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Abstract: Compared to other countries, the COVID-19 pandemic did not severely affect Australia as
measured by total deaths until mid-2021. Though a substantial number of daily confirmed cases (up
to 698) were reported during the second wave, most of them were from the southern state of Victoria.
This study examined the possible correlations between climate variables and the number of daily
confirmed COVID-19 cases in Victoria, Australia, from 25 January to 31 October 2020. Appropriate
regression models and cross-correlation diagnostics were used to examine the effect of temperature,
rainfall, solar exposure, and ultraviolet index (UVI) with the number of daily confirmed cases.
Significant positive associations were identified for solar exposure and maximum and average UVI
for confirmed cases one and 19 days later. Negative associations for these variables were found for
confirmed cases five days later. Minimum temperature had a significant negative correlation one
day later and a positive effect 21 days later. No significant correlation was found for maximum
temperature and rainfall. The most significant relationships were found for confirmed cases 19 days
after changes in the meteorological variables. A 1% increase in solar exposure, maximum UVI, and
average UVI was associated with a 0.31% (95% CI: 0.13 to 0.51), 0.71% (95% CI: 0.43 to 0.98), and
0.63% (95%CI: 0.20 to 1.61) increase 19 days later in the number of confirmed cases, respectively. The
implications of these results can be used in the public health management of any possible future
events in Australia. It also highlights the significance of considering the climatic variables and
seasonality in all kinds of epidemics and pandemics.

Keywords: coronavirus disease; climate and COVID-19; SARS-CoV-2; solar radiation and COVID-19;
ultraviolet index; weather factors and COVID-19

1. Introduction

As of the end of 2020, no country (excluding small island nations) is free of the COVID-
19 virus. Indeed, the pandemic returned as a second wave in many European countries and
the USA and appeared as the first wave in several Asian and African countries. Outbreaks
have seriously challenged governments across the world, and it has thrown enormous
pressure on their health systems. As of 23 June 2021, Australia conducted 19,934,238
COVID-19 tests and identified 30,378 cases only (0.2%), but with 910 fatalities [1]. All
federal, states, territories, and local governments worked with residents to manage the
COVID-19 pandemic. In 2020, the Australian second wave was generally not significant,
with the exception of the states of Victoria and New South Wales (NSW). In Victoria, the
second wave began in mid-June 2020, with the maximum peak observed in the first week
of August 2020. However, after considerable intervention strategies, including restriction
of movement, by the end of October, case numbers were very low and largely linked to
returning overseas travellers. Significant developments have occurred in NSW since the
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middle of 2021 and as of the end of August 2021. There were more than 10,000 active cases
largely in NSW and Victoria, which represent the southernmost mainland states that also
have the highest population centres with the Australian human population at 25.8 million,
of which 25% live in Victoria [1].

Approximately two months after the emergence of COVID-19, a debate arose regard-
ing the influence of climate factors in SARS-CoV-2 transmission. Particular interest was
focused on quick transmission and high mortality rates in the high northern latitudes,
specifically in Europe and the USA, compared to countries in the equatorial regions. Interest
in the role of exposure to solar radiation and vitamin-D levels as important climate-related
variables quickly emerged. In this respect, the rapid spread of COVID-19 in colder countries
is relatively similar to that of influenza dispersion in that it spreads aggressively in winter
and retreats in summer [2,3]. In European countries and the USA, influenza spreads in the
northern winter from December to March, while in Australia, it happens from May to July
(southern winter). Because of the apparent link to seasonality, it appears that an important
question to investigate is whether climate factors modulate the progression of COVID-19.
This is crucial for epidemiologists, healthcare decision-makers, and governments at various
levels since it will directly and critically inform their management plans [4]. It is already
known that a major transmission route for the virus is respiratory droplets passing through
the atmosphere, and it has been reported that the mobility of coughing droplets from
an infected person depends on atmospheric parameters, such as humidity, ambient air
temperature, and wind speed [5].

Studies conducted across many regions suggest links between climate factors and
COVID-19 transmission and mortality and, dependent on the variable, either a direct or
inverse relationship [4,6,7]. For example, Takagi et al. [8] observed that temperature, expo-
sure time to solar radiation, and ultraviolet index (UVI) are negatively related to COVID-19
transmission, whereas wind speed and increasing sky cover are positively related.

Prior to the publications of other related studies, Rhodes et al. [9] note that latitude
(the location of the country) is a significant factor in determining the extent of COVID-19
spreading and mortality, observing that there was a 4.9% increase in mortality for each
degree of latitude movement towards the north. In support of this view, and analysing data
gathered from 208 territories, Quilodran et al. [4] reported that (i) each degree increase in
atmospheric temperature decreased the mortality rate by ~4%, (ii) a 1% increase in relative
humidity raised the mortality rate by ~2%, while (iii) a unit increase in UVI reduced the
mortality rate by ~15%. Similarly, Ramirez and Lee [6] analysed the UVI and humidity data
of 205 cities in 21 countries and found a direct association with humidity but a negative
association of COVID-19 spread with UVI. A study from Brazil highlighted a similar
association between weather factors (temperature, UVI, ozone concentration, and cloud
cover) with COVID-19 growth rate and daily deaths; specifically, a unit increase in UVI
stimulated a 6% decline in the mortality rate [7]. A similar pattern was also identified by
Islam et al. [10] after analysing data from 310 regions worldwide. In contrast, Yao et al. [11]
found no association between COVID-19 spread with temperature in the Wuhan area
in China.

UV exposure is linked to increased rates of skin cancer development [12]. However, it
is also known that UV has antimicrobial properties and is commonly used in several health-
care and water treatment facilities [13]. It also has a significant association with vitamin-D
formation [14], and other studies have shown direct UV effects on the human immune
system [15]. Particulate matter (PM) in the atmosphere has also been associated directly
with the rate of change in the daily number of COVID-19 cases [16]. In addition to climate
factors, it is clear that physical factors also contribute to virus spreading and mortality
rates, such as human comorbidities, physical contact frequencies, innate immunity levels,
appropriate use of personal protection equipment (PPE) and personal hygiene practices,
the presence of various types of fomites, the structure of lock-down measures, and the
features of available health systems [17–19].
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Although there have been some valuable studies published, the association between
climate factors and COVID-19 transmission has not been closely investigated, particularly
with regard to the Australian context. Since most of Australia’s COVID-19 cases have
been reported from the states of Victoria and NSW (especially the metropolitan areas), the
objective of this study is to understand the influence of climate factors in spreading the
COVID-19 using Melbourne Australia as a case study. Most of the published studies have
used first wave data only [20–22], but this study considers both the first and second wave
data available for this location.

2. Methodology
2.1. Data Collection

The COVID-19 daily new case and UVI index data from Victoria between 25 January
and 31 October 2020 were collected from the Victorian Health Department website [23] and
the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), respectively.
Other necessary weather data such as temperature, humidity, and rainfall were collected
from the Bureau of Meteorology (BOM), Australia [24]. The starting and ending date
was selected to match the initial confirmed cases of COVID-19 in Victoria until no more
confirmed cases were diagnosed for more than a month.

2.2. Statistical Analysis

Most of the meteorological variables examined in this study were highly correlated, so
their effects on COVID-19 were examined separately to remove the errors due to collinearity.
Initial correlations were determined for each of the variables with confirmed cases. These
correlations may be spurious as problems of non-homogeneity of variance, non-stationarity,
and autocorrelated time series were identified. Each time series was log-transformed to
stabilise the variance (adding 1 to remove the problem of taking the log of 0). The first
differences of the logs of each time series were then taken to eliminate any trends present.
The augmented Dicky Fuller test confirmed that each time series was stationary due to
this process.

Cross-correlations that compare all the investigated variables with the number of
confirmed cases were used to identify significant correlations. It is well known that
autocorrelation within a time series can produce spurious cross-correlations [25]. Pre-
whitening was used to remove the autocorrelations from the number of confirmed cases
and applied the same filter to each climate variable. This process enables a more meaningful
investigation of the cross-correlation functions (CCFs) to identify predictive relationships.
Various authors have previously used pre-whitening to limit the effect of autocorrelation
when examining climatological and environmental time series [26–29].

The pre-whitening process used in this study initially examined the number of con-
firmed cases. Several auto-regressive integrated moving average (ARIMA) models, with
appropriate parameters determined from the inspection of the autocorrelated functions
(ACF) and partial autocorrelation functions (PACF) plots, were attempted. The selection of
ARIMA models to estimate confirmed cases of COVID-19 was based on the examination
of the time series and the success of various other studies that utilised ARIMA models
for pandemics. ARIMA models have been conducted on previous pandemics such as
severe acute respiratory syndrome (SARS) [30] and the incidence of influenza in China [31].
ARIMA models have also been applied to COVID-19, and a summary of these can be found
in Lee et al. [32]. The most appropriate ARIMA model was determined using Akaike’s
information criteria (AIC) [33]. The same model was then applied to each of the meteoro-
logical variables. The CCF of the residuals from the confirmed cases and the filtered values
(defined as the difference between the observed and model estimates) from the meteoro-
logical variable factor was then examined to identify any significant lagged correlations.
This process identified the number of days required to change the meteorological variable
to significantly impact the number of confirmed cases.
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A linear regression model was constructed for each meteorological variable from all
of the significant lags identified from the CCF against the number of confirmed cases.
This allowed the identification of significant lags when all data was considered together.
For all tests conducted, p < 0.05 was considered statistically significant, and all analyses
were performed using R statistical software (version 4.0.3) (R Foundation for Statistical
Computing, Vienna, Austria).

3. Results

Spatial and temporal heterogeneities occur in association with COVID-19 spreading
and with meteorological parameters like ambient air temperature, humidity, and UVI.
While plotting the daily case data, two wave patterns are observed. The first case of
COVID-19 reported in Victoria was on 25 January 2020, and the highest daily case reported
during the first wave was on 27 March 2020, followed by a decline in case numbers [23].
The second wave began to rise in the second week of June 2020, and the wave reached its
peak on 4th August and started to decline [23]. The first wave was found to be smaller
when compared to the second wave, a pattern that is noted in many jurisdictions. A
contributing mechanism behind this variation may be the atmospheric temperature and
UVI index because the first wave started during the summer and peaked in the autumn. In
contrast, the second wave occurred during the winter (Figure 1), where temperature and
UVI were comparatively low. The influence of season and climate parameters, precisely
atmospheric temperature, and humidity, on many viruses, were mentioned in several
previous studies [2,3,34,35].
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Similar to the above, many studies showed an inverse association between air temper-
ature and COVID-19 spreading [36–40], with a significant correlation between recovery
time and solar radiation exposure [41]. Solar radiation, specifically UV radiation, has the
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ability to inactivate the virus and boost the immune system through vitamin-D preparation
and thereby slow the infection rate [42–45]

3.1. Descriptive Analyses

Table 1 shows the descriptive statistics for the daily confirmed cases and meteorologi-
cal variables. There were 20,269 confirmed new cases over the time period examined, and
these showed a daily average of 72.39, with the highest day observation being 687 cases.
The minimum solar exposure was 2.1, with a maximum of 30.1. The minimum and maxi-
mum values of maximum UVI were 0.3 and 10.8, respectively, and that of average UVI was
0.4 and 3, respectively. The minimum and maximum values of minimum temperatures
were 0.2 ◦C and 23 ◦C, respectively, whereas maximum temperatures were 14.3 ◦C and
43.6 ◦C, respectively. The rainfall in the data collection period was low, with an average of
1.91 mm (minimum 0 and maximum 69 mm) recorded.

Table 1. Descriptive statistics of the daily confirmed cases and six meteorological variables for the
sample period 25 January to 31 October 2020.

Variables Mean SD Min Max

Confirmed cases 72.39 128.25 0 687

Solar exposure
(MJ/m2) 12.16 5.88 2.1 30.1

Maximum UVI 4.64 2.71 0.3 10.8

Average UVI 0.89 0.64 0.40 3.03

Maximum
Temperature

(◦C)
18.16 5.46 14.3 43.6

Minimum
Temperature

(◦C)
8.75 4.12 0.2 23.0

Rainfall (mm) 1.91 5.96 0 69

3.2. Correlation Analysis of Original and Stationary Times Series

Seven-time series that depict the confirmed cases and climate variables are shown in
Figure 2. It is clear that there are trends and non-homogeneity of variance present for all
of the time series; that is, all of these time series are not stationary (in terms of mean and
variance at all time points). Each of these time series was log-transformed prior to the first
differences being taken to make them stationary. This assured that any correlations would
be without trend confounders. The augmented Dicky Fuller test confirmed that each time
series was stationary as a result of this process.

The Pearson and Spearman correlation coefficients of the original and stationary time
series are shown in Table 2. All meteorological variables, excluding rainfall, were significant
for the original time series. However, only the length of solar exposure and max UVI were
significant once the trend had been removed, indicating that the trends made the original
correlations appear larger. The similarity in results between the two types of correlations,
together with the fact that the residuals were reasonably normally distributed, meant that
the Pearson correlation was deemed appropriate to use for the remainder of the study.
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Figure 2. Original time series of the daily confirmed cases (a) and six meteorological variables (b) solar exposure;
(c) maximum and minimum temperature; (d) maximum and average UVI; (e) rainfall.

Table 2. Pearson and Spearman correlation coefficients between the daily confirmed cases and six
meteorological variables for the original and stationary time series with the corresponding p-value.

Meteorological
Variable

Original Time Series Stationary Time Series

Pearson Spearman Pearson Spearman

Solar Exposure (MJ/m2)
−0.265
(<0.001)

−0.349
(<0.001)

−0.139
(0.020)

−0.131
(0.028)

Max UVI −0.374
(<0.001)

−0.472
(<0.001)

−0.131
(0.029)

−0.172
(0.004)

Average UVI −0.357
(<0.001)

−0.506
(<0.001)

−0.104
(0.082)

−0.082
(0.170)

Max Temp (◦C) −0.379
(<0.001)

−0.490
(<0.001)

0.076
(0.203)

0.056
(0.355)

Min Temp (◦C) −0.388
(<0.001)

−0.464
(<0.001)

0.112
(0.062)

0.032
(0.595)

Rainfall (mm) −0.062
(0.299)

−0.010
(0.861)

−0.071
(0.238)

−0.126
(0.035)
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The correlations from Table 2 indicate that solar exposure and max UVI affected the
confirmed cases. These correlations are determined by assuming that the effect of the
meteorological variable and the onset of confirmed cases were on the same day (identified
as lag 0). However, it is very possible that the effects of the meteorological variables
could impact the number of confirmed cases in future observations. The cross-correlation
function (CCF) is used to determine the correlations of confirmed cases with each climate
variable with a lag of up to 30 days. Figure 3 shows the CCF with the correlations between
the confirmed cases and solar exposure. The CCF indicates that there are significant
correlations (beyond the blue dashed line) at the lag time(s) of 0, 1, 5, 18, and 19 days before
the case confirmation. The effect on confirmed cases is positive after lags of 1 and 19 days
and negative after lags of 0, 5, and 18 days. That is, if the solar exposure increases on one
day, then there are increases in cases for 1 and 19 days later and a decrease in cases on that
day as well as 5 and 18 days later. Significant lag times are those below 0, which indicates
that solar exposure precedes and influences the number of cases. The CCF shows that there
are significant correlations (beyond the blue dashed line) at the lag time(s) of 0, 1, 5, 18, and
19 days before the case confirmation.
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The cross-correlations could be conducted as above on all of the stationary series.
However, these correlations may still be misleading as there could be spurious correlations
present based on temporal dependencies between the adjacent values of a time series (auto-
correlations). Pre-whitening removes these dependencies and allows a better investigation
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of the CCF [28,29]. That is, pre-whitening identifies the linear association between two
time series from their autocorrelation. The following section discusses the pre-whitening
process and the correlations identified after this process.

3.3. Correlation Analysis after Pre-Whitening the Time Series

The process of pre-whitening initially selected an appropriate ARIMA model for the
stationary confirmed cases time series in order to appropriately fit the data. The model was
then subsequently applied to each of the environmental factors. The CCF of the residuals
from the confirmed cases and the filtered values (the difference between the observed
and model estimates) from the environmental factors were then examined to identify any
significant lagged correlations.

Figure 3 (bottom) shows the ACF and PACF plots of the confirmed cases. These plots
indicate that between an order of 2–3 should be investigated for both the moving average
(MA) and autoregressive (AR) components of the ARIMA model. Several ARIMA models
of the order 2–3 were fitted to the data, and after extensive modelling, the optimum model
was selected to address the AIC, the significance of its parameters, and considerations of
parsimony. The best model selected was an ARIMA (2,1,2) model indicating that an order
of 2 was appropriate for both the autoregressive and moving average components. The
results of the final ARIMA model are shown in Table 3. The performance of the predicted
values from ARIMA (2,1,2) to the original number of cases is shown in Figure 4. The
model performs reasonably well except when there are large daily changes in the original
number of cases. The ACF of residuals from this model indicates that there is no more
autocorrelation in the series.

Table 3. Optimal ARIMA (2,1,2) model for stationary confirmed cases.

ar1 ar2 ma1 ma2

Coefficient 0.717 −0.199 −1.339 0.646

SE 0.159 0.089 0.144 0.094

p-value <0.001 0.024 <0.001 <0.001

AIC 447.49
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The next step of the pre-whitening stage involved filtering the meteorological variables
by finding the difference between their original values (of the stationary series) and the
predicted values using the ARIMA (2,1,2) model. Figure 5 shows the CCFs of the residuals
of the ARIMA (2,1,2) for confirmed cases against the filtered values for each environmental
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factor. Note that it is the correlations on the left side of the Figure that relate to the instances
in which the climate variable occurs before the confirmed cases. The significant correlations
identified for each of the meteorological variables from Figure 5 are summarised in Table 4.
Rainfall did not have any significant correlations with confirmed cases. Of particular
interest is that while the maximum temperature was not significant, minimum temperatures
had significant correlations at a lag of 1 and 21 days.
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Table 4. Significant correlations for each meteorological variable were identified from the CCF after
pre-whitening.

Meteorological
Parameters

Sig. Lags from
CCF

Correlation of
Sig. Lags

p-Value of
Sig. Lags

Solar exposure (MJ/m2)

1 0.205 <0.001

5 −0.155 0.010

19 0.166 0.007

Max UV
5 −0.126 0.038

19 0.267 <0.001

Average UV

1 0.158 0.008

5 −0.165 0.006

10 0.139 0.023

19 0.141 0.023

Max Temp (◦C) Nil

Min Temp (◦C)
1 −0.119 0.046

21 0.162 0.009

Rainfall (mm) Nil

3.4. Regression on Significant Correlations

As a final check of the importance of the lagged correlation, linear regression analyses
on the confirmed cases against each climate variable were conducted with all the significant
lags identified in the previous step. The regression analyses also identified any lags that
were not significant when considered together with other results and provided useful
coefficients to describe the relationship between lag time and confirmed cases. Table 5
shows the results of the significant lags from these regression analyses. Only the average
UVI lag 10 was found to be non-significant when incorporated with other results. The
regression coefficients from Table 5 can be interpreted as the percentage change in the
confirmed cases for every 1% change in the meteorological variable. That is, an increase
in 1% to the solar exposure will increase the confirmed cases by 0.32% one day later and
0.31% 19 days later.

Table 5. Results from regression analyses on the significant lags identified from the pre-whitening of each
meteorological variable.

Meteorological
Parameters

Sig. Lags
from Regr

Regr
Coeff 95% CI p-Value R-sq

Solar exposure
(MJ/m2)

1 0.320 0.138, 0.502 <0.001 10.9%

5 −0.269 −0.457, −0.081 0.004

19 0.313 0.133, 0.505 <0.001

Max Temp (◦C) Nil

Min Temp(◦C)
1 −0.303 −0.493, −0.113 0.002 6.3%

21 0.238 0.044, 0.432 0.015

Rainfall (mm) Nil

Max UV
5 −0.258 −0.512, 0.004 0.044 10.7%

19 0.706 0.434, 0.978 <0.001

Average UV

1 0.468 0.042, 0.894 0.029 7.1%

5 −0.531 −0.957, −0.105 0.013

19 0.631 0.201, 1.61 0.004
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Solar exposure and the UVI variables showed quite similar patterns: positive corre-
lations at lags of 1 and 19 days and negative correlations at a lag of 5 days. Maximum
UVI did not have a significant correlation at lag 1, but inspection of Figure 5 shows that
it is marginally non-significant. The minimum temperature has a significant negative
correlation at a lag of 1 day and a positive correlation at a lag of 21 days. One example is
provided to demonstrate how to visually identify the patterns from the regression analyses
in Figure 6 using scatterplots of the minimum temperature and confirmed cases at both
lags 1 and 21. Large drops in the minimum temperature are associated with large increases
in confirmed cases 1 day later. Generally, decreases in the minimum temperature are then
associated with decreases in the number of confirmed cases 21 days later.
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4. Discussion

It has already been reported that the behaviour of micro-organisms in the environment
depends on environmental factors, such as ambient air temperature and humidity [46].
Though several studies reported the association between weather factors and COVID-
19 spreading, after general straightforward use of either Pearson or Spearman simple
correlation, this study used appropriate regression models and cross-correlation diagnostics
and removed the errors formed due to collinearity. This study investigated the association
of weather factors with COVID-19 spreading in the Melbourne Metropolitan area in Victoria
(between Jan and Oct 2020) and found a positive association between solar exposure,
maximum and average UVI with COVID-19 spreading, 1 and 19 days later, and a negative
association with these parameters five days later. A negative association was found between
the minimum temperature and COVID-19 one day later and a positive association 21 days
later. A similar study was conducted in Indonesia, a country north of Australia, and found
a correlation between average temperature and COVID-19 [22]. A study in Rio de Janeiro,
in Brazil, the third most COVID-19 reported country, also observed a strong negative
association between solar radiation and maximum and average temperature [47]. Among
the weather parameters, temperature (maximum and average) is the most studied. In this
study, a positive association between the maximum and average UVI and solar exposure
was also observed besides the minimum temperature.

The current study and many related studies suggest that an increase in solar radiation
and the subsequent increase in ambient air temperature, specifically the minimum temper-
ature increase, may reduce the COVID-19 infections in humans. Mechanisms are complex;
however, two postulations are considered; (i) the increase in solar radiation, specifically
the UV radiation, may decrease the SARS-CoV-2 life expectancy by damaging the virus’
lipid layer. This lipid layer damage may reduce the stability, infection potential and may
cause inactivation of the virus [48]; (ii) the increase in UV radiation may increase the
vitamin-D levels in people that can enhance the immunity, which helps to prevent the viral
spreading and the associated symptoms in the body [43,49,50]. The effects of simulated
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solar radiation (mid-day representing the summer solstice at 40◦ N) on SARS-CoV-2 sus-
pended in simulated saliva or culture medium was studied by Ratnesar-Shumate et al. [51]
and found that the simulated solar radiation rapidly inactivated the virus (90% within
6.8 min in the simulated saliva and 14.3 min in the culture media). This study highlights
that the potential for fomite SARS-CoV-2 transmission in the outside environment will be
significantly reduced with increased solar radiation. Similar effects can be expected in the
air environment, but it may depend on many factors, specifically the humidity.

The negative association of maximum and average UVI on COVID-19 after five
days is expected as it takes around five days to self-identify symptoms of the disease
(and get tested), but the positive association after one and 19 days, including the solar
radiation effects, needs to be further explored. Similar statistical studies are required
with data from other areas in Australia (with previous and subsequent outbreaks) and
from other countries across the world to check whether a similar association exists or
not. Apart from this, further studies are warranted to find the reason behind the positive
and negative association between the minimum temperature on COVID-19 one day and
21 days later exposure.

5. Conclusions

Through many studies, it is observed that weather factors play a significant role in
microbial spreading, specifically in COVID-19. Australia is a large country with significant
climatic and weather variations. This study investigated the role of weather factors in
spreading the COVID-19 in the Victoria state capital (Melbourne), which reported the
highest COVID-19 cases during the second outbreak. Among the studied weather factors
(such as solar exposure, maximum and average UVI, minimum and maximum temperature,
and rainfall), maximum and average UVI and solar exposure revealed a positive association
with COVID-19 after one and 19 days, whereas the same factors revealed a negative
association after five days. The minimum temperature revealed a negative association
after a day, whereas it showed a positive association after 21 days. The negative influence
of average and maximum UVI after five days is considered the required time for the
SARS-CoV-2 to multiply and show its presence through the RTPCR test. Other relations,
both positive and negative after 1, 19, and 21 days need to be explored further, as do any
possible impacts of COVID-19 variants and society or government-imposed restrictions on
behaviors. If outside activity, often described as blue-sky exercise, has an impact on viral
spread, this must be factored into any future management strategy.
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