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Abstract 

The sensitivity of tropical cyclone (TC) projection results to different models and the 

detection and tracking scheme used is well established. In this study, future climate 

projections of TC activity in the North Indian Ocean (NIO) are assessed with a model- and 

basin-independent detection and tracking scheme. The scheme is applied to selected models 

from the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments forced under 

the historical and Representative Concentration Pathway 8.5 (RCP8.5) conditions. Most 

models underestimated the frequency of early season (April-June) TCs and contained genesis 

biases equatorward of ~7.5°N in comparison to the historical records. TC tracks detected in 

reanalysis and model data were input to a clustering algorithm simultaneously, with two 

clusters in the Arabian Sea and two in the Bay of Bengal (k=4). Projection results indicated a 

slight decrease of overall TC genesis frequency in the NIO, with an increase of TC genesis 

frequency in the Arabian Sea (30–64%) and a decrease in the Bay of Bengal (22–43%), 

consistent between clusters in each of these sub-regions. These changes were largely due to 

changes in the pre-monsoon season (April-June) where Bay of Bengal TCs significantly 

decreased, consistent with changes in vertical ascent. Northern Arabian Sea TCs significantly 

increased during the pre-monsoon season, consistent with changes in vertical wind shear and 

relative humidity. There was a projected increase of TC frequency in the post-monsoon 

season (October-December), consistent with changes in relative humidity and vertical ascent, 

although not all clusters followed this trend; noting a different response in the southern Bay 

of Bengal. In turn, these projections caused changes to the climate averaged TC track density, 

including a decrease (up to 2 TCs per decade) affecting the eastern coast of India and a small 

increase (up to 0.5 TCs per decade) affecting eastern Africa, Oman and Yemen.  
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 1. Introduction 

Tropical cyclone (TC) genesis location and track direction are important characteristics when 

considering TC landfall densities. This elevates the need to determine how these TC 

characteristics are impacted by changes in the climate. In terms of dedicated studies, the 

North Indian Ocean (NIO) TC basin has received scant attention compared to other basins in 

the literature. Although the NIO basin is the least active compared to the other basins, and 

therefore intense TCs are rarely observed, it is extremely vulnerable to TC impacts due to its 

densely populated coastal regions, as indicated by TC Bhola in 1970, the deadliest TC in 

history (Emanuel 2005).  

The NIO basin experiences two active periods of TC activity, pre-monsoon (April to 

June) and post-monsoon (October to December) with a lull in activity during the peak 

monsoon season (July to September). Two sub-regions can be defined divided by the Indian 

sub-continent that experience asymmetric activity (Sattar and Cheung 2019), the more active 

Bay of Bengal to the east (Alam et al. 2003) where TCs can impact the coastlines of India 

and Bangledesh (Singh et al. 2000), and the quieter Arabian Sea to the west (Mohapatra et al. 

2014) where TCs can sometimes reach the Arabian Peninsula (i.e., Oman and Yemen, see Fig. 

1 for geographical location of these countries). 

A significant climate projection study on TC frequency in the NIO is that of 

Murakami et al. (2013), who used two different versions of a medium to high-resolution 

atmospheric general circulation model (MRI-AGCM, Murakami et al. 2012) in an ensemble 

prescribed with several different sea-surface-temperature (SST) settings. They found TC 

frequency to decrease (by ~31%) in the Bay of Bengal and increase (by ~46%) in the Arabian 

Sea. The latter finding is particularly topical as a recent study (Murakami et al. 2017) linked 

increasing frequency of very intense Arabian Sea TCs in the post-monsoon season with 

climate change. Another study, Zhang et al. (2019), used medium resolution ensemble 
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experiments from the NCAR Community Earth System Model (CESM) and predicted 

tropical depressions in the NIO (and thus likely TCs as well) to increase in the second half of 

the 21
st
 century.  

Murakami et al. (2013) also found a robust reduction of TC genesis frequency in the 

pre-monsoon season and an increase during the peak-monsoon season. Concerns regarding 

model dependency of their results were addressed in a follow up study by Murakami et al. 

(2014). However, in their closing remarks Murakami et al. (2014) indicated that they did not 

consider the uncertainty introduced by different TC-detection schemes (e.g., Horn et al. 2014) 

and that model-dependent criteria had been used to tune the detected TC numbers to match 

the observed TC numbers. They acknowledged that their projection results may be dependent 

on the TC detection algorithm used, and so indicated that further study may be required to 

confirm their results using model-independent-detection schemes. 

As far as we are aware, this concern has not yet been addressed and is the main 

motivation behind this paper. The secondary motivation is to examine TC activity more 

regionally, including analysis and isolation of TC tracks, which to our knowledge have not 

yet been evaluated for the NIO basin under global warming scenarios. In this paper, multiple 

climate models from the Coupled Model Intercomparison Project Phase 5 Experiments 

(CMIP5, Taylor et al. 2012) are used. Given not all these models have the same resolution, 

we apply a resolution- and model-independent TC detection and tracking scheme (Tory et al. 

2013a) called the Okubo-Weiss-Zeta (OWZ). Unlike more traditional detectors, the Tory et 

al. (2013a) scheme utilizes purely large-scale variables that are resolvable in coarse resolution 

(CMIP5) data, circumventing detector dependence on resolution. The Tory et al. (2013a) 

scheme was also independently tuned in ERA-Interim reanalysis data so as to not be model-

dependent. Arguably, tuning a detection algorithm elsewhere can impact upon TC projections 

results, thus elevating the need for a scheme such as Tory et al. (2013a) that can obtain 
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consistent projection results from climate models with both different resolutions and physical 

parameterization schemes. 

Additionally, we also account for the potential interdependency that exists between 

certain CMIP5 models (e.g., Knutti et al. 2013). Sanderson et al. (2015) stress how such 

interdependencies between models can affect multi-model projection results if not properly 

accounted for, and hence we incorporate this in our model selections and analyses. Model 

TCs are evaluated over two simulation periods, the “historical climate” over the period 1970-

2000 and a climate projection over the period 2070-2100 under high radiative forcing 

(RCP8.5). An objective TC track cluster analysis (Gaffney et al. 2007) is utilised to provide 

quantitative regional-scale assessments of TC tracks in models and the historical record.  

The outline of this paper is as follows. Section 2 contains data, definitions and 

methods used in this study. Section 3 evaluates the performance of the OWZ scheme in the 

NIO using selected CMIP5 models and provides results of projection between the late 

twentieth- and twenty-first-century climate simulations, also containing relevant discussions 

with respect to a previous study undertaken in the NIO. Finally, Section 4 provides a 

summary of the paper. 

2 Data, Definitions and Methods 

a. Detection and tracking 

The OWZ TC detection and tracking algorithm (Tory et al. 2013a) is used in this study to 

detect and track TCs in all model and reanalysis data without any adjustment of thresholds to 

accommodate different resolutions. The environmental parameters used at two threshold 

levels (“initial” and “core”) are as follows: 

 OWZ [product of absolute vorticity and the Okubo-Weiss parameter (Okubo 1970; 

Weiss 1991) normalised by the vertical components of relative vorticity squared] at 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



850 and 500 hPa. 

 Relative humidity at 950 and 700 hPa. 

 Specific humidity at 950 hPa. 

 Vertical wind shear between 850 and 200 hPa. 

The algorithm used to trace a TC is summarized below with further details accessible in Tory 

et al. (2013a) and Bell et al. (2018). 

a. Each 1º × 1º grid point is assessed based on the initial threshold values of each 

parameter at 12-hr intervals. 

b. When at least two neighbouring grid points satisfy the initial thresholds of each 

parameter, these points are considered to represent a single circulation at that point in 

time. 

c. The circulations from step (b) are linked through time by estimating their position in 

relation to the circulation's expected position based on an averaged 4º × 4º steering 

wind at 700 hPa. 

d. The core thresholds are then applied to each storm track, and if they are satisfied for 

48 hrs, a TC is declared. 

e. Tracks are terminated when no circulation match is found in the next two time-steps 

within a generous (~350 km) latitude dependent radius.  

The OWZ algorithm has previously undergone scrupulous validation in reanalysis data in 

terms of annual TC numbers and genesis positions (Tory et al. 2013b), and more recently in 

terms of tracks (Bell et al. 2018). Crucially, the track validation study of Bell et al. (2018) 

identified a limitation in the algorithm, suggesting that those TCs lasting less than 2-days 

after declaration should be discarded for best performance. This study implements this 

suggestion by removing all such detected TCs in reanalysis and model data. Studies have 

documented homogeneity issues with short-lived observed TCs due to improvements in 
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observational capabilities over time in other basins (Landsea et al. 2010). However, we found 

this impact to be minimal in the NIO basin over the quite recent 1990-2013 period (not 

shown). For comparison, statistics of observed TCs from the IBTrACS database are shown in 

Table 1 with and without short-lived TCs removed. 

b. TC track definition 

The definition of a TC track detected in model and reanalysis data begins from the TC 

declaration location (i.e., once the core OWZ thresholds have been satisfied for 48 hrs), as 

this location best matched the timing of a TC first reaching a 10-minute sustained wind speed 

of 17 m s
-1 

in IBTrACS (see the following section). TCs are terminated when no circulation 

match is found in the next two time-steps (i.e., the initial thresholds are no longer satisfied).  

c. Historical TC records (IBTrACS and ERA-Interim) 

The International Best Track Archive for Climate Stewardship – World Meteorological 

Organization version (IBTrACS-WMO, Knapp et al. 2010a,b) provides a compilation of 

historical TC data as recorded by meteorological centres and/or forecast agencies that have 

WMO designation in the surrounding area; in this case the Indian Meteorological Department 

(IMD). TCs were sourced from this dataset over a 24-year period (1990 to 2013). Tracks are 

defined to begin at the position a storm reaches a 10-minute sustained wind speed of 17 m s
-1 

(Harper et al. 2010), with those storms not reaching this intensity excluded from the analyses. 

TCs detected in ERA-Interim reanalysis data (Dee et al. 2011) are used to provide a 

second basis of historical TC tracks from the historical record over a 25-year period (1989 to 

2013). A second basis of the historical record is required for the NIO due to inconsistencies 

between TCs in IBTrACS and those detected in model and/or reanalysis data (e.g., Strachan 

et al. 2013; Tory et al. 2013b,c; Bell et al. 2018; Bell et al. 2020). There are some potential 

explanations proposed for these inconsistencies being confined to the NIO. These include (1) 

different forecasting practices and (2) freshwater run off that mixes with the ocean water 
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from the mountains can affect air-sea heat exchange rates (e.g., Sengupta et al. 2006; 

Mahadevan et al. 2016). The latter is unlikely to be accounted for in climate model 

simulations. 

d. CMIP5 model data  

Thirteen models from the Coupled Model Intercomparison Project (CMIP5, Taylor et al. 

2012) are analysed in this study (Table 1). Unlike previous papers (e.g., Bell et al. 2019a,b,c), 

we have additionally included the MRI-CGCM3 model (Yukimoto et al. 2012) in our 

analyses. Although prior papers with the OWZ scheme have indicated large overestimations 

of TC numbers detected with this model (e.g., Tory et al. 2013c; Chand et al. 2017) it was 

discovered a large percentage of these detections lasted less than 2-days (not shown). Upon 

removal of these short-lived TCs (as occurs in all other models), a more reasonable TC 

climatology was produced. This model was also produced by the same institution as the 

model used in the Murakami et al. papers, whose results we are using as a basis of 

comparison. 

The fifth generation of climate models produced by the CMIP experiments provide a 

wide array of platforms to assess current and future climate scenarios. The two scenarios 

assessed in this work include a historical simulation (1970 – 2000) to evaluate and assess 

climate models’ ability to reproduce observed TC climatology, and (2) in the future-climate 

(2070 – 2100) to determine projected changes as a result of global warming. Future climate 

CMIP5 simulations are often implemented with one of several Representative Concentration 

Pathways (RCP, e.g., Van Vuuren 2011) to control the level of carbon emissions in the 

atmosphere compared to pre-industrial times. In this study, the RCP8.5 scenario that 

represents a maximum 8.5 W m
-2

 likely increase in radiative forcing over pre-industrial levels 

(Riahi et al. 2011) was chosen to best elucidate any changing TC behaviour in a warmer 

climate (e.g., Tory et al. 2013c; Chand et al. 2017).    
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e. Cluster analysis 

The probabilistic curve-clustering (CC) technique of Gaffney et al. (2007) is applied using 

the CC-Toolbox in MATLAB version 2015a; to group together similar TC tracks in regions 

of the NIO. The cluster analysis was implemented with each set of TC track data clustered 

together. Following Camargo et al. (2008) and Nakamura et al. (2017), twenty-five cluster 

runs were performed with 12 expected maximization (EM) starts with the input order of the 

tracks being randomized on each run. Linear regression mixture (lrm) models were fitted to 

each track. The cluster run with the smallest trained log-likelihood value was selected. Four 

(k=4) clusters were used to capture TC track patterns in the NI. This is in contrast with 

Paliwal and Patwardhan (2013) who used five clusters. We stress the importance of cluster 

stability and found four clusters, two in each sub-basin to be more stable and better suited for 

result interpretations. 

3 Results and Discussion 

a. Preliminary assessment and selection of models 

Historical climate TC tracks detected by the OWZ algorithm in each of the 13 CMIP5 

models, as well as those detected in ERA-Interim reanalysis data and observed in IBTrACS, 

are shown in Fig. 2. Note that hereafter IBTrACS and ERA-Interim TCs are collectively 

referred to as the “historical records” for the reasons highlighted in Section 2c. Some 

discrepancies between TCs in the historical records and model simulations were noted. In 

particular, most models show increased genesis equatorward of 10°N in the Bay of Bengal 

and 5°N in the Arabian Sea. Similarly, there was a failure in detecting higher latitude TCs in 

the Arabian Sea in some models (e.g., CSIROmk3.6, HadGEM2-ES and the ACCESS 

models). It also appears some TCs detected in CSIRO-Mk3.6 track towards the equator in the 

northern Bay of Bengal (Fig. 2). 
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Before analysis of projections is attempted, it is important to carefully select models 

that best represent the TC characteristics to be analysed in the historical records while 

ensuring models are independent of each other (see Knutti et al. 2013; Sanderson et al. 2015). 

The aim here is to provide early season, peak monsoon and late season projections as well as 

projections for the Arabian Sea and Bay of Bengal; thus the models are examined on their 

performance accordingly (Table 1). It should also be emphasised that there is no attempt 

made to correct the weighting of models in the multi-model mean constructions, hence 

models with the most simulated TCs have a slightly stronger weighting within the multi-

model means. This disqualifies models with very high (MIROC5) and very low (CNRM-

CM5) TC detections from being included in multi-model means. However, if these models 

were to perform well in other characteristics, they may be included in results separate from a 

multi-model mean (as seen later with MIROC5). 

Based on the model independence analyses of Knutti et al. (2013), who analysed 

similarities between models in control states and response to RCP8.5, the following models 

in the three subgroups (HAD-ACC, GFDL and BCC) can be considered dependent:  

 HAD-ACC: HadGEM2-ES, ACCESS1.0 and ACCESS1.3. 

 GFDL: GFDL-ESM2M, GFDL-CM3 and GFDL-ESM2G. 

 BCC: BCC-CSM1.1 and BCC-CSM1.1m. 

This leaves CCSM4, MIROC5, CNRM-CM5, CSIROMk3.7 and MRI-CGCM3 as the 

remaining independent models. By combining this independence information with model 

skill assessments in Table 1, a group of 4 models was systematically decided upon to form a 

four-model mean (4-M). BCC-CSM1.1M was the best performing model, followed by MRI-

CGCM3, ACCESS1.3 and GFDL-ESM2G. Note that the latter three models all performed 

poorly in simulating the ratios between early and late season TCs while MIROC5 best 
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performed in this metric outside of the two BCC models. Almost all models overestimated 

TCs during peak monsoon season compared with the early season (pre-monsoon) although 

early season TCs were severely underestimated in all models except MIROC5. In contrast, 

when comparing the peak-monsoon season to just the post-monsoon TCs, a suppression of 

TC numbers during peak monsoon season was simulated by most models. 

b. Projection of TC numbers 

Projection results (Table 2) from the best performing model, 4-M and an additional 6-M 

mean (see caption of Table 2) under RCP8.5 show increased TC numbers in the Arabian Sea 

(30–64%) and decreased TC numbers in the Bay of Bengal (22–43%), consistent with 

Murakami et al. (2013). The NIO as a whole was projected to decrease by 8–14%, with early 

season (pre-monsoon) TCs decreasing by 29–36% and late season (post-monsoon) TCs 

increasing by 5–27% (Table 3). With exception of the peak monsoon season ([-22 – 64%]), 

projection results from each of the best, 4-M and 6-M models all agreed on the sign of change 

under the RCP8.5 warming condition (Tables 2 and 3). Results for peak-monsoon and post-

monsoon season projections differ to the findings of Murakami et al. (2013), who found an 

increase in the peak-monsoon season and no change in post-monsoon TC frequencies. We do 

note that Murakami et al. (2013) only used the more active months of October and November 

to define the post-monsoon while OND was used in this study. This small discrepancy is 

unlikely to impact on conclusions. 

c. Cluster analysis of TC tracks 

i. Historical simulations 

Cluster analysis is applied to TC tracks from different sources (IBTrACS, ERA-Interim and 

CMIP5) simultaneously. Four clusters (i.e., k=4) were used to describe TC tracks in the NIO, 

two in the Arabian Sea and two in the Bay of Bengal. An additional cluster to the three used 

for the NIO basin in Bell et al. (2018) is introduced so that model overestimations of Arabian 
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Sea TC detections toward the equator can be isolated (AS1, Fig. 3; Table 4). It was found that 

the inclusion of IBTrACS TCs in the clustering analysis led to spurious results (Fig. 3a), 

therefore a subsequent cluster analysis was performed without the IBTrACS TCs (Fig. 3b). 

This appears to correct the previous errors, as we see a much closer match between the 

RCP8.5 (orange) and historical (blue) mean genesis positions and trajectories. Results of the 

secondary cluster analysis (Fig. 3b) are used throughout the remainder of this paper. 

ii. RCP8.5 projections 

The earlier finding of a projected increase (decrease) in Arabian Sea (Bay of Bengal) annual 

TC numbers are further stratified by track cluster analysis, splitting each sub-region into two 

distinct groups of tracks (Table 4). Noting TCs belonging to the AS1 cluster were not as 

readily found in the historical records as they are detected in models. However, the overall 

projection result does not seem to be dependent on the AS1 cluster, as projected increases in 

both Arabian Sea clusters are similar (26% and 29% respectively). Likewise, both Bay of 

Bengal clusters also undergo a similar projected frequency decrease (29% and 25% 

respectively). 

Our earlier finding of projected decreases (increases) in early (late) season TC 

numbers were also further stratified by clusters (Table 5). Failure of each 4-M member to 

correctly simulate monsoonal variations in TC frequency (Table 1) casts doubt onto some of 

these projection results. For early season TCs, a statistically robust projected decrease in the 

two Bay of Bengal clusters was partially offset by a robust increase in the northern Arabian 

Sea (AS2). For late season TCs, results were not found to be as robust as the early season. 

The decrease in the southern Bay of Bengal (BoB1) was the least robust, biased by a 50% 

reduction in TCs from the ACCESS1.3 model (not shown). The remaining three clusters in 

the late season were projected to increase, with three of four models agreeing on the sign of 

change (Table 5). 
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iii. Projected changes in large-scale environmental conditions 

Prior studies (e.g., Pattanaik 2005; Chan 2007; Ng and Chan 2012) have concluded that 

variations in TC activity in and around the NIO are due to variations in the large-scale 

atmospheric circulation, rather than SST. Historically, emphasis has been placed on vertical 

wind shear in the Bay of Bengal (Xavier and Joseph 2000) and relative humidity in the 

Arabian Sea (Evan and Camargo 2011). Ng and Chan (2012) attributed wind shear, humidity 

and geopotential energy, among other conditions, to variability in in the Bay of Bengal during 

the late season (OND) but did not find causes of variability during the early season (AMJ).   

Here we analyse the change in three relevant large-scale parameters between the 

RCP8.5 and historical model simulations during the early (AMJ) and late (OND) seasons 

(Fig. 4). Projected changes in relative humidity and vertical wind shear during AMJ are 

consistent with a projected increase of TC activity in the northern Arabian Sea (AS2). 

Reductions of AMJ TC activity over the Bay of Bengal are consistent with changes in 

vertical ascent (omega). A sharper decrease in TC frequency in the Southern portion of the 

Bay (BoB1, Table 5) appears to be consistent with changes to relative humidity and vertical 

ascent rather than vertical wind shear. For the OND months, where projection results were 

more variable, relative humidity underwent a significant increase and appears to be the most 

consistent with projected changes in TC frequency (where all clusters except for BoB1 were 

likely to increase). Changes in the favourability of vertical ascent were very similar to the 

pattern of relative humidity. In contrast, vertical wind shear was reduced over the southern 

regions, particularly in the Bay of Bengal (BoB1). However we note that changes in vertical 

wind shear over the Bay of Bengal were not considered significant in terms of model 

agreement (Fig. 4). 
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4. TC track density change 

Here we account for both TC frequency and track characteristics by measuring TC track 

density. This is measured by counting the number of individual TCs entering 2.5 x 2.5° grid 

boxes over the entire NIO (30°–100°E). Note certain terminology differences between this 

study and Murakami et al. (2013) where TC track density is simply referred to as TC 

frequency or “TCF”.  

TC track densities were computed for the RCP8.5 and historical climate model 

simulations. Resulting historical densities were then subtracted from RCP8.5 densities (Fig. 

5a) to highlight projected changes. Inclusive of each cluster in the NIO, TC track density was 

found to increase (decrease) over the Arabian Sea (Bay of Bengal), consistent with earlier 

findings related to TC frequency (Section 3b). In some grid boxes, particularly the Arabian 

Sea, all four models in the 4-M mean agreed on the sign of change under RCP8.5 (yellow 

boxes, Fig. 5b). We note a remarkable similarity between this figure and regions considered 

significant in Murakami et al. (2013, their Fig. 5a). 

Next, in order to isolate changes in TC track directions, the number of TCs in each 

cluster between the historical and RCP8.5 climate model simulations were held fixed to 

compute normalised TC track densities in each cluster. Resulting track densities from the 

historical simulation were then subtracted from the RCP8.5 model track densities (Fig. 5c-f). 

This isolates non-frequency related changes for each cluster. Projections of normalised track 

density under RCP8.5 was quite similar to the historical simulation for AS1, AS2 and BoB2. 

However, BoB1 showed a marked difference in normalised track density under the RCP8.5 

scenario (Fig. 5e). It appears BoB1 TCs are shifted poleward (consistent with Fig. 3b) and are 

more likely to make a crossing through southern India (rather than Sri Lanka) into the 

Arabian Sea, further increasing overall TC track density in the Arabian Sea (Fig. 5a).  

A caveat of the above result is that two models in the 4-M mean had historical TC 
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detection biases equatorward of 5°N in the Arabian Sea. In the RCP8.5 simulation, TCs were 

not detected here (not shown); reducing confidence in the poleward shift found for BoB1. We 

also note that BCC-CSM1.1m projected an equatorward shift in genesis position in contrast 

to the other three models comprising the 4-M.  

a. TC landfall projections 

Impacts to TC landfall rates are deduced from prior analyses. From Fig. 5a, it appears the 

eastern coast of India (inclusive of Bangladesh) all the way down to Sri Lanka may 

experience a decrease in TC landfall rates (up to 2 per decade) mainly due to decreasing TC 

numbers in the Bay of Bengal. Notably, differences in landfall rates become marginal along 

the eastern coast of India between 9–14°N, likely due to a somewhat spurious poleward shift 

of BoB1 cluster TCs in the RCP8.5 scenario (Fig. 5e). 

For the western coast of India, landfall events are projected to remain rare 

occurrences, as TCs in the Arabian sea continue to track westward. However, BoB1 TCs 

were projected to increase in density on the western coast after crossing from the east (Fig. 

5e), although this had little effect on the overall density (Fig. 5a). The surrounding landscape 

to the west in the Arabian Sea (e.g., African and Middle eastern countries) see only a small 

increase in landfall events (~0.5 TCs per decade), despite large percentage increases in TC 

frequency. 

5. Summary and Discussion 

Projection results in the NIO TC basin were complicated by a mismatch between TCs 

detected in models and those recorded in IBTrACS, as found in several other studies, 

including those that used a different TC detection and tracking scheme. Murakami et al. 

(2013) found an increase (decrease) of TC genesis frequency in the Arabian Sea (Bay of 

Bengal) through their model simulation of a carbon forced environment. In a subsequent 
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study those authors addressed issues of model-dependency but also raised concerns about TC 

detection scheme dependence and its possible impacts on results; noting that no model or 

detector is perfect and that different detectors can produce different results when applied to 

the same model (Horn et al. 2014). A model-independent TC detection scheme (Tory et al. 

2013a) was used in the present study to address such concerns, and to also produce regional-

scale TC track projections for the NIO. 

Projected changes in NIO TCs were determined between historical climate conditions 

(1970-2000) and projected climate conditions (2070-2100) under the RCP8.5 warming 

scenario. Intraseasonal effects of early season (pre-monsoon), peak monsoon and late season 

(post-monsoon) were also analysed. The bulk of the analysis utilised a multi-model mean 

comprised of four independent CMIP5 models (4-M). All TC tracks under analysis were 

input to the clustering algorithm simultaneously. Removal of IBTrACS TCs from the 

clustering analysis improved interpretation and consistency. Four clusters were used, two in 

the Arabian Sea, and two in the Bay of Bengal, noting TCs in the southernmost Arabian Sea 

cluster were overestimated by most models. 

The main results of this study are summarised as follows. 

 In the future climate projection, consistent with Murakami et al. (2013), TC genesis 

frequency was found to be significantly suppressed in the Bay of Bengal and 

significantly enhanced in the Arabian Sea.  

 TC genesis frequency was found to be significantly decreased during the pre-

monsoon season. Different to Murakami et al. (2013), TC genesis frequency was 

found to be increased during the post-monsoon season in each region except the 

southern Bay of Bengal (BoB1). Although we note our latter changes cannot be 

considered statistically significant as only three out of the four models tested agreed 

on the sign of change. Also in contrast with Murakami et al. (2013) were projections 
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of peak monsoon season TC genesis frequency, where we projected a decrease in the 

northern Bay of Bengal (BoB2). 

 Increased TC genesis in the post-monsoon season in the northern Bay of Bengal 

(BoB2) was consistent with changes in relative humidity and vertical ascent. 

Similarly, pre-monsoon season TC genesis frequency in the northern Arabian Sea 

(AS2) was also increased but was instead consistent with changes in relative humidity 

and vertical wind shear. 

 Despite these changes, the northern Bay of Bengal (BoB2) remained the most active 

TC development region under the RCP8.5 scenario and the southern Arabian Sea 

(AS1) the least active. 

 TC track density change included a decrease of up to 2 TCs per decade impacting the 

eastern coast of India and a small increase (up to 0.5 TCs per decade) hitting Eastern 

Africa, Oman and Yemen; consistent with projected changes in TC genesis. A possible 

poleward shift in southern Bay of Bengal TCs (BoB1) that track west into the Arabian 

Sea was noted, resulting in only a marginal decrease of landfall activity between 9–

14°N along the east Indian coastline. However, the latter result was complicated by 

the presence of equatorward TC detection biases in the historical model simulations. 

These biases were found in the RCP8.5 projections in two of the four independent 

models used. 

In closing, we note a genuine similarity between overall projection results in this paper and 

Murakami et al. (2013). Although, at finer scales some inconsistencies were noted between 

the studies, and between some models examined here, especially concerning intra-seasonal 

TC activity projections.  Further increases in the robustness of TC projections in the NIO can 

be achieved as simulation of the Asian monsoon improves in climate models.
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Table 1: Climate averages of the number of TC occurrences (per year) in several regions and 
temporal periods within and over the NIO TC basin. Model values in bold indicate sufficient 
deviation from the historical record values. Models with an asterisk (*) are members of the 4-model 
mean (4-M), those with a plus (+) are used in the 6-M.

Arabian 
Sea

Bay of 
Bengal

Ratio 
AS/BoB

Early 
(E)

Peak 
(P)

Late 
(L)

Ratio 
E/L

Ratio 
P/(E+L)

Peak 
Min

Total 
(p/yr)

Reference

IBTrACS 1.6 4.6 0.35 2.0 1.5 2.5 0.79 0.34 Y 6.2 Knapp et al. 
2010a,b

IBTrACS 
(>2day)

1.1 3.0
0.37

1.5 0.7 2.5 
0.62 0.18

Y 5.1 -

ERA-Interim 1.4 3.3 0.42 1.5 0.7 2.4 0.62 0.18 Y 4.7 Dee et al. 2011

CSIROmk3.6+ 0.5 4.0 0.14 0.8 1.0 2.7 0.30 0.29 N 4.6 Collier et al. 2011

CNRM-CM5 0.2 0.6 0.28 0.1 0.0 0.6 0.11 0.00 Y 0.7
Voldoire et al. 
2012

GFDL-2m 1.2 3.4 0.34 0.4 1.6 2.1 0.20 0.63 N 4.6
Donner et al. 
2011

CCSM4+ 1.9 2.7 0.69 0.5 1.1 2.5 0.19 0.36 N 4.6 Gent et al. 2011

GFDLCM3 1.7 2.8 0.60 0.5 0.9 2.9 0.15 0.26 N 4.5
Donner et al. 
2011

ACCESS1.0 0.5 3.5 0.16 0.3 1.6 1.7 0.19 0.78 N 4.0 Bi et al. 2012

BCC_CSM1.1 0.3 0.8 0.31 0.3 0.4 0.4 0.75 0.62 N 1.1 Wu et al. 2014

MIROC5 2.2 6.9 0.31 2.8 2.4 3.5 0.81 0.37 Y 9.1
Watanabe et al. 
2010

GFDL-2G* 1.2 4.0 0.29 0.9 1.4 2.5 0.35 0.42 N 5.2
Donner et al. 
2011

HADGEM2 0.3 3.5 0.09 0.5 1.5 1.5 0.30 0.77 N 3.8 Jones et al. 2011

ACCESS1.3* 1.3 3.4 0.38 0.1 0.7 3.4 0.02 0.21 N 4.6 Bi et al. 2012

BCC-1.1m* 1.0 2.3 0.43 0.8 1.0 1.4 0.57 0.46 N 3.3 Wu et al. 2014

MRI-CGC* 1.7 3.6 0.48 0.7 2.0 2.5 0.27 0.64 N 5.3
Yukimoto et al. 
2012
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Table 2: Projection results of TC frequencies (per year) in the Arabian Sea (AS) and Bay of 
Bengal (BoB) and combined (Total), for the best forming model (BCC-CSM1.1M), independent 
best performing model mean (4-M) and the latter with the inclusion of two additional models 
CSIROMK3.6 and CCSM4 (6-M).

hist RCP8.5 Change (%)

AS BoB Total AS BoB Total AS BoB Total

Best 1.0 2.3 3.3 1.6 1.3 3.0 +64 -43 -10
4-M 1.3 3.3 4.6 1.7 2.6 4.3 +36 -22 -8

6-M 1.3 3.3 4.6 1.7 2.5 4.2 +30 -25 -14
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Table 3: Projection results for early season (April-June), peak monsoon season (July-September) 
and late season (October-December) TC frequencies (per year). The early/late season ratio of 
TC numbers in the historically simulated BCC-CSM1.1M and MIROC5 models were the best 
match to the ratios in observed and reanalysis data. MIROC5 was the only model to meet both 
peak season criteria (Table 1).

hist RCP8.5 Change (%)

Early Peak Late Early Peak Late Early Peak Late

BCC1.1m 0.8 1.0 1.4 0.5 0.8 1.6 -29 -22 +27
MIROC5 2.8 2.4 3.5 2.0 3.9 4.4 -32 +64 +14
4-M 0.6 1.3 2.5 0.4 1.0 2.6 -36 -22 +5

6-M 0.6 1.2 2.5 0.4 1.1 2.7 -35 -11 +8
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Table 4: Composition of TC frequency (per year) within TC track clusters and projected change 
under RCP8.5 (P). Sign agreement (SA) on the projected change between the four models of the 
4-M, bolding represents >95% significance.

ERA-
Int

Hist RCP8.5 P (%) SA

AS1 0.2 0.9 1.2 +26 3/4
AS2 1.6 0.5 0.7 +29 4/4
BoB1 1.0 1.4 1.0 -29 4/4
BoB2 2.0 1.8 1.3 -25 4/4
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Table 5: Composition of early season (April-June), peak monsoon (July- September) and late 
season (October-December) TC frequency (per year) within TC track clusters and projected 
change under RCP8.5 (P). Sign agreement (SA) on the projected change between the four 
models of the 4-M where bolding represents >95% significance. In some cases, models had the 
same number of TC detections in the historical and RCP8.5 simulations or had no TC detections 
in either. These were excluded from SA consideration.

ERA-I Hist RCP8.5 P (%) SA
Early
AS1 0 0 0 - -
AS2 0.5 0.2 0.4 +71 3/3
BoB1 0.1 0.6 0.1 -84 4/4
BoB2 0.7 1.6 1.1 -49 3/3
Peak
AS1 0.0 0.1 0.2 +200 1/1
AS2 0.2 0.8 1.0 +25 3/4
BoB1 0.0 0.3 0.3 - 1/2
BoB2 0.4 4.1 2.6 -35 4/4
Late
AS1 0.2 3.5 4.1 +19 3/4
AS2 0.6 1.0 1.3 +22 3/4
BoB1 0.6 4.0 3.4 -15 2/4
BoB2 0.6 1.4 1.6 +17 3/4
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Fig. 1: The North Indian Ocean TC basin (30-100°E). Note TCs forming west of 77.5°E are 

referred to as Arabian Sea storms, and those forming east of 77.5°E are referred to as Bay of 

Bengal storms. 
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Fig. 2: TC genesis locations (black +’s) and tracks (blue lines) from IBTrACS observations 

(1990-2013), ERA-Interim reanalysis (1989-2013) and CMIP5 historical model simulations 

(1970-2000). A random sample of up to 40 TC tracks are shown in each panel. Density 

estimates based on a kernel function (Lee 2009) enclose approximately 75% of TC genesis (red 

contours). 
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Fig. 3: Decomposed cluster mean track trajectories from (a) the original cluster analysis and 

(b) a subsequent cluster analysis (where IBTrACS TCs were excluded). Cluster names are 

retained between both analyses, with two in the Arabian Sea (AS) and two in the Bay of Bengal 

(BoB). Kernel density estimates (Lee 2009) enclose 50% of genesis positions in each cluster. 
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Fig. 4: Difference in the kernel densities of large-scale TC genesis parameters between RCP8.5 

and historical conditions during pre-monsoon (AMJ) and post-monsoon (OND) seasons. 

Results were averaged over five models, those used in the 4-M and MIROC5. Stippling 

indicates all five models agreed on the sign of change. 

 

(x10-2 Pa s-1) 

(%) 

(m s-1) 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: (a) Projected change in TC track density (per decade) between RCP8.5 and historical 

CMIP5 simulations, given by a mean of four independent models (4-M). (b) Model agreement 

on the projected sign of change (out of a total of 4 models). (c-f) as in (a) but for individual 

clusters, with the number of TCs held fixed. Red grid boxes indicate a projected increase in 

track density under RCP8.5. 
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