

Federation University ResearchOnline

https://researchonline.federation.edu.au

Copyright Notice

This is a pre-copy-editing, author-produced version of an article accepted for publication in Journal of Antimicrobial Chemotherapy following peer review. The version of record:

Abdul Momin, Liakopoulos, A., Bean, D. C., Phee, L. M., & Wareham, D. W. (2019). A novel plasmid-mediated polymyxin resistance determinant (mcr-1.8) in Escherichia coli recovered from broiler chickens in Brunei Darussalam. *Journal of Antimicrobial Chemotherapy*, *74*(11), 3392–3394.

Is available online at:

https://doi.org/10.1093/jac/dkz352

See this record in Federation ResearchOnline at: http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/170979

1	A novel plasmid mediated polymyxin resistance determinant (mcr-1.8) in Escherichia
2	coli recovered from broiler chickens in Brunei Darussalam
3	
4	Authors: Muhd Haziq F. Abdul Momin ¹ , Apostolos Liakopoulos ² , David C. Bean ³ , Lynette
5	M. Phee ^{1,4} , David W. Wareham ^{1,4*}
6	
7	¹ Antimicrobial Research Group, Centre for Immunobiology, Blizard Institute, Barts & The
8	London School of Medicine and Dentistry, Queen Mary University of London, London,
9	United Kingdom
10	² Department of Microbial Biotechnology and Health, Institute of Biology, University of
11	Leiden, Leiden, The Netherlands.
12	³ School of Applied & Biomedical Sciences, Federation University Australia, Ballarat,
13	Australia.
14	⁴ Division of Infection, Barts Healthcare NHS Trust, London, United Kingdom
15	
16	*Corresponding Author:
17	Dr David W Wareham
18	Antimicrobial Research Group, Centre for Immunobiology, Blizard Institute
19	4, Newark Street, Whitechapel, London E1 2AT,
20	United Kingdom
21	Telephone: +44(0)20 7882 2317 Fax: +44(0)20 7882 2181;
22	Email:d.w.wareham@qmul.ac.uk
23 24	Running Title: Novel plasmid mediated polymyxin resistance determinant <i>mcr-1</i> .8

25 **Sir**, 26

27 Multi-drug resistant (MDR) Gram-negative bacteria are identified as critical pathogens and 28 their effective treatment increasingly relies on the polymyxins (polymyxin B, colistin), either 29 alone or, as part of unorthodox combination therapies.¹ The rapid emergence of polymyxin 30 resistance due to mutations / insertions in genes involved in LPS modifications (lpxCAD, 31 pmrA/B, mgrB, phoP/Q, ccrAB) has been reported among individuals exposed to or treated 32 with polymyxins.¹ Of greater concern are increasing reports of resistance due to the 33 acquisition of phosphoenthanolamine (PEtN) transferases, enzymes that catalyze the addition of phosphoethanolamine to lipid A resulting in lower binding affinity of polymyxins.¹ Since 34 the first identification in China,¹ multiple gene variants have been reported in diverse 35 36 bacterial genera recovered from a range of human, retail food, food producing animal and environmental sources.² Here, we report a novel variant of PEtN transferase, designated 37 38 MCR-1.8, and its genetic context in an MDR E. coli isolate recovered from poultry in Brunei 39 Darussalam.

40 Isolate C22 was isolated pre-slaughter from a healthy bird during a surveillance study 41 (2017) and identified as E. coli by MALDI-TOF MS (Bruker, Coventry, UK). Susceptibility 42 testing according to EUCAST / CLSI methods confirmed resistance to colistin (MIC=8 43 mg/L), polymyxin B (MIC=12 mg/L) and an MDR phenotype (Table S1). Screening of E.coli C22 for mcr-like genes by PCR3 and Sanger sequencing, revealed a variant with a single non-44 45 synonymous nucleotide difference (A8G) from mcr-1.1 (Table S2) designated mcr-1.8 by 46 NCBI (Accession number KY683842.1) and resulting in a glutamine to arginine substitution (Q3R) in the transmembrane portion of the protein, physically distant from the extracellular 47 catalytic domain. The previously identified MCR-1.2 and MCR-1.12 also contain 48 49 respectively the amino acid substitutions Q3L and Q3H with no attributable loss of catalytic function.⁴ The purified mcr-1.8 amplicon was cloned into pCR-Blunt II TOPO vector 50

52	conferring a 4- to 16-fold increase in the MIC of colistin and polymyxin B (Table S1).
53	Whole-genome sequencing of E. coli C22 with the Illumina HiSeq platform (Illumina,
54	Inc., San Diego, CA) followed by <i>de novo</i> assembly and annotation identified the <i>mcr-1.8</i>
55	gene as the only antimicrobial resistance gene, located between the $topB$ (encoding a DNA
56	topoisomerase III) and <i>nikB</i> (relaxase) genes, on a 63,056 bp IncI2 plasmid (pEC-MCR1.8)
57	(Figure 1). Illumina reads was aligned using the nucleotide sequence of pMRY16-002_4 as
58	an IncI2 reference plasmid (Ref).

(Invitrogen, Paisley, UK) and expressed in E. coli TOP10 under its native promoter,

59 Analysis of pEC-MCR1.8 (KY792081.1) confirmed a similar position of mcr-1.8 and absence of the ISApl1 locus as in other IncI2 plasmids carrying mcr-1-like genes (Fig. 1). 60 61 Apart from the mcr-1.8 gene, pEC-MCR1.8 is predicted to encode 85 open reading frames in total, including genes for replication, maintenance, partitioning and stability, as well as 62 63 conjugal transfer/ formation of type IV pilus. Immediately downstream of mcr-1.8 was the pap2 gene predicted to encode a membrane-associated phosphatase enzyme able to catalyze 64 65 the removal of terminal phosphate groups from lipid carriers essential in the transport of hydrophilic small molecules across the outer membrane.⁵ The role of PAP2-like phosphatases 66 67 is unclear, although PAP2 does not seem to influence susceptibility to polymyxins.⁶

68

51

69 Transfer of plasmid-mediated resistance genes by conjugation was investigated using 70 *E. coli* J53 (recipient) with transconjugants (ECJ53/C22) selected by plating onto MH II agar 71 supplemented with colistin (4 mg/L) and sodium azide (150 mg/L). Polymyxin resistance was 72 transferable with a frequency of 2.6 x 10⁻⁴ transconjugants per donor cell, suggesting pEC-73 MCR1.8 has the potential to spread into key human pathogens.

Analysis of the entire genome sequence of *E. coli* C22 was performed as previously
 described⁸ and confirmed the presence of multiple resistance genes to aminoglycosides

Commented [d1]: <u>Sci Rep.</u> 2017 Apr 19;7(1):928. doi: 10.1038/s41598-017-01082-y. Elucidation of quantitative structural diversity of remarkable rearrangement regions, shufflons, in Incl2 plasmids. <u>Sekizuka T¹, Kawanishi M², Ohnishi M³, Shima A⁴, Ka</u>

<u>Sekizuka T¹, Kawanishi M², Ohnishi M³, Shima A⁴, Kato K⁵, Yamashita A⁵, Matsui M⁴, Suzuki S⁴, Kuroda M⁵.</u>

This needs to be added somewhere

Commented [d2]: We will get a new accession number

76 (*aph*(4)-*Ia*, *aadA1*, *aac*(3)-*IVa*, *aph*(3)-*Ic*), β-lactams (*bla*_{TEM-1B}, *bla*_{CTX-M-65}),
77 fluoroquinolones (*qnrS1*), fosfomycin (*fosA4*), phenicols (*cmlA1*, *floR*), trimethoprim
78 (*dfrA15*, *dfrA14*), sulphonamides (*sul3*) and tetracyclines (*tetA*, *tetM*).

No mutations in the *lpxCAD* or *mgrB* genes associated with polymyxin resistance were identified but polymorphisms were present in *phoP/Q* and *pmrA/B* predicted to encode the amino acid changes I44L (*phoP*), I165F (*phoQ*), S29G (*pmrA*), D282G and Y358N (*pmrB*) relative to the K12 sequence. These substitutions have not previously been linked with reduced susceptibility to polymyxins in *E. coli* but D282G and Y358N are predicted to occur in the ATP binding domain of *pmrB* in *Salmonella* spp⁹ and could contribute to polymyxin resistance.

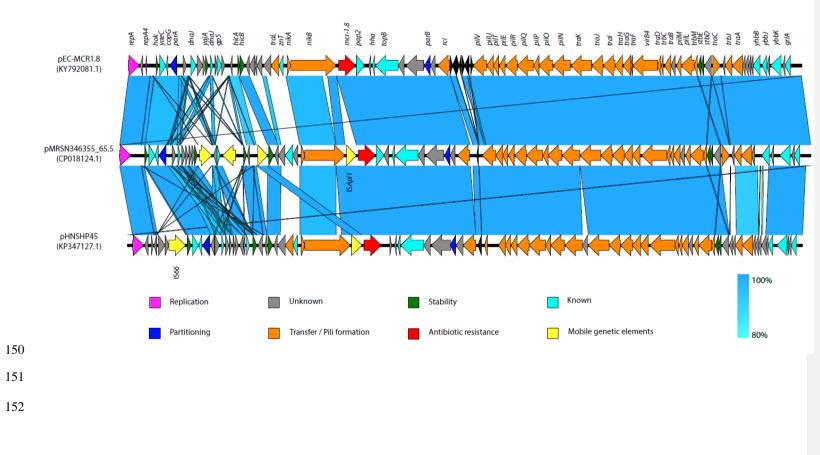
Apart from pEC-MCR1.8, *in silico* analysis confirmed the presence of multiple plasmid replicons belonging to FIA, FIB, FIC, FII, HI1A, HI1B, I1, X1 and Y types, several of which were associated with genes encoding antibiotic resistance (Table S3). Of note β lactam- (*bla*_{CTX-M-65}), tetracycline- (*tetA*), phenicol- (*floR*) and aminoglycoside-resistance (*aph*(4)-*Ia*, *aac*(3)-*IVa*,) were associated with an I1 plasmid whereas fosfomycin- (*fosA4*) and sulfonamide-resistance (*sul3*) were localised to a HI mulitreplicon (HIA, HIB and FIA) plasmid,

93

Analysis of the WGS sequencing data with SerotypeFinder 1.1 predicted an O88:H31 serotype. Multi-locus sequence typing analysis designated *E. coli* C22 to a globally disseminated sequence type (ST) 101, associated with polymyxin resistance across South East Asia South America and Europe.¹⁰ Of more concern, are reports that highlight its potential to act as a reservoir for additional resistances including to carbapenems, suggesting that ST101 could represent a 'high-risk' clone able to promote global dissemination of polymyxin and multi-drug resistance in *E. coli*.

101	Although only recently identified, 15 functional variants of the MCR-1 enzyme have
102	now been described, including the mcr1.8 allele encoded by the pEC-MCR1.8 plasmid that
103	was characterized here. This highlights the need for continual and enhanced surveillance for
104	plasmids, host strains and bacterial species able to support the success and dissemination of
105	these resistance determinants. Given the existing knowledge of the global epidemiology of
106	MCR-producing strains this may be particularly important for countries in South East Asia.

108 Funding


- 109 This study forms part of M. H. F. Abdul Momin Ph. D. project funded through the Brunei
- 110 Darussalam Government in-service training scheme.
- 111 Genome sequencing was provided by MicrobesNG (http://www.microbesng.uk), which is
- supported by the BBSRC (grant number BB/L024209/1).
- 113
- 114 Transparency declarations
- 115 None to declare.
- 116

117 Supplementary data

118 Tables S1-S3 are available as Supplementary data at JAC Online.

References

120 121	1. Liu YY, Wang Y, Walsh TR <i>et al</i> . Emergence of plasmid-mediated colistin resistance
122	mechanism MCR-1 in animals and human beings in China: a microbiological and molecular
123	biological study. Lancet Infect Dis 2016; 16: 161-8.
124	2. Patridge SR, Di Pilato V, Doi Y <i>et al.</i> Proposal for assignment of allele numbers for
125	mobile colistin resistance (mcr) genes. J Antimicrob Chemother 2018; 73: 2625-30
126	3. Cavaco L, Mordhorst H, Hendriksen R. Laboratory Protocol: PCR for plasmid-
127	mediated colistin resistance genes, mcr-1 and mcr-2 (multiplex). National Food Institute,
128	Denmark, 2016.
129	4. Di Pilato V, Arena F, Tascini C <i>et al. mcr-1.2</i> , a new mcr variant carried on a
130	transferable plasmid from a colistin-resistant KPC carbapenemase-producing Klebsiella
131	pneumoniae strain of sequence type 512. Antimicrob Agents Chemother 2016; 60: 5612-5.
132	5. Fan J, Jiang D, Zhao Y <i>et al</i> . Crystal structure of lipid phosphatase <i>Escherichia coli</i>
133	phosphatidylglycerophosphate phosphatase B. Proc Natl Acad Sci U S A 2014; 111: 7636-40.
134	6. Zurfluh K, Kieffer N, Poirel L <i>et al</i> . Features of the <i>mcr-1</i> cassette related to colistin
135	resistance. Antimicrob Agents Chemother 2016; 60: 6438-9.
136	7. Brouwer MSM, Tagg KA, Mevius DJ <i>et al</i> . Incl shufflons: Assembly issues in the
137	next-generation sequencing era. Plasmid 2015; 80: 111-7.
138	8. Abdul Momin MHF, Liakopoulos A, Wareham DW. Draft genome sequence of a
139	multidrug-resistant sequence type 231 outbreak-associated clone of Klebsiella pneumoniae,
140	KP41-2015, producing OXA-232 carbapenemase. Genome Announc 2017; 5.
141	9. Sun S, Negrea A, Rhen M <i>et al</i> . Genetic analysis of colistin resistance in <i>Salmonella</i>
142	enterica Serovar Typhimurium. Antimicrob Agents Chemother 2009; 53: 2298-305.
143	10. Fernandes MR, McCulloch JA, Vianello MA et al. First report of the globally
144	disseminated IncX4 plasmid carrying the mcr-1 gene in a colistin-resistant Escherichia coli
145	sequence type 101 isolate from a human infection in Brazil. Antimicrob Agents Chemother
146	2016; 60 : 6415-7.

Figure 1: Comparison of pEC-MCR1.8 with selected IncI2 plasmids carrying mcr-1.1

153	Open reading frames are represented with arrows and the direction of transcription by arrowheads. Open reading frames encoding proteins
154	involved in replication, partitioning, stability, transfer/ type IV pilus formation, antibiotic resistance and other known or unknown functions are
155	colour-coded. The shufflon region is indicated with black rectangles. Areas shaded in blue indicate nucleotide identity. This figure is drawn to
156	scale, appears in colour in the online version of JAC and in black and white in the printed version of the journal.
157	