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Abstract: State Estimation is a traditional and reliable technique within power distribution and
control systems. It is used for building a topology of the power grid network based on state
measurements and current operational state of different nodes & buses. The protection of sensors
and measurement units such as Intelligent Electronic Devices (IED) in Central Energy Management
System (CEMS) against False Data Injection Attacks (FDIAs) is a big concern to grid operators. These
are special kind of cyber-attacks that are directed towards the state & measurement data in such a
way that mislead the CEMS into making incorrect decisions and create generation load imbalance.
These are known to bypass the traditional bad data detection systems within central estimators.
This paper presents the use of an additional novel state estimator based on Kalman filter along
with traditional Distributed State Estimation (DSE) which is based on Weighted Least Square (WLS).
Kalman filter is a feedback control mechanism that constantly updates itself based on state prediction
and state correction technique and shows improvement in the estimates. The additional estimator
output is compared with the results of DSE in order to identify anomalies and injection of false data.
We evaluated our methodology by simulating proposed technique using MATPOWER over IEEE-14,
IEEE-30, IEEE-118, IEEE-300 bus. The results clearly demonstrate the superiority of the proposed
method over traditional state estimation.

Keywords: smart grid; state estimation; Kalman filter

1. Introduction

Smart grid is an IED-based distribution and generation facility where all the power
facilities such as buses, nodes, control centres and meters use duplex communication and
share useful data for operational efficiency [1]. The schematic view of the smart grid is
shown in Figure 1. This intricate network includes customers ranging from single users,
critical businesses, defence facilities, and airports. Since the smart grid is an Internet
of Things (IoT) based network where every section of the network is interlinked, hence,
cyber-attacks to a certain part of the network could take control of the complete grid [2].
The attackers could use it for further malicious motives such as shutdown, cascaded
blackouts, or terrorism activities [3]. Therefore, the protection of smart grid from FDIAs
and cyber-attacks require immediate attention. State estimation is a traditional technique
that uses a limited number of measurements for determining the operational state of a
system [4]. State estimation is used to build a grid topology at the supervisory control and
management layer [5]. State estimation creates a matrix known as jacobian matrix by using
the state data and covariance matrix that also helps with detection of errors [6].

It is also preferrable for an electrical grid because installation of metering devices at
every bus is not practical. A bus refers to a part of transmission network within electrical
grid where multiple transmission lines intersect. Cyber-attacks such as stealth and FDIAs
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have been known to target state estimation data and state measurements which are collected
through IEDs such as phasor measurements units (PMUs) [7].
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A PMU like any other metering device is an IED that collects useful information
and state data for monitoring the operational status of the sections of the grid [8]. For
synchronisation purpose, a global positioning system signal is used with every PMU. This
helps for correlation of state data from different sections & buses within multi-distributed
gird [9]. FDIAs prepared based on the knowledge of the network configuration makes them
more lethal and difficult to detect using traditional bad data detection approaches [10].
Furthermore, it is also desirous to have quick detection of FDIAs, however quick detection
operations are computationally expensive.

In most state estimation algorithms, the measurement observation model is highly
nonlinear which can be solved by the possible use of Kalman filter for nonlinear sys-
tems [11]. The Kalman filtering techniques have been improved significantly over the past
few years with the variants such as extended Kalman filter, unscented Kalman filter and
robust minimum variance unscented Kalman filter [12]. In this paper, we have investigated
the detection of FDIA by using a minimum variance unscented Kalman filter (mv-UKF) to
predict and update the state function starting from the previously known states [13]. These
values were compared with the results acquired from a traditional weighted least square
(WLS) based state estimation algorithm. The difference in the two deviates significantly
when the system is under the influence of FDIA triggering the presence of an attack. As per
author’s knowledge, this technique has not been used in combination in distributed WLS.

Since WLS only collects a single set of measurements, it fails to estimate the state
for a quasi-steady state load profile [14,15]. For this purpose, we proposed the use of
distributed state estimation in that improves the result by performing state estimation
and false data detection in a distributed fashion [16]. This also reduces the computational
complexity of the central estimator. However, state estimation in a distributed fashion
requires installation of PMUs at multiple locations hence there is a trade-off between
number of PMUs versus detection accuracy [17]. Therefore, dynamic state estimation is
useful and can help with identifying presence of bad data and topology errors.

The main motivation of this study is to develop a new data attack detection tech-
nique to overcome the problem that the traditional WLS cannot identify [18,19]. In the
current literature, there is lot of emphasis being made on Kalman filter state estimation
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as well as distributed state estimation [20]. However, there is not much work available
to cite where both of these techniques are combined together. Our proposed technique
will find new vulnerabilities for power system design that can target detection methods
for corresponding vulnerability in order to improve system detection and robustness.
Considering the historical state estimates of the system without being attacked, a correct
reference for state estimation with Kalman filtering is proposed by combing WLS and
mv-UKF filter estimates.

The main contribution of this paper is:

• False data detection using measurement residual obtained from WLS based distributed
state estimation

• Acquire estimates using mv-UKF and form a covariance matrix
• Observe the deviation in the output by performing two levels of state estimation using

WLS and Kalman filter

The remainder of paper is organised as follows. The related work is explained in
Section 2. The mathematical formulation is explained in Section 3. The case studies and
simulations are discussed in Section 5. Finally, Section 6 concludes the paper.

2. Literature Review

In Ref. [2], Amin et al. Presented a fault discrimination approach based on machine
learning algorithm (MLA) based cyber-attack. State of the art MLA classifiers were used
to distinguish between faults and cyber-attacks within smart grid. They clarified that the
precision in the detection of classifiers decreases when they are trained only with faults
and data. The future scope includes the analysis of different types of cyber-attacks and
the use of synthesized data for the early training of MLA in distinguishing between faults
and cyber-attacks. The proposed techniques in this work have needs to be verified with
IEEE-bus systems with distributed estimation.

J. Cao et al. [3] investigated a potential invasion pathway of the FDIA against a cyber
physical system and designed a novel model to detect different types of FDIA. The problem
of high false alarm rate of the model caused by imbalance data was addressed. They
also proposed oversampling in order to obtain pseudo-data and stored into the database
that assists in training and evaluating the model. An ensemble classifier was constructed
to detect the FDIA which improved the accuracy of difficult-classification samples and
precision of FDIA detection. The results show that this model can detect different types of
FIDAs. However, the system needs to be tested on a number of different size bus systems.

Al-Eryani and Baroudi in [4] analysed distributed partitioning state estimation using
chi-square tests using IEEE-39 Bus system. The system was divided into 3 subsystems and
each partition was treated as a separate independent system. False data was injected in
two different places. The results demonstrate that false data was detected using subsystem
partition while not treating the whole grid as one system. The downside of this technique
was that it was tested on a small system. The proposed methodology does not deal well
with non-linearities in the load profile.

Pei et al. in [5] proposed a deviation based false data detection method based on an
additional Kalman filter for the purpose of dynamic state estimation. The exponential
weighting functions were used to detect FDIA effectively. The measurements were collected
using the PMUs synchronised using Global position system signals. However, due to
continuous variation and non-linearities in the load profile, a time variant method needs to
be looked into to improve the detection.

In Ref. [6], an online parametric estimate based on software defined controller was
used with GPU enabled robust estimator. The graphical processing unit with deep learning
algorithm, short-term memory, and an extended Kalman filter was used to solve the issue of
massive connections. However, the implementation requires 6G enabled network in order
to achieve minimum latency countering the transients in order to minimise the chances of
cascading failures, therefore, it is not going to take place in coming years before trials and
practical tests can take place.
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In Ref. [7], chen et al. presented a false data detection model based on particle swarm
optimization. The system was tested against false data attack with minimum attack residual
increment. Two kinds of estimates were proposed for conducting chi-square tests. However,
the system was not analysed for multiple cyber-attacks as this will lead to a much more
complex residual model and hence it will be difficult to solve the false data attack vector.
The proposed methodology needs to be verified for distributed state estimation.

In Ref. [9], a parallel dynamic state estimator using graphical processing units and
markov model was proposed due to stochastic nature of the power system. The history of
the system’s behaviour was used to improve the accuracy of the results obtained through
Euclidean distance metric. However, the detection accuracy needs to be improved by
increasing the number of processing units which will lead to increased computational
complexity. The use of parallel graphical processing units for state estimation may increase
computational complexity.

3. State Estimation Using Weighted Least Squares

The state estimation within power grid uses an internal bad data detection system
known as chi-square test based on a normalized residual of collected phasor measure-
ments [20]. Based on these phasor measurements, a threshold limit is created that defines
the normal operating conditions of the grid. The estimates will always stay below this
threshold limit created by the system, under normal operating conditions, unless there
is bad data present. A residual superseding the threshold limit triggers the presence of
bad data alarm, hence the estimator will not accept the measurement as an authentic. In
order to formulate the objective function for chi-square test, the non-linear model for a
state estimation can be represented as follows [21]:

z = h(x) + e (1)

where z is the meter measurement, h(x) is the function of state variable x represents a
Jacobian matrix depending on the network topology, and e is the noise that follows a
Gaussian distribution.

In order to solve the WLS estimation problem, the objective function can be defined as
follows [22]:

J(x̂) =
m

∑
i=1

(zi − hi(x))2

σ2
i

(2)

where J(x̂) is the weighted-sum square residual that follows chi-square distribution, x̂ is an
estimate of x solved by WLS, X 2

(m−n) is the detection threshold corresponding to p, where p
is the detection confidence which is taken as 95%, and n is the number of state variables.
We examine the function J(x̂) ≥ X 2

(m−n), if the resulting value is greater, then bad data is
detected, otherwise no bad data.

3.1. False Data Injection Attack
Mathematical Formulation

In order to inject false attack, the measurements at each bus are falsified by adding an
attack vector a. The state estimates can be represented as follows [23,24]:

za = Hx + a + e (3)

a = Hc (4)

a = [a1, a2, . . . , am]T (5)

za = Hx + Hc + e (6)

za = H(x + c) + e (7)
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where a = [a1, a2, . . . , am]T represents the attack at corresponding bus, H is the Jacobian
matrix representing the topology of the network, c = (c1, c2, . . . , cn)T is an arbitrary vector,
e is the system noise [25]. This attack is not detected since the state (x + c) is treated as
the real value in the estimator. The hypothesis tests fail to detect the FDIA as this will not
change the measurement. For this purpose, the use of dynamic state estimator based on
Kalman filter is used.

3.2. Kalman Filter as an Estimator

The Kalman filter is better suited for dealing with non-linearities in the load profile
which WLS cannot estimate [26]. It takes a set of data and estimates the trend of data by
using a distribution function of these variables. As shown in Algorithm 1, the additional
estimator is mv-UKF where kalman estimates are acquired based on a priori knowledge
of the previous estimates. These estimates are used to measure the deviation between the
WLS estimate and mv-UKF estimates. Collection of sigma point is necessary in order to
form the mean and covariance matrix of the kalman estimates.

A Kalman filter contains feedback loops and can be used for time series prediction with
historical data [11]. The non- linear equations in kalman are not linearized as with other
gradients methods [12]. Instead, a statistical distribution of the state is represented through
sigma points which provides estimates of the actual state and the posterior covariance
matrix [11–13].

Algorithm 1 Additional estimator using mv-UKF

Result: Collect meter readings using sensors
Initialization;
while forecast kalman estmiates do

calculate sigma points;
Create mean and covriance matrix as per Equations (10)–(18)
Calculate kalman gain per Equations (19) and (20)

if WLS estimate and kalman esitmates deviation exceeds objective function threshold in
Equation (2)
then

Claculate new sigma points and increase weights per Equations (10) and (11)
else

No bad data detected, update state function
end

end

The test results in [1] were completed using DSE only and was limited to IEEE-14
and IEEE-30 Bus without the use of Kalman filter. In this work, we have expanded the
research work in [1] by using the similar methodology, however, included the IEEE-118
and IEEE-300 bus and an additional Kalman filter has also been incorporated.

4. Mathematical Formulation Based on Kalman Estimates

Kalman filter estimator can be represented as follows:

xt = f (xt−1, t− 1) + qt−1 (8)

zt = h(xt, t) + rt (9)

where x is the state vector, qt−1 is the system noise, rt is the measurement Gaussian
noise with zero mean, and z is the measurement vector. The function f and h are non-
linear equations representing the system and measurements model in terms of the state
variables [13]. The Kalman filter implementation consists of the prediction and correction
steps. First, it obtains the state and matrix covariance prediction, in the second step it
calculates the Kalman gain and the state and matrix covariance update steps [11,12]:
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The sets of 2n + 1 point is created in (8) for the state vector x at time t − 1 as follows:

Xt+1 = xt +
√

c
[√

nPt−1

]
(10)

The initial state vector and the initial covariance matrix is defined based on a priori
knowledge of the historical estimates [13]. The sets of sigma points are estimated by the
state update function [14].

Step I: State prediction
X̂i

t = f
(

Xi
t−1, t− 1

)
(11)

where i = 0, 1, . . . , 2n, Xi
t−1 is the (i + 1)th column of matrix Xt−1 and the resulting Xt

is an n × (2n + 1) matrix propagated by points. The predicted state mean vector x−t and
covariance matrix P−t are defined as follows:

x−t =
2n

∑
i=0

Wm
i X̂i

k (12)

P−k =
2n

∑
i=0

Wc
i [(X̂i

k − x−k )
(

X̂i
k − x−k

)T
] + Qt−1 (13)

where Wm
i refers to weights of the Kalman filter and X̂i

k are sigma points [11]. Qt−1 is the
covariance matrix of the process noise [12]. A minimal set of sampling points known as
sigma points are selected and transformed using the nonlinear function, whereas the new
mean and the covariance are formed out of those transformed points [13]. The idea is that
it is easier to approximate a Gaussian distribution than it is to approximate an arbitrary
nonlinear function [14].

Step II: State Correction
The points around the predicted state mean vector and the covariance matrix are

defined as:

X−t =

[
x−t . . . x−t ]+

√
c[0
√

P−t −
√

P−t

]
(14)

Derive points from the measurement update function as,

Y−t = h
(
X−t , t

)
(15)

The mean is calculated as:

µt =
2n

∑
i=0

Wm
i Y−i

t (16)

where Wm
i is the weights and Y−i

t is the measurement update function for the corrected
state estimate [11].

The covariance Sk and the cross-covariance Ct matrix of the state and measurements
are given as:

Sk =
2n

∑
i=0

Wc
i

[(
Y_i

t − µt

)(
Y_i

t − µt

)T
]
+ Rt (17)

Ct =
2n

∑
i=0

Wc
i [
(

X_i
t − x_

t

)(
Y_i

t − µt

)T
] (18)

where Rt is the covariance matrix of the observation noise vector [12–14].
The filter gain Kt, the mean xt and the covariance Pt are estimated as:

Kt = CtS−1
t (19)

xt = x_
t + Kt[yt − µt] (20)



Electronics 2021, 10, 1783 7 of 11

With the help of additional online estimator, state variables can be forecasted based
on prior knowledge of historic measurement.

5. Results & Discussion

In order to evaluate the performance of the proposed algorithm, the simulations were
conducted on IEEE-14, IEEE-30, IEEE-118 and IEEE-300 bus systems using MATLAB &
MATPOWER. The state variables were estimated using WLS based state estimation and mv-
UKF techniques. The system was subjected to FDIA on various bus and the deviation in the
output of the two results was measured. As shown in Figure 2, the WLS based distributed
state estimates DSE were plotted against real input and proposed methodology, when there
was no FDIA introduced. The normalized residual for all the voltage magnitudes were
found to be below the predefined threshold level set to trigger the presence of FDIA.

Table 1 shows the estimates obtained through DSE and an additional estimator based
on mv-UKF. This clearly shows that the size of the subsystem plays an effective role in
improving the results. The tests were carried out with different subsystems. Table 2
demonstrates the attack cases, number of measurements and the value of objective function
obtained using Equation (2). It is clear from the readings that the values obtained using
DSE stays below threshold limit hence presence of bad data is not detected. The proposed
estimator gives a value higher than the threshold limit hence indicating the presence of
bad data.
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Table 1. Compromised Bus numbers with Error.

Compromised
Bus

Real
(p.u.)

Estimate
DSE (p.u.)

Estimate
Proposed (p.u.)

Error Estimate
in DSE

Error in
Proposed

20 1.0094 0.9732 1.0126 0.0355 0.0041
40 1.0214 0.9860 1.0248 0.0358 0.0039
60 0.9828 0.9469 0.9887 0.0359 0.0059
80 1.0094 0.9732 1.0126 0.0353 0.0048

100 1.0214 0.9860 1.0248 0.0358 0.0039

Table 2. Objective function for different Attack scenarios.

Area Bus States (n) Measurements
(m) (m-n) Proposed J(x) WLS

1 Attack case 1 7 60 53 0.7005 0.68 0.675
2 Attack case 2 7 60 53 0.6755 0.64 0.63
3 Attack case 3 7 60 53 0.6505 0.63 0.62
4 Attack case 4 7 60 53 0.634 0.61 0.58
5 Attack case 5 7 60 53 0.345 0.33 0.3
6 Attack case 6 7 60 53 0.3308 0.325 0.31
7 Attack case 7 7 60 53 0.36 0.34 0.33
8 Attack case 8 7 60 53 0.4013 0.4 0.4
9 Attack case 9 7 60 53 0.435 0.43 0.42

10 Attack case 10 7 60 53 0.435 0.43 0.48
11 Attack case 11 7 60 53 0.485 0.48 0.48
12 Attack case 12 7 60 53 0.47 0.465 0.463
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After the FDIA at bus 20, 40, 60, 80, 100 as shown in Table 1, the intensity of the
voltage magnitude was changed. It can be observed that the WLS based state estimates
remain below the threshold limit, hence the presence of FDIA was not detected. With
the proposed methodology, the voltage magnate exceeds the threshold level defined by
the objective function, hence triggering the FDIA attack. Table 2 shows different attack
scenarios and the value of estimates against J(x). It is clear that by using the proposed
technique, the magnitude exceeds the J(x) hence indicative of FDIA, whereas the traditional
WLS estimates stay below the threshold, hence no FDIA can be detected.

The test spanned over 4 h, samples collected every 30 s, which is an expected sampling
period within SCADA. The results show that the estimated values with our method are
improving in the case of large-sized grids. All meter readings are contaminated by gaussian
noise with covariance of 10−1. In order to simulate Equations (4) and (5), the voltage
magnitudes were falsified at corresponding bus to emulate the injection of false data attack.
In the Figure 2, the estimates obtained through proposed estimator were plotted along
with the results obtained through DSE and actual input in per unit scale against each bus
number, when there is no FDIA.

The estimates obtained using mv-UKF estimator were plotted against each bus along
with real values and DSE in case of an FDIA. It can be easily seen that the Kalman filter
estimates based on priori information are closer to the actual values in case of FDIA.
For example, in Figure 3, at Bus no. 10 for IEEE-300 Bus, the estimates through Kalman
filter are improved compared with WLS method where the measurements are recorded at
0.90 per unit which is below the threshold limit 1.
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The DSE alone fails to detect this kind of attack. At Bus no. 58, Figure 3, in IEEE-300
Bus, the estimates obtained through WLS is 0.93 which is below the threshold limit 1 per
unit. This implies the residual will stay below the threshold limit hence false data will not
be detected. The results from the proposed online detector based on Kalman filter gives an
improvement and a value that exceeds the threshold; hence the presence of false data will
be triggered. The simulation results confirm the improvement in state estimation and false
data detection. It is concluded that in the case of FDIA, the deviation in the results of WLS
and Kalman filter was larger in the case of FDIA.

6. Conclusions

Paper propose the use of online Kalman filter estimator based on prior knowledge of
the state estimates in addition to traditional WLS state estimator within DSE. The proposed
estimator improves the state estimation results and detect FDIA which is not detected using
DSE alone. The measurements collected through metering devices are compared with the
estimates produced by online estimator and the difference of two identifies the presence of
bad data. The effectiveness of the proposed estimator was proven by the tests conducted
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over IEEE-14 bus, IEEE-30 bus, IEEE-118 bus, and IEEE-300 bus using MATLAB. The false
data is injected at different buses and the output of the WLS was recorded. The results are
plotted along with actual measurements and from online estimator. The results prove that
the estimates generated by additional estimator have improved in the case of FDIA. The
difference in the reading of two estimators identifies the false data. The simulation results
prove the superiority of the proposed method over WLS under false data injection attack.
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M.R., I.G., J.K. and S.I. All authors have read and agreed to the published version of the manuscript.
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Abbreviations

Abbreviation Meaning
IED intelligent electronic devices
CEMS central energy management system
FDIA false data injection attack
DSE distributed state estimation
WLS weighted least squares
IoT internet of things
PMU phasor measurement unit
SCADA supervisory control and data acquisition
MLA machine learning algorithm
GPU graphical processing unit
6G 6 generation
Nomenclature
z meter measurement
h(x) function of state variable
e noise follows gaussian distribution
j(x) objective function that follows chi-square distribution
σ2

i variance
a attack vector
za measurement with attack vector
xt state variable
x̂ state estimate
qt−1 system noise
rt measurement gaussian noise
Xt+1 sigma points
W sigma points weights
Qt−1 covariance of the system noise
Rt observation noise
µt mean of the corrected state
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