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Abstract We revisit some basic concepts and ideas of the classical differential calculus and
convex analysis extending them to a broader frame. We reformulate and generalize the notion
of Gateaux differentiability and propose new notions of generalized derivative and general-
ized subdifferential in an arbitrary topological vector space. Meaningful examples preserving
the key properties of the original notion of derivative are provided.
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1 Introduction

Gateaux derivatives are widely used in the calculus of variations, optimization and physics.
According to Laurent Mazliak [7, 8], Gateaux differentiability first appeared in Gateaux’s

notes [3, 4] under the name variation première. Paul Lévy [6] was probably the first to use
the name différentielle au sens de Gateaux.

Recall that a mapping f : X→Y between Banach spaces is Gateaux differentiable at x̄∈ X
if, for each d ∈ X , the limit

f ′(x̄;d) := lim
t↓0

f (x̄+ td)− f (x̄)
t

(1.1)

exists, and f ′(x̄; ·) is a linear continuous functional on X . This functional is called the Gateaux
derivative of f at x̄. If the limit (1.1) is uniform over d on the unit sphere of X , then f is
Fréchet differentiable at x̄.

Gateaux and Fréchet differentiability coincide for real-valued locally Lipschitz functions
on a space in which bounded subsets are relatively compact, in particular, for convex con-
tinuous functions in finite dimensions (see, for instance, [12]). Without convexity, the two
concepts are different even in finite dimensions.
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Gateaux differentiability is easier to check computationally. Being a weaker concept, Ga-
teaux derivative is more universal. For instance, the conventional norm in `1(N) is nowhere
Fréchet differentiable, but there exists an equivalent norm, which is Gateaux differentiable at
all non-zero points (see Phelps [10, Example 1.14(c)]. Note that the conventional norms in
`1(Γ ) (with Γ uncountable) and L∞[0,1] are nowhere Gateaux differentiable.

As observed by Moreau [9, Corollary 10.g], if a real-valued convex function is Gateaux
differentiable, its Moreau–Rockafellar subdifferential is a singleton. Conversely if a function
is finite and continuous at a point and its subdifferential is a singleton, then it is necessarily
Gateaux differentiable at this point. The vanishing of the Gateaux derivative is a necessary
condition for an extremum.

Throughout the paper, X is a real topological vector space. Its topological dual is denoted
by X∗. Given an extended-real-valued function f : X → R∞ := R∪ {+∞}, the directional
derivative of f at x̄ ∈ dom f := {x ∈ X : f (x) < +∞} in direction d ∈ X is defined by the
(possibly infinite) limit (1.1). We say that f is directionally differentiable at x̄ if the limit
exists and is finite for all d ∈ X . The mapping d 7→ f ′(x̄;d) is positively homogeneous. If it
is linear and continuous, f is Gateaux differentiable at x̄. If f is convex, the limit exists and
is finite at every point x̄ ∈ core(dom f ), i.e. when ∪λ>0λ (dom f − x̄) = X ,1 and satisfies

f ′(x̄;d)≤ f (x̄+d)− f (x̄). (1.2)

Furthermore, the function d 7→ f ′(x̄;d) is convex. The subdifferential of f at x̄ ∈ X is the set
(cf. [5])

∂ f (x̄) := {x∗ ∈ X∗ : 〈x∗,d〉 ≤ f ′(x̄;d) for all d ∈ X}. (1.3)

If f is convex, then the set (1.3) coincides with the Moreau–Rockafellar subdifferential of f
at x̄:

∂ f (x̄) = {x∗ ∈ X∗ : 〈x∗,x〉 ≤ f (x̄+ x)− f (x̄) ∀x ∈ X}.

In this paper, we revisit some basic concepts and ideas of the classical differential calcu-
lus and convex analysis, extending them to a broader frame. Building partially on the tools
developed in [1], we reformulate and generalize the notion of Gateaux differentiability and
propose new notions of generalized derivative and generalized subdifferential in an arbitrary
topological vector space.

The directional derivative (1.1) is replaced by the following limit:

Dξ f (x̄)(A) := lim
h↓0

ξ ( f ,A(h, x̄))− f (x̄)
h

,

where A : [0,1]×X ⇒X is a set-valued mapping satisfying A(0,x)= {x} for all x∈X , and ξ is
an extended-real-valued function defined on the product space of the families of all functions
f : X→R∞ and all nonempty subsets of X , satisfying ξ ( f ,{x}) = f (x) for all f : X→R∞ and
x ∈ X . Different choices of A and ξ lead to different derivative and subdifferential concepts.
Some meaningful examples preserving the key properties of the original notion of derivative
are provided in the paper. They include the sup-, average and measure derivatives.

In the next section, we give the main notation, terminology and definitions, as well as some
examples. Section 3 is devoted to generalized derivatives and subdifferentials.

2 Definitions and Examples

In the rest of the paper, F and P stand for the collections of all extended-real-valued func-
tions f : X → R∞ on a real topological vector space X and all nonempty subsets of X , re-
spectively. Unless explicitly stated otherwise, linear operations on sets are understood in the
Minkowski sense, i.e., if A,B⊂ X and λ ∈R, then λA := {λa : a ∈ A}, and A+B := {a+b :
a ∈ A, b ∈ B}. The constructions defined in this paper employ the following tools:

1 If f is convex and lower semicontinuous, core(dom f ) coincides with the interior of dom f ; see, for instance, [2].
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– the family A of all set-valued mappings A : [0,1]×X ⇒ X satisfying A(h,x) 6= /0 for all
h ∈ [0,1] and x ∈ X , and

A(0,x) = {x} for all x ∈ X ;

– the family Ξ of all functions ξ : F ×P → R∞ satisfying

ξ ( f ,{x}) = f (x) for all f ∈F and x ∈ X .

Observe that Ξ is a convex set.
Convexity of mappings from A is defined in the usual sense.

Definition 2.1 A mapping A ∈A is convex if

A(λh+(1−λ )t,λx+(1−λ )y)⊆ λA(h,x)+(1−λ )A(t,y)

for all λ ,h, t ∈ [0,1] and x,y ∈ X .

Concavity is defined similarly with the opposite inclusion in the above definition.

Definition 2.2 Let F ′ ⊆ F and P ′ ⊆P . A function ξ ∈ Ξ is increasing (respectively,
decreasing) on F ′×P ′ if

ξ ( f ,U)≤ ξ ( f ,V ) (respectively, ξ ( f ,U)≥ ξ ( f ,V ))

for all functions f ∈F ′ and all nonempty subsets U,V ∈P ′ with U ⊆V .

Definition 2.3 Let A ∈A and ξ ∈ Ξ . A function f ∈F is

(i) ξ -convex if

ξ ( f ,λU +(1−λ )V )≤ λξ ( f ,U)+(1−λ )ξ ( f ,V )

for all nonempty U,V ⊆ X and λ ∈ [0,1];
(ii) (ξ ,A)-convex if

ξ ( f ,A(λh+(1−λ )t,λx+(1−λ )y))≤ λξ ( f ,A(h,x))+(1−λ )ξ ( f ,A(t,y))

for all x,y ∈ X and λ ,h, t ∈ [0,1].

ξ -concavity and (ξ ,A)-concavity are defined similarly with the opposite inequalities in
the above definition.

Proposition 2.1 Let f ∈F , A ∈A and ξ ∈ Ξ .

(i) If f is (ξ ,A)-convex, then it is convex;
(ii) Suppose A is convex and ξ is increasing. If f is ξ -convex, then it is (ξ ,A)-convex.

Proof (i) Suppose f is (ξ ,A)-convex. Let x,y ∈ X and λ ∈ [0,1]. Then

f (λx+(1−λ )y) = ξ ( f ,{λx+(1−λ )y})
= ξ ( f ,A(0,λx+(1−λ )y))

≤ λξ ( f ,A(0,x))+(1−λ )ξ ( f ,A(0,y))
= λξ ( f ,{x})+(1−λ )ξ ( f ,{y})
= λ f (x)+(1−λ ) f (y).

(ii) Suppose f is ξ -convex. Let x,y ∈ X and λ ,h, t ∈ [0,1]. Then

ξ ( f ,A(λh+(1−λ )t,λx+(1−λ )y))≤ ξ ( f ,λA(h,x)+(1−λ )A(t,y))

≤ λξ ( f ,A(h,x))+(1−λ )ξ ( f ,A(t,y)).

The proof is completed. ut
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Example 2.1 Given a function f ∈F and a subset U ⊆ X , set

ξsup( f ,U) := sup
u∈U

f (u).

Then

(i) ξsup ∈ Ξ ;
(ii) ξsup is increasing on F ×P;

(iii) if f is convex, then it is ξsup-convex.

The first two assertions are obvious. Let U,V be nonempty subsets of X and λ ∈ [0,1]. Then

ξsup( f ,λU +(1−λ )V ) = sup
u∈U,v∈V

f (λu+(1−λ )v)

≤ sup
u∈U,v∈V

{λ f (u)+(1−λ ) f (v)}

≤ λ sup
u∈U

f (u)+(1−λ )sup
v∈V

f (v)

= λξsup( f ,U)+(1−λ )ξsup( f ,V ).

This proves the third assertion.
Similarly, the function ( f ,U) 7→ ξin f ( f ,U) := infu∈U f (u) belongs to Ξ , and is decreasing.

If f is concave, then it is ξin f -concave. ut

Let σ : P → X denote a selection mapping: σ maps each subset A ∈P to some point
a ∈ A. In particular, for any x ∈ X , we have σ({x}) = x. The Lebesgue measure on Rn (par-
ticularly, on R) is denoted by λ ∗.

Example 2.2 Given a function f ∈F , a subset A ∈P and a selection mapping σ : P → X ,
define

ξ
∗
σ ( f ,A) :=

{
λ ∗( f (A))+ f (σ(A)) if f (A) is Lebesque measurable,
f (σ(A)) otherwise.

Since the Lebesgue measure of a singleton is zero, we have ξ ∗σ ∈ Ξ . ut

Example 2.3 Let F ′ denote the subfamily of all functions f ∈F such that f (X) is Lebesque
measurable. Given a function f ∈F ′, a subset A ∈P and a selection mapping σ : P → X ,
define

ξ
∗
σ ( f ,A) := inf{λ ∗( f (B)) : A⊆ B, f (B) is Lebesque measurable}+ f (σ(A)).

ξ ∗σ is well-defined on F ′×P , and ξ ∗σ ∈ Ξ . If f (A) is Lebesque measurable, then ξ ∗σ ( f ,A) =
λ ∗( f (A))+ f (σ(A)). Furthermore, if A⊆ B implies that f (σ(A))≤ f (σ(B)) for all f ∈F ′,
then ξ ?

σ is increasing on F ′×P . ut

Example 2.4 Given a Lebesque integrable function f ∈F , a measurable subset A⊂Rn, and
a selection mapping σ : P → X , define

ξ
σ
int( f ,A) :=

∫
A

f dλ
∗+ f (σ(A)).

Then ξ σ
int( f ,{x}) = f (x) for all integrable functions f ∈F and all x ∈ X . ut
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Example 2.5 Let F ′ ⊆F and P ′ ⊆P be the collections of all nonnegative bounded func-
tions f : X → R and all finite or countable subsets of X , respectively. Let τn denote the set
of all permutations on {0,1,2, . . . ,n}. Given a function f ∈F ′ and an infinite countable set
U := {x0,x1,x2, . . .} ∈P ′, define

ξΣ ( f ,U) := limsup
n→∞

max
σ∈τn

n

∑
i=0

2−in f (xσ(i)).

For a finite set U := {x0,x1,x2, . . . ,xn}, we consider its infinite countable extension U ′ :=
{x0,x1,x2, . . .} with arbitrary xn+1,xn+2, . . . ∈ X , and set ξΣ ( f ,U) := ξΣ (χU f ,U ′), where χU
denotes the indicator function: χU (x) = 1 if x ∈U , and χU (x) = 0 if x /∈U . Then

(i) ξΣ ( f ,{x}) = f (x) for all f ∈F ′ and x ∈ X ;
(ii) ξΣ is increasing on F ′×P ′;

(iii) if f is convex, then it is ξΣ -convex.

The first two assertions are obvious. Let U := {x0,x1,x2, . . .}, V := {y0,y1,y2, . . .} ⊆ X and
λ ∈ [0,1]. Then λU +(1−λ )V = {ui j := λxi +(1−λ )y j : i, j ∈ {0,1,2, . . .}}. Without any
loss of generality we can suppose that

f (u00)≥ f (u01)≥ ·· · ≥ f (u0n)≥ f (u10)≥ ·· · ≥ f (u1n)≥ ·· · ≥ f (un0)≥ ·· · ≥ f (unn),

for all n ∈ N. Let vk := ui j (ordered in the same way as in the above chain of inequalities),
where k := i+ j+ni. Note that the number of f (ui j) with i, j varying from zero to n equals
(n+ 1)2, and therefore when i and j run over {0,1, . . .n}, the index k varies from zero to
(n+1)2−1 = n2 +2n. Thus,

ξΣ ( f ,λU +(1−λ )V )

= limsup
n→∞

n2+2n

∑
k=0

2−k(n2+2n) f (vk)

= limsup
n→∞

n

∑
i=0

n

∑
j=0

2−(i+ j+ni)(n2+2n) f (ui j)

≤ limsup
n→∞

n

∑
i=0

n

∑
j=0

2−(i+ j+ni)(n2+2n)(λ f (xi)+(1−λ ) f (y j))

≤ λ limsup
n→∞

n

∑
i=0

n

∑
j=0

2−(i+ j+ni)(n2+2n) f (xi)+

(1−λ ) limsup
n→∞

n

∑
i=0

n

∑
j=0

2−(i+ j+ni)(n2+2n) f (y j)

= λ limsup
n→∞

n

∑
i=0

2−i(n+1)(n2+2n) f (xi)
n

∑
j=0

2− j(n2+2n)+

(1−λ ) limsup
n→∞

n

∑
j=0

2− j(n2+2n) f (y j)
n

∑
i=0

2−i(n+1)(n2+2n)

= λ limsup
n→∞

n

∑
i=0

2−i(n+1)(n2+2n) f (xi) lim
n→∞

1−2−(n+1)(n2+2n)

1−2−(n2+2n)
+

(1−λ ) limsup
n→∞

n

∑
j=0

2− j(n2+2n) f (y j) lim
n→∞

1−2−(n+1)2(n2+2n)

1−2−(n+1)(n2+2n)

≤ λ limsup
n→∞

n

∑
i=0

2−in f (xi)+(1−λ ) limsup
n→∞

n

∑
j=0

2− jn f (y j)
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≤ λ limsup
n→∞

max
σ∈τn

n

∑
i=0

2−in f (xσ(i))+(1−λ ) limsup
n→∞

max
σ∈τn

n

∑
j=0

2− jn f (yσ( j))

= λξΣ ( f ,U)+(1−λ )ξΣ ( f ,V ).

This proves the third assertion. ut
We now explore some important subfamilies of A .

Example 2.6 Let {Uh : h ∈]0,1]} be a family of neighborhoods of the origin in X , and let
U0 := {0}. For all h ∈ [0,1] and x ∈ X , set AU (h,x) := {x}+Uh. Obviously AU (0,x) = {x}.
Denote by AU the family of all mappings AU : [0,1]×X ⇒ X corresponding to the given
family {Uh : h ∈ [0,1]}. Thus, AU ⊆A .

If X is a normed space, and B its closed unit ball, we take Uh := hB, and write AB and AB
instead of AU and AU , respectively. Thus, AB(h,x) = {x}+ hB for all h ∈ [0,1] and x ∈ X .
The mapping AB ∈AB is both convex and concave in the sense of Definition 2.1. Indeed, let
x,y ∈ X and λ ,h, t ∈ [0,1]. Then

AB(λh+(1−λ )t,λx+(1−λ )y) = {λx+(1−λ )y}+(λh+(1−λ )t)B
= λ ({x}+hB)+(1−λ )({y}+ tB)
= λAB(h,x)+(1−λ )AB(t,y).

This proves the assertion. ut
Example 2.7 Let Ω be a vector space of all continuous functions κ : [0,1]→ X satisfying
κ(0) = 0. Given a κ ∈Ω and a continuous function η : [0,1]×X → [0,1] satisfying

0≤ η(h,x)≤ h for all h ∈ [0,1] and x ∈ X , (2.1)

set
Aκ(h,x) := {x+κ(t) : t ∈ [η(h,x),h]} for all (h,x) ∈ [0,1]×X . (2.2)

Denote by Aη the family of all mappings Aκ : [0,1]×X ⇒ X (κ ∈Ω), corresponding to the
given function η . Thus, Aη ⊆A . ut
Proposition 2.2 In Example 2.7, suppose that (X ,‖ · ‖) is a normed space, and η satisfies
the following condition:

∀h,ε > 0 ∃x ∈ X such that h−η(h,x)< ε. (2.3)

Set
(i) Aκ +Aτ := Aκ+τ for all Aκ ,Aτ ∈Aη ;

(ii) αAκ := Aακ for all Aκ ∈Aη and α ∈ R;
(iii) ‖Aκ‖Aη

:= sup0≤t≤1 ‖κ(t)‖ for all Aκ ∈Aη .
Then Aη is a vector space, and the mapping Aκ 7→ ‖Aκ‖Aη

defines a norm on Aη .

Proof Let κ,τ ∈Ω and Aκ = Aτ . To prove that Aη is a vector space, it suffices to show that
κ = τ . Let θ ∈ [0,1]. Then

{κ(t) : t ∈ [η(θ ,x),θ ]}= {τ(t) : t ∈ [η(θ ,x),θ ]} for all x ∈ X . (2.4)

In view of (2.3), there exists a sequence (xn)⊆ X such that η(θ ,xn)→ θ as n→ ∞. Without
loss of generality, we can assume that η(θ ,xn) ↑ θ . It follows from (2.4) that

∞⋂
n=1

{κ(t) : t ∈ [η(θ ,xn),θ ]}=
∞⋂

n=1

{τ(t) : t ∈ [η(θ ,xn),θ ]}.

Obviously ({κ(t) : t ∈ [η(θ ,xn),θ ]}) is a decreasing sequence of sets whose diameters con-
verge to zero. The continuity of κ implies that {κ(t) : t ∈ [η(θ ,xn),θ ]} is compact for all n ∈
N. By Cantor’s theorem,

⋂
∞
n=1{κ(t) : t ∈ [η(θ ,xn),θ ]} contains exactly one element which,

thanks to the continuity of κ , must equal κ(θ). Similarly
⋂

∞
n=1{τ(t) : t ∈ [η(θ ,xn),θ ]} =

τ(θ). It follows that κ(θ) = τ(θ) and, since θ ∈ [0,1] is arbitrary, κ = τ . Checking that the
mapping Aκ 7→ ‖Aκ‖Aη

defines a norm is trivial. ut
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Remark 2.1 (i) The linear operations defined in Proposition 2.2 differ from the conventional
ones in the Minkowski sense.

(ii) The function η : [0,1]×X → [0,1] defined for all h ∈ [0,1] and x ∈ X by η(h,x) := h‖x‖
‖x‖+1

satisfies conditions (2.1) and (2.3).

Example 2.8 (Corresponds to Ω in Example 2.7 being the family of all functions [0,1] 3 t 7→
tu determined by vectors u∈ X). Given an ε ∈ [0,1], the continuous function ηε : [0,1]×X→
[0,1], defined by ηε(h,x) := (1−ε)h for all h ∈ [0,1] and x ∈ X , satisfies condition (2.1), but
not (2.3). Definition (2.2) in this case reduces to

Aε
u(h,x) := {x+ tu : t ∈ [(1− ε)h,h]} for all (h,x) ∈ [0,1]×X . (2.5)

We denote by Aε := {Aε
u : u ∈ X}. Thus, Aε ⊆A .

It follows from (2.5) that A0
u(h,x) is single-valued: A0

u(h,x) = {x+hu}. ut

Proposition 2.3 Let ε ∈ [0,1]. In Example 2.8, set

(i) Aε
u +Aε

v := Aε
u+v for all Aε

u,A
ε
u ∈Aε ;

(ii) αAε
u := Aε

αu for all Aε
u ∈Aε and α ∈ R.

Then Aε is a vector space. If (X ,‖·‖) is a normed space, then the norm on Aε can be defined
as follows:

(iii) ‖Aε
u‖Aε

:= ‖u‖ for all Aε
u ∈Aε .

The linear operations defined above are particular cases of those in Proposition 3.1. How-
ever, since ηε does not satisfy condition (2.3), Proposition 3.1 is not applicable even if X is
assumed to be a normed space.

Proof Let u,v ∈ X and Aε
u = Aε

v . To prove that Aε is a vector space, it suffices to show that
u = v. It follows from (2.5) with h = 1 that {tu : t ∈ [1− ε,1]} = {tv : t ∈ [1− ε,1]}. In
particular, there exist t1, t2 ∈ [1− ε,1] such that t1u = v and t2v = u. If v = 0, then the second
equality yields u = 0. If v 6= 0, then the above equalities yield t1t2v = v; hence t1 = t2 = 1 and
u = v. Checking that the mapping Aε

u 7→ ‖Aε
u‖Aε

defines a norm is trivial. ut

Remark 2.2 The proof of Proposition 2.3 shows that, for any ε ∈ [0,1], the mapping u 7→ Aε
u

defines an isomorphism between Aε and X .

Proposition 2.4 Let ε ∈ [0,1] and A ∈Aε (as defined in Example 2.8). Then A is convex.

Proof By definition, A = Aε
u for some u ∈ X . Let x,y ∈ X , λ ,h,s ∈ [0,1], and w ∈ Aε

u(λh+
(1−λ )s,λx+(1−λ )y). By (2.5), w = λx+(1−λ )y+ tu for some t ∈ [(λh+(1−λ )s)(1−
ε),λh + (1− λ )s]. Choose numbers t1 ∈ [h(1− ε),h] and t2 ∈ [s(1− ε),s] such that t =
λ t1 +(1−λ )t2. Thus, w = λ (x+ t1u)+ (1−λ )(y+ t2u) ∈ λAε

u(h,x)+ (1−λ )Aε
u(s,y). By

Definition 2.1, A is convex. ut

Proposition 2.5 Let f ∈F , ξ ∈ Ξ and A ∈A0 (as defined in Example 2.8 with ε = 0). Then
f is (ξ ,A)-convex if and only if it is convex.

Proof If f is (ξ ,A)-convex, then it is convex by Proposition 2.1(i). Suppose that f is convex.
Let x,y ∈ X and λ ,h, t ∈ [0,1]. Then

ξ ( f ,A(λh+(1−λ )t,λx+(1−λ )y))

=ξ ( f ,{λx+(1−λ )y+(λh+(1−λ )t)v})
= f (λ (x+hv)+(1−λ )(y+ tv))

≤λ f (x+hv)+(1−λ ) f (y+ tv)

=λξ ( f ,{x+hv})+(1−λ )ξ ( f ,{y+ tv})
=λξ ( f ,A(h,x))+(1−λ )ξ ( f ,A(t,y)).

The proof is completed. ut



8 Malek Abbasi et al.

3 Generalized Derivative and Subdifferential

In this section, we propose new notions of generalized derivative and generalized subdiffer-
ential in an arbitrary topological vector space.

3.1 Generalized Derivative

Definition 3.1 Let f ∈F , x̄ ∈ dom f , A ∈A and ξ ∈ Ξ . If the limit

Dξ f (x̄)(A) := lim
h↓0

ξ ( f ,A(h, x̄))− f (x̄)
h

(3.1)

exists (in R±∞), it is called the ξ -derivative of f at x̄ along A, and we say that f is ξ -dif-
ferentiable at x̄ along A.

If A ′ ⊆ A is a linear topological space and the mapping A 7→ Dξ f (x̄)(A) is linear and
continuous on A ′, then we say that f is ξ -differentiable at x̄ with respect to A ′.

Example 3.1 Let (X ,‖ · ‖) be a normed space. For all u,x ∈ X and h ∈ [0,1], set Au(h,x) :=
{x+ tu : 0 ≤ t ≤ h2}. Observe that Au(0,x) = {x}; hence, Au ∈ A . For the function x 7→
‖x‖, using ξsup ∈ Ξ defined in Example 2.1, we have ξsup(‖ · ‖,Au(h,0)) = supt∈[0,h2] t‖u‖=
h2‖u‖. Hence, by Definition 3.1, Dξsup‖ · ‖(0)(Au) = 0. Moreover, if A ′ := {Au : u ∈ X} is
endowed with a linear structure and norm as in Proposition 2.3, then ‖·‖ is ξsup-differentiable
at 0 with respect to A ′ (with the derivative equal 0). ut

Example 3.2 Let (X ,‖ · ‖) be a normed space and, as defined in Example 2.6, AB(h,x) =
{x}+ hB for all h ∈ [0,1] and x ∈ X . For a function f ∈ F and a point x̄ ∈ dom X , using
ξsup ∈ Ξ defined in Example 2.1, we have ξsup( f ,AB(h, x̄)) = supu∈hB f (x̄+ u). Hence, by
Definition 3.1, if the limit exists, it has the form

Dξsup f (x̄)(AB) = lim
h↓0

sup
u∈hB

f (x̄+u)− f (x̄)
h

= lim
h↓0

sup
u∈B

f (x̄+hu)− f (x̄)
h

. (3.2)

As a consequence, Dξsup f (x̄)(AB)≥ 0. ut

Proposition 3.1 In Example 3.2,

(i) if f is Fréchet differentiable at x̄, then Dξsup f (x̄)(AB) = ‖∇ f (x̄)‖;
(ii) if f is convex, then the limits in (3.2) exist, and

Dξsup f (x̄)(AB)≥ sup{‖x∗‖ : x∗ ∈ ∂ f (x̄)}. (3.3)

If, additionally, dimX <+∞ and ∂ f (x̄) 6= /0, then (3.3) holds as equality.

Proof (i) If f is Fréchet differentiable at x̄, then

lim
h↓0

f (x̄+hu)− f (x̄)
h

= (∇ f (x̄))T u,

and the limit is uniform in u on the unit sphere of X ; hence the conclusion.
(ii) Let f be convex. The existence of the limits in (3.2) follows from the monotonicity of the

difference quotients involved. If x∗ ∈ ∂ f (x̄), then, by (3.2),

Dξsup f (x̄)(AB)≥ sup
u∈B
〈x∗,u〉= ‖x∗‖,

which yields (3.3).
Let dimX < +∞ and ∂ f (x̄) 6= /0. If Dξsup f (x̄)(AB) = 0, the equality holds true trivially.
If x̄ is a boundary point of dom f , then ∂ f (x̄) is unbounded (cf. [11, Theorem 23.4]),
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sup{‖x∗‖ : x∗ ∈ ∂ f (x̄)} = +∞, and the equality holds true trivially too. Otherwise, f
is Lipschitz continuous near x̄ and there exist sequences hk ↓ 0 and uk → 0 such that
0 < ‖uk‖ ≤ hk, f (x̄+uk)> f (x̄) (k ∈ N) and

limsup
h↓0

sup
u∈hB

f (x̄+u)− f (x̄)
h

= lim
k→+∞

f (x̄+uk)− f (x̄)
hk

.

Without loss of generality, uk/‖uk‖ → u ∈ X . Set tk := ‖uk‖ and u′k := tku (k ∈ N). Then

‖uk−u′k‖= tk
∥∥∥ uk
‖uk‖
−u
∥∥∥, and consequently,

lim
k→+∞

f (x̄+uk)− f (x̄)
hk

≤ lim
k→+∞

f (x̄+uk)− f (x̄)
tk

= lim
k→+∞

f (x̄+ tku)− f (x̄)
tk

= f ′(x̄,u) = 〈x∗,u〉

for some x∗ ∈ ∂ f (x̄). Hence,

limsup
h↓0

sup
u∈hB

f (x̄+u)− f (x̄)
h

≤ sup{‖x∗‖ : x∗ ∈ ∂ f (x̄)}.

This proves the claimed equality. ut

Example 3.3 Let f ∈ F , x̄ ∈ dom f and A ∈ A . Let λ ∗ be the Lebesgue measure on R,
σ : P → X be a selection mapping and ξ ∗σ ∈ Ξ be defined as in Example 2.2. Then

Dξ ∗σ f (x̄)(A) = lim
h↓0

ξ ∗σ ( f ,A(h, x̄))− f (x̄)
h

= lim
h↓0

λ ∗( f (A(h, x̄)))+ f (σ(A(h, x̄)))− f (x̄)
h

.

If the mapping A(·, x̄) satisfies certain continuity property at 0, then σ(A(h, x̄))→ x̄ as h ↓ 0.
ut

Example 3.4 Let (X ,S ,µ) be a measure space. Given a point x̄ ∈ X , let

Wx̄ := {A ∈S : x̄ ∈ A, f (A) is Lebesgue measurable}.

Similarly to Example 3.3, we propose the following derivative formula (D∗σ -derivative):

D∗σ f (x̄) := lim
A∈W ′x̄ ,µ(A)↓0

λ ∗( f (A))+ f (σ(A))− f (x̄)
µ(A)

,

where W ′
x̄ ⊆Wx̄ and σ : P→ X is a selection mapping. By letting σ(A) = x̄ for A ∈W ′

x̄ , we
get

D∗ f (x̄) := D∗σ f (x̄) = lim
A∈W ′x̄ ,µ(A)↓0

λ ∗( f (A))
µ(A)

.

For a function f whose range is a null set, one has D∗ f (x̄) = 0 at every x̄ ∈ X . In particular,
the D∗-derivative of the Dirichlet function exists at every x̄ ∈ R and equals zero. ut

Example 3.5 In the framework of Example 3.4, we consider the D∗-derivative of a function
f : [a,b]→R at a point x̄∈]a,b[ with W ′

x̄ denoting the collection of all open intervals in [a,b].

– If f is nondecreasing and continuous, then

D∗ f (x̄) = lim
y↓x̄, x↑x̄

f (y)− f (x)
y− x

.
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– If f is nondecreasing and differentiable and W ′
x̄ denotes the collection of all open intervals

centered at x̄, then D∗ f (x̄) = f ′(x̄). If f is continuously differentiable, then the equality
holds with W ′

x̄ denoting the collection of all open intervals (not necessarily centered at x̄).
Indeed, if ]x,y[ is an open interval containing x̄, then by the Mean Value Theorem, there
exists β (x,y) ∈]x,y[ such that f (y)− f (x) = f ′(β (x,y))(y− x). Note that β (x,y) ap-
proaches x̄ as y ↓ x̄ and x ↑ x̄. Thanks to the continuity of f and f ′ it follows that

D∗ f (x̄) = lim
y↓x̄, x↑x̄

f (y)− f (x)
y− x

= lim
y↓x̄, x↑x̄

f ′(β (x,y)) = f ′(x̄).

Observe that in general f does not have to be continuous at x̄. For example, consider the
function f : R→ R defined as

f (x) :=

{
x2 x 6= 1,
0 x = 1.

The D∗-derivative of f at x̄ = 1 exists and equals 2. Indeed, if ]x,y[ is an open interval con-
taining 1, then f (]x,y[) =]x2,y2[\{1}

⋃
{0}. Thus, λ ∗( f (]x,y[)) = y2− x2 and therefore

D∗ f (1) = lim
y↓1, x↑1

y2− x2

y− x
= 2.

In this example, the discontinuity of f at x̄ is a removable one. A function can have a D∗-de-
rivative at a point at which it has a jump discontinuity. Define f : R→ R as

f (x) :=

{
x x > 1,
x−1 x≤ 1.

If ]x,y[ is an open interval containing 1, then f (]x,y[) =]1,y[
⋃
]x−1,0]. Thus, λ ∗( f (]x,y[)) =

y−1+1− x = y− x. Therefore,

D∗ f (1) = lim
y↓1, x↑1

y− x
y− x

= 1.

ut

Example 3.6 Let ξ σ
int be defined as in Example 2.4. Then

Dξ σ
int

f (x̄)(A) = lim
h↓0

ξ σ
int( f ,A(h, x̄))− f (x̄)

h

= lim
h↓0

∫
A(h,x̄) f dλ ∗+ f (σ(A(h, x̄)))− f (x̄)

h
.

We aim to calculate Dξ σ
int

f ((x̄, ȳ))(A) for the function f : R2 → R defined as f (x,y) := x,
where

A(h,(x̄, ȳ)) :=

{
(u,v) : x̄−

√
h

2
≤ u≤ x̄+

√
h

2
, ȳ−

√
h

2
≤ v≤ ȳ+

√
h

2

}
.

Suppose that σ(A(h,(x̄, ȳ))) = (x̄, ȳ). One can easily check that
∫

A(h,(x̄,ȳ)) f dλ ∗ = x̄h. Thus,
Dξ σ

int
f ((x̄, ȳ))(A) = x̄ = f (x̄, ȳ). If A(h,(x̄, ȳ)) := {(u,v) : x̄−h≤ u≤ x̄+h, ȳ−h≤ v≤ ȳ+h},

then one can verify that Dξ σ
int

f ((x̄, ȳ))(A) = 0. ut
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Remark 3.1 Suppose that λ ∗(A(h, x̄)) 6= 0 for all h> 0. Similarly to Example 3.6, we propose
the following derivative formula:

Dσ
int f (x̄)(A) := lim

h↓0

∫
A(h,x̄) f dλ ∗+ f (σ(A(h, x̄)))− f (x̄)

λ ∗(A(h, x̄))
. (3.4)

For f : R2→ R given by f (x,y) := x, A(h,(x̄, ȳ)) := {(u,v) : x̄− h ≤ u ≤ x̄+ h, ȳ− h ≤ v ≤
ȳ+ h}, and σ(A(h,(x̄, ȳ))) = (x̄, ȳ), one can check that Dσ

int f ((x̄, ȳ))(A) = x̄ = f (x̄, ȳ). Note
that the same representation holds if A(h,(x̄, ȳ)) is a ball centered at (x̄, ȳ) with radius h. These
examples make us hope that in general Dσ

int f (x̄)(A) does not depend on A, and the derivative
(defined by (3.4)) of the integral of a function f equals f , mimicking the first part of the
Fundamental Theorem of Calculus. This conjecture is currently an open problem. ut

Example 3.7 Let X = R, and a mapping A : [0,1]×R⇒ R be defined as follows:

A(h,x) :=
{

x+
(−1)k

k2 : 0 < k−1 ≤ h
}
.

Observe that A(0,x) = {x}; hence A ∈A . Next, we consider the function f := | · | and apply
to it the mapping A defined above and the function ξΣ defined in Example 2.5. For all n ∈ N,
we have

ξΣ ( f ,A(n−1,0)) = limsup
m→∞

m

∑
k=0

2−mk
∣∣∣∣ (−1)n+k

(n+ k)2

∣∣∣∣≤ 1
n2 lim

m→∞

m

∑
k=0

2−mk =
1
n2 .

Given a number h > 0, let nh be the smallest integer such that nh ≥ h−1. Then

0 ≤ ξΣ ( f ,A(h,0))− f (0)
h

≤
ξΣ ( f ,A(n−1

h ,0))

n−1
h

≤ n−1
h → 0

as h ↓ 0. By Definition 3.1, DξΣ
f (0)(A) = 0. ut

Proposition 3.2 Let A0
d be defined for all d ∈ X as in Example 2.8, and let ξ ∈ Ξ . Given a

vector d ∈ X, a function f : X → R∞ is ξ -differentiable at x̄ ∈ dom f along A0
d if and only

if it is differentiable at x̄ in the direction d. In this case, Dξ f (x̄)(A0
d) = f ′(x̄;d). Moreover,

f : X → R∞ is ξ -differentiable at x̄ with respect to A 0 := {A0
d : d ∈ X} if and only if it is

Gateaux differentiable at x̄.

Proof Observe that ξ ( f ,A0
d(h, x̄)) = ξ ( f ,{x̄ + hd}) = f (x̄ + hd). The conclusion follows

from Definition 3.1. ut

Proposition 3.3 Let A ∈ A and ξ ∈ Ξ . If f ∈F is (ξ ,A)-convex then, for any x̄ ∈ dom f ,
the function

h 7→ ξ ( f ,A(h, x̄))− f (x̄)
h

(h > 0) (3.5)

is nondecreasing, and consequently, f is ξ -differentiable at x̄ along A, and

Dξ f (x̄)(A) = inf
h>0

ξ ( f ,A(h, x̄))− f (x̄)
h

.

Proof Let 0 < t ≤ h. Then

ξ ( f ,A(t, x̄)) = ξ

(
f ,A
(

t,
t
h

x̄+
(

1− t
h

)
x̄
))

≤ t
h

ξ ( f ,A(h, x̄))+
(

1− t
h

)
ξ ( f ,A(0, x̄))
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=
t
h

ξ ( f ,A(h, x̄))+
(

1− t
h

)
f (x̄),

and consequently,
ξ ( f ,A(t, x̄))− f (x̄)

t
≤ ξ ( f ,A(h, x̄))− f (x̄)

h
.

Thus, the function (3.5) is nondecreasing, and therefore the limit (3.1) exists in R±∞. The
remaining assertions follow immediately. ut

In view of Proposition 2.1(ii), we have the following corollary.

Corollary 3.1 Suppose A ∈A is convex and ξ ∈ Ξ is increasing. If f ∈F is ξ -convex then
it is ξ -differentiable along A at any x̄ ∈ dom f .

The monotonicity of the function (3.5) established in Proposition 3.3 yields the following
result which extends (1.2).

Corollary 3.2 Let A ∈A and ξ ∈ Ξ . If f ∈F is (ξ ,A)-convex and x̄ ∈ dom f , then

Dξ f (x̄)(A)≤ ξ ( f ,A(1, x̄))− f (x̄).

3.2 Generalized Subdifferential

Let A ′ ⊆A be a linear topological space such that, for any A ∈A ′,

A(h,x) = hA(1,x) for all h ∈]0,1] and x ∈ X , (3.6)

where hA is determined by the linear structure of the space A ′ and does not necessarily agree
with the conventional scalar multiplication operation in the Minkowski sense. Let a function
ξ ∈ Ξ be given.

The ξ -subdifferential of a function f ∈F at x̄ ∈ dom f with respect to A ′ is defined by

∂ξ [A
′] f (x̄) := {A∗ ∈ (A ′)∗ : 〈A∗,A〉 ≤ Dξ f (x̄)(A) for all A ∈A ′}. (3.7)

Proposition 3.4 Let f ∈ F and x̄ ∈ dom f . If f is (ξ ,A)-convex for all A ∈ A ′, then the
following properties are equivalent:

(i) A∗ ∈ ∂ξ [A
′] f (x̄);

(ii) 〈A∗,A〉 ≤ ξ ( f ,A(1, x̄))− f (x̄) for all A ∈A ′.

Proof The equivalence is a consequence of definition (3.7) in view of Corollary 3.2 and
condition (3.6). ut

Proposition 3.5 Let f ∈ F and x̄ ∈ dom f . If f is (ξ ,A)-convex for all A ∈ A ′, then the
following assertions hold true:

(i) ∂ξ [A
′] f (x̄) is convex and weak∗ closed.

(ii) If there exist a neighborhood of the origin N ⊂A ′ and an α ∈R such that ξ ( f ,A(1, x̄))<
α for all A ∈N , then ∂ξ [A

′] f (x̄) is weak∗ compact.
(iii) Suppose F ′ ⊆ F and P ′ ⊆P . If x̄ ∈ A(1, x̄) for all A ∈ A ′, and ξ is increasing on

F ′×P ′, then 0(A ′)∗ ∈ ∂ξ [A
′] f (x̄).

Proof (i) is a consequence of definition (3.7).
(ii) By the hypothesis there exist a neighborhood of the origin N ⊂A ′ and an α ∈ R such

that ξ ( f ,A(1, x̄))− f (x̄)< α for all A ∈N . Hence, in view of Proposition 3.4,

∂ξ [A
′] f (x̄)⊆ {A∗ ∈ (A ′)∗ :〈A∗,A〉 ≤ α for all A ∈N }.

The right-hand side of the last inclusion is weak∗ compact by Alaoglu–Bourbaki theorem.
∂ξ [A

′] f (x̄) is weak∗ closed by (i), and consequently, weak∗ compact.
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(iii) By the assumption, we have ξ ( f ,A(1, x̄))≥ ξ ( f ,{x̄}) = f (x̄). Now apply Proposition 3.4.
ut

We now have a closer look at the space Aε ⊂ A (ε ∈ [0,1]) and the function ξsup ∈ Ξ

defined in Example 2.8 and Example 2.1, respectively.

Proposition 3.6 Let f : X → R∞ be a convex function, x̄ ∈ dom f , and ε ∈ [0,1]. Then

∂ξsup [Aε ] f (x̄) =
{

x∗ ∈ X∗ : 〈x∗,u〉 ≤ sup
1−ε≤t≤1

f (x̄+ tu)− f (x̄) for all u ∈ X
}
. (3.8)

Proof Recall that, by Proposition 2.3, Aε is a linear topological space. Each Aε
u ∈ Aε (see

Example 2.8 for the definition) is convex by Proposition 2.4 and satisfies condition (3.6).
Indeed, let u,x ∈ X and h ∈]0,1]. Then

Aε
u(h,x) = {x+ tu : h(1− ε)≤ t ≤ h}

= {x+ thu : 1− ε ≤ t ≤ 1}= Aε
hu(1,x)= hAε

u(1,x).

Since f is convex, it is ξsup-convex; cf. Example 2.1. Moreover, ξsup is increasing. In view of
Proposition 2.1(ii), f is (ξsup,Aε

u)-convex for all u ∈ X . Given any u ∈ X , we can compute:

ξsup( f ,Aε
u(1, x̄)) = ξsup( f ,{x̄+ tu : 1− ε ≤ t ≤ 1}) = sup

1−ε≤t≤1
f (x̄+ tu)− f (x̄).

Furthermore, X and Aε are isomorphic. Hence, using Proposition 3.4, we arrive at (3.8). ut

Remark 3.2 (i) When ε = 0, the right-hand side of (3.8) reduces to the conventional defini-
tion of the Moreau–Rockafellar subdifferential, i.e. ∂ξsup [A0] f (x̄) = ∂ f (x̄). When ε = 1,
we obtain from (3.8):

∂ξsup [A1] f (x̄) =
{

x∗ ∈ X∗ : 〈x∗,u〉 ≤ sup
0≤t≤1

f (x̄+ tx)− f (x̄) for all u ∈ X
}
,

i.e. ∂ξsup [A1] f (x̄) coincides with the sup-subdifferential ∂sup f (x̄) defined in [1], while
definition (3.1) gives (the limit exists by Proposition 3.3)

Dξsup f (x̄)(A1
d) = lim

h↓0

sup0≤t≤h f (x̄+ td)− f (x̄)
h

(d ∈ X).

(ii) Given an ε ∈ [0,1] and a u ∈ X , one can consider a symmetric version of (2.5):

Aε
u(h,x) := {x+ tu : |t| ∈ [(1− ε)h,h]} for all (h,x) ∈ [0,1]×X .

In particular, when ε = 0, definition (3.1) would give (if f is directionally differentiable
at x̄)

Dξsup f (x̄)(A0
d) = max

{
f ′(x̄;d), f ′(x̄;−d)

}
(d ∈ X).

The last expression coincides with the symmetric derivative f ′sym(x̄;d) defined in [1].
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