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Abstract 

Zero-day intrusion detection system faces serious challenges as hundreds of thousands of new 

instances of malware are being created every day to cause harm or damage to the computer 

system. Cyber-attacks are becoming more sophisticated, leading to challenges in intrusion 

detection. There are many Intrusion Detection Systems (IDSs), which are proposed to identify 

abnormal activities, but most of these IDSs produce a large number of false positives and low 

detection accuracy. Hence, a significant quantity of false positives could generate a high-level 

of alerts in a short period of time as the normal activities are classified as intrusion activities.  

This thesis proposes a novel framework of hybrid intrusion detection system that integrates the 

Signature Intrusion Detection System (SIDS) with the Anomaly Intrusion Detection System 

(AIDS) to detect zero-day attacks with high accuracy. SIDS has been used to identify 

previously known intrusions, and AIDS has been applied to detect unknown zero-day 

intrusions. The goal of this research is to combine the strengths of each technique toward the 

development of a hybrid framework for the efficient intrusion detection system. A number of 

performance measures including accuracy, F-measure and area under ROC curve have been 

used to evaluate the efficacy of our proposed models and to compare and contrast with existing 

approaches. Extensive simulation results conducted in this thesis show that the proposed 

framework is capable of yielding excellent detection performance when tested with a number 

of widely used benchmark datasets in the intrusion detection system domain. Experiments 

show that the proposed hybrid IDS provides higher detection rate and lower false-positive rate 

in detecting intrusions as compared to the SIDS and AIDS techniques individually.  
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Chapter 1 : Introduction  

              

 

 

1.1  Background  

With the birth of the Internet, the ability to connect computers globally also resulted in the 

growth of computer malicious software (malware). Nowadays the Internet is essential for daily 

life activities such as education, travel, business, entertainment, industry, government, defence, 

law enforcement, but malicious software can pose serious security threats to computer systems 

(Buczak & Guven, 2016). Cybercriminals are targeting online users with the use of 

sophisticated techniques in attacking their victims. Cybercriminals continuously innovate to 

evade detection, and therefore, it is a pressing need to develop effective cyberattack detection 

technology, which can efficiently detect the zero-day malware attacks. Zero-day attacks are 



 
 

 

 

 

 

new types of attacks for which attack mitigation solutions have not been developed yet. During 

the zero-day time, malware can cause serious damage as demonstrated in many past attacks 

that spread globally, like the WannaCry attack in 2017 (Ehrenfeld, 2017). 

Malware is a wide-ranging term which defines any type of malicious software. However, 

several definitions have been proposed to describe malware. McGraw and Morrisett describe 

the malware term as “a code included, changed, or erased from a product framework that causes 

mischief or subverting to the framework" (Idika & Mathur, 2007). Kramer and Bradfield depict 

malware as "programming that assaults other programming and damage it” (Kramer et al., 

2010). 

For the research presented in this thesis, malware is any program or code harmful to the 

information system to cause destruction, modify contents or access data without the proprietor's 

authorization. There are various kinds of malware, such as viruses, worms, trojan horses, 

spyware, rootkits and ransomware (Burguera, Zurutuza, & Nadjm-Tehrani, 2011). The 

research project in this thesis focus on zero-day malware. Numerous studies have reported the 

losses and the damages caused by such malware on large scales. 

An intrusion could be described as a sequence of activities intended to compromise the security 

of a computer system. It tries to evade security detections of computer systems and threatens 

the availability, integrity, or confidentiality of computer resources. Intrusions are utilised by 

attackers to steal information from the computer system.  

Intrusion detection is the procedure of distinguishing client practices that may likely alter an 

information system framework from an ensured state to an unprotected state. The malware 

detection frameworks could be equipment or programming frameworks that distinguish 



 
 

 

 

 

 

suspicious practices on systems (Stakhanova, Basu, & Wong, 2007). However, the capability 

of current Intrusion Detection Systems (IDS) to detect up-to-date attacks is insufficient (Fan, 

Ye, & Chen, 2016). 

IDSs generally adopt two approaches: signature-based detection and anomaly-based detection. 

Signature intrusion detection systems (SIDS) are based on pattern matching techniques to 

discover well-known intrusions; these are also known as Knowledge-based Detection or 

Misuse Detection. This term is borrowed from anti-virus software, which uses the detected 

patterns of the attacks as signatures for future detections of similar attacks. 

 In other words, when an attack matches with an instance of an abnormal activity from the 

database, an alert is raised. SIDS usually shows good accuracy for previously known intrusions. 

However, SIDS normally has difficulty in identifying zero-day malware attacks as the attack 

profile of new attacks may not be present in the current database, emphasizing the need to keep 

the attack profile database up-to-date. To ensure that zero-day attacks can be identified 

successfully, Anomaly Intrusion Detection Systems (AIDS) are used. AIDS can be effectively 

used to classify anomalous behaviours from normal behaviours, which would require the use 

of binary classifiers. 

AIDSs and SIDSs are very similar in their characteristics (Stavroulakis & Stamp, 2010), as 

both can identify intrusions but their hybrid use can provide wide-ranging coverage against 

both known and zero-day attacks. Machine learning technique can be applied for both AIDS 

and SIDS to improve the detection accuracy. A machine learning technique’s objective is to 

create IDS that increases the accuracy and relies on prior outcomes for training. IDS developers 

have been making use of machine learning methods to detect intrusions with mixed results.  



 
 

 

 

 

 

AIDS methods can be categorized into three main groups (Lazarevic, Kumar, & Srivastava, 

2005): Statistical based, knowledge-based, and machine learning-based. The statistical-

based involves collecting and examining every data record in a set of items. Conversely, 

knowledge-based tries to identify the requested actions from existing system-data such as 

protocol specifications and network traffic instances. Classification of three subclasses 

(statistics-based, Knowledge-based and Machine Learning-based) with an in-depth perspective 

on their characteristics have been discussed by (Lazarevic et al., 2005).  

The key advantage of an anomaly based intrusion detection system AIDS is the ability to 

identify new intrusion activities as the abnormal user profiles do not rely on a signature 

database. Furthermore, AIDS has several advantages: First, the internal threat can be identified. 

For example, if a cybercriminal exploiting a victim’s customer account conducts activities that 

are outside the normal user’s activates, it causes an alert. Second, the zero-day attack can be 

identified. 

1.2  Research Questions 

There has been a lot of research to improve the performance of IDSs, but many aspects remain 

to be investigated to improve the performance with the help of machine learning techniques. 

IDSs have to be more accurate, with the capability to detect a variety of intrusions with fewer 

false alarms. The majority of current IDSs are SIDS based, as these are highly efficient in 

identifying known intrusions. However, traditional IDSs are not effective in identifying zero-

day attacks. For this reason, research in this thesis has proposed development of an intrusion 

detection system for detecting both known and zero-day attacks.  



 
 

 

 

 

 

Most of the intrusion detection systems suffer a common problem. They produce a high number 

of false alerts and a huge number of false positives. To achieve this overall objective, the 

following research questions have been formulated in this thesis to detect the current and 

emerging threats to information systems: 

1. Could anomaly based detection using network statistical features can be applied to detect 

and classify intrusions; and detect the methods that cybercriminals may use to avoid the 

detection provided by IDS, and how we can reduce false negatives and false positives 

alarms by examining different machine learning techniques? 

2. Can we improve the performance of the ensemble of machine learning models e.g. 

hybrid of SIDS and AIDS more than the standard standalone machine learning 

algorithms to minimize both the number of false negatives and false positives alarm? 

3. Could a combination of SIDS and AIDS detection using Hardware Performance 

Counters (HPCs) as features be used to efficiently detect Zero day intrusions; and how 

HPCs features could be selected to improve the intrusion detection rate? 

4. How a combination of SIDS and AIDS could be used to detect Internet of Things (IoT) 

attacks without any previous knowledge? 

1.3   Thesis Aim 

This thesis presents a framework to identify both the well-known intrusion and the zero-day 

attacks with a high level of detection accuracy and low rates of false-alarm. A novel framework 



 
 

 

 

 

 

is proposed for intelligent IDSs that overcomes the present weaknesses of traditional IDSs. 

This framework is based on the ensemble of classifiers. 

 

1.4  Research Methodology 

For the first research question (Q1), several intrusion detection techniques have been 

investigated to identify abnormal activities. However, most of these techniques provide lower 

performance in terms of high number of false alarms and an enormous number of false 

positives. Hence, generating a high number of false positives could create a high number of 

alerts in a short period of time as normal activities are classified as intrusion activities. Our 

approach aims to identify intrusions activities with improved accuracy of detection and 

decrease the false-alarm rates. One way to improve the accuracy of a classification system is 

to use various classifiers and combine their results. Ensembling several data mining techniques 

could minimize both the number of false negatives and false positives. In this thesis, we have 

demonstrated that ensemble-classifiers have higher efficiency for intrusion detection with the 

use of most common evaluation techniques and different datasets. 

To address the second research question (Q2), a Hybrid IDS framework has been developed 

which combines SIDS and AIDS to form a hybrid IDS to detect both unknown and known 

attack. In our proposed framework, AIDS has been used to identify novel intrusions, while 

SIDS has been used to identify previously known intrusions.  

To address the third research question (Q3), we explore which malware functionality and attack 

techniques impact the HPCs; and how HPC related features can be used to improve the 

detection rate by picking the top HPC features that have the greatest contribution. Our 



 
 

 

 

 

 

developed Hybrid Intrusion Detection System (HIDS) has successfully detected the anomalies 

caused by malware exploits in attacked programs at operating systems’ level. 

To address the fourth question (Q4), a feature selection based on information gain has been 

developed. AIDS has been applied in IoT Intrusion Detection System, meaning machine 

learning has been employed in AIDS to detect the zero-day and complex attacks on IoT without 

any previous knowledge. This can be done by extracting useful features. Next, those features 

are integrated and then are used in our Hybrid approach to detect zero-day malware on IoT to 

create an effective ensemble architecture to improve the accuracy for the detection, decrease 

false alarm rate and storage and computational capability of IoT. 

1.5  Contributions 

The contributions of this thesis are as follows: 

• A comprehensive survey on the intrusion detection systems is provided. We 

have presented, in detail, the intrusion detection system methodologies, types, 

and technologies with their advantages and limitations; and pinpointed the 

shortcomings of existing research in IDS. A Journal paper has been published 

on this survey work: Khraisat, A, Iqbal Gondal, Peter Vamplew, and Joarder 

Kamruzzaman. "Survey of intrusion detection systems: techniques, datasets and 

challenges." Cybersecurity Journal 2, 20 (2019). 

• Anomaly intrusion detection system using C5 decision tree classifier is 

proposed to identify normal and anomalous activities accurately and reduce 

false-alarm rates. We compared C5 classifier with other classifiers and 

examined the efficiency of C5 published as a conference paper: A. Khraisat, I. 



 
 

 

 

 

 

Gondal, and P. Vamplew, "An anomaly intrusion detection system using C5 

decision tree classifier," in Pacific-Asia Conference on Knowledge Discovery 

and Data Mining, pp. 149-155: Springer, 2018. 

• A novel framework is proposed to build an intelligent IDS that overcomes the 

weaknesses of current IDSs. Our system integrates SIDS and AIDS to develop 

an efficient hybrid IDS in order to detect both unknown and known attacks. 

Our proposed framework is assessed using the two datasets: NSL-KDD and 

the Australian Defence Force Academy (ADFA) datasets. A Journal paper has 

been published: Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; 

Alazab, A, “Hybrid Intrusion Detection System Based on the Stacking 

Ensemble of C5 Decision Tree Classifier and One Class Support Vector 

Machine”, Electronics  Journal,  9, 173. 2020 

• We have shown how some malware behaviour can affect HPCs in the computers 

and how HPC features can be used to identify malware attacks at the hardware 

level. Also, we have shown that most relevant HPC features can increase the 

accuracy and reduce false alarm rates for cyber detection for a variety of 

different attack types.  

• We have presented a design of a low-level Intrusion detection system (IDS) 

based on HPCs. Our proposed approach can identify abnormalities caused by 

malware exploits on attacked programs. This intrusion detection system uses 

HPC features which are identified as normal activities. It then observes and 

compares the activities of the new data with normal behavior profiles to identify 

attacks. This chapter has been ACCEPTED on 5/1/2020 to be included in the 



 
 

 

 

 

 

upcoming book entitled “Malware Analysis using Artificial Intelligence and 

Deep Learning”, which will be published as: A. Khraisat, I. Gondal, P. 

Vamplew, and J. Kamruzzaman, " A Low-Level Intrusion Detection System 

Based on Hardware Performance Counters," Malware Analysis using Artificial 

Intelligence and Deep Learning, Springer, 2020 (Accepted) 

• IoT intrusion detection system proposed using the Hybrid Intrusion Detection 

System. Novel framework has been applied on an IoT dataset, and results have 

shown that it is capable of protecting IoT infrastructure and detecting any 

malicious activities A Journal paper has been published: A. Khraisat, I. Gondal, 

P. Vamplew, J. Kamruzzaman, and A. Alazab, "A Novel Ensemble of Hybrid 

Intrusion Detection System for Detecting Internet of Things Attacks," vol. 8, 

no. 11, p. 1210, 2019. 

1.6  Outline of the Thesis 

This section presents an outline of the thesis. As this thesis is by publication, each contribution 

chapter is based on a research paper. 

Chapter 2 This chapter discusses IDS approaches present in the literature that has been used 

for intrusion detection methods to tackle computer security threats. It is shown that the 

detection systems can be categorised into Signature-based Intrusion Detection System and 

Anomaly-based Intrusion Detection System. A number of AIDS systems have also been 

applied in the Network Intrusion Detection System (NIDS) and Host Intrusion Detection 

System (HIDS) to improve the detection performance with the use of machine learning, 

knowledge-based and statistical schemes. A comprehensive review, research challenges and 



 
 

 

 

 

 

taxonomy of modern Intrusion Detection Systems (IDS) are presented in this chapter. Also, 

this chapter discusses evasion techniques that can be used by the attackers to avoid detection 

and future research directions in the area of IDS. This chapter is based on survey paper and 

was published in Security Journal by Springer (Khraisat, Gondal, Vamplew, & Kamruzzaman, 

2019). 

 

Chapter 3 We have studied and observed different machine learning techniques to minimize 

both false negatives and false positives alarms. We have examined the effectiveness of the C5 

decision tree classifier and compared it with other classifiers. Our results have shown, with the 

use of C5 classifier, false negatives alerts are reduced and the accuracy is increased 

significantly on the intrusion detection system. This chapter is based on a conference paper 

(Khraisat, Gondal, & Vamplew, 2018). 

 

Chapter 4 A hybrid IDS (HIDS) is proposed by combining the C5 decision tree classifier and 

One-Class Support Vector Machine. HIDS combines the advantages of both Signature 

Intrusion Detection Systems and Anomaly-based Intrusion Detection System. The objective of 

this framework is to classify both the well-known attacks and zero-day attacks resulting in low 

false-alarm rates and high detection accuracy. The proposed HIDS is assessed using the NSL-

KDD and the Australian Defence Force Academy (ADFA) datasets and is published as a 

Journal paper (Khraisat, Gondal, Vamplew, Kamruzzaman, & Alazab, 2020)  

 

Chapter 5 Proposed framework’s performance is evaluated by profiling normal and malicious 

activities based on Hardware Performance Counters with the use of machine learning 



 
 

 

 

 

 

techniques. Extensive experiments are conducted to study the effectiveness of the HPC features 

that could distinguish between malware and normal applications. Work in this chapter has been 

accepted on 5/1/2020 to be included in the upcoming book entitled “Malware Analysis using 

Artificial Intelligence and Deep Learning”, which will be published by Springer. 

 

Chapter 6 Our hybrid IDS architecture is applied to protect IoT infrastructure by detecting 

abnormal activities. The suggested IDS employs intrusion detection techniques to protect both 

device-to-device and device-to-gateway telecommunications. This chapter is published as a 

Journal paper (Khraisat, Gondal, Vamplew, Kamruzzaman, & Alazab, 2019).  

 

Chapter 7 : The concluding chapter gives an outline of the contributions and future research 

directions and challenges.This chapter has presented an overview of the IDS architecture, 

research challenges, contribution made to address identified challenges and outline of the 

thesis.  

 
 

 
Contributions of the thesis are presented in the form of publications in chapters 2-6. Each 

chapter gives brief commentary on the paper and then paper is included as it appeared in 

proceedings, Journals or books. 

 

 

  



 
 

 

 

 

 

Chapter 2 : Intrusion Detection Systems – An Overview 

             

 

This chapter presents a literature review on approaches used to tackle computer security threats 

using Signature-based Intrusion Detection System (SIDS) and Anomaly-based Intrusion 

Detection System (AIDS). A number of AIDS systems have also been developed as Network 

Intrusion Detection System (NIDS) and Host Intrusion Detection System (HIDS) to improve 

the detection performance with the use of machine learning, knowledge-based and statistical 

schemes. This chapter presents an overview of datasets, comprehensive reviews, research 

challenges and taxonomy of modern Intrusion Detection Systems (IDS) along with evasion 

techniques that can be used by the attackers to avoid detection. 

It also discusses the limitation of intrusion detection systems that should be overcome to 

provide reliable intrusion detection for higher performance. This chapter is based on the survey 

paper published:  



 
 

 

 

 

 

Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J, “Survey of intrusion detection 

systems: techniques, datasets and challenges” Cybersecurity Journal,  2019 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 

 



 
 

 

 

 

 

 

  



 
 

 

 

 

 

Chapter 3 : Anomaly Intrusion Detection System using C5 

Decision Tree Classifier 

             

 

In this chapter, the accuracy of various classifiers has been compared with the C5 decision tree 

classifier. This chapter presents studies to decide which classifier should be used in the first 

stage of our proposed framework which will be discussed in detail in the next chapter. We have 

evaluated the performance of the C5 classifier with other classifiers in terms of accuracy, alarm 

rates time and memory usage. 

C5’s performance has been studied using the NSL-KDD benchmark dataset which contains 

various types of intrusions attacks. The characteristics, importance and suitability of this 

dataset are discussed in Chapter 2. Our results show that C5 has achieved high accuracy and 

low false alarms as an intrusion detection system as compared to other well-known classifiers 



 
 

 

 

 

 

in the literature.  Furthermore, our study in this chapter reveals that C5 consumes less time and 

low memory as compared to other techniques.  

In this chapter, we have addressed question 1. The work presented in this chapter has been 

published as the following paper:  

Khraisat, A., Gondal, I., & Vamplew, P.’ “An Anomaly Intrusion Detection System Using C5 

Decision Tree Classifier” Asia-Pacific Conference on Knowledge Discovery and Data 

Mining (pp. 149-155). Springer, 2018. 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 

  



 
 

 

 

 

 

Chapter 4 : Hybrid Intrusion Detection System Based on 

the Stacking Ensemble of C5 Decision Tree Classifier and 

One-Class Support Vector Machin 

             

 

Traditional IDSs suffer from limitations such as they can be penetrated easily by attackers, 

incapability to differentiate new malicious requests, hard to update, low accuracy and high false 

alarms. AIDS has its limitations and SIDS can only identify intrusions which are known 

previously. Therefore, the intrusion systems must be updated with newly detected malware 

signatures. In this chapter, a Hybrid IDS (HIDS) is presented to overcome the individual 

drawbacks of SIDS and AIDS.  

Machine learning based IDSs classify attacks based on the input data sources. In general, there 

are two types of IDS technologies, namely Host-based IDS (HIDS) and Network-based IDS 

(NIDS). NIDS monitors the network traffic to detect external malicious attacks that could be 



 
 

 

 

 

 

initiated from the external threats. NIDS has a poor performance to inspect all data in a high 

bandwidth network because of high-speed communication networks (Bhuyan, Bhattacharyya, 

& Kalita, 2014). NIDS deployed at a number of positions within a particular network topology, 

together with HIDS and firewalls, can give a concrete, resilient, several phased protection 

against both external and insider attack. 

In this chapter, an ensemble of C5 and One-Class Support Vector Machine classifiers is used 

in a novel way to build the proposed HIDS and it has been evaluated using know benchmark 

data sets. HIDS makes use of the advantages of both Signature intrusion detection systems and 

Anomaly-based Intrusion Detection System techniques. We have used two different datasets 

to asses our method and compared it with other frameworks. Our results showed that our 

proposed HIDS achieved the highest accuracy with low alarm rates. This chapter has addressed 

Research Question#2, outlined in Chapter 1. A Journal paper has been published: Khraisat, A.; 

Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A. Hybrid Intrusion Detection System 

Based on the Stacking Ensemble of C5 Decision Tree Classifier and One-Class Support Vector 

Machine. Electronics, 9, 173, 2020. 

 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 

  



 
 

 

 

 

 

Chapter 5 : A Low-Level Intrusion Detection System 

Based on Hardware Performance Counters 

             

 

In the previous chapter, we have applied our IDS framework on both HIDS on NIDS. In this 

chapter, we propose an intrusion detection system using low-level Hardware performance 

counters as features.  

HIDS inspect data that originates from the host system, audits sources, such as operating 

system, window server logs, firewalls logs, application system audits, or database logs. HIDS 

can detect insider attacks that do not involve network traffic (Garfinkel & Rosenblum, 2003). 

To reduce performance overhead HPCs can be used to detect attacks. Also, it is very hard for 

the attackers to bypass intrusion detection based on HPCs as these features are reliable in 



 
 

 

 

 

 

exhibiting the behaviours of the applications. Therefore, HPC features are strong which can 

be used to identify whether an application is normal or malware. 

Studies presented in this chapter have shown that HPC features based IDS provide higher 

detection rate as it is hard for a malware authors to avoid detection as attackers require high 

access privileges. We collect normal and malware applications and extract their HPC features, 

and three different attack techniques were included. In this chapter, we have applied our novel 

methodology on the lower layers of the computer systems, to identify intrusion by examining 

the utilization of Hardware Performance Counters. This chapter has been ACCEPTED to be 

included in the upcoming book entitled “Malware Analysis using Artificial Intelligence and 

Deep Learning”, which will be published by Springer on 5/1/2020. 

 

A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, " A Low-Level Intrusion Detection 

System Based on Hardware Performance Counters," Malware Analysis using Artificial 

Intelligence and Deep Learning, Springer, 2020 (Accepted) 

 

 

 

 

 

  



 
 

 

 

 

 

5.1  Abstract 

Traditionally, Intrusion Detection Systems (IDSs) rely on computer program behaviors at 

operating systems’ level to detect malware. Most of these techniques use high semantic 

features, such as functions and system calls. These high semantic features are susceptible to 

malicious attacks at higher privilege levels. In particular, a malicious malware rootkit may 

bypass intrusion detection by manipulating system data or operating system code. In this 

paper, a framework for profiling normal and malicious activities is proposed. This framework 

is based on Hardware Performance Counters (HPCs) and hybrid IDS to detect malware. 

Extensive experiments have been conducted to study the effectiveness of the HPCs that could 

distinguish between malware and normal applications. The performance of the proposed 

approach has been tested on Windows-based malware families and demonstrated a detection 

rate of 99%. 

5.2  Introduction 

The number of malware has been increasing and causing severe damage to Internet applications 

over the past few years (Zhang, Leach, Stavrou, Wang, & Sun, 2015). McAfee threats report 

has revealed that during the first quarter of 2017 more than 40 million different malware was 

in the wild (McAfee, 2016). Furthermore, malware authors are gaining complete control over 

the computer's system by shifting their efforts to the lower layers by designing more 

sophisticated malware. These malware pose a great threat by disabling the installed anti-

malware system (A. Alazab, Abawajy, Hobbs, & Khraisat, 2013). Recently, there have been 

researching efforts to identify intrusion by examining the utilization of Hardware Performance 

Counters (HPCs). The aim of these works is to distinguish a malware on the basis of its profile 



 
 

 

 

 

 

that characterizes the manner in which it impacts execution counters that are incorporated into 

the processor of the machine. Existing research has concentrated on running malware pairs 

while gathering HPC data and utilizing that information to create Intrusion Detection System 

(IDS) based on different machine learning techniques. Initial outcomes have been promising, 

showing detection rates of over 91% (Sayadi et al., 2018). However, rootkits intrusion 

identification is not promising. Rootkits are an uncommon kind of malware that modifies parts 

of the running operating system bit so as to conceal the existence of malicious activity on a 

computer. Modern rootkits are extremely obfuscated to evade detection and analysis, feature 

encrypted files, encrypted connections, and a flexible design that permits various kinds of 

malware to collaborate to exploit a computer system. Advanced rootkits perform malicious 

activities, such as concealing malware activity, payload functionality, sending spam emails, 

stealing user information and easy installation. Rootkit detection is difficult as rootkit might 

subvert the IDS. Though Demme et al. achieved some success in detecting rootkits with some 

initial experiments, the detection accuracy was low (Demme et al., 2013). 

 

Conventional malware analysis employs virtualization (Dinaburg, Royal, Sharif, & Lee, 2008) 

(Deng, Zhang, & Xu, 2013) and emulation (Yan, Jayachandra, Zhang, & Yin, 2012) (Egele, 

Scholte, Kirda, & Kruegel, 2012) methodologies to explore malware behavior at runtime. 

These methods execute the malware in a Virtual Machine (VM) or use emulators to analyze 

the software to examine the presence of malware. Unfortunately, the malware author can 

simply evade this analysis technique by applying different anti-debugging, anti-virtualization, 

and anti-emulation techniques (Branco, Barbosa, & Neto, 2012) (Pavlyushchik, 2014). 

Malware can simply detect the presence of a VM or emulator and can change their behaviors. 



 
 

 

 

 

 

In addition to this, malware authors regularly use advanced techniques such as obfuscation to 

avoid detection. This can lead to zero-day attacks being undetected by the existing intrusion 

detection systems (M. Alazab, Venkatraman, Watters, Alazab, & Alazab, 2012). 

Polymorphism and metamorphism are two common obfuscation methods used by malware 

authors. For example, to evade detection, malware can hide their persistence by encrypting 

malicious payload and decrypting it during runtime. A polymorphic malware obfuscates using 

several transformations, such as adding some extra instructions to malware to change its 

appearance, but keeps its functionality intact, or changing the sequence of instructions and 

adding jump instructions to keep the original malware functionality (M. Alazab et al., 2012). 

It is quite simple for malware authors to write different malware variants that are functionally 

the same but can evade signature methods (A. Alazab et al., 2013).  

 

 It has been argued that hardware-level detection is more suitable than other kinds of detections 

(Demme et al., 2013; Singh, Evtyushkin, Elwell, Riley, & Cervesato, 2017; Tang, 

Sethumadhavan, & Stolfo, 2014; Wang & Karri, 2016). This is because it is harder for a 

malicious program to defeat an intrusion system that uses hardware events, due to the 

difficulties faced by the malware author to control low-level hardware events (Demme et al., 

2013; Singh et al., 2017). For instance, an attacker can more easily change high semantic 

information than low semantic information. Therefore, building IDS directly on the top of 

hardware gives significant advantages, such as a reduction in overhead introduced, as only the 

virtual machine needs to be changed. Furthermore, hardware-based IDSs are easy to deploy as 

they are not tied to any specific operating system and implementation can happen transparently 

underneath various operating systems (Demme et al., 2013).  



 
 

 

 

 

 

 

This paper proposes a Hybrid IDS to improve the performance of hardware-based malware 

detectors utilizing a few very low features of microarchitectural events HPCs that are extracted 

at run-time by current HPCs. In this paper, an analysis of the effectiveness of HPCs to 

distinguish between malware and normal applications is conducted. HPCs are counters built in 

the modern computes to store the counts of hardware-related activities within computer 

systems such as cache hits, clock cycles, and integer instructions. We experimentally show 

how several types of intrusion and attack techniques that affect the HPCs and reveal which 

significant HPCs can be used in distinguishing malware. Our results show that the HPCs are 

impacted severely by system call hooking attacks.  

The main contributions of this paper are as follows: 

• We investigate which malware and attack techniques impact HPCs and how these 

HPCs can be used for successful malware detection. 

• Apply information gain principle to select the top HPC features which show 

maximum improvement in detection.  

• Design of a low-level intrusion detection system (IDS) based on HPCs. We adopt a 

hybrid approach that exploits the strength of signature and anomaly-based methods 

utilizing features extracted from HPC events. The proposed IDS demonstrates 

promising performance. 

5.3  Background  

For the development of the HPC based IDS extensive literature review on IDSs, HPCs and 

threat models are presented to develop the motivation of our work 

https://en.wikipedia.org/wiki/Microprocessor


 
 

 

 

 

 

5.3.1   Intrusion Detection System  

IDSs are typically classified into Signature-based Intrusion Detection System (SIDS) and 

Anomaly-based Intrusion Detection System (AIDS). SIDS relies on pattern matching 

techniques to decide whether a given pattern is a known attack. SIDS usually attains high 

accuracy in detecting known malware [16]. However, it has difficulty in detecting zero-day 

attacks as the zero-day pattern does not exist in the training databases.  

On the other hand, AIDS relies on events related to normal system behaviors [16, 17], so 

abnormal behavior can be taken as attacks. In general, IDSs can be used to monitor the system 

activities at different system levels.Table 5. 1 shows such IDSs at different levels along with 

their capabilities(M. Alazab, 2015). 

 

 

Level 
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IDS levels 
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The Operating 
System IDS observe 
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network so that it can monitor 
the traffic between various 
devices  
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Files, Downloads, File 
Systems,  API calls 

System Calls, 
Memory, Dynamic 
Instructions, System 
Calls, Registry 
Entries 

uArch Events Packet size, Source port, 
Destination port, Timestamp 

Semantics High  Medium Low Medium 

Robustness Low Medium High  Medium 

Ease of 
deployment 

Low    Medium High  High 



 
 

 

 

 

 

Applicability High  High  Medium High 

 

Table 5. 1 Intrusion detection systems level 

Application-level IDSs have more ability to detect and classify attacks as compared to IDSs 

at lowers level. Many features may have extra overhead during feature extraction. IDS at OS 

level and function by monitoring the system calls being executed by programs. VMM IDS 

only needs features that are obtained from the VMM layer, and this helps to reduce overhead. 

The VMM-level IDS have a great ability not to be affected by malicious attacks, whereas 

application-level and operating system semantics are still susceptible to malicious attacks due 

to higher privilege levels exploitation. For instance, a rootkit may bypass both application 

level and Operating System-level security check but may be detected at VM level. Network 

intrusion detection systems are implemented at dedicated devices within the network, where 

it can inspect inbound and outbound network packets from all the computer systems. 

5.3.2   Hardware Performance Counters (HPCs) 

HPCs are a collection of special-purpose registers in modern microprocessors to collect the 

counts of hardware-related activities, such as cache misses and cache hits for various cache 

levels, pipeline stalls, processor cycles, instruction issues, and branch misprediction (Tang et 

al., 2014). Initially developed by computer hardware engineers for debugging CPUs, HPCs 

can also be programmed to calculate CPU events such as instruction types and executed code 

paths.  

However, the performance of the CPU is significantly affected by how a program uses its 

resources, e.g. memory access patterns effecting cache performance, instruction control flow 



 
 

 

 

 

 

effecting cache performance and branch prediction, the amount of inherent parallelism in the 

instructions affecting the utilization of functional units, data cache misses indicating important 

signs about slow/fast program code. Therefore, there are a lot of events happening inside a 

CPU which indicate performance. 

Cybersecurity researchers have proposed HPCs based techniques for identifying intrusions. 

Intrusion detection system based on HPCs creates a profile of software by examining the 

counter values standard regularly. Next, machine learning could be used to differentiate 

malware behaviors among normal application. There are many advantages for building 

intrusion Detection system based on HPCS. (1) Reduction in performance overhead in 

detecting malware. (2) It is very hard for the attackers to bypass intrusion detection based on 

HPCs as the HPCs features are reliable in showing the nature of the application, whether it is 

normal or malware. 

5.3.3  Threat Model 

In this chapter, we focus on malware attacks that have a high level of privilege within the guest 

VM. These malware can pose dangerous threats to the guest VM’s kernel space on both 

hypervisor and operating system level, as it has sufficient privileges so that they may 

successively change the boot process to run their malicious code, e.g. rootkit. Rootkits are used 

by malware authors to avoid detection and maximize their probability of a successful attack on 

the target computer systems.  

The rootkit normally hides their attack activity, by changing the configuration of the operating 

system to obscure specific processes, network ports, and directories; and installs Kernel Hooks 

in an attempt to remain stealthy. Once the rootkit is set up, it controls the victim operating 



 
 

 

 

 

 

system and is able to hide its persistence from traditional IDSs (Wang & Karri, 2016). 

Detection systems attempt to identify these malicious activities by deploying IDS at higher 

privilege levels, resulting in competition between security vendors an attacker to control the 

lower levels of the system. Therefore, traditional detection mechanisms operate at the operating 

system levels, such as memory-based integrity scanners or heuristic-based analysis, which are 

not adequate to identify rootkits on lower system levels (Vinayakumar et al., 2019). 

5.3.4  Motivation 

Before we present our IDS, we will give an intuitive explanation of the underlying ideas. For 

example, consider the two matrix operation code samples in Table 5. 2 The only difference 

between the two is the order of the array indices on the inner loop. However, their performance 

varies significantly because of cache performance. 

                       Example 1               Example 2 

int main (void) 
{ 
  int i, j; 
  for (i = 0; i < 1000; i++) 
    for (j = 0; j < 1000; j++) 
       array[j][i]++; 
  return 0; 
} 

int main (void) 
{ 
  int i, j; 
  for (i = 0; i < 1000; i++) 
    for (j = 0; j < 1000; j++) 
       array[i][j]++; 
  return 0; 
} 

Table 5. 2 Two Examples of matrix manipulation 

Table 5. 3 shows the results of the execution of both pieces of code while capturing four HPCs 

related to the L1 cache. We execute those examples on Intel processors, running 64-bit 

Windows 7 operating system (OS). As can be seen, Example 1 has a significant number of 

cache misses. 
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e Instruction 
Executed 

L1-I cache load 
misses 

Li-d cache load-
misses 

L1-d cache store-
Misses 

L1-d  cache pre-fetch 
misses 

Ex
am
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1 21,270,318 
 

1,991,540 
 

999,121 
 

1,092,899 
 

993,746 
 

Ex
am

pl
e 

2 21,265,465 
 

20,412 
 

24,976 
 

20,485 
 

3,761 
 

Table 5. 3 Values of two examples measured by HPCs 

The difference in profiles between the two examples listed above raises a question – Can an 

Intrusion detection system based on HPCs distinguish between malware and normal 

applications? In this paper, we assess the effectiveness of HPCs in capturing the behavioral 

semantics of a program. To this end, we profile normal applications and malicious applications 

using HPCs and report the performance of building an intelligent intrusion detection system. 

5.4  Related Work 

Current IDSs can be categorized based on two main characteristics: the detection approach and 

the malware features used for their detection. Various features are used to build IDSs, e.g., 

memory, dynamic instructions, system calls, registry entries, and others (Liao, Lin, Lin, & 

Tung, 2013; Shakshuki, Kang, & Sheltami, 2013). The usage of low-level hardware events for 

building intrusion detection system is a recent research direction. Consequently, there have 

been very few related works focusing on how to use HPCs as features for building IDS, but 

recently the feasibility of designing malware detection with performance counters has been 

studied. Demme et al. found that existing performance counters can be used to identify malware 

(Demme et al., 2013). They investigated a small set of program behavior within a family of 

malware on Android and Intel Linux platforms. The work demonstrated that offline machine 

learning techniques could be used to classify malware based on performance counters. They 

achieved prediction accuracies ranging from 30% to 98% across different Android malicious 



 
 

 

 

 

 

software. However, their methodology lacks any information about which HPC events could 

be used for detection purpose (Huda et al., 2016). 

 

The work of de Melo et al. (de Melo, 2009) used unsupervised machine learning to build 

profiles of the HPC patterns of benignwares and then identify abnormalities. de Melo et al. 

have applied F-Score as their feature selection and have provided a comparison of performance 

while using different sampling frequencies for the HPCs. They used only two applications, 

namely, Internet Explorer and Adobe Acrobat, in their proof of concept and Metasploit to 

create the exploits for the applications. We avoid using F1-score feature selection as it does not 

reflect any mutual dependence between the collected events. F-score discloses the 

discriminative power of each feature individually as one score is calculated for the first feature, 

and another score is calculated for the second feature. But it does not consider the utility of 

everything on the combination of both features.  

 

In (Ozsoy, Donovick, Gorelik, Abu-Ghazaleh, & Ponomarev, 2015), Ousoy et al. proposed a 

Malware-Aware Processor (MAP), which is a sub-semantic hardware malware detector. This 

work investigated several sub-semantic feature vectors, and built an online hardware-supported 

malware detector while using various architectural features in distinguishing malware from 

normal programs online. 

5.5  Experimental Setup 

To investigate if HPC deviation could be used as features to identify malware, we conducted 

numerous feasibility experiments by building IDS using existing machine learning techniques 



 
 

 

 

 

 

and validating their detection effectiveness based on the standard performance measures. In the 

following sections, we describe our experimental setup and explain how we collect normal and 

malware applications and extract their HPC features. 

5.5.1  Measurement Infrastructure 

All the experiments and measurements were executed on the VMWare Virtual Machine 

environment, installed with Windows 7, 64-bit and running a single-core with 512 MB of 

RAM. VTune Performance Analyzer (VirusTotal) was used to collect Hardware Performance 

Counters (HPCs) from both malware and benignware. Anti-security was disabled and 

connected to the network, while HPC features were extracted from malware. Every time a 

programmed event occurred, the count register was incremented. The quantity of hardware 

events that can be gathered simultaneously is limited by CPU abilities (Malladi, 2009). 

5.5.2  Collection of Clean and Infected Measurements 

In order to collect clean normal HPCs for windows, normal window’s command was executed, 

such as nslookup, ping, tasklist, netstat, and ipconfig command were used as   normal. 

 

Figure 5.1 Distribution of malware and normal 
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Figure 1 Distribution of the dataset 



 
 

 

 

 

 

Each command was executed individually and HPCs were extracted. For HPC data collection 

from malware, different variants of malware were used such as ZeroAcces, ZeusBoot, and 

Turla. The malware was chosen that had the following capabilities: hide processes, hidden 

services, hide listening TCP/UDP ports, hide kernel modules, hidden drivers, hide files and 

hide registry entirely. After execution of a single command, VM is restored to the normal state. 

This guarantees the HPC events are collected independently across normal and exploit 

execution. The dataset used in this experiment contains 1,185 executable application in total, 

as shown in Figure 2. Among them, 496 malicious software have been collected from the 

honeynet project, VX Heavens (VX Heavens, 2011), Virus Total (Total, 2012) and other 

sources. Three different attack techniques were included. Table 5. 4 shows a summary of the 

three-malware functionalities used in this study. 

Attack techniques  Functionality 
Direct kernel object manipulation 
 (DKOM) 

DKOM is a common malware method to hide possibly harmful processes, 
drivers, files, and intermediate connections from the task manager and event 
scheduler. Malware escalates the privileges of processes to gain control.  
 

I/O Request Packet (IRP) hooking 
 

Malware make specific files or processes disappears by avoiding them from 
showing in any file entries or task managers e.g. hiding file using IRP 
hooking or hiding process using IRP hooking 

Process Hiding using System Service 
Dispatch Table (SSDT) hooking 
 
 

Malware can change the original pointer value of an entry by the address of 
a function with the same prototype in kernel mode. For example, process 
Hiding SSDT hooking or file hiding using SSDT Hooking 

Table 5. 4 Malware attack techniques used in this study 

In our study, 237 HPC features were extracted into vectors as presented in Table 5. 5. An 

additional column of “class” has been added to each row in which extracted data is labeled as 

“Malware” or “Normal” depending on the application type. 
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4846 4662 4251 6547 …… Malware 
4149 3055 1641 2633 …… Normal 
4150 2772 2075 2698 …… Normal 
4177 2474 1831 2602 …… Normal 

Table 5. 5 HPC features were extracted into vectors Sample 

5.6  Proposed Hybrid Model for IDS 

We rely on machine learning techniques and use HPC features to build intrusion detection 

system. Hybrid IDS is created to conquer the drawback of SIDS and AIDS as it coordinates 

SIDS and AIDS to identify both zero-day and known attacks. In our approach, AIDS is utilized 

to distinguish zero-day attacks, while SIDS is utilized to recognize understood attacks. The key 

idea of our approach is to consolidate the benefits of both SIDS and AIDS to create robust IDS. 

The techniques for creating and joining a few classifiers to achieve high accuracy is called 

boosting. Our model contains the following components as shown in Figure 3. 

• Hardware Feature Extraction - Extracting the HPC events from both malware and 

benign ware. 

• Feature selection – Selecting suitable features from 237 HPC features, which can 

efficiently decrease the redundant and inappropriate features in the original large HPC 

features. Feature selection often leads to increased detection accuracy and reduced false 

alarm rate.   



 
 

 

 

 

 

• SIDS: Normal Model Creation - Model is created using the HPC features selected by 

the previous stage. Once the suitable subset of HPC features is nominated, this subset 

is then used in the classifier training phase where machine learning techniques are 

applied. 

• AIDS: Anomaly Detection - Identifying abnormal behavior that differentiates from 

normal behavior shown in Figure 3. 
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Figure 5.2 The high-level design of the HPC-based on Intrusion Detection System 

Figure 5.2 shows Hybrid IDS that could overcome the disadvantage of SIDS and AIDS. Our 

system integrates SIDS and AIDS to create an efficient hybrid IDS to detect both unknown and 

known attacks. In our approach, AIDS is used to identify zero-day attacks, while SIDS is used 

to identify well-known attacks. The central idea of the novel approach is to combine the 

strengths and advantages of SIDS and AIDS to build further efficient IDS.  

AIDS aims to profile the normal applications activity that would be accepted and would raise 

a malicious alarm when the difference between a given observation at an instant and the normal 

request exceeds a predefined feature selection threshold.  



 
 

 

 

 

 

Applications profile is created by employing records that are recognised as benign actions. 

Next, it observes the behaviour of the traffic and matches the new records with the built profiles 

and attempts to identify abnormalities. If a malicious request is identified, the system will save 

it in the signature database. The primary purpose of storing the malicious pattern in the database 

is to achieving protection against a similar attack in the future.  

5.6.1  Feature Extraction 

Feature extraction should result in a set of non-redundant and low-dimensional features from 

the HPCs. The HPC features applied in this study describe the typical behavior of an 

application. They include various metrics, such as CPU Cycle, branch-instruction, and branch 

misses. Table 5. 6 shows a sample of HPC features which are extracted at the program 

execution stage. A kernel driver that configures the Hardware Performance Counters was 

developed and written for collecting the microarchitectural events and storing them in a 

database, which contains an execution of a million instructions to form the selected feature. 

Event Name  Description 

ALL_BRANCHES 
 

All (macro) branch instructions retired. 

CONDITIONAL 
 

Conditional branch instructions retired. 

CONDITIONAL_PS 
 

Conditional branch instructions retired. 

NEAR_CALL 
 

Direct and indirect near call instructions retired. 

NEAR_CALL_PS 
 

Direct and indirect near call instructions retired. 

NEAR_CALL_R3 
 

Direct and indirect macro near call instructions retired (captured in ring 3). 

NEAR_CALL_R3_PS 
 

Direct and indirect macro near call instructions retired. 

ALL_BRANCHES_PEBS 
 

All (macro) branch instructions retired. 



 
 

 

 

 

 

NEAR_RETURN  Return instructions retired. 

NEAR_RETURN_PS  Return instructions retired. 

NOT_TAKEN 
 

Not taken branch instructions retired. 

NEAR_TAKEN  Taken branch instructions retired. 

NEAR_TAKEN_PS  Taken branch instructions retired. 

FAR_BRANCH  Far branch instructions retired. 

Table 5. 6 HPC Features 

Figure 5.3 shows a comparison of the distribution of events from normal runs versus different 

malware. Variations are cleared from baseline features because of the changing phases of 

malicious execution. In a box plot, we draw a box from the first quartile to the third quartile. 

In malicious activities, it has two malicious activities, namely, the application that hid the 

process and the application that used TCP hooking to hide the TCP ports from netstat.exe. In 

normal applications, normal applications were executed without any malicious activity.  

 

Figure 5.3 Comparison of the distribution of events from normal runs versus different malware 

 

A lot of extracted features can cause many problems, for example, misleading the classification 

algorithm, over-fitting, decreasing generality, rising model complexity and the execution time. 



 
 

 

 

 

 

These aspects can impact negatively when applying machine learning techniques on IDSs. 

Every time the guest operating system needs to interact with the hardware, the Virtual Machine 

Monitor (VMM) must intervene. Therefore, HPC features are extracted from this intervention. 

Hence, any abnormality in performance traces can be used as signs of potential attacks. With 

the extracted labeled collection, the relevance features are analyzed for both normal and attack 

and to determine the most relevant feature.  

HPC features are extracted from both normal and malicious application by using VTune, a tool 

primarily designed to help programmers in optimizing their applications [19]. For malicious 

activities, Zeus as malware is executed. In normal applications, normal applications are 

executed without any malicious activity. 

5.6.2  Feature selection 

One of the main issues with IDSs is dealing with many irrelevant features, which can cause 

overhead on the system. Therefore, most IDS apply feature selection. As some of the features 

might be unimportant, which leads to the false detecting of malware. Therefore, the purpose of 

the feature selection is to identify significant features that can be used in the IDS to detect 

various malware efficiently. 

We applied an information gain method for feature selection, due to its fast execution time to 

select the best performing feature set for that particular type of model.  Information gain is 

regularly used to reveal how well each distinct attribute separates the given data set. The overall 

entropy “I” of a given dataset “S” is described as (Gray, 2010). 



 
 

 

 

 

 

𝐼(𝑆) = − ∑ 𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖

𝑐

𝑖=1

 

Where C is the total number of classes and 𝑝𝑖 is the portion of instances that belong to class i. 

The decrease in entropy or the information gain is calculated for each feature: 

𝐼𝐺(𝑆, 𝐴) = 𝐼(𝑆) − ∑
|𝑆𝐴,𝑣|

|𝑆|
𝑣ℇ𝐴

𝐼(𝑆𝑣) 

For both normal and attack classes, information gain is calculated, and we removed the feature 

set whose information gain was less than predetermined thresholds of 0.5. This calculation 

involved the estimation of the conditional probabilities of a class for a given a term and entropy 

computations. The feature with good information gain is considered the most discriminative 

feature. Table 6 presents the information gain of HPC features. In total, 237 features are 

examined. Among them, 22 HPCs are the most significant concerning malware detection. A 

higher rank points out that the feature distinguishes well between normal and malware 

applications. The features in Table 5. 7 are presented in the descending order of their 

contribution in identifying malware. 

Ranked Features 
0.7814 BR_INST_RETIRED.ALL_BRANCHES_PS 

0.6482 ITLB_MISSES.WALK_DURATION 

0.6187 BR_INST_RETIRED.NEAR_CALL_R3_PS 

0.6168 L2_RQSTS.DEMAND_DATA_RD_HIT 

0.6083 BR_INST_EXEC.TAKEN_CONDITIONAL 

0.6008 BR_INST_RETIRED.NEAR_RETURN_PS 

0.5977 L2_RQSTS.REFERENCES 



 
 

 

 

 

 

0.5965 BR_INST_RETIRED.ALL_BRANCHES 

0.5902 L2_RQSTS.CODE_RD_HIT 

0.583 BR_INST_EXEC.TAKEN_DIRECT_JUMP 

0.5821 L2_LINES_IN.S 

0.5794 BR_INST_RETIRED.NOT_TAKEN 

0.5639 L2_RQSTS.CODE_RD_MISS 

0.5612 L2_LINES_IN.E 

0.5504 BR_MISP_EXEC.ALL_BRANCHES 

0.5457 L2_RQSTS.ALL_DEMAND_REFERENCES 

0.5327 L2_RQSTS.MISS 

0.53 BR_INST_RETIRED.NEAR_CALL_R3 

0.5252 OFFCORE_REQUESTS_OUTSTANDING.DEMAND_RFO 

0.5183 MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_NONE 

0.5169 BR_INST_EXEC.TAKEN_DIRECT_NEAR_CALL 

0.5098 BR_INST_RETIRED.NEAR_CALL 

Table 5. 7 Information gain for different HPC features 

5.6.3  Building Classification Models 

Once HPC features are selected, we ran experiments using Hybrid IDS to evaluate their 

capability to distinguish between malicious and normal execution. In order to achieve high 

accuracy and low false alarm rates, we combined two different classifiers execution (Quinlan, 

1996). The proposed model involves two phases: the SIDS phase uses C5 classifier, and AIDS 

stage one-class SVM is used. Each phase has two stages, training and testing. In the training 

stage, the normal activities profile is labeled by using standard programs that are accepted as 

normal behaviour; the testing stage new data set is used. The hybrid model can classify 

activities of new users either normal profile (no attack) or deviation from the normal profile 

(attack).  



 
 

 

 

 

 

5.7  Performance Evaluation of the Proposed IDS 

In this section, we provide the detailed results of the experiments achieved using the proposed 

framework with the selected HPC features.  

5.7.1  Evaluation Metrics for Models 

 In this experiment, we have evaluated the effectiveness of our IDS using Confusion Matrix as 

shown in Table 5. 8. Various elements are:  

• True positive (TP): Number of correctly identified malicious code.   

• True negative (TN): Number of correctly identified benign code.  

• False positive (FP): Number of wrongly identified benign code, when a detector 

identifies the benign file as a Malware.  

• False negative (FN): Number of wrongly identified malicious code, when a detector 

fails to detect the Malware because the virus is new and no signature is yet available.   

• Total Accuracy: Proportion of completely accurately classified instances, either 

positive or negative.  

• The Detection Rate (DR) is calculated according to the following equation: 𝐷𝑅 (𝑖) = 

Xii

∑ Xij6
i=1

    False alarm rate of IDSs can be computed by   𝐹 (𝑖) = 1 −
Xii

∑ Xij6
i=1

 

The accuracy is calculated according to the following equation: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁)/ (𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁) 

 

 

 

 



 
 

 

 

 

 

 Class                                           Predicted attack Predicated normal 
Actual attack                 True positive (TP)    False negative (FN)    

Actual normal           False positive (FP)   True negative (TN)    

Table 5. 8 Confusion Matrix 

Table 5. 9 shows the confusion matrix, the element 𝑋(1 <=  𝑖 <=  6;  1 <=  𝑗 <=

 6) denotes the number of records that belong to class  𝑖  and were classified as class j by IDSs.  

Therefore, based on the confusion matrix, we can easily compute other performance criteria. 

Classified as  a b C d e f 
a=DKOM X11 X12 X13 X14 X15 X16 

b=File Hiding IRP hooking X21 X22 X23 X24 X25 X26 

c=File Hiding using SSDT Hooking X31 X32 X33 X34 X35 X36 

d=port filtering using IRP Hooking  X41 X42 X43 X44 X45 X46 

e=Process Hiding using SSDT hooking X51 X52 X53 X54 X55 X56 

f=Normal X61 X61 X63 X64 X65 X66 

Table 5. 9 Confusion matrix of our proposed IDSS 

5.7.2  Experiment Results  

As discussed in the feature selection section, we determine the specific feature for each of 

rootkit functionality, as well as the normal characteristics. 

5.7.2.1  Stage one: SIDS Results 
Confusion matrix results for C5 classifier in stage one is shown in Table 5. 11 malware 

signature, we applied C5 , a rule learning program, to our training data (Cohen, 1995). C5 is 

fast and creates accurate rule sets. Table 5. 10 presents generation c5 rules from the SIDS stage 

for classifying all diversity of malware.  



 
 

 

 

 

 

……………………………………. 

……………………………………. 

IF (BR_INST_RETIRED.NEAR_RETURN_PS <= 8455) and (BR_INST_EXEC.ALL_INDIRECT_NEAR_RETURN >= 
682) THEN Class=Malware  

IF (BR_INST_EXEC.TAKEN_INDIRECT_JUMP_NON_CALL_RET >= 5546) and (INST_RETIRED.PREC_DIST >= 
19694) THEN Class=Malware  

IF (RESOURCE_STALLS.ROB <= 862) and (IDQ.ALL_DSB_CYCLES_4_UOPS <= 1878) THEN  class2=Netfilter 
(68.0/0.0) 

IF (BR_MISP_EXEC.ALL_BRANCHES <= 1280) and (BR_INST_RETIRED.NEAR_CALL_R3_PS >= 4825) and 
(ITLB_MISSES.WALK_COMPLETED <= 484) THEN class2=Netfilter  

IF (MEM_LOAD_UOPS_RETIRED.L2_HIT_PS <= 958) and (MEM_UOPS_RETIRED.ALL_LOADS_PS <= 8539) 
THEN  class2=file_ssdt  

IF (BR_INST_EXEC.ALL_CONDITIONAL <= 17987) and (BR_INST_RETIRED.ALL_BRANCHES_PS >= 12354) 
THEN class2=file_ssdt  

IF (ICACHE.MISSES <= 1627) THEN class2=Process_ssdt  

IF (BR_INST_RETIRED.NEAR_TAKEN_PS <= 12410) THEN class2=file _irp (99.0/0.0) 

IF (DTLB_STORE_MISSES.STLB_HIT_2M >= 467) and (BR_MISP_RETIRED.NEAR_TAKEN >= 708) THEN 
class2=Dkom (100.0/0.0) 

……………………………………. 

……………………………………. 

Table 5. 10 Malware signature generation samples 

Classified as  a b c d E f 

a=DKOM 99 0 0 0 0 1 

b=File Hiding IRP hooking 7 93 0 0 0 0 

c=File Hiding using SSDT Hooking 1 0 91 5 2 0 

d=port filtering using IRP Hooking  3 0 0 93 0 2 

e=Process Hiding using SSDT hooking 2 0 5 0 92 0 

f=Normal 4 0 0 0 0 685 

Table 5. 11 Confusion Matrix results of using C5 

The detailed analysis of the accuracy of C5 decision tree classification is shown in Table 5. 12. 

 



 
 

 

 

 

 

Classified as  TP Rate FP Rate F-Measure 

a=DKOM 0.49 0 0.658 

b=File Hiding IRP hooking 1 0 1 

c=File Hiding using SSDT Hooking 1 0.006 0.971 

d=port filtering using IRP Hooking  1 0 1 

e=Process Hiding using SSDT hooking 0.939 0 0.969 

f=Normal 1 0.103 0.964 

Weighted Avg. 0.952 0.06 0.945 

Table 5. 12 Detailed analysis of accuracy by applying C5 

Stage two: AIDs Results  
One-class SVM with RBF kernel was implemented using LIBSVM. Results in the form of a 

confusion matrix of stage two are shown in Table 5. 13. 

Classified as a b c d E f    
a = Dkom 100 0 0 0 0 0 

b=File Hiding IRP hooking 0 100 0 0 0 0 

c=File Hiding using SSDT Hooking 0 0 99 0 0 0 

d=port filtering using IRP Hooking 0 0 0 98 0 0 

e=Process Hiding using SSDT hooking 0 0 0 0 99 0 

f = Normal 100 0 0 0 0 589 

Table 5. 13 Confusion Matrix results of using one-class support vector machine 

The detailed analysis of the accuracy of One-Class SVM classifier are shown inTable 5. 14. 

Class TP Rate FP Rate F-Measure 

a=DKOM 1 0.092 0.667 

b=File Hiding IRP hooking 1 0 1 

c=File Hiding using SSDT Hooking 1 0 1 

d=port filtering using IRP Hooking  1 0 1 

e=Process Hiding using SSDT hooking 1 0 1 



 
 

 

 

 

 

f=Normal 0.855 0 0.922 

Weighted Avg. 0.916 0.008 0.926 

Table 5. 14 Detailed analysis of accuracy by applying one-class support vector machine 

 

5.7.2.2  Stage Three: The Combination of the two stages 
 

In Hybrid IDS, the C5 classifier is applied as a first stage, and one class SVM is employed as 

the second stage to create hybrid IDS. Stacking ensemble methods is used to combine those 

two stages. K-fold cross-validation is applied for assessing the results of a statistical analysis 

generating an independent dataset using 10 folds. For k=10 folds, 90% of full data is used for 

training and 10% for testing. Training and testing were performed using 10-fold cross-

validation on all malware and benignware dataset. Confusion matrix of the combination of the 

classifiers in stage three is shown in Table 5. 15. 

Classified as  A b c d E f 

a=DKOM 100 0 0 0 0 0 

b=File Hiding IRP hooking 0 100 0 0 0 0 

c=File Hiding using SSDT Hooking 0 0 95 1 2 1 

d=port filtering using IRP Hooking  0 0 0 98 0 0 

e=Process Hiding using SSDT hooking 0 0 3 0 96 0 

f=Normal 3 0 0 0 0 686 

Table 5. 15 Confusion matrix by using Hybrid classification 

The accuracy of stage 3 is shown in Table 5. 16.  

Class TP Rate FP Rate F-Measure ROC Area 

DKOM 1 0.003 0.985 0.998 

File Hiding IRP hooking 1 0 1 1 



 
 

 

 

 

 

File Hiding using SSDT Hooking 0.96 0.003 0.964 0.978 

port filtering using IRP Hooking  1 0.001 0.995 1 

Process Hiding using SSDT hooking 0.97 0.002 0.975 0.984 

Normal 0.996 0.002 0.997 0.997 

Weighted Avg. 0.992 0.002 0.992 0.995 

Table 5. 16 Detailed analysis of accuracy by applying the Hybrid classifier 

As shown in Figure 5.4, the accuracy of detection of malware is 94.6% in stage one. While the 

accuracy of detection of malware is 91.56% in stage two. In stage 3, the accuracy result is 

99.16%, which has improved significantly as compared to stage 1 and stage 2. Therefore, the 

general performance of the suggested framework is enhanced in terms of the detection rate and 

low false alarms rate in contrast to the current methods.  

 

Figure 5.4 Accuracy details results of all stages 

 

5.8  Conclusion  

 Hybrid intrusion detection system using low-level information such as HPCs would be highly 

reliable against suspicious behavior that might be a zero-day attack. In addition, using HPC as 

a feature provides robustness for IDS as it is difficult for a malware author to evade detection 

94.60%
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99.16%

Stage One (C5 classifer ) Stage Two (One class SVM) Our proposed method of
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as high access privileges are required to attack at a lower level. In this chapter, we presented a 

Low-Level Intrusion Detection System based on HPCs, and the central idea is to use HPCs to 

build IDSs to detect malware. We have shown different kinds of HPCs feature that we were 

able to extract from the computer system and used them to build IDS. We also investigated and 

examined the significant HPCs features to differentiate between normal and abnormal activity. 

Our results show that our hybrid IDS improved intrusion detection as it can also detect known 

and unknown attacks as well.  Paper has demonstrated with the use of these features to build 

hybrid IDS are more reliable because it is difficult for a malware author to change hardware 

information. Our proposed method has been evaluated with the use of recent windows rootkit. 

Our experimental results indicated that our approach could detect malware with a high 

detection accuracy of 99%. This demonstrates the value of using HPC  and hybrid IDSs to 

detect malware attacks successfully. 

  



 
 

 

 

 

 

Chapter 6 : On the Detection of Internet of Things 

Intrusion using Hybrid Intrusion Detection System 

             

 

This chapter presents a Hybrid Intrusion Detection System which is novel in its ability to 

protect IoT infrastructure and detect any abnormal activities. This chapter presents the design, 

implementation, and evaluation of the proposed system. Results evaluating the performance of 

the system show that combining two stages by applying stacking ensemble methods improved 

the detection accuracy. Consequently, a combined model is advised to build IDS for IoT 

systems. This chapter has addressed Research Question#4. This work in this chapter has been 

published as the following paper:  

A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab, "A Novel Ensemble of 

Hybrid Intrusion Detection System for Detecting Internet of Things Attacks," vol. 8, no. 11, 

p. 1210, 2019. 

 



 
 

 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 



 
 

 

 

 

 

  



 
 

 

 

 

 

Chapter 7 : Conclusions and Future Directions 

             

 

7.1 Overview 

The research presented in the previous chapters highlights that identifying both the well-known 

and the zero-day attacks with a high level of detection accuracy and low rate of false-alarm is 

achievable by developing Hybrid Intrusion Detection System. This chapter concludes the 

works presented in previous chapters and summarizes the contributions made in this thesis and 

highlights the possible future research directions.  

7.2 Discussion 

The future of cybersecurity of information systems is firmly associated with business 

continuity. The cyber-attacks will continue to increase as the cyber attackers are readily 

developing new malicious strategies to attack. This will become worse with the advancement 



 
 

 

 

 

 

of IT technologies usable in our everyday life. The rise in attack sophistication means the cyber 

risks will keep on increasing and attacks will be damaging than ever before. Sophisticated 

cyber-attacks also are motivating factors for defenders to safeguard data and the resources of 

their organizations more effectively. 

 

The current cybersecurity environment dictates that SIDS is not sufficient to prevent 

sophisticated and emerging intrusions to the systems. On the other hand, network and behavior 

analyses are vital to understanding attack techniques and can provide additional insight into 

network vulnerability. Achieving comprehensive protection from malicious attacks is 

becoming challenging with the help of existing detection techniques. The zero-day attacks get 

realized only after the attacks have occurred as there is no information available on these 

attacks. Therefore, it is vital to design attack detection systems capable of dealing with zero-

day attacks. This thesis presents research that provides a solution to tackle zero-day attacks. 

 

In Chapter 2 of this thesis, a survey of a comprehensive evaluation of recent works, and the 

datasets commonly employed for assessment purposes in this field are presented. We examined 

a few research issues that have been considered in regard to intrusion detection. This chapter 

also studies different well-known intrusion avoidance methods. An effective IDS should be 

able to detect different kinds of attacks accurately including intrusions that incorporate evasion 

techniques. Developing IDSs which are capable of overcoming the evasion techniques remains 

a major challenge for this area of research. Overall thesis contribution is the development of 

hybrid IDS that contains AIDS and SIDS as its components. 

 



 
 

 

 

 

 

In chapter 3, we experimentally tested multiple data mining techniques to minimize both the 

number of false negatives and false positives. The objective of this chapter was to find out the 

best available classification technique for building AIDS. This study was implemented by 

analysing the NSL-KDD dataset and then observing the performance of classification 

algorithms. AIDS was able to identify and classify the attacks with low false alarms. It has 

been shown that AIDS can be very effective if it achieves a high detection rate and low false 

alarm. In this chapter, different machine learning techniques were applied to build efficient 

AIDS. The efficiency of C5 classifier was examined along with other classifiers. Our results 

showed a low alarm rate and IDS accuracy have improved. 

 

Consequently, in Chapter 4 we proposed an intrusion detection framework to overcome the 

weaknesses of existing frameworks and to enhance detection accuracy, decrease the false-

alarms rate with the ability to discover and identify the zero-day attacks intelligently. The main 

contribution of our framework was the integration of the Signature Intrusion Detection System 

with Anomaly Intrusion Detection System. In the proposed IDS, SIDS was applied to identify 

previously known intrusions and AIDS was applied to detect unknown zero-day intrusions. 

The goal of this framework was to exploit the individual strengths of each technique towards 

building a hybrid framework for better detection. A number of widely adopted metrics 

including accuracy and F-measure were applied to evaluate the efficacy of our proposed models 

and to compare with existing approaches. We showed that an ensemble of C5 and one-class 

SVM in two cascaded stages is superior to individual techniques. Our experimental results 

showed that our suggested hybrid IDS attained superior overall performance in terms of 

accuracy and false alarm rate compared with the other machine learning techniques and 



 
 

 

 

 

 

approaches reported in previous studies. This suggests that our proposed technique will be very 

useful for modern IDSs. 

 

In Chapter 5, it was demonstrated that the proposed hybrid IDS framework can work at 

hardware level attack detection as well. We experimentally showed how several types of 

intrusions and attack techniques manifest in Hardware Performance Counters signal variations. 

Studies have revealed the most significant HPCs which can be used in distinguishing malware. 

Our results show that the HPCs are most impacted by the techniques of attack such as system 

call hooking.  

In chapter 6, the proposed framework was evaluated using IoT Botnet dataset, which includes 

legitimate IoT network traffic and several types of attacks. The result showed that our methods 

achieved high detection accuracy and a low false alarm rate. 

7.3 Accomplishments 

In this thesis, we have initially conducted a comparative study of various classifiers to act as 

an IDS and then we have developed a hybrid IDS framework which can detect known and zero-

day attacks. Further, we have implemented our proposed framework on HPC to investigate the 

performance of the proposed framework at hardware level intrusions. Finally, we also 

investigated the performance of the hybrid IDs framework on IoT networks. This has shown 

the robustness of our proposed framework in detecting known and unknown attacks in various 

operating environments. 

Chapter 2 presented an extensive literature review of IDS techniques and datasets used, and 

this chapter’s work has been published as a journal paper. 



 
 

 

 

 

 

It was shown in Chapter 3 that the C5 classifier is superior to other well-known classifiers as 

an IDS system. Experimental results demonstrated C5’s superior performance overall in terms 

of accuracy and false alarm rate as compared with the other machine learning techniques and 

approaches reported in previous studies. This study established the strength of the C5 classifier 

in designing modern IDSs. 

Chapter 4 proposed a hybrid IDS by combining C5 and One-Class Support Vector Machine 

classifiers. HIDS fuses the advantages of Signature intrusion detection systems and Anomaly-

based Intrusion Detection System. The aim of this framework was to identify both the well-

known and zero-day attacks with high detection accuracy and low false-alarm rates. The 

proposed HIDS was evaluated using the NSL-KDD and the Australian Defense Force 

Academy (ADFA) datasets. Our Studies showed improved performance of HIDS as compared 

to SIDS in terms of detection rate and low false-alarm rates.  In the proposed IDS, SIDS was 

applied to identify previously known intrusions and AIDS was applied to detect unknown zero-

day intrusions. The goal of this framework was to exploit the individual strengths of each 

technique toward building a hybrid framework for better detection. A number of widely 

adopted metrics including accuracy and F-measure were used to evaluate the performance of 

our proposed models and to compare with existing approaches. Our experimental results 

showed that the proposed hybrid IDS outperformed other machine learning techniques and 

approaches reported in previous studies in terms of accuracy and false alarm rate.  For example, 

the results from Chapter 4 showed the accuracy of 81.5 % in detecting malware with the use 

of NSL-KDD Test+ dataset and 97.3% for ADFA dataset for SIDS stage. While the accuracy 

of detection of malware was 72.2 % with the use of NSL-KDD Test+ dataset and 76.4% for 

ADFA dataset for AIDS stage. For hybrid stage, the accuracy results improved to 83.2% and 



 
 

 

 

 

 

97.4% respectively on the two datasets. Therefore, the proposed framework yields a higher 

detection rate and lower false alarms rate in contrast to the standalone single stage, concluding 

that HIDS enabled IDS can detect attacks more efficiently.  

In Chapter 5, studies were presented on a hybrid framework for profiling normal and malicious 

activities based on HPCs. Extensive experiments were conducted to study the effectiveness of 

the HPCs that could distinguish between malware and normal applications. The performance 

of the suggested approach was tested on windows-based malware families. An Intrusion 

detection system using low-level information such as HPCs would be highly reliable against 

suspicious behavior that might be a zero-day attack. Using HPC as a feature provides 

robustness for IDS as it is difficult for a malware author to evade detection as high access 

privileges required at the hardware level. We also showed different kinds of HPC features as 

we were able to extract from the computer system and used them to build an IDS. We also 

investigated and examined the significant HPC features in differentiating between normal and 

abnormal activity. HPC based IDS are reliable because it is difficult for a malware author to 

change hardware information. Our proposed method was evaluated on recent windows rootkit. 

Experimental results indicated that our approach could detect malware with a high detection 

rate of number 99%. This demonstrates the value of using HPCs in an IDS and makes the 

detection more accurate. 

Next, the proposed HIDS framework was evaluated using the Bot-IoT dataset, which includes 

IoT network traffic originating from several types of attacks. These experiments showed that 

the proposed hybrid IDS provided higher detection rate and lower false positive percentage as 

compared to the SIDS and AIDS techniques alone. Results also showed that combining two 



 
 

 

 

 

 

stages by applying stacking ensemble methods improved the detection accuracy. Consequently, 

a hybrid model is advised to detect intrusions on IoT systems. 

 7.4 Future Work and Final Thoughts 

The IDS systems proposed in the thesis can be used and applied to other domains and can be a 

base for future research. This section discusses several areas of research that can build on the 

work proposed work in this thesis. The potential areas for future research are summarized below: 

 

More features: Future research can explore a wider variety of features of the network system, 

host system and IoT ecosystem for differentiating between normal and abnormal activities. 

Using features from the hardware level can result in more reliable IDSs because it is difficult 

for a malware author to change hardware information. The features need to be processed in 

real-time to ensure that an IDS can cope with high-speed network traffic.  An IDS approach 

needs to detect the zero-day and complex attacks at the software level as well as at the hardware 

level without any previous knowledge. This can be done by exploring both hardware and 

software intrusion detection systems and extracting useful features of both HIDS and NIDS. 

More Classifiers: The machine learning framework proposed in this research could include 

more classification techniques.  Several other classifiers could be added to this list, including 

Logistic Regression and Ordinary Least Squares in the future research. Several Ensemble 

Methods can be investigated in future work to achieve the best possible performance. 

Different System: Our proposed Hybrid IDS, which is based on C5 Classifier and One-Class 

Support Vector Machine, is applied on a software level, hardware level and IoT systems but it 



 
 

 

 

 

 

has the potential in securing cloud computing, IoT ecosystem network, wireless network and 

other systems. Future research can explore those areas.  

 

Time and Space Complexity: The major limitation for real-time implementation of such 

machine learning in malware detection is the time and space complexity. The disassembly, 

parsing and feature extraction are time-consuming processes and need a lot of memory space 

and CPU speed as well. In an automated Intrusion Detection system, these processes need to 

be streamlined for better efficiency. 

 

Zero-day attacks: Machine learning techniques can handle tasks when normal and intrusion 

samples are available in training set in high numbers. But some intrusions are so infrequent 

that we may have only one instance of intrusion for training. This is typical for zero-day attacks. 

In this case, machine learning schemes that can support unbalanced datasets can be investigated 

with our framework. 

Another possible future work could be to identify all kinds of intrusion that target IoT and cloud 

computing systems. Further, deep machine learning techniques can be applied for intrusion 

detection for zero-day malware. The future intrusion detection systems could identify intrusions 

while considering the behaviours of the malware for better accuracy. 
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Appendix 

Definitions  

Malware: It is a term used for any software or program that caused harm for the 

computer systems and affect its performance. Also described as any pace of code that has 

changed removed from the software system which aims to affect and damage the system 

functionality. There are many types of malware such as Viruses, Trojan, Worm, Ransomware 

and many more.  

Zero-day attacks: it is referred to the new attacks or unknown attack, which is just 

created by the cybercriminals. Any new attack does not have any history of the detection system 

is a zero-day attack. In the cybersecurity, the intrusion detection system can't detect this attack 

as it doesn’t have a signature.  

Cybercrimes: the type of crimes that take please on the computer system, includes any 

crime from accessing others information illegally, phishing email, theft, distribute viruses to 

hacking and spamming.  

Zuse : it is one of the trojan horse packages that run on the Microsoft Windows .it is 

mainly used to steal the bank accounts  

Buffer Overflow: it is an attack that occurs when cybercriminals overload systems. 

The attackers send code designed to cause a buffer overflow and hold original code and swap 

it with malicious code. 

https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Malicious_code


 
 

 

 

 

 

Denials-of Service (DoS): it is an attack that makes the network services not available. 

It is produced by forcing a reset on the machine or network resource and make them 

unavailable, then the users can’t connect sufficiently because of the service unavailability. 

User to Root (U2R) attack:  The attackers gain access as a normal host first and then 

upgrades to the root access, which could lead to the exploitation of several vulnerabilities on 

the computer system. 

Remote to Local (R2L) attack: The cybercriminal sends packets to a remote system 

by connecting with the network without having an account on the system. 

Ensemble methods: it is the methods used to combine multiple machine learning 

algorithms and to achieve better prediction results. By combining the decisions from various 

machine learning models the overall performs will improve. 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

Dataset 

The flowing section list sample of the dataset that we have collected and extracted from HPC 
features which was used on chapter 5: 

Class CPU_CLK_UNHALTED.REF_TSC L2_RQSTS.ALL_PF
 ICACHE.IFETCH_STALL BR_INST_RETIRED.NEAR_TAKEN
 BR_INST_RETIRED.NEAR_TAKEN_PS BR_INST_RETIRED.NOT_TAKEN
 BR_MISP_EXEC.ALL_BRANCHES
 L1D_PEND_MISS.PENDING_CYCLES
 L2_RQSTS.DEMAND_DATA_RD_HIT
 L2_RQSTS.DEMAND_DATA_RD_MISS BR_INST_RETIRED.NEAR_CALL_R3
 BR_INST_EXEC.TAKEN_INDIRECT_JUMP_NON_CALL_RET
 MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_NONE_PS
 L2_RQSTS.ALL_RFO L2_LINES_OUT.DEMAND_DIRTY
 L2_TRANS.L2_WB 

   5421 1656 2564 7614 5923 8389 4182 822 0 4510 857
 0 706 1875 3146 

   5804 2414 3084 6874 8175 8980 4723 1795 833 3490 448
 415 807 1691 2271 

   6027 1004 4197 9120 9070 12352 4272 2627 1237 3537 78
 0 1053 862 2364 

   6792 979 2420 5546 6119 7769 1842 1097 307 3430 722
 0 554 1571 2791 

   6627 1162 3797 8583 8405 10412 3326 1029 372 1674
 2103 0 0 2027 2277 

   6842 1295 3669 7132 5314 9804 5002 1226 306 3324 803
 0 2117 2654 4207 

   5035 614 2908 7295 7716 8143 2818 1527 0 2718 971
 0 1488 2184 3775 

   5688 889 4538 10222 9594 13071 2428 2947 524 3965
 1117 0 804 2326 5051 

   6986 1448 3665 6721 6260 10889 3761 1026 409 3854
 1767 0 459 1387 4317 

   7961 1667 6400 9272 11227 13617 5867 1833 787 5164 417
 0 1617 3442 2615 



 
 

 

 

 

 

   4896 784 2536 7273 6758 7882 1852 2322 425 5785
 1388 0 0 2055 3683 

  4621 846 4442 5820 6893 13044 4801 4354 0 4297 1694 
 1192 1667 3144 

   4082 1440 3341 8351 8215 9537 2171 1872 0 2953
 2199 776 844 2250 3500 

   6025 1344 4187 7212 8299 13239 6045 2051 0 4332
 1280 0 1951 1616 1928 

   5764 1345 4868 8894 8696 12602 3666 2714 0 3085 999
 0 1259 864 2869 

   5422 1383 4173 8370 8196 10769 5168 1331 0 3085 461
 0 964 1290 3775 

   4654 1293 4138 10346 8884 12286 4093 2237 923 2303 868
 0 823 2126 4402 

   3422 445 2385 6124 6247 8484 3469 1906 500 3072 822
 0 428 1685 3886 

   5304 1302 2640 6784 6124 9556 6776 1413 824 11340 623
 0 1214 2619 3149 

   6498 529 3370 7559 7080 9402 3090 1002 504 5024
 1866 0 943 2663 2396 

   5855 1207 7434 12850 11347 13881 3488 2992 487 3247
 2434 0 483 2231 3672 

   4069 947 2449 6657 7192 8801 6706 2180 386 3629 76
 0 836 1621 2815 

   5164 647 4109 8146 7883 10465 3340 1027 0 4489
 1873 0 755 1704 2135 

   5936 492 2009 5132 4899 7745 4584 2528 0 2923
 1236 0 0 3192 1700 

   6203 459 2909 5102 5387 6985 1698 896 399 2843 531
 0 925 1396 3583 

   5262 1203 5263 10933 9467 15563 4048 3023 544 3813
 1248 0 783 2139 3175 

   5186 1615 3206 7929 6782 10789 3611 1790 914 2997
 1144 0 470 1152 3053 



 
 

 

 

 

 

   5495 976 7865 9413 9504 13493 5332 2627 0 2500
 1165 0 1453 2183 4005 

   5815 1367 2816 5179 5028 9939 4676 1842 377 11354 906
 0 875 2416 3425 

   4332 1473 3133 6136 6075 11185 4000 2914 859 3489
 1610 0 754 2084 2891 

   5130 1103 3052 7204 6904 9492 5875 1437 386 3228
 1614 0 719 1667 3517 

   5780 879 2720 8025 8958 10990 2065 2187 394 3456
 2447 0 1299 1950 3547 

   5219 1327 4810 9177 8962 15768 2699 2745 481 4876 398
 461 1091 2225 3561 

   7472 475 3475 6631 6673 10200 3182 1978 0 5194 743
 0 456 2023 2586 

   6758 743 3679 7699 6652 10274 3444 1805 471 11459
 1260 0 1021 2168 4595 

   6737 556 2540 7099 7313 9981 5800 1721 0 2929 540
 0 451 2267 2985 

   6402 1940 4266 5206 7676 9548 5186 2159 433 1991 602
 0 1784 1591 2174 

   5135 628 4516 11251 11126 13796 2234 2806 0 3364 906
 0 871 2922 3716 

   7269 1198 3477 6245 5798 10292 5217 1843 0 11279
 1313 482 1962 1842 3249 

   7414 1570 2826 6790 6458 8323 3964 3619 738 4187 897
 0 518 3903 2719 

   5751 831 2770 6237 7029 11062 2326 2194 829 2080 846
 0 487 1908 3759 

   5238 534 6436 8779 8857 12805 5769 3546 858 3850
 1399 0 1922 1687 3030 

   4887 1846 3054 6917 6188 10050 5560 1430 404 3365
 2239 682 792 794 2850 

   6220 1505 2853 3944 4194 6462 1858 2523 451 4729
 2112 0 794 1253 3616 



 
 

 

 

 

 

   7760 1126 1898 6542 7085 11759 4642 2592 0 2986 828
 0 990 1337 2738 

   5538 1791 2701 7569 5888 8500 4197 821 0 4598 883
 0 723 1570 3422 

   5727 2388 3146 6955 8376 9126 4591 1864 813 3213 458
 445 803 1974 2214 

   5909 1047 4247 9054 9005 12500 4292 2790 1357 3602 783
 0 854 1170 2323 

   6709 964 2269 5622 6340 7976 2154 993 300 3631 708
 0 534 1436 2942 

   6709 1028 3883 8605 8308 10522 3592 1099 387 1640
 2117 0 0 2494 2225 

   6868 1376 3715 7232 5393 9871 4870 1121 324 3380 799
 0 2209 2543 4152 

   5243 613 2803 7151 7698 8296 2565 1440 0 2750
 1353 0 1538 1995 3969 

   5828 864 4733 9940 9655 12646 2256 3080 542 4123 949
 0 804 2457 5122 

   6989 1221 3414 6609 6014 10996 3532 1120 383 3574
 1811 0 444 1186 4267 

   7995 1728 6300 9124 11369 13554 5880 1727 785 5291 430
 0 1664 3491 2428 

   4772 782 2374 7107 6722 7813 2156 2411 421 5882
 1639 0 0 1983 3974 

   4657 848 4294 5576 6909 13034 4819 4205 0 4591
 1746 0 1407 1955 3178 

   3549 823 2542 7795 8011 9045 1509 1258 0 2693
 1919 778 869 2138 2875 

   5398 957 3651 6828 7743 12821 5206 1494 0 3938 991
 0 1560 980 1259 

   5200 804 4082 8293 8446 12309 3446 2456 0 2586 996
 0 983 857 1947 

   5151 968 3703 7740 7636 10171 4423 1106 0 2856 470
 0 943 700 3070 



 
 

 

 

 

 

   4289 837 3650 9891 8167 11628 3595 1906 950 1838 882
 0 811 1940 3850 

   2874 458 1837 5713 5558 8305 3044 1580 532 2412 825
 0 430 1071 3406 

   4737 861 2263 6028 5536 8917 6438 995 807 10619 647
 0 927 1743 2532 

   5827 517 2949 7173 6531 8984 2845 600 499 4565
 1540 0 912 2131 1970 

   5629 1006 6735 12199 10732 13278 3133 2490 499 2573
 1969 0 471 1767 3355 

   3396 953 1781 6106 6753 8569 6026 1738 391 3119 767
 0 846 735 2339 

   4549 664 3689 7791 7486 10017 2854 775 0 3858
 1387 0 736 1269 1517 

   5150 492 1688 4425 4058 7064 3719 2073 0 2380 936
 0 0 2461 1287 

   5881 435 2428 4596 5057 6575 1325 831 427 2270 527
 0 936 776 3326 

   4880 744 4555 10611 8974 14880 3511 2614 541 3561 703
 0 772 1612 2614 

   4787 1314 2460 7379 6166 10179 3067 1166 901 2690 893
 0 493 875 2562 

   5114 988 7483 8978 8998 13049 4543 2014 0 1871 630
 0 854 1593 3589 

   5434 800 2337 4502 4736 9659 4085 1232 377 10788 881
 0 897 2015 2780 

   4052 822 2376 5430 5629 10530 3615 2256 841 2883
 1209 0 756 1510 2342 

   4622 799 2618 7018 6455 8730 5419 1019 403 2904
 1197 0 688 1254 3043 

   5246 886 2506 7824 8398 10538 1493 1686 373 2850
 2203 0 937 1257 3288 

   4682 636 4394 8499 8538 15427 2249 2371 491 4175 392
 469 949 2063 3195 



 
 

 

 

 

 

   6971 463 3032 5931 6188 9374 2766 1649 0 4421 753
 0 470 1147 2160 

   6590 743 3301 7258 6108 10053 2648 1490 491 10854 888
 0 923 1716 3897 

   6051 586 2268 6613 6924 8997 4997 1390 0 2569 537
 0 453 1605 2758 

   6236 1414 4117 4777 7177 8955 4680 1641 458 1554 623
 0 1196 1170 1595 

   4610 621 3930 10608 10745 13368 1539 2299 0 2723 914
 0 861 2357 3001 

   6632 980 2818 5858 5208 9994 4609 1570 0 10971 848
 486 1836 1412 2576 

   6970 905 2047 6353 6157 7749 3134 3356 746 3725 892
 0 507 3415 2230 

   5086 845 2376 5695 6458 10556 1847 1539 829 1450 840
 0 515 1610 3533 

   4659 528 5734 8389 8618 12255 5264 2674 879 3344
 1052 0 1289 1308 2350 

   4347 1087 2381 6266 5419 9644 5048 1077 413 2974
 1674 707 777 761 2277 

   5642 933 2590 3488 3489 6026 1249 1873 456 4673
 1545 0 805 880 3210 

   7186 826 1648 5782 6531 11037 4439 2177 0 2357 826
 0 996 917 2206 

   4846 1247 2094 7220 5538 8186 3743 810 0 4149 881
 0 719 1209 2617 

   5430 1935 2567 6278 7838 8384 4326 1453 824 2830 453
 444 781 1171 1894 

   5675 875 3484 8444 8520 12003 3814 2433 830 3193 800
 0 783 835 1828 

   6145 957 2034 5024 5821 7313 1170 751 299 3003 721
 0 545 1232 2423 

   6355 708 3350 8100 7633 9970 3300 957 396 1101
 1538 0 0 1914 1678 



 
 

 

 

 

 

   6238 803 3031 6369 4949 9373 4348 919 316 2830 793
 0 1848 2048 3697 

   4860 611 2289 6647 7205 7980 2278 1143 0 1941 845
 0 1176 1336 3301 

   5271 894 3888 9574 9069 12525 2027 2430 545 3581 782
 0 807 2109 4574 

   6781 956 2779 6000 6525 7987 2047 1415 297 3701 698
 0 531 1748 2974 

   6857 1448 4083 8957 8386 10629 3788 1422 390 1911
 2434 0 0 2332 2255 

   7058 1674 3728 7176 5790 10173 5054 1526 296 3667 781
 0 2218 2791 4432 

   5448 601 3125 7595 7745 8570 2769 1606 0 2777
 1447 0 1871 2160 4008 

   6185 862 4838 10299 9851 13240 2554 3194 513 4361
 1186 0 788 2547 5412 

   7272 1366 3784 6904 6462 11154 3728 1505 389 3901
 2012 0 435 1546 4524 

   8178 2040 6597 9572 11553 13791 6105 2318 781 5731 409
 0 2106 3606 2845 

   5261 771 2729 7365 7138 8259 2341 2637 409 607
 1765 0 0 2392 3984 

   4969 832 4663 5846 7198 13270 4974 4469 0 4581
 1732 0 1535 2003 3220 

   4556 1566 3391 8795 8542 9749 2211 2104 0 3377
 2697 783 839 2844 3674 

   6358 1506 4714 7576 8417 13565 6191 2395 0 4449
 1628 0 2256 1920 1955 

   6076 1421 4765 8984 8948 12929 4134 3006 0 3260 985
 0 1388 841 3092 

   5817 1543 4353 8593 8423 10941 5064 1593 0 3611 4
 0 943 1516 4136 

   4943 1370 4387 10378 8900 12583 4448 2646 914 2663 851
 0 809 2566 4698 



 
 

 

 

 

 

   3605 441 2599 6360 6519 8723 3701 2289 508 3047 810
 0 428 1792 4210 

   5607 1508 2946 6689 6409 9728 6928 1471 788 11476 620
 0 1586 2505 3429 

   6758 517 3862 7767 7391 9575 3298 989 499 5363
 2191 0 931 2995 2698 

   6443 1660 7599 12810 11584 14288 3645 3052 496 3414
 2581 0 442 2437 4056 

   4289 948 2442 6749 7463 9223 6645 2325 375 4019 760
 0 829 1684 2887 

   5318 635 4312 8748 8288 10772 3550 1417 0 4812
 2028 0 728 2048 2129 

   6088 464 2423 5188 4910 7754 4559 2706 0 3073
 1528 0 0 3111 2225 

   6469 431 2996 5245 5515 7447 2181 1143 409 3183 521
 0 929 1616 4050 

   5286 1504 5505 11218 9945 15732 4067 3448 537 4119
 1385 0 750 2505 3343 

  5728 2091 3298 8224 6787 10929 3630 2030 890 3433
 1537 0 465 1661 3369 

   5825 989 8391 9876 9748 13989 5355 2702 0 2653
 1254 0 1548 2409 4219 

   6234 1495 3058 5417 5481 10474 4823 2109 365 11426 885
 0 863 2839 3726 

  4498 1453 3203 6341 6263 11215 4136 3072 836 3862
 1759 0 733 2436 3152 

   5308 1443 3448 7557 7241 9528 6220 1732 378 3525
 2026 0 700 1909 3985 

   6153 872 3181 8398 9052 11296 2228 2479 383 3442
 2629 0 1576 2176 3908 

   5621 1316 5041 9320 9396 15883 2930 3034 484 5000 379
 463 1365 2690 4122 

  7702 452 3640 6991 7022 10129 3294 2268 0 5422 733
 449 1891 2835 



 
 

 

 

 

 

 7264 736 3973 7894 6892 10746 3472 2037 478 11763 1421 
 1396 2485 4723 

 6879 550 2976 7278 7682 10050 5877 1985 0 3190 531 0
 462 2448 3417 

 5883 0 2788 7012 7355 11404 1358 2237 800 5955 1413 0
 841 2656 2513 

  5581 1224 4118 8235 8235 10588 4959 1395 0 3256 444
 930 1395 3750 

  4706 1000 4103 10256 8718 12308 4167 2273 909 2353 833
 784 2353 4490 

  3265 417 2381 6190 6190 8571 3600 1951 488 2917 800
 408 1633 3871 

  6364 496 3529 7647 7059 9412 3158 976 488 5000
 1860 0 909 2727 2449 

  6087 1379 7333 12667 11333 14000 3462 2857 476 3182
 2400 0 435 2174 3846 

 0 3994 930 2264 6415 7170 9057 6531 2222 370 3810 741
 0 808 1418 2745 

   5091 625 4211 8421 7895 10526 3390 1081 0 4500
 1852 0 727 1818 2000 

   6364 426 2857 5000 5357 7143 1961 1038 389 2927 513
 0 909 1364 3810 

   5185 1111 5161 10968 9677 15484 3922 3077 513 3830
 1081 0 741 2222 3200 

   4906 1739 2857 6939 6122 10204 5417 1538 385 3404
 2326 667 755 755 2807 

   6154 1429 3014 4110 4110 6575 1739 2500 417 5000
 2083 0 769 1154 3600 

   7805 1111 2000 6500 7000 11500 4706 2500 0 2963 800
 0 976 1463 2692 

   5424 1887 2727 7727 5909 8636 4211 784 0 4545 851
 0 678 1695 3256 

   5769 2326 3182 6818 8182 9091 4681 2000 800 3404 426
 408 769 1923 2347 



 
 

 

 

 

 

   6000 1091 4000 9000 9000 12500 4444 2857 1429 3636 755
 0 1000 1000 2449 

   6667 952 2456 5614 6316 7719 1905 1111 278 3500 690
 0 513 1538 2807 

   6667 1132 3913 8696 8261 10435 3600 1111 370 1613
 2128 0 0 2222 2128 

   6842 1277 3500 7000 5500 10000 4878 1127 282 3333 769
 0 2105 2632 4286 

   5200 588 2800 7200 7600 8400 2553 1429 0 2593
 1071 0 1600 2000 3784 

   5882 851 4583 10000 9583 12917 2407 3000 500 4000
 1053 0 784 2353 5098 

   7083 1200 3590 6667 6154 10769 3571 1111 370 363
 1818 0 417 1250 4211 

   8000 1852 6429 9286 11429 13571 5778 1923 769 5385 408
 0 1714 3429 2667 

   5000 769 2520 7244 6772 7874 2041 2400 400 5854
 1404 0 0 2000 3784 

   4681 816 4375 5625 6875 13125 4800 4242 0 4364
 1538 0 1277 1702 3111 

   4513 1599 3343 8628 8669 9815 2268 2143 0 3508
 2552 791 858 2827 3788 

   6290 1515 4554 7716 8650 13386 6074 2412 0 4714
 1627 0 2288 1968 2048 

   6208 1565 4812 9048 9071 12969 4270 3172 0 3329 984
 0 1504 836 3001   5831 1480 4351 8387 8606 10975
 5121 1637 0 3560 464 0 955 1571 3991 

   4981 1155 4291 10613 8956 12671 4533 2412 919 2567 846
 0 786 2718 4743 

   3367 433 2587 6388 6442 8813 3774 2194 506 3304 813
 0 424 1840 4154 

   5469 1622 2954 6851 6477 10004 7131 1401 786 11620 617
 0 1747 2494 3408 



 
 

 

 

 

 

   6663 509 3899 7965 7334 9776 3407 984 510 5335
 2026 0 919 3116 2825 

   6320 1629 7672 12972 11573 14260 3802 3226 489 3291
 2770 0 443 2534 4042 

   5333 1702 3111 8000 6667 10667 3529 1778 889 3043
 1154 0 444 1333 31820   5532 968 8000 9600 9600
 13600 5238 2581 0 2500 1143 0 1277 2128 4082 

   5957 1200 2745 5098 5098 10196 4516 1724 345 11315 870
 0 851 2553 3396 

   4364 1333 2979 5957 5957 11064 4000 2857 816 3556
 1500 0 727 2182 2963 

   5085 1250 3265 7347 6939 9388 5946 1481 370 3404
 1633 0 678 1695 3673 

   5909 851 2941 8235 8824 11176 2000 2182 364 3333
 2449 0 1364 1818 3721 

   5306 1176 4848 9091 9091 15758 2553 2791 465 4828 377
 444 1224 2449 3774 

   7037 723 3810 7619 6667 10476 3158 1818 455 11407
 1200 0 1111 2222 4444 

   6667 541 2791 6977 7442 9767 5714 1818 0 3043 513
 0 444 2222 3077 

   6531 1702 4400 5200 7600 9600 5128 2128 426 2000 588
 0 1633 1633 2222 

   5106 588 4444 11111 11111 13889 2105 2979 0 3111 889
 0 851 2979 3636 

   7111 1333 3333 6250 5833 10417 5128 2000 0 11385
 1304 455 2222 1778 3265 

   7500 1471 2545 6909 6545 8364 3922 3636 727 4242 870
 0 500 4000 2800 

   5714 816 2745 6275 7059 10980 2400 2041 816 2174 816
 0 476 1905 3913 

   5306 500 6316 8947 8947 12632 5714 3333 833 3784
 1429 0 2041 1633 3077 



 
 

 

 

 

 

   4180 939 2437 6586 7570 9306 6674 2441 390 4152 759
 0 809 1670 3041 

   5363 648 4464 8749 8140 10646 3651 1408 0 4607
 2082 0 738 2097 2293 

C5 algorithm 

The fowling article provides more details of C5 algorithm and why it is been used in our 
research:(Lantz, 2019) 

The C5.0 decision tree algorithm 

The C5.0 algorithm has become the industry standard for producing decision trees because it 

does well for most types of problems directly out of the box. Compared to other 

advanced machine learning models, the decision trees built by C5.0 generally perform nearly 

as well but are much easier to understand and deploy. Additionally, as shown in the following 

table, the algorithm’s weaknesses are relatively minor and can be largely avoided. 

Strengths 

• An all-purpose classifier that does well on many types of problems. 
• Highly automatic learning process, which can handle numeric or nominal features, 

as well as missing data. 
• Excludes unimportant features. 
• Can be used on both small and large datasets. 
• Results in a model that can be interpreted without a mathematical background (for 

relatively small trees). 
• More efficient than other complex models. 

Weaknesses 

• Decision tree models are often biased toward splits on features having a large 
number of levels. 

• It is easy to overfit or underfit the model. 
• Can have trouble modeling some relationships due to reliance on axis-parallel 

splits. 
• Small changes in training data can result in large changes to decision logic. 

https://subscription.packtpub.com/search?released=Available&concept=Machine%20Learning


 
 

 

 

 

 

• Large trees can be difficult to interpret and the decisions they make may seem 
counterintuitive. 

To keep things simple, our earlier decision tree example ignored the mathematics involved 

with how a machine would employ a divide and conquer strategy. Let’s explore this in more 

detail to examine how this heuristic works in practice. 

Choosing the best split 

The first challenge that a decision tree will face is to identify which feature to split upon. In 

the previous example, we looked for a way to split the data such that the resulting partitions 

contained examples primarily of a single class. The degree to which a subset of examples 

contains only a single class is known as purity, and any subset composed of only a single class 

is called pure. 

There are various measurements of purity that can be used to identify the best decision tree 

splitting candidate. C5.0 uses entropy, a concept borrowed from information theory that 

quantifies the randomness, or disorder, within a set of class values. Sets with high entropy are 

very diverse and provide little information about other items that may also belong in the set, 

as there is no apparent commonality. The decision tree hopes to find splits that reduce entropy, 

ultimately increasing homogeneity within the groups. 

Typically, entropy is measured in bits. If there are only two possible classes, entropy values 

can range from 0 to 1. For n classes, entropy ranges from 0 to log2(n). In each case, the 

minimum value indicates that the sample is completely homogenous, while the maximum 

value indicates that the data are as diverse as possible, and no group has even a small plurality. 



 
 

 

 

 

 

In mathematical notion, entropy is specified as: 

 

In this formula, for a given segment of data (S), the term c refers to the number of class levels, 

and pi  refers to the proportion of values falling into class level i. For example, suppose we 

have a partition of data with two classes: red (60 percent) and white (40 percent). We can 

calculate the entropy as: 

> -0.60 * log2(0.60) - 0.40 * log2(0.40) 

 

[1] 0.9709506 

Copy 

We can visualize the entropy for all possible two-class arrangements. If we know the 

proportion of examples in one class is x, then the proportion in the other class is (1 – x). Using 

the curve() function, we can then plot the entropy for all possible values of x: 

> curve(-x * log2(x) - (1 - x) * log2(1 - x), 

 

    col = "red", xlab = "x", ylab = "Entropy", lwd = 4) 

Copy 

This results in the following figure: 



 
 

 

 

 

 

 

The total entropy as the proportion of one class varies in a two-class 
outcome 

As illustrated by the peak in entropy at x = 0.50, a 50-50 split results in the maximum entropy. 

As one class increasingly dominates the other, the entropy reduces to zero. 

To use entropy to determine the optimal feature to split upon, the algorithm calculates the 

change in homogeneity that would result from a split on each possible feature, a measure 

known as information gain. The information gain for a feature F is calculated as the difference 

between the entropy in the segment before the split (S1) and the partitions resulting from the 

split (S2): 

 

One complication is that after a split, the data is divided into more than one partition. 

Therefore, the function to calculate Entropy(S2) needs to consider the total entropy across all 



 
 

 

 

 

 

of the partitions. It does this by weighting each partition’s entropy according to the proportion 

of all records falling into that partition. This can be stated in a formula as: 

 

In simple terms, the total entropy resulting from a split is the sum of entropy of each of the n 

partitions weighted by the proportion of examples falling in the partition (wi). 

The higher the information gain, the better a feature is at creating homogeneous groups after 

a split on that feature. If the information gain is zero, there is no reduction in entropy for 

splitting on this feature. On the other hand, the maximum information gain is equal to the 

entropy prior to the split. This would imply the entropy after the split is zero, which means 

that the split results in completely homogeneous groups. 

The previous formulas assume nominal features, but decision trees use information gain for 

splitting on numeric features as well. To do so, a common practice is to test various splits that 

divide the values into groups greater than or less than a threshold. This reduces the numeric 

feature into a two-level categorical feature that allows information gain to be calculated as 

usual. The numeric cut point yielding the largest information gain is chosen for the split. 

Note: Though it is used by C5.0, information gain is not the only splitting criterion that can 

be used to build decision trees. Other commonly used criteria are Gini index, chi-squared 

statistic, and gain ratio. For a review of these (and many more) criteria, refer to An Empirical 

Comparison of Selection Measures for Decision-Tree Induction, Mingers, J, Machine 

Learning, 1989, Vol. 3, pp. 319-342. 



 
 

 

 

 

 

Pruning the decision tree 

As mentioned earlier, a decision tree can continue to grow indefinitely, choosing splitting 

features and dividing into smaller and smaller partitions until each example is perfectly 

classified or the algorithm runs out of features to split on. However, if the tree grows overly 

large, many of the decisions it makes will be overly specific and the model will be overfitted 

to the training data. The process of pruning a decision tree involves reducing its size such that 

it generalizes better to unseen data. 

One solution to this problem is to stop the tree from growing once it reaches a certain number 

of decisions or when the decision nodes contain only a small number of examples. This is 

called early stopping or prepruning the decision tree. As the tree avoids doing needless work, 

this is an appealing strategy. However, one downside to this approach is that there is no way 

to know whether the tree will miss subtle but important patterns that it would have learned 

had it grown to a larger size. 

An alternative, called post-pruning, involves growing a tree that is intentionally too large and 

pruning leaf nodes to reduce the size of the tree to a more appropriate level. This is often a 

more effective approach than prepruning because it is quite difficult to determine the optimal 

depth of a decision tree without growing it first. Pruning the tree later on allows the algorithm 

to be certain that all of the important data structures were discovered. 

Note: The implementation details of pruning operations are very technical and beyond the 

scope of this book. For a comparison of some of the available methods, see A Comparative 

Analysis of Methods for Pruning Decision Trees, Esposito, F, Malerba, D, Semeraro, G, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 1997, Vol. 19, pp. 476-491. 



 
 

 

 

 

 

One of the benefits of the C5.0 algorithm is that it is opinionated about pruning—it takes care 

of many of the decisions automatically using fairly reasonable defaults. Its overall strategy is 

to post-prune the tree. It first grows a large tree that overfits the training data. Later, the nodes 

and branches that have little effect on the classification errors are removed. In some cases, 

entire branches are moved further up the tree or replaced by simpler decisions. These 

processes of grafting branches are known as subtree raising and subtree replacement, 

respectively. 

Getting the right balance of overfitting and underfitting is a bit of an art, but if model accuracy 

is vital, it may be worth investing some time with various pruning options to see if it improves 

the test dataset performance. 

To summarize, decision trees are widely used due to their high accuracy and ability to 

formulate a statistical model in plain language.  Here, we looked at a highly popular and easily 

configurable decision tree algorithm C5.0. The major strength of the C5.0 algorithm over 

other decision tree implementations is that it is very easy to adjust the training options. 

 

 

 


