornung, T, Koschmider A, and Mendling, J, ‘Integration of heterogeneous BPM
Schemas: The Case of XPDL and BPEL’, 2006, Technical Report JM-2006-03-10, Vienna
University of Economics and Business Administration.

29. Van Dongen, B.F., Mendling, J, van der Aalst, W.M.P., ‘Structural Patterns for Soundness
of Business Process Models’, 2006, Proceedings - IEEE International Enterprise
Distributed Object Computing Workshop, EDOC 2006, pp.116-125.

30. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B, and Barros, A.P.,
‘Workflow Patterns’, 2003, Distributed and Parallel Databases, vol.14(1), pp. 5-51.

31. van der Aalst, W.M.P., Lassen, K.B., ‘WorkflowNet2BPEL4WS: A tool for translating
unstructured workflow processes to readable BPEL’, 2006, Lecture Notes in Computer
Science, vol. 4275, pp. 127-144.

32. Chiu, D.K.W., Cheung, S.C., Till, S, Karlapalem, K, Li, Q, and Kafeza, E, ‘Workflow
View Driven Cross-Organizational Interoperability in a Web Service Environment’, 2004,
Information Technology and Management, Kluwer Academic Publishers, vol.5, pp. 221-
250.

33. Schulz, L.A.,Orlowska, M.E., ‘Facilitating cross-organisational workflows with a
workflow view approach’, 2004, Data & Knowledge Engineering, vol.51, pp.109-147.

34. Zhao, J.L., ‘Workflow Management in the Age of e-Business (Tutorial)’, 2002, In
Proceedings of International Conference on System Sciences.

35. Perrin, O., and Godart, C., ‘A Model to Support Collaborative Work in Virtual
Enterprises’, 2004, Data & Knowledge Engineering, vol. 50, pp.63-86.

36. Liu, D, Shen, M, ‘Modeling Workflows with a Process-View Approach’, 2001, Database
Systems for Advanced Applications, IEEE computer Society, April, pp.260-267.

37. Chebbi, I, Dustdar, S, and Tata, S, ‘The view-based approach to dynamic inter-
organizational workflow cooperation’, 2006, Data & Knowledge Engineering, vol. 56,
pp.139-173.

38. Shapiro, R, ‘A Technical Comparison of XPDL, BPML and BPEL4WS’, 2002, Cape
Vision Inc., December, viewed 13 November 2008,
http://www.businessprocesstrends.com/deliver_file.cfm?fileType=publication&fileName
=Comparison%20of%20XPDL%20and%20BPML_BPEL%2012-8-02111.pdf.pdf

39. Zhao, X, Liu, C, Sadiq, W, Kowalkiewicz, M, and Yongchareon, S, ‘On Supporting
Abstraction and Concretisation for WS-BPEL Business Processes’, 2008, Centre for
Information Technologies Research, Swinburne University of Technologies, Melbourne,
and SAP Research Centre, Brisbane.

40. Yongchareon, S, Zhao, X, ‘Technical Report of FlexView Manual – Support for Business
View Operations’, 2008, Centre for Information Technologies Research, Swinburne
University of Technologies, Melbourne, and SAP Research Centre, Brisbane.

41. Jiang, P., Shao, X., Gao, L., Qiu, H., and Li, P.: A process-view approach for cross-
organizational workflows management, Advanced Engineering Informatics, 2010, vol. 24,
pp. 229–240

42. Eshuis, R., Norta, A., Kopp, O., and Pitkänen, E.: Service Outsourcing with Process Views,
IEEE Transactions On Services Computing, 2015, vol. 8, no. 1, pp. 136-154.

Page 31 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

http://www.businessprocesstrends.com/deliver_file.cfm?fileType=publication&fileName=Comparison%20of%20XPDL%20and%20BPML_BPEL%2012-8-02111.pdf.pdf
http://www.businessprocesstrends.com/deliver_file.cfm?fileType=publication&fileName=Comparison%20of%20XPDL%20and%20BPML_BPEL%2012-8-02111.pdf.pdf

For Peer Review

32
43. X. Zhao, C. Liu, W. Sadiq, M. Kowalkiewicz, and S. Yongchareon.: Implementing process

views in the web service environment. World Wide Web, 2011, vol. 14, no. 1, pp. 27–52.
44. X. Zhao, C. Liu, S. Yongchareon, M. Kowalkiewicz, and W. Sadiq. 2015. Role-based

process view derivation and composition. ACM Transactions on Management Information
Systems 6, 2 (2015), 7:1–7:24.

45. Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring acyclic process models,
Information Systems, Volume 37, Issue 6, September 2012, Pages 518-538

46. Yongchareon S., Liu C., Zhao X., Kowalkiewicz M. (2010) BPMN Process Views
Construction. In: Kitagawa H., Ishikawa Y., Li Q., Watanabe C. (eds) Database Systems
for Advanced Applications. DASFAA 2010. Lecture Notes in Computer Science, vol
5981. Springer, Berlin, Heidelberg

47. J. Vanhatalo, H. Volzer, J. Koehler, The refined process structure tree, Data Knowl. Eng.
68 (9) (2009), pp. 793–818

48. R. Eshuis, A. Norta, R. Roulauxa, Evolving process views, Information and Software
Technology, 2016, vol. 80, pp. 20-35.

49. J. Küster, H. Völzer, C. Favre, M.C. Branco, K. Czarnecki, Supporting Different Process
Views through a Shared Process Model, in the 9th European Conference on Modelling
Foundations and Applications, 2013, LNCS 7949, pp. 20–36.

Page 32 of 32

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

	Uniflexview a unified copyright
	FedUni ResearchOnline
	https://researchonline.federation.edu.au

	Uniflexview a unified

