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Abstract: Obtaining meaning-rich representations of social media inputs, such as Tweets (unstruc-
tured and noisy text), from general-purpose pre-trained language models has become challenging, as
these inputs typically deviate from mainstream English usage. The proposed research establishes
effective methods for improving the comprehension of noisy texts. For this, we propose a new
generic methodology to derive a diverse set of sentence vectors combining and extracting various
linguistic characteristics from latent representations of multi-layer, pre-trained language models.
Further, we clearly establish how BERT, a state-of-the-art pre-trained language model, comprehends
the linguistic attributes of Tweets to identify appropriate sentence representations. Five new probing
tasks are developed for Tweets, which can serve as benchmark probing tasks to study noisy text
comprehension. Experiments are carried out for classification accuracy by deriving the sentence
vectors from GloVe-based pre-trained models and Sentence-BERT, and by using different hidden
layers from the BERT model. We show that the initial and middle layers of BERT have better capabil-
ity for capturing the key linguistic characteristics of noisy texts than its latter layers. With complex
predictive models, we further show that the sentence vector length has lesser importance to capture
linguistic information, and the proposed sentence vectors for noisy texts perform better than the
existing state-of-the-art sentence vectors.

Keywords: sentence representation; probing tasks; language understanding; noisy text

1. Introduction

Natural Language Processing (NLP) and its subfield, Natural Language Understand-
ing (NLU), primarily focuses on the well-known complex problem of machine reading
comprehension. Among several challenges facing NLU, the representation of sentences
incorporating all their linguistic elements is considered to be highly complex. Due to the
benefit of accurate sentence representations, e.g., sentence classification, text summariza-
tion, and machine translation, it has become necessary to explore new NLU methods that
incorporate linguistic components, such as syntax and semantics, to improve accuracy.
While a plethora of techniques have already been proposed, representing sentences as vec-
tors of real numbers in high dimensional continuous space is still attracting attention [1,2].

For vector representation, both word and sentence embeddings have influenced the
representation, following the rapid rise of Word2Vec [3]. Recently, unsupervised, pre-
trained language models, such as Bidirectional Encoder Representations from Transformers
(BERT) [4], were successful in achieving state-of-the-art results in various NLP tasks, e.g., at
the sentence level, thereby introducing a major paradigm shift in sentence representations.
It may be noted that unlike shallow word vector models (i.e., Word2Vec [3] and Global
Vectors for Word Representation (GloVe) [5]), deep models, such as BERT, are contextual.

Widespread use cases, such as sentiment analysis and intent analysis, mandate sophis-
ticated sentence representations since these models essentially involve the identification
of intricate linguistic patterns [6,7]. With the increasing proliferation of social media data,
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such as Tweets, it has further become inevitable to represent noisy texts as vectors to
improve the model performance. For this reason, the BERT model is extensively used with
Tweets to achieve state-of-the-art accuracy [8–11].

However, the application of pre-trained language models, such as BERT, in such
scenarios is not easy because Tweets follow a different distribution [12,13] than the training
inputs. While the BERT model is pre-trained on BookCorpus and English Wikipedia, the
Tweets exhibit a significant deviation from this mainstream English language usage. Fur-
ther, such challenges become extremely overwhelming, as Tweets cover different domains
(e.g., day-to-day activities, sports, politics, and science); hence, they are significantly differ-
ent. For these reasons, the language representation should clearly express non-task-specific
general-purpose priors to develop artificially intelligent systems [14].

Although BERT is a general-purpose language model, the reason behind its overall
success is not understood clearly. Goldberg [15] and Jawahar et al. [16] made efforts
to understand BERT’s ability to learn the structure and syntax of the English language.
It was observed that different layers and regions of BERT capture different traits of the
English language. However, it was not reported how these findings can enhance the
quality of word or sentence embeddings. Indeed, Kumar et al. [17] demonstrated a drastic
fall in BERT’s performance with an increase in noise level. Apart from this, there was
also the recent emergence of various pre-trained language models comprising multi-layer
architectures [18]. Thus, a technique based on the latent representations of multi-layer
models is vital for optimizing the vector representations to be used for use cases involving
unstructured and noisy texts.

To address these research gaps, we use BERT as the multi-layer pre-trained language
model and Tweets to represent noisy texts. We propose a systematic approach to derive a
diverse set of sentence vectors combining and extracting various linguistic characteristics.
For this, we have developed new probing datasets, using noisy texts based on the definition
of specific probing tasks in [19] to analyze BERT’s behavior across different linguistic
territories centered on noisy texts. We derive generalizable sentence representations for
noisy texts, comprising the most important linguistic characteristics to capture the meaning
of a sentence. More specifically, our key contributions for enabling BERT in deriving
meaning-rich sentence representation from the noisy text are as follows:

• New noisy probing datasets: This new dataset can serve as benchmark datasets for
future researchers to study the linguistic characteristics of unstructured and noisy
texts. These datasets are available in the public domain (https://bit.ly/3rK0g7P) and
available on request.

• New methodology: this allows studying the linguistic comprehension of multi-layer
language models.

• Generic technique: used for sentence vector generation, using a pre-trained multi-layer
language model.

The rest of this paper is organized as follows. Section 2 provides relevant background
information related to BERT’s language understanding ability and probing tasks. Section 3
discusses the probing dataset generation approach and the strategy to generate sentence
embeddings. Section 4 presents various experimental results across different probing tasks.
The results are analyzed and discussed in Sections 5 and 6, respectively. Finally, Section 7
presents the conclusion.

2. Background
2.1. Pre-Trained Language Models

Recently, word embedding [20] has become popular as a de facto starting point for rep-
resenting the meaning of words. However, static methods, such as Word2Vec [3], GloVe [5],
and FastText [21] generally generate fixed word representations in a vocabulary. Hence,
these techniques cannot easily be adapted to identify the contextual meaning of a word.
Recent discoveries of dynamic, pre-trained language representations, such as ELMo, a deep
contextualized word representation [22], and BERT [4] produce dynamic representations
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of a word based on its context. The BERT architecture includes a multi-layer bidirectional
Transformer [23] and an attention mechanism that learns contextual relations between
words (or sub-words) in a text. The Transformer consists of two separate mechanisms—an
encoder that processes the input, and a decoder that generates a prediction for the task.
BERT, which is trained bidirectionally on a large corpus of unlabeled text, including the
entirety of Wikipedia and BookCorpus, allows its models to understand the meaning of a
language more correctly.

Further, several other Transformer-based language models perform well at a broader
range of tasks beyond document classification, such as commonsense reasoning, semantic
similarity, and reading comprehension. Transformer-XL [24], a Transformer-based auto-
regressive model, enables capturing longer-term dependencies in a sentence and achieves
better performance on NLP tasks for both short and long sequences. Generative Pre-
trained Transformer 3 (GPT-3) [25], the third generation language prediction model in the
GPT-n series created by OpenAI, is an auto-regressive Transformer model that performs
reasonably well on unseen NLP tasks.

These recent models capture many facets of language relevant for downstream tasks,
such as long-term dependencies, hierarchical relations, and context, to provide state-of-
the-art performance [15,26]. Further, previous research [20,27,28] demonstrated that deep
learning models with complex architectures that leverage the contextual meaning of the
words can significantly improve the learning abilities.

2.2. Language Understanding with BERT

Goldberg [15] assesses the extent to which the BERT model captures the syntactic
structure of a sentence, using three stimuli tasks related to subject–verb agreement. Though
the results are not directly comparable with previous work, due to BERT’s bidirectional
nature, the results suggest that purely attention-based BERT models are likely capable
of capturing syntactic information at least as well as the sequence models, and probably
better.

Jawahar et al. [16] performed a series of experiments, using conventional and standard
English sentences extracted from books, to identify the linguistic information learned by
BERT. These experiments were based on the probing datasets developed by [19], using the
Toronto BookCorpus dataset [29], which was one of the two data sources used to train the
BERT model. They showed that BERT’s intermediate layers encode a rich set of linguistic
characteristics, with surface features at the bottom, syntactic features in the middle, and
semantic features at the top. This indicates that specific regions or layers of BERT are better
suited for comprehending different aspects of the English language.

Similarly, Liu et al. [30] examined the linguistic knowledge captured by contextual
word representations derived from different layers of large-scale neural language models.
They showed that the frozen contextual representations are competitive with state-of-the-
art, task-specific models in many cases but fail on tasks requiring fine-grained linguistic
knowledge. These studies focused only on structured and clean English sentences. They
paid little attention to combining the layer representations based on linguistic knowledge
to derive a meaning-rich sentence vector. Tenny et al. [31] introduced “edge probing”
tasks, covering syntax, semantic meaning and dependency relations phenomena to study
how contextual representations encode sentence structures. Their results using BERT and
a few other pre-trained language models concluded that these models encode syntactic
phenomena strongly but demonstrate comparable minor improvements on semantic tasks,
compared to a non-contextual baseline. However, they worked only with the top layer
activations of the BERT model. Further, Hewitt and Manning [32] showed that the con-
textual word representations provided by pre-trained language models, such as BERT,
embed syntax trees in their vector representations. Nevertheless, they focused mainly on
the syntactic structure.

On the other hand, Clark et al. [26] analyzed BERT’s attention mechanism and showed
that a specific set of attention heads correspond well to linguistic notions of syntax and
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coreference. Further, they demonstrated the ability of BERT’s attention heads to capture
important syntactic information, using an attention-based probing classifier.

However, Wang et al. [33] more recently concluded that the popular complex pre-
trained language models do not necessarily translate noisy text to better representations.
Further, they highlighted that more exploration is needed in this area.

2.3. Probing Tasks

Shi et al. [34] and Adi et al. [35] introduced general prediction tasks to understand the
language information captured by sentence vectors. Shi et al. [34] investigated whether
Neural Machine Translation (NMT) systems learn source language syntax as a by-product
of training by analyzing the syntactic structure as a by-product of training. Adi et al. [35]
proposed a framework that facilitates a better understanding of the encoded represen-
tations, using tasks to predict a sentence’s length, detect a change in word orders, and
identify the words in a sentence.

Extending the work of [19,34,35] has introduced ten classification problems known as
probing tasks. As we know, a probing task is a text classification problem that focuses on a
grouping of sentences based on simple linguistic characteristics of sentences. The perfor-
mance of this classification model depends on the richness of the linguistic information
packed into a sentence representation. Further, these probing tasks are assigned to three
groups: surface information, syntactic information, and semantic information, based on the
primary linguistic feature required to perform the task effectively. The surface information
tasks can rely only on surface properties (e.g., sentence length) to perform the classification
successfully, and no linguistic knowledge is required. The tasks grouped under syntactic
information are sensitive to a sentence’s syntactic properties (e.g., depth of the syntactic
tree). In contrast, semantic information-related tasks require some understanding of the
meaning of a sentence and the semantic structure.

3. Methodology

This section introduces our methodology for leveraging probing tasks to efficiently val-
idate BERT’s ability to capture linguistic information and to derive meaning-rich sentence
representations for noisy and unstructured text.

We propose a systematic approach to study the linguistic behaviors of multi-layer
pre-trained language models by dividing the layers into multiple regions. Hence, in
our methodology, we introduce a novel technique to generate sentence embeddings by
bisecting BERT into three regions (Figure 1) and then combining the hidden layers and
token vectors, using two pooling operations. This allows us to analyze a diverse set of
sentence vectors and their ability to capture linguistic information representing different
linguistic domains. Next, we discuss our approach to generate probing datasets covering
five probing tasks under noisy text conditions. These noisy probing datasets are crucial
in determining each sentence vector’s ability to capture necessary linguistic patterns to
classify sentences to the target classes of each probing task. This framework can be easily
extended to study the language comprehension capabilities of similar multi-layer language
models.

The details of the methodology and its components are presented below.

3.1. Sentence Vector Generation

Our proposed methodology uses pre-trained language models to generate sentence
representations. We use the “BERTBASE-uncased” model [4] to obtain word embeddings
from different hidden layers to produce sentence vectors. This allows for exploration of the
linguistic features of unstructured and noisy text, such as Tweets, as learned by different
hidden layers of the BERT model. Further, to link BERT’s learning ability with specific
linguistic components, inspired by the work of Jawahar et al. [16], we divide BERT’s hidden
layers into three regions as shown in Figure 1. Jawahar et al. [16] showed that BERT’s
hidden layers encode a rich hierarchy of linguistic information, with surface features at the
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bottom, syntactic features in the middle and semantic features at the top. These linguistic
components are crucial to represent the meaning of a sentence. Hence, in our methodology,
we propose a novel technique to generate region-wise sentence embeddings by bisecting
BERT into three regions.

Figure 1. The twelve layers (L1 to L12) of the BERTBASE model are partitioned into 3 regions. Rn-i
represents the ith layer in the nth region.

Further, apart from this, we use pre-trained Word2Vec [3] and Stanford’s GloVe [5]
models to derive sentence vectors. In contrast to BERT, these models, although shallow
and non-contextual, offer 10 to 100 times more vocabulary, thereby providing a vibrant
vocabulary. For this reason, it is possible that this may outweigh the benefits of a context-
aware pre-trained model with a minimal vocabulary (e.g., BERT), especially for noisy
data [36]. Moreover, we employ a word vector trained with the GloVe algorithm, using
two billion Tweets to evaluate the impact of Twitter-specific pre-trained language models.

The following section explains the strategy to generate multiple sentence embeddings,
using the pre-trained BERTBASE-uncased model. It may be noted that for the remaining
paper, the term BERT is used to represent BERTBASE-uncased.

3.1.1. Sentence Representations Using Multi-Layer Pre-Trained Language Models

An input sentence is represented as a set of input tokens T = [t0, t1, . . . , tn], where
t0 is the special [CLS] token that needs to be prepended for the out-of-the-box pooling
schema to work. BERT produces a set of hidden layer activations H0, H(1), . . . , H(L), where
H(l) = [h(l)0 , h(l)1 , . . . , h(l)n ] are the activation vectors of the lth hidden layer. We have ignored
the H0, which consists of non-contextual word-piece embeddings, to generate sentence
representations.

To generate a sentence representation based on multiple hidden layers, we propose
to generate token representation vector wi for each token ti in T, using a layer pooling
strategy. A layer pooling strategy combines different representations of the same token
across multiple hidden layers. For this, three layer pooling strategies are studied: (i) SUM-
layer-strategy, (ii) MEAN-layer-strategy, and (iii) CONCAT-layer-strategy. The SUM-layer-
strategy and the MEAN-layer-strategy calculate the sum and mean of all the activation
vectors hi ∈ Rd of the selected hidden layers, respectively, producing wi ∈ Rd, where d
is the size of the hidden vector h. Thus, for each sentence, the Mean-layer-strategy and
SUM-layer-strategy produce a matrix W ∈ Rn×d. On the other hand, the CONCAT-layer-
strategy concatenates the corresponding hidden activation vectors hi in the order of the
layer numbers to generate wi ∈ Rkd, where k is the number of BERT layers selected to
generate the sentence representation. The CONCAT-layer-strategy produces a sentence
representation W ∈ Rn×nd.

Then, to derive the sentence vector S = [s1, s2, . . . , s||wi ||], we apply multiple token
pooling strategies for the sentence representation W (obtained after applying the layer
pooling strategy), where each token representation wi is a row. A token pooling strategy
merges all the token embeddings of a sentence into a singe vector. For this, we study two
token pooling operations: (i) MEAN-token-strategy, and (ii) MAX-token-strategy. MEAN-
token-strategy and MAX-token-strategy are calculated as sj = E

1≤j≤n
Wij and sj = max

1≤j≤n
Wij,

respectively. Further, the MEAN–MAX-token-strategy we propose concatenates the MEAN-
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token-strategy output vector and the MAX-token-strategy output to derive a sentence
vector twice the size of wi.

As shown in Figure 1, for each region Rn (n ∈ 1, 2, 3), different combinations of
four layers are considered to generate sentence embeddings. We apply the layer pooling
and token pooling strategy combinations listed in Table 1 across each BERT region Rn to
systematically generate a diverse set of sentence embeddings, using the pre-trained BERT
model.

Table 1. Strategy to generate sentence embeddings from each region (ref. Figure 1) of the BERT
model. Rn-i represents the ith layer in the nth region. We combine each layer pooling strategy with
every token pooling strategy across identified layers to generate multiple sentence embeddings.
Layer pooling is not applicable for the sentence embeddings generated using a single vector.

Layers No. of Layers Layer Pooling Token Pooling

Rn-1 1 — mean, max
Rn-2 1 — mean, max
Rn-3 1 — mean, max
Rn-4 1 — mean, max

Rn-1, Rn-2 2 sum, mean, concat mean, max
Rn-3, Rn-4 2 sum, mean, concat mean, max

Rn-1 to Rn-4 4 sum, mean, concat mean, max

3.1.2. Sentence-BERT

Our experiments also utilize the state-of-the-art sentence embedding model, Sentence-
BERT (SBERT) [37], which uses Siamese and triplet network structures to derive seman-
tically meaningful sentence vectors from the pre-trained BERT model. We propose to
use a pre-trained model optimized for Semantic Textual Similarity (STS), as this model
is recommended for general-purpose use. SBERT uses a mean pooling strategy to derive
sentence vectors from word embeddings.

3.1.3. Static Embeddings

We propose two shallow pre-trained models, namely Word2Vec [3] and GloVe [5], to
generate sentence vectors for unstructured and noisy sentences, as these language models
are rich in vocabulary, compared to BERT. It is known that any social media data, such as
Tweets, often lack grammatical structure and can contain misspelled words and acronyms.
Hence, a language model (e.g., Word2Vec and GloVe) that ensures a lower percentage of
out-of-vocabulary (OOV) words may provide better sentence representations than a deep
pre-trained model with a smaller vocabulary [36].

We use the MEAN-token-strategy to derive sentence embeddings, using Word2Vec
and GloVe.

3.2. Noisy Probing Datasets

Probing datasets have a crucial role in the proposed study, as they validate the model’s
ability to comprehend linguistic characteristics. Studies reported earlier (e.g., [19]) have
focused only on language comprehension of structured and grammatical sentences. Hence,
the existing probing datasets [19] contain structured and grammatical sentences and rely
on the pre-trained Probabilistic Context-Free Grammar (PCFG) model [38] and part-of-
speech, constituency, and dependency parsing information provided by the Stanford Parser.
Although the PCFG model reported close to 87% accuracy for regular English sentences, it
is poorly suited for noisy texts [39,40]. Further, the available Twitter-specific dependency
parsers reported a low overall accuracy level with further reductions if the test set topics
differed from the training dataset. Thus, the use of automatic part-of-speech or automatic
dependency parsing as suggested by [19] is not a feasible option for noisy probing datasets.
Hence, we propose to use a noisy dataset manually annotated with the required linguistic
labels to generate quality probing datasets.
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For this, we use “Tweebank v2”, a collection of English Tweets [41], annotated in
Universal Dependencies [42], as it can be exploited to generate the required noisy probing
datasets. Authors of [41] followed a rigorous two-stage process to develop 3550 manually
labeled Tweets. They automatically annotated the Tweets, using a parser trained on a
sample set of Tweets manually annotated in the first stage. In the second stage, they
manually corrected the parsed data. These high-quality labels are crucial to developing
gold standard probing datasets for noisy text data. However, this research [41] did not
focus on specific aspects of linguistics, such as dependency parsing information. Due to the
unavailability of these linguistic labels, we are focusing only on a selected subset of probing
tasks out of the ten probing tasks proposed by [19]. Nevertheless, the selected probing
tasks continue to cover the three important linguistic categories (i.e., surface, syntactic and
semantic), thereby enabling us to analyze the richness of the sentence vectors across all
three levels of linguistic information and ensuring the quality of the findings. Further, we
introduce additional criteria explained below to adapt the dataset to noisy conditions. The
probing tasks that are focused on in this study are explained in the following sections.

Sentence length

In this classification task, the goal is to predict the sentence length in 8 possible bins
(0–7) based on their lengths: 0 (5–8), 1 (9–12), 2 (13–16), 3 (17–20), 4 (21–25), 5 (26–29), 6
(30–33), and 7 (34–70). These bins are the same as those proposed earlier [35]. This task is
referred to as “SentLen” in the paper.

Word content

We consider a 10-class classification task with ten words as targets, considering the
available manually annotated instances. The aim is to predict which of the target words
appears in the given sentence. Words that are not part of the vocabulary are split by BERT
into subwords and characters. In this case, word embeddings might not reflect the best
meaning of the word. Hence, we propose to use only the words that appear in the BERT
vocabulary as target words. We construct the data by picking the first ten lower-cased
words occurring in the corpus vocabulary ordered by frequency and having a length of at
least four characters, as this is a noisy dataset this improves the reliability of the dataset.
Each sentence contains a single target word, and the word occurs precisely once in the
sentence. The task is referred to as “WC” in the paper.

Bigram shift

The purpose of the Bigram Shift task is to test whether an encoder is sensitive to legal
word orders. Two adjacent words in a Tweet are inverted, and the classifier performs a
binary classification to identify inverted and non-inverted Tweets. The task is referred to
as “BShift” in the paper.

Tree depth

The Tree Depth task evaluates the encoded sentence’s ability to understand the hier-
archical structure by allowing the classification model to predict the depth of the longest
path from the root to any leaf in the Tweet’s parser tree. The dataset contains six different
classes (two to seven) based on the tree depth. The task is referred to as “TreeDepth” in the
paper.

Semantic odd man out

The Tweets are modified by replacing a random noun or a verb o with another noun
or verb r. The task of the classifier is to identify whether the sentence gets modified due to
this change. The task is called “SOMO” in the paper.

These five probing tasks, covering the three key linguistic information levels, are
presented in Table 2.
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Table 2. Grouping of probing tasks.

Group Probing Tasks

Surface information SentLen, WC
Syntactic information BShift, TreeDepth
Semantic information SOMO

3.3. Sentence Vector Evaluation Framework

The most commonly used approach to generate sentence vectors is to average the
BERT output layer (BERT embeddings) or to use the output of the first token (the [CLS]
token). We extend the common sentence vector generation with our sentence embedding
generation technique and combine it with the new probing datasets to develop a sentence
vector evaluation framework, as shown in Figure 2. This framework enables us to assess
the ability of various sentence vectors to capture linguistic information that can be useful
for various downstream tasks. Probing datasets consist of the noisy datasets we developed,
using manually annotated Tweets. As discussed in Section 3.1.1, the Embedding Generator
generates a diverse set of sentence vectors based on the BERT model while generating
sentence vectors using various other pre-trained models. Next, sentence vectors are
forwarded to a classification model. We propose to use a Logistic Regression (LR) model
and a Multi-Layer Perceptron (MLP) model to analyze the relationship between different
sentence vectors and the shallowness or the deepness of the network.

Figure 2. Sentence embedding evaluation framework. For the proposed work, we study BERT for
embedding generation. This framework can be easily extended to study other pre-trained language
models.

4. Experiments
4.1. Dataset Development

As discussed in Section 3.2, we have developed five different probing datasets for
these different probing tasks. The probing datasets are developed based on the Twee-
bank v2 dataset (https://github.com/Oneplus/Tweebank, accessed on 10 August 2020)
developed by [41]. Tweebank v2, a collection of English Tweets annotated in Universal
Dependencies [42], is useful since it can be exploited for training NLP systems to enhance
their performance on social media texts. Tweebank v2 dataset contains 3550 Tweets, which
includes tokenization, part-of-speech-tagging, and labeled Universal Dependencies. This
dataset is split into train, development, and test sets as shown in Table 3.

https://github.com/Oneplus/Tweebank
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Table 3. Statistics of Tweebank v2.

Split Tweets Tokens

train 1639 24,753
development 710 11,742

test 1201 19,112

We use these tokenization, part-of-speech tagging and labeled dependencies to gen-
erate five probing datasets as discussed in Section 3.2. Table 4 shows the distribution of
Tweets for training, validation and tests in each of the probing datasets. Our splits are
based on the original splits of the Tweebank v2 dataset.

Table 4. Probing task datasets.

Dataset Train Validation Test

SentLen 1530 684 1141
WC 439 186 328

BShift 1639 710 1201
TreeDepth 1071 433 757

SOMO 1003 444 727

4.2. Sentence Embedding Generation

As shown in Table 5, we leverage a few commonly used pre-trained language mod-
els and the Sentence-BERT embeddings model under each of the base language models
discussed in Section 3.1. For training, standard sentences from the Google News dataset
and Wikipedia were used for “GoogleNews” and the “glove_6b” pre-trained models
while BERTBASE model was trained using BookCorpus and Wikipedia data. Similarly, the
SBERT-NLI-base sentence transformer was trained on the SNLI [43] dataset, whereas the
“glove_twitter” language model was trained with a large number of Tweets.

Table 5. Pre-trained Language Models.

Base Model Pre-Trained Model Vocab. Size Dimension

Word2Vec GoogleNews 3 M 300
GloVe glove_6b 400 K 300
GloVe glove_twitter 1.2 M 200
BERT BERT-base 30,522 768

S-BERT SBERT-NLI-base 30,522 768

4.3. Probing Task Classification

We use SentEval toolkit [44] to evaluate different sentence encoders. As in [45], we use
a deeper network—MLP and a Logistic Regression classifier—to make the findings more
practical while reducing the undesirable side effects, such as preference for embeddings
of a larger size. We use the classifier and the validator provided with the SentEval toolkit
(https://github.com/facebookresearch/SentEval/, accessed on 12 August 2020) [44] after
modifying it to accommodate the proposed sentence embeddings. Following Conneau et al.
[44], we use the parameters, shown in Table 6, for Logistic Regression and MLP. However, to
cope with the computational constraints, we modify the value of the “batch_size” parameter
to 32.

https://github.com/facebookresearch/SentEval/
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Table 6. Parameters for the Classifiers.

Parameter LR MLP

nhid 0 200
optimizer ‘adam’ ‘adam’
batch_size 32 32

tenacity 5 5
epoch_size 4 4

5. Results

This section first analyses the effectiveness of the proposed pooling strategies: layer
pooling and token pooling. Next, we analyze the distribution of the language understand-
ing (surface, syntactic and semantic) across the various regions of the BERT model proposed
for this study. Finally, we analyze the performance of the sentence vectors generated by
combining these findings along with the existing sentence vector generation mechanisms,
including the state-of-the-art techniques.

Pooling strategy analysis:

For this study, we consider sentence embeddings derived using all four layers of each
BERT region. Table 7 shows the resulting sentence vector sizes for each combination of layer
and token pooling strategies when applied to four hidden layers of BERT. The CONCAT-
layer-strategy and MEAN–MAX-token-strategy significantly increase the resulting sentence
vector size, by four times and two times, respectively. From the results shown in Table 8,
we note that the Logistic Regression model achieves the best results with sentence vectors
of size 6144, whereas the MLP model achieves the best results, in most cases, with 1536
vector size. From this, it becomes evident that simpler models, such as Logistic Regression,
require huge sentence vectors to identify linguistic patterns, while complex models can
achieve improved results with significantly lower-sized sentence vectors.

Table 7. Sentence vector sizes derived using different pooling strategies with four hidden layers.

Layer Pooling Token Pooling Embedding Size

concat
max 3072

mean 3072
mean_max 6144

mean
max 768

mean 768
mean_max 1536

sum
max 768

mean 768
mean_max 1536

Similarly, Table 9 shows that the Logistic Regression model achieves, in most cases,
the best accuracy with the CONCAT-layer-strategy. However, one of the syntactic in-
formation groups’ tasks and the semantic information task obtains the best results with
the MEAN-layer-strategy. On the other hand, the MLP model performs satisfactorily
with the MEAN-layer-strategy and SUM-layer-strategy. Both logistic regression and the
MLP models prefer the MEAN-MAX-token-strategy or MEAN-token-strategy, while MAX-
token-strategy performs poorly across all the performing tasks.
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Table 8. Average classification accuracy for different sentence vector sizes derived with four hidden layers using different
pooling strategies.

Vector Size Region
Logistic Regression MLP

SL WC BS TD SM SL WC BS TD SM

768
1 53.29 70.96 67.36 51.29 68.95 61.11 73.48 68.13 55.65 69.26
2 52.54 58.69 71.47 51.75 70.29 59.91 60.98 71.38 57.17 70.94
3 47.40 46.11 71.13 50.93 70.77 55.37 49.47 71.75 55.58 73.14

1536
1 56.75 80.18 69.45 55.42 70.15 68.41 84.15 68.99 56.61 70.09
2 56.18 70.58 73.77 53.57 72.70 65.65 71.19 74.19 58.45 71.73
3 48.95 54.27 70.15 51.12 72.97 58.07 56.56 71.44 56.28 74.69

3072
1 54.74 73.48 69.28 51.79 68.23 63.19 74.70 69.15 56.54 59.22
2 53.42 61.74 72.53 53.10 70.77 61.49 65.40 72.40 58.39 70.70
3 48.42 50.31 72.36 51.92 72.56 58.33 52.90 71.44 56.01 72.28

6144
1 59.33 82.62 69.61 56.01 70.29 65.03 86.59 71.61 56.94 72.35
2 56.70 69.21 75.60 53.50 72.35 64.59 72.26 72.69 58.39 72.21
3 51.45 55.79 71.61 51.65 72.90 61.35 56.71 72.61 58.39 71.94

Table 9. Mean classification accuracy for sentence vectors derived using different pooling strategies (SL: SentLen, WC: WC,
BS: BShift, TD: TreeDepth, SM: SOMO).

Pooling Logistic Regression MLP

Layer Token SL WC BS TD SM SL WC BS TD SM

concat
max 50.51 55.99 69.50 52.53 69.33 57.35 58.03 69.38 57.11 63.00

mean 53.87 67.68 73.27 52.00 71.71 64.65 70.63 72.61 56.85 71.80
mean_max 55.83 69.21 72.27 53.72 71.85 63.66 71.85 72.30 57.91 72.17

mean
max 48.85 51.32 67.97 51.78 69.42 56.77 55.08 67.89 56.50 71.43

mean 54.28 66.67 72.72 52.62 72.81 63.02 69.41 72.02 58.96 71.34
mean_max 54.63 68.50 71.77 54.07 72.26 63.02 70.33 71.74 56.80 72.31

sum
max 47.65 50.00 66.81 49.54 65.75 53.87 50.20 68.83 55.57 70.43

mean 53.52 66.36 72.44 51.34 72.03 61.53 70.53 72.94 53.50 71.25
mean_max 53.28 68.19 70.47 52.66 71.62 65.06 70.94 71.33 57.42 72.03

In the rest of the analyses, the results derived with the MEAN-layer-strategy and
MEAN-token-strategy using the MLP classifier are used. This enables easy comparisons of
the BERT based sentence embeddings with vectors derived from static pre-trained models
by calculating the average of the word embeddings. Further, Sentence-BERT internally
uses the mean of the token embeddings to generate sentence embeddings.

Region-wise analysis:

Figure 3 shows a heat map of the accuracies (darker colors equate to higher accuracy)
of each probing task with sentence vectors generated using each hidden layer of the BERT
model. The SentLen and the WC tasks in the Surface Information group achieves better
accuracy with sentence vectors derived from hidden layers in the first region (R1), and the
performance gradually decreases as we move toward the last layers of the BERT model. On
the other hand, higher accuracies are obtained for the syntactic information tasks—BShift
and TreeDepth—with the sentence vectors generated using the hidden layers from the
second region (R2). The initial layers of the R2 show the most contribution to the accuracy,
while the hidden layers from the R1 contribute poorly to the syntactic information group
tasks. Further, the hidden layers that contribute to increasing the sentence vectors’ richness
for the semantic information task are found at the border of R2 and R3.
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Figure 3. Heat map of probing task accuracy.

Overall, in the context of noisy texts, the hidden layers in the region R1 contain most
of the linguistic characteristics required to address probing tasks in the surface group. In
contrast, the syntactic and semantic group tasks are able to identify necessary linguistic
patterns from R1 and R2. Nevertheless, the sentence vectors’ performance derived from
hidden layers in the last region (R3) ranges from low to marginal, indicating their inability
to capture linguistic information from noisy texts.

Overall accuracy:

Table 10 presents the classification accuracies for probing tasks with sentence vectors
derived from GloVe-based pre-trained models, Sentence-BERT and using different hidden
layers from the BERTBASE-uncased model. In the context of BERT-based sentence vectors,
we have considered sentence vectors derived based on the last hidden layer, the last four
hidden layers, and all 12 layers. Devlin et al. [4] achieved comparable results for feature-
based by using those layers as input to an artificial recurrent neural network. Based on our
findings, we propose two separate approaches for noisy texts. The first is based on BERT’s
first hidden layer, while the second combines the first hidden layer of each BERT region,
i.e., layers 1, 5 and 9 (1-5-9).

The MLP model achieves the best accuracy for all the probing tasks, except for the
SOMO task, which is in the semantic information group. The Logistic Regression model
has reached the surface information probing tasks’ best results with the BERT-based
sentence vectors derived only by using the first hidden layer. However, Logistic Regression
performs better for the syntactic and semantic information probing tasks with sentence
vectors generated using all 12 hidden layers of the BERT model.

On the other hand, the best results for the MLP model are mostly achieved with the
sentence vectors derived using the 1-5-9 hidden layers. Only the semantic information task
achieves the best accuracy with all 12 hidden layers. The WC probing task performs well
with the first hidden layer, and the second-best accuracy is obtained with the 1-5-9 hidden
layers.
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Table 10. Classification accuracies for different sentence vectors (SL—SentLen, WC—WC, BS—BShift, TD—TreeDepth,
SM—SOMO).

Model Name Logistic Regression MLP

SL WC BS TD SM SL WC BS TD SM

S-BERT None 39.53 29.57 66.53 49.27 68.36 44.79 29.27 67.36 49.27 65.47

BERT

CLS 33.83 25 65.95 40.29 65.06 38.39 25.61 66.28 48.22 65.2
Last layer 45.75 44.51 70.27 53.24 71.66 51.8 46.65 71.52 56.01 71.39
Last four 50.57 52.44 72.77 51.92 73.59 56.79 55.79 72.94 56.54 72.9

All 55.57 67.68 73.61 54.69 74.83 66.87 71.04 73.77 59.18 73.18
First layer 58.63 82.01 67.94 52.44 70.01 66.96 85.67 67.78 58.39 70.56

1-5-9 56.35 70.12 72.52 54.43 72.9 68.8 74.09 73.94 59.84 71.53

Glove glove_6b 22.7 64.02 59.87 38.57 58.18 24.45 64.02 59.2 38.44 57.08
glove_twitter 26.38 66.77 61.53 40.29 64.65 25.42 69.82 61.37 42.01 63.96

Word2Vec word2vec_neg 25.24 62.2 61.62 36.2 67.4 26.47 70.43 62.7 40.16 66.16

6. Discussion

The experimental results related to the comparison of BERT sentence vectors with
respect to GloVe and Word2Vec is given in Table 10. It can be observed that the BERT
sentence vectors performed exceptionally well on all the probing tasks and performed better
than GloVe and Word2Vec, despite these two representations having a rich vocabulary.
Specifically, the GloVe model, despite being trained on a large corpus of Tweets, performed
poorly. This overall performance observed for noisy texts is in agreement with the superior
performance reported earlier [30–32] of contextual representations derived using BERT
over non-contextual baselines on standard English sentences. Further, the sentence vectors
derived from BERT’s hidden layers achieved significantly better results over the state-
of-the-art Sentence-BERT model. This underpins the importance of combining useful
linguistic components to derive superiors sentence representations.

However, as we can see from Figure 3, the latter hidden layers of BERT performed
poorly in capturing linguistic information compared to the shallow layers. We observe that
the unstructured nature of the Tweets benefits more from the initial layers that capture
shallow information than the last layers, which capture more complex hidden information.
Since the results reported by authors of the BERT model [4], the top layers of the BERT
model have been commonly used to derive sentence vectors for NLP tasks with both
standard and noisy texts [7,31,36,46]. Nevertheless, our results confirm that the initial
layers of the pre-trained BERT model are more efficient at comprehending noisy text.
Further, the earlier layers of each region are observed to contribute more significantly
toward encoding specific linguistic components.

Further, as we can see from Table 7, the experiments relating to the length of the
sentence vector also revealed that the simpler predictive models perform better with large
sentence vectors, while complex models are observed to prefer significantly smaller vectors.
This underpins the fact that the complex models are better at identifying intricate patterns
from compressed vectors that contain rich information. However, simpler models need
higher dimensions of sentence vectors to achieve better results.

The methodology presented to systematically analyze the knowledge distribution
within a multi-layer pre-trained language model, while generating sentence vectors, can
capture various linguistic characteristics. This technique, being generic, can be directly
applied to most multi-layer pre-trained language models to understand the linguistic prop-
erties captured by latent representations. The method leads to devising similar sentence
embedding strategies to generate sentence embeddings from other Transformer-based
models, such as Transformer-XL and GPT-3 models. The new probing datasets and the
proposed framework can be used to study the ability of these models to comprehend
natural language. Moreover, the noisy probing datasets generated in this study can lead to
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further research in NLU by providing additional datasets that cover the domain of noisy
data.

It is also significant that future research should focus on the understanding of pre-
processing Tweets to reduce the noise level of the linguistic knowledge distribution and
the derived sentence representations. Moreover, the same probing dataset could be used
to examine the relationship between the BERT’s attention layers and the meaning-rich
sentence embeddings. This could help to derive more meaning-rich sentence vectors.

7. Conclusions

The research work reported in this paper demonstrates that the general language
understanding of pre-trained language models, such as BERT, can be effectively exploited
to comprehend noisy texts. Further, the proposed methodology can effectively generate
sentence vectors encoding different linguistic aspects, using latent representations of multi-
layer pre-trained language models. We observe that the shallow layers of the BERT model
are better at capturing linguistic information of noisy and unstructured texts than the
deeper layers for general English sentences [16]. Further, it can be noted that simple
predictive models prefer large sentence vectors, while complex models are more successful
with significantly smaller sentence vectors. It is worthwhile noting that the first layer or a
combination of BERT layers from each region can be used to derive generalizable sentence
vectors for noisy and unstructured texts.

We believe that our new noisy probing datasets can serve as benchmark datasets for
future researchers to study the linguistic characteristics of unstructured and noisy texts.
Currently, work is in progress on developing new and larger probing datasets for noisy
texts, covering all 10 probing tasks.
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