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Abstract—Electrical power grids comprise a significantly large
number of transformers that interconnect power generation,
transmission and distribution. These transformers having dif-
ferent MVA ratings are critical assets that require proper main-
tenance to provide long and uninterrupted electrical service. The
mineral oil, an essential component of any transformer, not only
provides cooling but also acts as an insulating medium within the
transformer. The quality and the key dissolved properties of insu-
lating mineral oil for the transformer are critical with its proper
and reliable operation. However, traditional chemical diagnostic
methods are expensive and time-consuming. A transformer oil
image analysis approach, based on the entropy value of oil,
which is inexpensive, effective and quick. However, the inability
of entropy to estimate the vital transformer oil properties such as
equivalent age, Neutralization Number (NN ), dissipation factor
(tanδ) and power factor (PF); and many intuitively derived
constants usage limit its estimation accuracy. To address this
issue, in this paper, we introduce an innovative transformer
oil analysis using two deep convolutional learning techniques
such as Convolutional Neural Network (ConvNet) and Residual
Neural Network (ResNet). These two deep neural networks are
chosen for this project as they have superior performance in
computer vision. After estimating the equivalent aging year of
transformer oil from its image by our proposed method, NN ,
tanδ and PF are computed using that estimated age. Our deep
learning based techniques can accurately predict the transformer
oil equivalent age, leading to calculate NN , tanδ and PF more
accurately. The root means square error of estimated equivalent
age produced by entropy, ConvNet and ResNet based methods are
0.718, 0.122 and 0.065, respectively. ConvNet and ResNet based
methods have reduced the error of the oil age estimation by 83%
and 91%, respectively compared to that of the entropy method.
Our proposed oil image analysis can calculate the equivalent age
that is very close to the actual age for all images used in the
experiment.

Index Terms—Transformer Oil Quality, Transformer Oil Age,
Transformer Oil Image, Convolutional and Residual Neural
Networks, Neutralization Number, Dissipation and Power Factors

I. INTRODUCTION

Transformers are an important part of the electric power
system. Thus, transformers’ operating stability plays a signif-
icant effect on end-user daily operations and life comforts.
During the lifetime of a power transformer, an interruption
occurs for many reasons which affect the whole network and
compromise other elements in the grid and produce a sig-
nificant economic loss. For example, transformer breakdown

incurred $286 million US dollars loss (property damage plus
business interruption) in the year 1996 to 2001 [1]. There are
two different insulation materials that exist in a transformer -
(i) oil and (ii) the wrapping paper of the coil called insulation.
To reduce the impact, over time, many transformer condition
monitoring techniques have been introduced that are mainly
based on transformer oil [2] [3] and insulation [4] condition
monitoring.

The sound health of oil is crucial for transformers’ proper
operation. There are three main approaches for transformer
oil condition monitoring - (i) Dissolved Gas Analysis (DGA)
[4], (ii) Sulfur corrosion detection [3] [5] and (iii) Oil image
analysis [6]. With age and the occurrence of various faults
and deteriorations, oil degrades because of dissolved gases
[4] [6] and other contamination’s including sulfur deposited
in it. The DGA and sulfur corrosion detection are found
to be expensive, however, oil image analysis is relatively
cheaper and requires less time, which motivates us to focus
on oil image analysis. There are also several causes that can
deteriorate transformer oil. The contact of atmospheric air with
the oil triggers unwanted oxidation reaction in the oil. These
reactions are further accelerated with high temperature and
the presence of dissolved materials in the oil. As a result
of these oxidation reactions, the color of the oil becomes
darker, the resistivity (insulation level) of the oil decreases,
concomitantly its acidity increases. As a consequence, the
transformer dielectric dissipation factor (tanδ) of the oil rises.

Changing the oil color plays a role in the oil deterioration
process, which could be analyzed using the oil images to
make a decision. To estimate the equivalent age and then
neutralization number and dissipation factor, there exist an oil
image analysis technique based on the entropy value of oil
reported in [6]. This technique measures those interesting and
important properties of the transformer oil, but it uses several
intuitively derived constant values, and entropy value is not
so effective for the age estimation. These limit the estimation
accuracy. This technique does not work for more than 25 years
of old oil. To improve the age estimation accuracy without
using any threshold, in this paper, we propose an innovative
oil image analysis using two deep convolutional learning
techniques - (i) Convolutional Neural Network (ConvNet) and
(ii) Residual Neural Network (ResNet). Experiment results



show our both techniques significantly outperform the entropy-
based approach.

The organization of the paper is as follows. Section 2
presents the related works, while the details as to how to
prepare the training, validation and test sets from the selected
images are given in Section 3. The description of the experi-
mental set up is given in Section 4. Sections 5 and 6 present
the results and their discussions and conclusions, respectively.

II. RELATED WORK

Transformer condition monitoring techniques can be classi-
fied into two main categories: (i) Transformer insulation and
(ii) Transformer oil condition monitoring.

A. Transformer Insulation Condition Monitoring
Transformer breakdowns occur because of insulation failure

exhibited in the form of Partial Discharge (PD). For this
reason, to monitor the condition of transformer insulation,
there exist some approaches in the existing literature to detect
the type of PDs based on their location information inside the
transformer. One such contemporary approach for classifying
PDs is presented in [4]. In this approach, Acoustic Emission
(AE) sensors were used to collect the data. Using this data, a
deep learning technique was applied to locate PDs. The main
benefits of this approach are that it does not require feature
extraction and the location detection accuracy is reasonably
high. Even though the Random Forest (RF) classifier requires
to use a conventional feature extraction technique, RF shows
superior performance over deep learning, especially for the
heated transformer oil. Note, PD also deteriorates the oil
condition.

Aging of transformer oil affects its productive life and
utility. Since the transformer oil age has a great influence over
its condition, over time, researchers in the relevant community
introduced many techniques to monitor the condition of trans-
former oil. Some of these recent techniques are presented in
the following section.

B. Transformer Oil Condition Monitoring
Transformer oil condition monitoring can be performed in

three ways - (i) Dissolved gas analysis (DGA), (ii) Sulfur
corrosion detection and (iii) Oil image analysis. The major
gases generated from the faults are Hydrogen (H2), Methane
(CH4), Acetylene (C2H2), Ethane (C2H4), Carbon Monoxide
(CO), Carbon dioxide (CO2) which are also called as key
gases and dissolved in oil. The first way analyzes these
dissolved gases. Liang et al. [2] introduced a DGA technique,
which has already been proven an effective method to diagnose
the internal fault of transformers for decades. This technique
uses a deep learning technique called Deep Belief Networks
(DBN). With composed of restricted Boltzmann machines,
DBN can build the mapping relationship between the char-
acteristic gas and the fault types automatically to achieve an
accurate diagnosis.

Mineral oils contain a number of corrosive sulfur com-
pounds like elemental sulfur, mercaptans, and sulfides. Diben-
zyl disulfide (DBDS) is used to protect the transformer from

oxygen ingestion during operation. DBDS appears to be non-
reactive, however, because of degradation, it turns into benzyl
mercaptan, a highly reactive compound to copper. By reaction
with copper, Benzyl mercaptan creates copper sulfide (Cu2S).
There are many instances of transformer breakdown for sulfur
corrosion [7], motivating the researchers to develop techniques
(e.g. Gas Chromatograph, X-ray fluorescence spectrometry,
Sensor-based techniques) to detect it [3] [5]. Gas Chromato-
graph and sensor-based techniques measure the amount of
DBDS, while X-ray fluorescence spectrometry estimates the
amount of insulation oil corrosion level. However, Gas Chro-
matograph and X-ray fluorescence spectrometry are expensive
and sensor-based techniques require the least amount of time
(e.g., one day) to detect DBDS.

To reduce the expense and provide the instant analysis of
transformer oil, Sidram and Hegde [6] introduced an approach
to estimate the equivalent age of transformer oil using an
image analysis technique. By calculating the entropy value of
the oil image, this approach estimates the sample oil equivalent
aging year, neutralization number, tanδ and power factor. This
is a fundamental idea to use entropy in calculating equivalent
oil age. However, the approach is based on many intuitively
selected thresholds, and entropy cannot represent the oil age
well, which limit its efficacy.

To improve the age estimation accuracy without using any
threshold, we need to introduce a new technique which is the
main focus of this paper.

III. DATASET

Typically a large amount of data is required to train a deep
learning network to achieve an acceptable learning success
rate. Since in any electrical power system, there was not any
particular requirement to collect and store the transformer oil
images with metadata (e.g., age). For this reason, sufficient
transformer oil images are not available to use in our exper-
iment. Sidram et al. used a set of authentic transformer oil
images (10 images) in their project presented in [6]. Figure 3
shows those 10 images tagged with their actual ages. We used
that set of images to generate in a total of 36480 samples1

having 3648 samples per image for our deep learning networks
to feed. The size of each sample was 32 × 32. These 10
images were divided horizontally in the middle, the upper part
was sampled for the training and validation data, while the
lower part was for the testing data. For each class, our dataset
consists of 2400 samples in the training, 480 samples for the
validation and 1000 samples for the test sets. Note, for the
classification using a deep learning network, we used a class
for each of the 10 images.

IV. EXPERIMENTS

The goal of the experimental study is to classify the trans-
former oil image to its corresponding equivalent age using
several classification algorithms to get the best performance.
By knowing the age of the oil, the dissipation factor (tanδ)

1https://github.com/whilemind/transformer-data



Fig. 1. Convolutional neural network.

can be calculated from Eq. (7) and power factor from Eq. (10)
which gives a clear view of the efficiency of the transformer
oil.

Classification algorithms are very powerful techniques that
intelligently discriminate an object from others by exploiting
their distinctive features. Many different classification algo-
rithms are available with significant differences in performance
in different application domains. The Convolutional Neural
Network (ConvNet) and Residual Neural Network (ResNet)
are well-known classifiers as these two networks can ef-
fectively differentiate an object from others. Some primitive
classification algorithm requires to hand-engineered the filters
where ConvNet and ResNet can learn those filters or object
characteristics automatically from the data with the proper
training.

Three experiments were performed in three different meth-
ods to find out the best result. Those techniques are (i) Entropy
(ii) ConvNet and (iii) ResNet. Python programming language
was used to perform all the development and data processing
in these experiments. It’s concise and intuitive syntax allows
the rapid development of a variety of different applications and
tools. It also has a wide variety of toolboxes that can support
most scientific and technical computing tasks. Classification
algorithms (ConvNet and ResNet) were implemented using
Keras on top of Tensorflow for the CNN, a commonly used
and flexible Python machine learning toolkit.

A. Entropy Technique
To present the comparative performance of our proposed ap-

proach, we implemented the entropy based approach according
to the algorithm, threshold values and description provided in
[6] and found quite different estimated ages (refer to Table I)
than their values reported in this paper. For clarification,
the algorithm and other aspects used in implementation are
described below:

In implementation, the algorithm from the Sidram et al. [6]
was exactly followed except the resize of images because
the resizing parameters are not clearly specified in the paper.
Eq. (1) was used to calculate the entropy of an oil image:

E = −
∑
k

pklog2(pk) (1)

where, pk represents the normalized kth bin count of a
histogram.

The equivalent aging year was calculated by Eq. (2) from
the entropy value derived from Eq. (1).

Y =
(E1 − E0)

k1
(2)

where, E0 and E1 are the entropy of the fresh and sample
oils, respectively. k1 was assumed as 0.046.

Algorithm 1 was used in our experiment for entropy based
technique. The color image was loaded (Step 2 of Algorithm 1)
and converted to a grey scale image (Step 3), the median filter
was applied with a 5× 5 filter (Step 4). After that histogram
count was performed (Step 5) and then used it as argument to
calculate the entropy using the entropy function (Step 6).

Algorithm 1 Entropy algorithm
1: procedure ENTROPY(imgPath)
2: rgbImg ← imread(imgPath)
3: greyImg ← rgb2grey(rgbImg)
4: filtImg ← median(greyImg, filter) . filter 5X5
5: counts← histogram count(filtImg)
6: ent← entropy(counts, base) . base 2
7: return ent
8: end procedure

As mentioned before, the estimated ages by our implementa-
tion of [6] (Algorithm 1) are given in Table I. Table I shows the
estimated ages are quite different from the actual transformer
oil ages. For example, the estimated equivalent age of three
years old sample oil is 20.43 years, whereas, it is reported as
2.60 years in their paper. For this huge discrepancy between
the implemented and reported results produced by [6], we will
present the performance of our proposed approach comparing
with their reported results in the rest of the paper.

B. ConvNet

The ConvNet used in the experiment consisted of five
convolutional layers where 32 filters of kernel size 3×3 were
used in the first and second convolution layers with Rectified
Non-Linear unit (ReLU). After these two hidden layers, max



Fig. 2. ConvNet Training Validation Graph. Legends: 1st training phase,

TABLE I
ESTIMATED AGES DERIVED USING ENTROPY BASED TECHNIQUE [6]

Sample Year Calculated Entropy Value Estimated Aging Year
1.00 2.43 1.00
3.00 3.37 20.43
9.00 4.16 37.60
12.00 4.30 40.65
14.00 4.08 35.86
16.00 4.09 36.08
17.00 4.24 39.34
18.00 4.37 42.17
21.00 3.30 18.91
25.00 3.75 28.69

pooling was used having a size of 2×2 followed by a Dropout
Layer [8] of value 0.10. The above two convolution layers
were repeated once again with 64 filters having 3 × 3 kernel
followed by a 2× 2 max pooling and the dropout layer value
as 0.10. Then the flatten layer was added with a dropout layer
of value 0.20, which was fully connected with a softmax layer.
The diagram of the network is given in Figure 1. Here, the
best training models produced by this network are regarded as
those models that produced validation accuracy ≥ 0.98.

How ConvNet’s validation accuracy and validation loss vary
with the number of epochs are shown in Figure 2 which show
they change considerably up to 15 epochs. In this figure,
as representative examples, five training phases (P1 to P5)
are shown in five different colors where each of the phases
consisted of 100 epochs. For this reason, to automatically
select the best training models, those models whose epoch
was greater than 5 and validation accuracy was between 0.98
to 1.0 were chosen to calculate the equivalent ages. The
performance of such training models in terms of accuracy and
estimated equivalent ages compared with the relevant actual
oil ages is shown in Table II. For example, for epoch=13 and
accuracy=0.988, the estimated equivalent age of 16 years old
oil is 16.14.

C. Residual Neural Network (ResNet)

Deep Residual Network [9] is the most groundbreaking
work in the deep learning community in the last few years. It
makes it possible to train up to hundreds or even thousands
of layers and still achieves promising performance. The most

TABLE II
EQUIVALENT OIL AGES ESTIMATED BY CONVNET MODELS

Year (1st row shows the actual oil ages; others are their estimated values)
Epoch Accuracy 1 3 9 12 14 16 17 18 21 25

10 0.983 1.0 3.0 9.0 12.0 14.0 15.86 16.84 18.0 21.0 25.0
12 0.994 1.0 3.0 9.0 12.0 14.0 16.64 16.95 18.0 20.95 22.04
13 0.988 1.0 3.04 9.0 12.0 14.0 16.14 16.86 18.0 20.83 24.91
14 0.988 1.0 3.0 9.0 12.0 14.0 16.13 16.89 18.0 20.83 25.0
18 0.99 1.0 3.53 9.0 12.0 14.0 16.16 16.9 18.0 21.0 25.0
20 0.992 1.0 3.05 9.0 12.0 14.0 16.14 16.87 18.0 21.0 25.0
22 0.996 1.0 3.0 9.0 12.0 13.82 16.45 16.95 18.0 21.0 25.0
23 0.994 1.0 3.0 9.0 12.0 13.57 16.15 16.89 18.0 21.0 24.65
23 0.996 1.0 3.37 9.0 12.0 13.87 16.19 16.93 18.0 21.0 25.0
30 1.0 1.0 3.0 9.0 12.0 13.69 16.61 16.96 18.0 21.0 24.21
35 0.996 1.0 3.0 8.66 12.0 13.45 16.22 16.91 18.0 21.0 25.0
39 0.999 1.0 3.0 9.0 12.0 13.85 16.19 16.95 18.0 21.0 23.9
43 0.998 1.0 3.0 9.0 12.0 14.0 16.05 16.88 18.0 21.0 25.0
52 0.998 1.0 3.0 9.0 12.0 14.0 16.13 16.89 18.0 21.0 25.0
53 0.998 1.0 3.0 9.0 12.84 13.73 16.2 16.92 18.0 21.0 25.0
54 0.999 1.0 3.0 9.0 12.0 14.0 16.42 16.94 18.0 21.0 25.0
57 1.0 1.0 3.0 9.0 12.28 14.0 16.64 16.96 18.0 21.0 25.0
61 1.0 1.0 3.0 9.0 12.0 14.0 16.27 16.94 18.0 21.0 25.0
62 1.0 1.0 3.0 9.0 12.0 14.0 16.16 16.92 18.0 21.0 25.0
69 1.0 1.0 3.0 9.0 12.0 13.76 16.14 16.89 18.0 21.0 25.0
72 1.0 1.0 3.0 9.0 12.0 13.8 16.14 16.89 18.0 21.0 24.99

Average of est. ages 1.00 3.05 8.98 12.05 13.88 16.24 16.91 18.00 20.98 24.75

significant innovation on the network is to skip connections
or short-cuts to jump over some layers. Typically, it uses
double of triple-layer skips that contain nonlinearities (ReLu)
and batch normalization in between. Skipping over layers
motivation contributes to avoiding the well-known vanishing
gradients problem.

To show how good is ResNet in classification, a confusion
matrix showing the classification of oil ages is given in Table
III using the model in which validation accuracy was the best
of all the trained models in ResNet. The high classification
accuracy indicates how closely it was able to predict the oil
ages.

TABLE III
RESNET CONFUSION MATRIX SHOWING THE CLASSIFICATION OF OIL

AGES

Oil Age in Year 1 3 9 12 14 16 17 18 21 25
1 1000 0 0 0 0 0 0 0 0 0
3 0 1000 0 0 0 0 0 0 0 0
9 0 0 1000 0 0 0 0 0 0 0
12 0 0 0 1000 0 0 0 0 0 0
14 0 0 0 0 1000 0 0 0 0 0
16 0 0 0 0 0 1000 0 0 0 0
17 0 0 0 0 0 83 917 0 0 0
18 0 0 0 0 0 0 0 1000 0 0
21 0 0 0 0 0 0 0 0 1000 0
25 0 0 0 0 0 0 0 0 0 1000

Similarly to ConvNet, only the ResNet learning models
whose epoch > 5 and validation accuracy ∈ [0.98, 1.0] were



Fig. 3. Transformer oil sample images having age from the top left corner to the right are 1, 3, 9, 12, 14, 16, 17, 18, 21 and 25 years old, respectively.

selected to calculate the equivalent ages, as shown in Table IV.

TABLE IV
EQUIVALENT OIL AGES ESTIMATED BY RESNET MODELS

Year (1st row shows the actual oil ages; others are their estimated values)
Epoch Accuracy 1 3 9 12 14 16 17 18 21 25

5 0.987 1.0 3.0 9.0 12.0 14.0 16.07 16.84 18.0 21.0 25.0
6 0.992 1.0 3.0 9.0 12.0 13.73 16.19 16.87 18.0 21.0 25.0
8 0.999 1.0 3.0 9.0 12.0 14.0 16.38 16.91 18.0 21.0 25.0
12 0.998 1.0 3.0 9.0 12.0 13.23 16.16 16.88 18.0 21.0 25.0
18 0.994 1.0 3.0 9.0 12.0 14.0 16.03 16.86 18.0 21.0 25.0
19 0.996 1.0 3.0 9.0 12.0 14.0 16.0 16.82 18.0 21.0 25.0
23 0.994 1.0 3.0 9.0 12.0 14.0 16.0 16.83 18.0 21.0 25.0
24 0.999 1.0 3.0 9.0 12.0 14.0 16.23 16.9 18.0 21.0 25.0
25 0.999 1.0 3.0 9.0 12.0 13.87 16.01 16.84 18.0 21.0 25.0
37 1.0 1.0 3.0 9.0 12.0 14.0 16.23 16.91 18.0 21.0 25.0
54 0.998 1.0 3.0 9.0 12.0 14.0 16.0 16.79 18.0 21.0 25.0
58 0.998 1.0 3.0 9.0 12.0 13.66 16.02 16.82 18.0 21.0 25.0
63 1.0 1.0 3.0 9.0 12.0 14.0 16.12 16.9 18.0 21.0 25.0
73 0.999 1.0 3.0 9.0 12.0 13.97 16.05 16.89 18.0 21.0 25.0

Average of est. ages 1.00 3.00 9.00 12.00 13.89 16.11 16.86 18.00 21.00 25.00

V. COMPARATIVE RESULTS

In this section, for comparison, all the results produced
after conducting the experiments are presented and discussed.
However, before giving them, the formulae that were used to
create the results are articulated.

Equivalent Age Estimated from Deep Learning Classifi-
cation (C(i)): Eq. (3) was used to calculate the equivalent age
of ith year old oil using the classification results produced by
a deep learning model.

C(i) =

(
n∑

i=1

Y (i)Ŷ (i)

)
/Scount (3)

where, Y (i) is the value of ith year; Ŷ (i) is the accurate
classification count produced by a deep learning model for
ith year and Scount is total sample count used in the test set.

Root Mean Squared Error (RMSE): RMSE is a measure
of inaccuracy to compare the forecasting errors of different
models for a particular variable and not between variables
as it is scale-dependent [10]. RMSE presents the variance of
the error distribution. For a target sequence d and forecast
sequence f with n time steps, it is calculated by Eq. (4).

RMSE =

√√√√ 1

n

n∑
i=1

(
di − fi

)2
(4)

where, di represents the sample year value and fi is the
value from different methods like Entropy, ConvNet, and
ResNet. In this paper, RSME (Eq. (4)) was used to calculate
the error of the three different methods compared with a set
of standard values (a target sequence).

Acid Neutralization Number (NN ): The acid neutral-
ization number, or acid number, is the amount of potassium

hydroxide (KOH) in mg required to neutralize the acid in one
gram of oil. It indicates the acid level in the oil. With service-
aged oils, it also represents the presence of contaminants, like
sludge. NN is defined in [6] as,

NN = Ac × Y (5)

where, Ac and Y are the acid constant (will be defined later)
and oil age, respectively. For mineral oil, the acid number
found less than 0.05mg KOH/gram in the new oil and the
sludge starts forming when the acid number goes to greater
than 0.4mg KOH/gram. Typically, the value of 0.10mg
KOH/gram or less than, considers good and higher values
indicate a problem.

Acid Constant (Ac): In [6], to acquire NN , the following
two acid constant values are taken. The reason behind this is
that the acidity is not constantly rising.

Ac =
{
0.0130 when 0≤Y≤14
0.0159 when 15≤Y≤25

}
(6)

where, Y is the estimated equivalent oil age derived using
Eq. (1).

Dissipation Factor (tanδ): The dissipation factor is calcu-
lated using Eq. (7):

tanδ = Y ×K (7)

where, Y 6= 0 and Y = 1 for the fresh oil and as alluded
in [6], K is a constant whose value differs with oil age range
according to Eq. (8).

K =
{
0.00210 when 0≤Y≤14
0.00719 when 15≤Y≤25

}
(8)

The value of K was calculated from the standard test value of
tanδ which is,

K =
(Final tanδ value from standard test)

Y
(9)

Power Factor (PF): Power factor indicates the dielectric
loss of insulating oil, and thus it’s dielectric heating. The
power-factor test is widely used as an acceptance and preven-
tive maintenance test for insulating oil. A high power factor in
service-aged oil indicates deterioration, contamination or both
with moisture, carbon or deterioration products. For mineral
oil, the power factor of new oil should not exceed 0.05% at
25oC. The power factor has a relation with the dissipation
factor and is calculated using Eq. (10):

PF =

√
tanδ2

1 + tanδ2
(10)



TABLE V
CALCULATED AND STANDARD VALUES OF NN, tanδ AND sinδ

Actual Oil Age in Year 1 3 9 12 14 16 17 18 21 25 RMSE
Neutralization Number (NN)
Standard 0.013 0.050 0.117 0.156 0.223 0.254 0.270 0.286 0.334 0.398
Entropy 0.013 0.043 0.138 0.167 0.225 0.256 0.287 0.290 0.336 0.387 0.0102
ConvNet 0.013 0.051 0.117 0.157 0.221 0.258 0.269 0.286 0.334 0.393 0.0015
ResNet 0.013 0.050 0.117 0.156 0.221 0.256 0.268 0.286 0.334 0.398 0.0010
Dissipation factor (tanδ)
Standard 0.002 0.006 0.019 0.025 0.029 0.115 0.122 0.129 0.150 0.179
Entropy 0.002 0.005 0.022 0.027 0.030 0.115 0.129 0.131 0.151 0.174 0.0031
ConvNet 0.002 0.006 0.019 0.025 0.029 0.116 0.121 0.129 0.150 0.177 0.0008
ResNet 0.002 0.006 0.019 0.025 0.029 0.115 0.121 0.129 0.150 0.179 0.0003
Power factor (sinδ)
Standard 0.002 0.006 0.019 0.025 0.029 0.114 0.121 0.128 0.149 0.176
Entropy 0.002 0.005 0.022 0.027 0.030 0.114 0.128 0.130 0.150 0.172 0.0029
ConvNet 0.002 0.006 0.019 0.025 0.029 0.115 0.120 0.128 0.149 0.174 0.0008
ResNet 0.002 0.006 0.019 0.025 0.029 0.115 0.120 0.128 0.149 0.176 0.0004

A. Comparative Analysis

For equivalent age estimation (refer to Table VI), the RMSE
of ConvNet and ResNet are 0.122 and 0.065, respectively,
while it is 0.718 for the entropy based technique [6]. Table VI
shows for measuring the equivalent oil ages, both ConvNet
and ResNet outperform entropy based technique and ResNet
produces the best performance as it has the lowest RMSE
value (0.065). Similarly, with respect to standard values, as
shown in Table V, the RMSE errors of ConvNet and ResNet
for NN and dissipation factor and power factor are 0.0015 &
0.0010, 0.0008 & 0.0003 and 0.0008 & 0.0004, respectively,
while they are 0.0102, 0.0031 and 0.0029 for entropy based
technique. Lower ConvNet and ResNet’s RSME errors indicate
their estimated values are very close to the respective standard
values.

TABLE VI
ESTIMATED EQUIVALENT OIL AGES

Sample Year Entropy’s Year ConvNet’s Year ResNet’s Year
1.00 1.00 1.00 1.00
3.00 2.60 3.05 3.00
9.00 10.65 8.98 9.00

12.00 12.82 12.05 12.00
14.00 14.15 13.88 13.89
16.00 16.08 16.24 16.11
17.00 18.02 16.91 16.86
18.00 18.26 18.00 18.00
21.00 21.15 20.98 21.00
25.00 24.34 24.75 25.00
RMSE 0.718 0.122 0.065

VI. CONCLUSIONS

In this paper, we introduce an image analysis technique
using two deep convolutional networks to estimate the equiva-
lent ages of transformer oils. Overall, the estimated equivalent
ages appear to be highly accurate and thus, the proposed
technique strongly appeals to its application to identify faults
in power transformers. It could also be used in developing
an online power transformer monitoring system. The accuracy
of the proposed technique to calculate equivalent ages and

then neutralization numbers and dissipation and power factors
shows the importance of deep learning application in the
integrated power system to improve its reliability and reduce
its failure.
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