

Intelligent Zero-Day Intrusion Detection

Framework for Internet of Things

Ansam Khraisat

This thesis is submitted for

For the degree of PhD in the

School of Science, Engineering and Information Technology

Federation University,

Mt Helen, Ballarat

Australia

2020

Dedication

To the memory of my father, Ma’in Khraisat.

To my husband Dr Ammar Alazab and my children.

Your love and support have given me the biggest strength.

Acknowledgment

I would like to extend special thanks to my supervisors, family and friends who supported me

during my PhD study. Importantly, I am indebted to my husband, Dr. Ammar Alazab who is

an academic in ICT field. I thank him for continuous support during difficult times. I would

like to thank my children (Mohammad, Sanad and Zaid) for being very patient during the busy

and stressful times. Without my lovely family, I couldn’t have completed my studies. Special

thanks to my wonderful mum who has provided me with all the support and encouragement.

Also, I would like to thank my siblings; Ahamd, Mohammad, Tharaa and Mais. A special

thanks to my brother-in-law Dr. Mamoun Alazab for being supportive, as well as for his

valuable advice and encouragement.

Very special recognition is due to my principle Supervisor, Professor Iqbal Gondal. I appreciate

his wide skill in many areas. I would like to thank him for his patience and efforts, and for his

encouragement, support and motivation throughout my studies.

Most of all, I would like to thank my supervisors, Associate Professor Peter Vamplew and

Professor Joarder Kamruzzaman, for their valuable advice, comments, discussions, guidance,

patience, encouragement, unconditional support, respect and belief in me. They always

motivated me to do hard work. I have learned a lot from them. I have been fortunate to have

them during my studies.

I would like to acknowledge that my study was supported by an Australian Government

Research Training Program (RTP) Fee-Offset Scholarship and RPF scholarship through

Federation University Australia.

Finally, I would like to thank Federation University Australia for this opportunity. Also, I

would like to thank my colleagues at ICSL for providing a friendly atmosphere and being

wonderful friends throughout the last three years.

List of Publications

1. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A., “Hybrid
Intrusion Detection System Based on the Stacking Ensemble of C5 Decision Tree
Classifier and One Class Support Vector Machine”, Electronics Journal, Impact
factor: 1.754, 2020

2. A. Khraisat, I. Gondal, and P. Vamplew, "An anomaly intrusion detection system
using C5 decision tree classifier," in Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 149-155: Springer, 2018

3. A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, "Survey of intrusion
detection systems: techniques, datasets and challenges," Cybersecurity Journal by
Springer, vol. 2, no. 1, p. 20, impact factor: 1.89, 2019.

4. A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, " A Low-Level Intrusion
Detection System Based on Hardware Performance Counters," Malware Analysis
using Artificial Intelligence and Deep Learning, Springer, 2020 (Book chapter:
Accepted)

5. A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab, "A Novel

Ensemble of Hybrid Intrusion Detection System for Detecting Internet of Things
Attacks," Electronics Journal, Impact factor: 1.754, 2020

Previously published work

6. Alazab, A., & A. Khraisat, A. (2016). New Strategy for Mitigating of SQL Injection

Attack. International Journal of Computer Applications, 154(11), 2016

7. A.Alazab, A. Khraisat, A., Abawajy, J. H., & Hobbs, M., “Using Response Action
with Intelligent Intrusion Detection and Prevention System against Web Application
Malware, Information Management and Computer Security, April, 2014 (ERA C
Rank), 2014

8. A.Alazab, A. Khraisat, A., Abawajy, J. H., & Hobbs, M. (2013), “Multi stage Rules
for Intrusion Detection System”, International Journal of Information Security and
Privacy (IJISP), IGI, July, 2013 (ERA C Rank), 2013

9. A. Khraisat, A. Alazab, A.Abawajy, J. H., & Hobbs, M. (2013), “Trends in Crime

toolkits Developments”, In A. Amine, O. Mohamed and B. Benatallah (Eds) Network
Security Technologies: Design and Applications, IGI, June, 2013.

10. A.Alazab, A. Khraisat, A., Abawajy, J. H., & Hobbs, M. (2013), “Crime Toolkits:

The current threats to web applications”, Journal of Information Privacy and Security,
9(2), 21-39, 2013

11. A. Alazab, M. Hobbs, J. Abawajy, and A. Khraisat, "Developing an Intelligent
Intrusion Detection and Prevention System against Web Application Malware," in
Advances in Security of Information and Communication Networks. vol. 381, A.
Awad, A. Hassanien, and K. Baba, Eds., ed: Springer Berlin Heidelberg, , pp. 177-
184, 2013

12. A.Alazab, A., Abawajy, J. H., & Hobbs, M. (2013) and A. Khraisat, in press
“Detection and Protection of SQL injection”, Journal of Information Privacy and
Security (JIPS), 2013.

13. A. Alazab, A.Abawajy, J. H., & A. Khraisat, (2013),” Crime Toolkits: The
Productisation of Cybercrime”, Proceedings of the 10th IEEE Conference on Trust,
Security and Privacy in Computing and Communications (TRUSTCOM), (ERA A
Rank), 2013

Abstract

Zero-day intrusion detection system faces serious challenges as hundreds of thousands of new

instances of malware are being created every day to cause harm or damage to the computer

system. Cyber-attacks are becoming more sophisticated, leading to challenges in intrusion

detection. There are many Intrusion Detection Systems (IDSs), which are proposed to identify

abnormal activities, but most of these IDSs produce a large number of false positives and low

detection accuracy. Hence, a significant quantity of false positives could generate a high-level

of alerts in a short period of time as the normal activities are classified as intrusion activities.

This thesis proposes a novel framework of hybrid intrusion detection system that integrates the

Signature Intrusion Detection System (SIDS) with the Anomaly Intrusion Detection System

(AIDS) to detect zero-day attacks with high accuracy. SIDS has been used to identify

previously known intrusions, and AIDS has been applied to detect unknown zero-day

intrusions. The goal of this research is to combine the strengths of each technique toward the

development of a hybrid framework for the efficient intrusion detection system. A number of

performance measures including accuracy, F-measure and area under ROC curve have been

used to evaluate the efficacy of our proposed models and to compare and contrast with existing

approaches. Extensive simulation results conducted in this thesis show that the proposed

framework is capable of yielding excellent detection performance when tested with a number

of widely used benchmark datasets in the intrusion detection system domain. Experiments

show that the proposed hybrid IDS provides higher detection rate and lower false-positive rate

in detecting intrusions as compared to the SIDS and AIDS techniques individually.

Declaration

This thesis contains no material which has been accepted for the award of any other degree or

diploma at any university or equivalent institution and that, to the best of my knowledge and

belief, this thesis contains no material previously published or written by another person, except

where due references are made in the text of the thesis.

Ansam Khraisat

General Declaration – Published works

Four original papers (published) were part of this research in peer-reviewed ranked

conferences. I was fully responsible for developing and writing all the papers in the thesis

under the supervision of Prof Iqbal Gondal, A/Prof Peter Vamplew and Prof Joarder

Kamruzzman.

Following table gives the level of my contribution for chapters 2, 3, 4, 5 and 6:

Thesis
Chapter

Publication Title Publication
Status

Contribution Contribution
%

2 Survey of intrusion
detection systems:
techniques, datasets
and challenges

Published Developed analytical
model and experimental
setup. I wrote the initial
draft and incorporated the
suggestions &
recommendations from
the supervisors to prepare
the final draft

80%

3 An Anomaly Intrusion
Detection System
Using C5 Decision
Tree Classifier

Published Developed analytical
model and experimental
setup. I wrote the initial
draft and incorporated the
suggestions &
recommendations from
the supervisors to prepare
the final draft

85%

4 Hybrid Intrusion
Detection System
Based on the Stacking
Ensemble of C5
Decision Tree
Classifier and One
Class Support Vector
Machine per 3 title

Published Developed analytical
model and experimental
setup. I wrote the initial
draft and incorporated the
suggestions &
recommendations from
the supervisors to prepare
the final draft

85%

5 A Low-Level Intrusion
Detection System
Based on Hardware
Performance Counters

Accepted Developed analytical
model and experimental
setup. I wrote the initial
draft and incorporated the
suggestions &
recommendations from
the supervisors to prepare
the final draft

85%

6 A novel ensemble of
design hybrid intrusion
detection system for
detecting internet of
things attacks

Published Developed analytical
model and experimental
setup. I wrote the initial
draft and incorporated the
suggestions &
recommendations from
the supervisors to prepare
the final draft

85%

Student Signature: Date:6/2/2020

The undersigned hereby certify that the above declaration correctly reflects the nature and

context of the student and co-authors contribution to this work.

Principal Supervisor Signature: Date:6/6/2020

Table of Contents

Dedication .. 2

Acknowledgment ... 3
List of Publications .. 4

Abstract .. 6
Declaration ... 7

General Declaration – Published works ... 8
Table of Contents ... 11

List of Figures .. 13
List of Tables ... 14
Abbreviations ... 15

Chapter 1 : Introduction ... 17
1.1 Background .. 17

1.2 Research Questions .. 20
1.3 Thesis Aim ... 21

1.4 Research Methodology ... 22
1.5 Contributions .. 23

1.6 Outline of the Thesis .. 25
Chapter 2 : Intrusion Detection Systems – An Overview .. 28

Chapter 3 : Anomaly Intrusion Detection System using C5 Decision Tree Classifier 53
Chapter 4 : Hybrid Intrusion Detection System Based on the Stacking Ensemble of C5
Decision Tree Classifier and One Class Support Vector Machin .. 62

Chapter 5 : A Low-Level Intrusion Detection System Based on Hardware Performance
Counters ... 82

5.1 Abstract .. 84
5.2 Introduction .. 84

5.3 Background .. 87
5.3.1 Intrusion Detection System ... 88

5.3.2 Hardware Performance Counters (HPCs).. 89
5.3.3 Threat Model ... 90

5.3.4 Motivation ... 91

5.4 Related Work.. 92
5.5 Experimental Setup .. 93

5.5.1 Measurement Infrastructure ... 94
5.5.2 Collection of Clean and Infected Measurements ... 94

5.6 Proposed Hybrid Model for IDS .. 96
5.6.1 Feature Extraction.. 98

5.6.2 Feature selection .. 100
5.6.3 Building Classification Models ... 102

5.7 Performance Evaluation of the Proposed IDS .. 103
5.7.1 Evaluation Metrics for Models .. 103
5.7.2 Experiment Results .. 104

5.8 Conclusion .. 108
Chapter 6 : On the Detection of Internet of Things Intrusion using Hybrid Intrusion Detection
System .. 110
Chapter 7 : Conclusions and Future Directions ... 132

7.1 Overview ... 132
7.2 Discussion ... 132

7.3 Accomplishments .. 135
Bibliography .. 140

Appendix .. 145
Definitions.. 145
Dataset.. 147

C5 algorithm .. 158
The C5.0 decision tree algorithm ... 158

Choosing the best split ... 159
Pruning the decision tree .. 163

List of Figures

Figure 5.1 Distribution of malware and normal... 94

Figure 5.2 The high-level design of the HPC-based on Intrusion Detection System 97

Figure 5.3 Comparison of the distribution of events from normal runs versus different
malware .. 99

Figure 5.4 Accuracy details results of all stages .. 108

List of Tables

Table 5. 1 Intrusion detection systems level .. 89

Table 5. 2 Two Examples of matrix manipulation .. 91

Table 5. 3 Values of two examples measured by HPCs .. 92

Table 5. 4 Malware attack techniques used in this study ... 95

Table 5. 5 HPC features were extracted into vectors Sample .. 96

Table 5. 6 HPC Features .. 99

Table 5. 7 Information gain for different HPC features... 102

Table 5. 8 Confusion Matrix .. 104

Table 5. 9 Confusion matrix of our proposed IDSS .. 104

Table 5. 10 Malware signature generation samples ... 105

Table 5. 11 Confusion Matrix results of using C5 ... 105

Table 5. 12 Detailed analysis of accuracy by applying C5 .. 106

Table 5. 13 Confusion Matrix results of using one-class support vector machine 106

Table 5. 14 Detailed analysis of accuracy by applying one-class support vector machine ... 107

Table 5. 15 Confusion matrix by using Hybrid classification ... 107

Table 5. 16 Detailed analysis of accuracy by applying the Hybrid classifier 108

Abbreviations

ACSC Australian Cyber Security Centre

ADFA Australian Defense Force Academy

ANN Artificial Neural Network

API Application Program Interface

CGI Common Gateway Interface

CPCS Cyber-Physical Control System

CR Classification Rate

DoS Denial-of-Service

EM Expectation Maximization

FP False Positive

GA Genetic algorithms

HIDS Host-based Intrusion Detection System

HIDS Hybrid Intrusion Detection System

HMM Hidden Markov Model

HPCs Hardware Performance Counters

HTTPS HyperText Transfer Protocol Secure

ICMP Internet Control Message Protocol

IoT Internet of Things

KNN K-Nearest Neighbors

LAN Local Area Network

MIB Management Information Base

NB Naïve Bayes

NIDS Network Intrusion Detection System

R2L Remote-to-Local

RF Random Forest

SLFN Single Hidden Layer Feed-forward Neural Network

SNMP Simple Network Management Protocol

SVM Support Vector Machine

TN True Negative

TP True Positive

U2R User to Root

UDP User Datagram Protocol

Chapter 1 : Introduction

1.1 Background

With the birth of the Internet, the ability to connect computers globally also resulted in the

growth of computer malicious software (malware). Nowadays the Internet is essential for daily

life activities such as education, travel, business, entertainment, industry, government, defence,

law enforcement, but malicious software can pose serious security threats to computer systems

(Buczak & Guven, 2016). Cybercriminals are targeting online users with the use of

sophisticated techniques in attacking their victims. Cybercriminals continuously innovate to

evade detection, and therefore, it is a pressing need to develop effective cyberattack detection

technology, which can efficiently detect the zero-day malware attacks. Zero-day attacks are

new types of attacks for which attack mitigation solutions have not been developed yet. During

the zero-day time, malware can cause serious damage as demonstrated in many past attacks

that spread globally, like the WannaCry attack in 2017 (Ehrenfeld, 2017).

Malware is a wide-ranging term which defines any type of malicious software. However,

several definitions have been proposed to describe malware. McGraw and Morrisett describe

the malware term as “a code included, changed, or erased from a product framework that causes

mischief or subverting to the framework" (Idika & Mathur, 2007). Kramer and Bradfield depict

malware as "programming that assaults other programming and damage it” (Kramer et al.,

2010).

For the research presented in this thesis, malware is any program or code harmful to the

information system to cause destruction, modify contents or access data without the proprietor's

authorization. There are various kinds of malware, such as viruses, worms, trojan horses,

spyware, rootkits and ransomware (Burguera, Zurutuza, & Nadjm-Tehrani, 2011). The

research project in this thesis focus on zero-day malware. Numerous studies have reported the

losses and the damages caused by such malware on large scales.

An intrusion could be described as a sequence of activities intended to compromise the security

of a computer system. It tries to evade security detections of computer systems and threatens

the availability, integrity, or confidentiality of computer resources. Intrusions are utilised by

attackers to steal information from the computer system.

Intrusion detection is the procedure of distinguishing client practices that may likely alter an

information system framework from an ensured state to an unprotected state. The malware

detection frameworks could be equipment or programming frameworks that distinguish

suspicious practices on systems (Stakhanova, Basu, & Wong, 2007). However, the capability

of current Intrusion Detection Systems (IDS) to detect up-to-date attacks is insufficient (Fan,

Ye, & Chen, 2016).

IDSs generally adopt two approaches: signature-based detection and anomaly-based detection.

Signature intrusion detection systems (SIDS) are based on pattern matching techniques to

discover well-known intrusions; these are also known as Knowledge-based Detection or

Misuse Detection. This term is borrowed from anti-virus software, which uses the detected

patterns of the attacks as signatures for future detections of similar attacks.

 In other words, when an attack matches with an instance of an abnormal activity from the

database, an alert is raised. SIDS usually shows good accuracy for previously known intrusions.

However, SIDS normally has difficulty in identifying zero-day malware attacks as the attack

profile of new attacks may not be present in the current database, emphasizing the need to keep

the attack profile database up-to-date. To ensure that zero-day attacks can be identified

successfully, Anomaly Intrusion Detection Systems (AIDS) are used. AIDS can be effectively

used to classify anomalous behaviours from normal behaviours, which would require the use

of binary classifiers.

AIDSs and SIDSs are very similar in their characteristics (Stavroulakis & Stamp, 2010), as

both can identify intrusions but their hybrid use can provide wide-ranging coverage against

both known and zero-day attacks. Machine learning technique can be applied for both AIDS

and SIDS to improve the detection accuracy. A machine learning technique’s objective is to

create IDS that increases the accuracy and relies on prior outcomes for training. IDS developers

have been making use of machine learning methods to detect intrusions with mixed results.

AIDS methods can be categorized into three main groups (Lazarevic, Kumar, & Srivastava,

2005): Statistical based, knowledge-based, and machine learning-based. The statistical-

based involves collecting and examining every data record in a set of items. Conversely,

knowledge-based tries to identify the requested actions from existing system-data such as

protocol specifications and network traffic instances. Classification of three subclasses

(statistics-based, Knowledge-based and Machine Learning-based) with an in-depth perspective

on their characteristics have been discussed by (Lazarevic et al., 2005).

The key advantage of an anomaly based intrusion detection system AIDS is the ability to

identify new intrusion activities as the abnormal user profiles do not rely on a signature

database. Furthermore, AIDS has several advantages: First, the internal threat can be identified.

For example, if a cybercriminal exploiting a victim’s customer account conducts activities that

are outside the normal user’s activates, it causes an alert. Second, the zero-day attack can be

identified.

1.2 Research Questions

There has been a lot of research to improve the performance of IDSs, but many aspects remain

to be investigated to improve the performance with the help of machine learning techniques.

IDSs have to be more accurate, with the capability to detect a variety of intrusions with fewer

false alarms. The majority of current IDSs are SIDS based, as these are highly efficient in

identifying known intrusions. However, traditional IDSs are not effective in identifying zero-

day attacks. For this reason, research in this thesis has proposed development of an intrusion

detection system for detecting both known and zero-day attacks.

Most of the intrusion detection systems suffer a common problem. They produce a high number

of false alerts and a huge number of false positives. To achieve this overall objective, the

following research questions have been formulated in this thesis to detect the current and

emerging threats to information systems:

1. Could anomaly based detection using network statistical features can be applied to detect

and classify intrusions; and detect the methods that cybercriminals may use to avoid the

detection provided by IDS, and how we can reduce false negatives and false positives

alarms by examining different machine learning techniques?

2. Can we improve the performance of the ensemble of machine learning models e.g.

hybrid of SIDS and AIDS more than the standard standalone machine learning

algorithms to minimize both the number of false negatives and false positives alarm?

3. Could a combination of SIDS and AIDS detection using Hardware Performance

Counters (HPCs) as features be used to efficiently detect Zero day intrusions; and how

HPCs features could be selected to improve the intrusion detection rate?

4. How a combination of SIDS and AIDS could be used to detect Internet of Things (IoT)

attacks without any previous knowledge?

1.3 Thesis Aim

This thesis presents a framework to identify both the well-known intrusion and the zero-day

attacks with a high level of detection accuracy and low rates of false-alarm. A novel framework

is proposed for intelligent IDSs that overcomes the present weaknesses of traditional IDSs.

This framework is based on the ensemble of classifiers.

1.4 Research Methodology

For the first research question (Q1), several intrusion detection techniques have been

investigated to identify abnormal activities. However, most of these techniques provide lower

performance in terms of high number of false alarms and an enormous number of false

positives. Hence, generating a high number of false positives could create a high number of

alerts in a short period of time as normal activities are classified as intrusion activities. Our

approach aims to identify intrusions activities with improved accuracy of detection and

decrease the false-alarm rates. One way to improve the accuracy of a classification system is

to use various classifiers and combine their results. Ensembling several data mining techniques

could minimize both the number of false negatives and false positives. In this thesis, we have

demonstrated that ensemble-classifiers have higher efficiency for intrusion detection with the

use of most common evaluation techniques and different datasets.

To address the second research question (Q2), a Hybrid IDS framework has been developed

which combines SIDS and AIDS to form a hybrid IDS to detect both unknown and known

attack. In our proposed framework, AIDS has been used to identify novel intrusions, while

SIDS has been used to identify previously known intrusions.

To address the third research question (Q3), we explore which malware functionality and attack

techniques impact the HPCs; and how HPC related features can be used to improve the

detection rate by picking the top HPC features that have the greatest contribution. Our

developed Hybrid Intrusion Detection System (HIDS) has successfully detected the anomalies

caused by malware exploits in attacked programs at operating systems’ level.

To address the fourth question (Q4), a feature selection based on information gain has been

developed. AIDS has been applied in IoT Intrusion Detection System, meaning machine

learning has been employed in AIDS to detect the zero-day and complex attacks on IoT without

any previous knowledge. This can be done by extracting useful features. Next, those features

are integrated and then are used in our Hybrid approach to detect zero-day malware on IoT to

create an effective ensemble architecture to improve the accuracy for the detection, decrease

false alarm rate and storage and computational capability of IoT.

1.5 Contributions

The contributions of this thesis are as follows:

• A comprehensive survey on the intrusion detection systems is provided. We

have presented, in detail, the intrusion detection system methodologies, types,

and technologies with their advantages and limitations; and pinpointed the

shortcomings of existing research in IDS. A Journal paper has been published

on this survey work: Khraisat, A, Iqbal Gondal, Peter Vamplew, and Joarder

Kamruzzaman. "Survey of intrusion detection systems: techniques, datasets and

challenges." Cybersecurity Journal 2, 20 (2019).

• Anomaly intrusion detection system using C5 decision tree classifier is

proposed to identify normal and anomalous activities accurately and reduce

false-alarm rates. We compared C5 classifier with other classifiers and

examined the efficiency of C5 published as a conference paper: A. Khraisat, I.

Gondal, and P. Vamplew, "An anomaly intrusion detection system using C5

decision tree classifier," in Pacific-Asia Conference on Knowledge Discovery

and Data Mining, pp. 149-155: Springer, 2018.

• A novel framework is proposed to build an intelligent IDS that overcomes the

weaknesses of current IDSs. Our system integrates SIDS and AIDS to develop

an efficient hybrid IDS in order to detect both unknown and known attacks.

Our proposed framework is assessed using the two datasets: NSL-KDD and

the Australian Defence Force Academy (ADFA) datasets. A Journal paper has

been published: Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.;

Alazab, A, “Hybrid Intrusion Detection System Based on the Stacking

Ensemble of C5 Decision Tree Classifier and One Class Support Vector

Machine”, Electronics Journal, 9, 173. 2020

• We have shown how some malware behaviour can affect HPCs in the computers

and how HPC features can be used to identify malware attacks at the hardware

level. Also, we have shown that most relevant HPC features can increase the

accuracy and reduce false alarm rates for cyber detection for a variety of

different attack types.

• We have presented a design of a low-level Intrusion detection system (IDS)

based on HPCs. Our proposed approach can identify abnormalities caused by

malware exploits on attacked programs. This intrusion detection system uses

HPC features which are identified as normal activities. It then observes and

compares the activities of the new data with normal behavior profiles to identify

attacks. This chapter has been ACCEPTED on 5/1/2020 to be included in the

upcoming book entitled “Malware Analysis using Artificial Intelligence and

Deep Learning”, which will be published as: A. Khraisat, I. Gondal, P.

Vamplew, and J. Kamruzzaman, " A Low-Level Intrusion Detection System

Based on Hardware Performance Counters," Malware Analysis using Artificial

Intelligence and Deep Learning, Springer, 2020 (Accepted)

• IoT intrusion detection system proposed using the Hybrid Intrusion Detection

System. Novel framework has been applied on an IoT dataset, and results have

shown that it is capable of protecting IoT infrastructure and detecting any

malicious activities A Journal paper has been published: A. Khraisat, I. Gondal,

P. Vamplew, J. Kamruzzaman, and A. Alazab, "A Novel Ensemble of Hybrid

Intrusion Detection System for Detecting Internet of Things Attacks," vol. 8,

no. 11, p. 1210, 2019.

1.6 Outline of the Thesis

This section presents an outline of the thesis. As this thesis is by publication, each contribution

chapter is based on a research paper.

Chapter 2 This chapter discusses IDS approaches present in the literature that has been used

for intrusion detection methods to tackle computer security threats. It is shown that the

detection systems can be categorised into Signature-based Intrusion Detection System and

Anomaly-based Intrusion Detection System. A number of AIDS systems have also been

applied in the Network Intrusion Detection System (NIDS) and Host Intrusion Detection

System (HIDS) to improve the detection performance with the use of machine learning,

knowledge-based and statistical schemes. A comprehensive review, research challenges and

taxonomy of modern Intrusion Detection Systems (IDS) are presented in this chapter. Also,

this chapter discusses evasion techniques that can be used by the attackers to avoid detection

and future research directions in the area of IDS. This chapter is based on survey paper and

was published in Security Journal by Springer (Khraisat, Gondal, Vamplew, & Kamruzzaman,

2019).

Chapter 3 We have studied and observed different machine learning techniques to minimize

both false negatives and false positives alarms. We have examined the effectiveness of the C5

decision tree classifier and compared it with other classifiers. Our results have shown, with the

use of C5 classifier, false negatives alerts are reduced and the accuracy is increased

significantly on the intrusion detection system. This chapter is based on a conference paper

(Khraisat, Gondal, & Vamplew, 2018).

Chapter 4 A hybrid IDS (HIDS) is proposed by combining the C5 decision tree classifier and

One-Class Support Vector Machine. HIDS combines the advantages of both Signature

Intrusion Detection Systems and Anomaly-based Intrusion Detection System. The objective of

this framework is to classify both the well-known attacks and zero-day attacks resulting in low

false-alarm rates and high detection accuracy. The proposed HIDS is assessed using the NSL-

KDD and the Australian Defence Force Academy (ADFA) datasets and is published as a

Journal paper (Khraisat, Gondal, Vamplew, Kamruzzaman, & Alazab, 2020)

Chapter 5 Proposed framework’s performance is evaluated by profiling normal and malicious

activities based on Hardware Performance Counters with the use of machine learning

techniques. Extensive experiments are conducted to study the effectiveness of the HPC features

that could distinguish between malware and normal applications. Work in this chapter has been

accepted on 5/1/2020 to be included in the upcoming book entitled “Malware Analysis using

Artificial Intelligence and Deep Learning”, which will be published by Springer.

Chapter 6 Our hybrid IDS architecture is applied to protect IoT infrastructure by detecting

abnormal activities. The suggested IDS employs intrusion detection techniques to protect both

device-to-device and device-to-gateway telecommunications. This chapter is published as a

Journal paper (Khraisat, Gondal, Vamplew, Kamruzzaman, & Alazab, 2019).

Chapter 7 : The concluding chapter gives an outline of the contributions and future research

directions and challenges.This chapter has presented an overview of the IDS architecture,

research challenges, contribution made to address identified challenges and outline of the

thesis.

Contributions of the thesis are presented in the form of publications in chapters 2-6. Each

chapter gives brief commentary on the paper and then paper is included as it appeared in

proceedings, Journals or books.

Chapter 2 : Intrusion Detection Systems – An Overview

This chapter presents a literature review on approaches used to tackle computer security threats

using Signature-based Intrusion Detection System (SIDS) and Anomaly-based Intrusion

Detection System (AIDS). A number of AIDS systems have also been developed as Network

Intrusion Detection System (NIDS) and Host Intrusion Detection System (HIDS) to improve

the detection performance with the use of machine learning, knowledge-based and statistical

schemes. This chapter presents an overview of datasets, comprehensive reviews, research

challenges and taxonomy of modern Intrusion Detection Systems (IDS) along with evasion

techniques that can be used by the attackers to avoid detection.

It also discusses the limitation of intrusion detection systems that should be overcome to

provide reliable intrusion detection for higher performance. This chapter is based on the survey

paper published:

Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J, “Survey of intrusion detection

systems: techniques, datasets and challenges” Cybersecurity Journal, 2019

Chapter 3 : Anomaly Intrusion Detection System using C5

Decision Tree Classifier

In this chapter, the accuracy of various classifiers has been compared with the C5 decision tree

classifier. This chapter presents studies to decide which classifier should be used in the first

stage of our proposed framework which will be discussed in detail in the next chapter. We have

evaluated the performance of the C5 classifier with other classifiers in terms of accuracy, alarm

rates time and memory usage.

C5’s performance has been studied using the NSL-KDD benchmark dataset which contains

various types of intrusions attacks. The characteristics, importance and suitability of this

dataset are discussed in Chapter 2. Our results show that C5 has achieved high accuracy and

low false alarms as an intrusion detection system as compared to other well-known classifiers

in the literature. Furthermore, our study in this chapter reveals that C5 consumes less time and

low memory as compared to other techniques.

In this chapter, we have addressed question 1. The work presented in this chapter has been

published as the following paper:

Khraisat, A., Gondal, I., & Vamplew, P.’ “An Anomaly Intrusion Detection System Using C5

Decision Tree Classifier” Asia-Pacific Conference on Knowledge Discovery and Data

Mining (pp. 149-155). Springer, 2018.

Chapter 4 : Hybrid Intrusion Detection System Based on

the Stacking Ensemble of C5 Decision Tree Classifier and

One-Class Support Vector Machin

Traditional IDSs suffer from limitations such as they can be penetrated easily by attackers,

incapability to differentiate new malicious requests, hard to update, low accuracy and high false

alarms. AIDS has its limitations and SIDS can only identify intrusions which are known

previously. Therefore, the intrusion systems must be updated with newly detected malware

signatures. In this chapter, a Hybrid IDS (HIDS) is presented to overcome the individual

drawbacks of SIDS and AIDS.

Machine learning based IDSs classify attacks based on the input data sources. In general, there

are two types of IDS technologies, namely Host-based IDS (HIDS) and Network-based IDS

(NIDS). NIDS monitors the network traffic to detect external malicious attacks that could be

initiated from the external threats. NIDS has a poor performance to inspect all data in a high

bandwidth network because of high-speed communication networks (Bhuyan, Bhattacharyya,

& Kalita, 2014). NIDS deployed at a number of positions within a particular network topology,

together with HIDS and firewalls, can give a concrete, resilient, several phased protection

against both external and insider attack.

In this chapter, an ensemble of C5 and One-Class Support Vector Machine classifiers is used

in a novel way to build the proposed HIDS and it has been evaluated using know benchmark

data sets. HIDS makes use of the advantages of both Signature intrusion detection systems and

Anomaly-based Intrusion Detection System techniques. We have used two different datasets

to asses our method and compared it with other frameworks. Our results showed that our

proposed HIDS achieved the highest accuracy with low alarm rates. This chapter has addressed

Research Question#2, outlined in Chapter 1. A Journal paper has been published: Khraisat, A.;

Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A. Hybrid Intrusion Detection System

Based on the Stacking Ensemble of C5 Decision Tree Classifier and One-Class Support Vector

Machine. Electronics, 9, 173, 2020.

Chapter 5 : A Low-Level Intrusion Detection System

Based on Hardware Performance Counters

In the previous chapter, we have applied our IDS framework on both HIDS on NIDS. In this

chapter, we propose an intrusion detection system using low-level Hardware performance

counters as features.

HIDS inspect data that originates from the host system, audits sources, such as operating

system, window server logs, firewalls logs, application system audits, or database logs. HIDS

can detect insider attacks that do not involve network traffic (Garfinkel & Rosenblum, 2003).

To reduce performance overhead HPCs can be used to detect attacks. Also, it is very hard for

the attackers to bypass intrusion detection based on HPCs as these features are reliable in

exhibiting the behaviours of the applications. Therefore, HPC features are strong which can

be used to identify whether an application is normal or malware.

Studies presented in this chapter have shown that HPC features based IDS provide higher

detection rate as it is hard for a malware authors to avoid detection as attackers require high

access privileges. We collect normal and malware applications and extract their HPC features,

and three different attack techniques were included. In this chapter, we have applied our novel

methodology on the lower layers of the computer systems, to identify intrusion by examining

the utilization of Hardware Performance Counters. This chapter has been ACCEPTED to be

included in the upcoming book entitled “Malware Analysis using Artificial Intelligence and

Deep Learning”, which will be published by Springer on 5/1/2020.

A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, " A Low-Level Intrusion Detection

System Based on Hardware Performance Counters," Malware Analysis using Artificial

Intelligence and Deep Learning, Springer, 2020 (Accepted)

5.1 Abstract

Traditionally, Intrusion Detection Systems (IDSs) rely on computer program behaviors at

operating systems’ level to detect malware. Most of these techniques use high semantic

features, such as functions and system calls. These high semantic features are susceptible to

malicious attacks at higher privilege levels. In particular, a malicious malware rootkit may

bypass intrusion detection by manipulating system data or operating system code. In this

paper, a framework for profiling normal and malicious activities is proposed. This framework

is based on Hardware Performance Counters (HPCs) and hybrid IDS to detect malware.

Extensive experiments have been conducted to study the effectiveness of the HPCs that could

distinguish between malware and normal applications. The performance of the proposed

approach has been tested on Windows-based malware families and demonstrated a detection

rate of 99%.

5.2 Introduction

The number of malware has been increasing and causing severe damage to Internet applications

over the past few years (Zhang, Leach, Stavrou, Wang, & Sun, 2015). McAfee threats report

has revealed that during the first quarter of 2017 more than 40 million different malware was

in the wild (McAfee, 2016). Furthermore, malware authors are gaining complete control over

the computer's system by shifting their efforts to the lower layers by designing more

sophisticated malware. These malware pose a great threat by disabling the installed anti-

malware system (A. Alazab, Abawajy, Hobbs, & Khraisat, 2013). Recently, there have been

researching efforts to identify intrusion by examining the utilization of Hardware Performance

Counters (HPCs). The aim of these works is to distinguish a malware on the basis of its profile

that characterizes the manner in which it impacts execution counters that are incorporated into

the processor of the machine. Existing research has concentrated on running malware pairs

while gathering HPC data and utilizing that information to create Intrusion Detection System

(IDS) based on different machine learning techniques. Initial outcomes have been promising,

showing detection rates of over 91% (Sayadi et al., 2018). However, rootkits intrusion

identification is not promising. Rootkits are an uncommon kind of malware that modifies parts

of the running operating system bit so as to conceal the existence of malicious activity on a

computer. Modern rootkits are extremely obfuscated to evade detection and analysis, feature

encrypted files, encrypted connections, and a flexible design that permits various kinds of

malware to collaborate to exploit a computer system. Advanced rootkits perform malicious

activities, such as concealing malware activity, payload functionality, sending spam emails,

stealing user information and easy installation. Rootkit detection is difficult as rootkit might

subvert the IDS. Though Demme et al. achieved some success in detecting rootkits with some

initial experiments, the detection accuracy was low (Demme et al., 2013).

Conventional malware analysis employs virtualization (Dinaburg, Royal, Sharif, & Lee, 2008)

(Deng, Zhang, & Xu, 2013) and emulation (Yan, Jayachandra, Zhang, & Yin, 2012) (Egele,

Scholte, Kirda, & Kruegel, 2012) methodologies to explore malware behavior at runtime.

These methods execute the malware in a Virtual Machine (VM) or use emulators to analyze

the software to examine the presence of malware. Unfortunately, the malware author can

simply evade this analysis technique by applying different anti-debugging, anti-virtualization,

and anti-emulation techniques (Branco, Barbosa, & Neto, 2012) (Pavlyushchik, 2014).

Malware can simply detect the presence of a VM or emulator and can change their behaviors.

In addition to this, malware authors regularly use advanced techniques such as obfuscation to

avoid detection. This can lead to zero-day attacks being undetected by the existing intrusion

detection systems (M. Alazab, Venkatraman, Watters, Alazab, & Alazab, 2012).

Polymorphism and metamorphism are two common obfuscation methods used by malware

authors. For example, to evade detection, malware can hide their persistence by encrypting

malicious payload and decrypting it during runtime. A polymorphic malware obfuscates using

several transformations, such as adding some extra instructions to malware to change its

appearance, but keeps its functionality intact, or changing the sequence of instructions and

adding jump instructions to keep the original malware functionality (M. Alazab et al., 2012).

It is quite simple for malware authors to write different malware variants that are functionally

the same but can evade signature methods (A. Alazab et al., 2013).

 It has been argued that hardware-level detection is more suitable than other kinds of detections

(Demme et al., 2013; Singh, Evtyushkin, Elwell, Riley, & Cervesato, 2017; Tang,

Sethumadhavan, & Stolfo, 2014; Wang & Karri, 2016). This is because it is harder for a

malicious program to defeat an intrusion system that uses hardware events, due to the

difficulties faced by the malware author to control low-level hardware events (Demme et al.,

2013; Singh et al., 2017). For instance, an attacker can more easily change high semantic

information than low semantic information. Therefore, building IDS directly on the top of

hardware gives significant advantages, such as a reduction in overhead introduced, as only the

virtual machine needs to be changed. Furthermore, hardware-based IDSs are easy to deploy as

they are not tied to any specific operating system and implementation can happen transparently

underneath various operating systems (Demme et al., 2013).

This paper proposes a Hybrid IDS to improve the performance of hardware-based malware

detectors utilizing a few very low features of microarchitectural events HPCs that are extracted

at run-time by current HPCs. In this paper, an analysis of the effectiveness of HPCs to

distinguish between malware and normal applications is conducted. HPCs are counters built in

the modern computes to store the counts of hardware-related activities within computer

systems such as cache hits, clock cycles, and integer instructions. We experimentally show

how several types of intrusion and attack techniques that affect the HPCs and reveal which

significant HPCs can be used in distinguishing malware. Our results show that the HPCs are

impacted severely by system call hooking attacks.

The main contributions of this paper are as follows:

• We investigate which malware and attack techniques impact HPCs and how these

HPCs can be used for successful malware detection.

• Apply information gain principle to select the top HPC features which show

maximum improvement in detection.

• Design of a low-level intrusion detection system (IDS) based on HPCs. We adopt a

hybrid approach that exploits the strength of signature and anomaly-based methods

utilizing features extracted from HPC events. The proposed IDS demonstrates

promising performance.

5.3 Background

For the development of the HPC based IDS extensive literature review on IDSs, HPCs and

threat models are presented to develop the motivation of our work

https://en.wikipedia.org/wiki/Microprocessor

5.3.1 Intrusion Detection System

IDSs are typically classified into Signature-based Intrusion Detection System (SIDS) and

Anomaly-based Intrusion Detection System (AIDS). SIDS relies on pattern matching

techniques to decide whether a given pattern is a known attack. SIDS usually attains high

accuracy in detecting known malware [16]. However, it has difficulty in detecting zero-day

attacks as the zero-day pattern does not exist in the training databases.

On the other hand, AIDS relies on events related to normal system behaviors [16, 17], so

abnormal behavior can be taken as attacks. In general, IDSs can be used to monitor the system

activities at different system levels.Table 5. 1 shows such IDSs at different levels along with

their capabilities(M. Alazab, 2015).

Level
characteristics

IDS levels

Application

Operating System
(OS)

Virtual Machine
Monitor (VMM)

Network Level

D

es
cr

ip
tio

n

IDSs rely on the
information that is
available from
software applications.

The Operating
System IDS observe
resource usage of
the OS and the
network resource

 VMM-level
architectural
events

 An IDS is placed at points in a
network so that it can monitor
the traffic between various
devices

 E
xa

m
pl

e
of

Fe
at

ur
es

Files, Downloads, File
Systems, API calls

System Calls,
Memory, Dynamic
Instructions, System
Calls, Registry
Entries

uArch Events Packet size, Source port,
Destination port, Timestamp

Semantics High Medium Low Medium

Robustness Low Medium High Medium

Ease of
deployment

Low Medium High High

Applicability High High Medium High

Table 5. 1 Intrusion detection systems level

Application-level IDSs have more ability to detect and classify attacks as compared to IDSs

at lowers level. Many features may have extra overhead during feature extraction. IDS at OS

level and function by monitoring the system calls being executed by programs. VMM IDS

only needs features that are obtained from the VMM layer, and this helps to reduce overhead.

The VMM-level IDS have a great ability not to be affected by malicious attacks, whereas

application-level and operating system semantics are still susceptible to malicious attacks due

to higher privilege levels exploitation. For instance, a rootkit may bypass both application

level and Operating System-level security check but may be detected at VM level. Network

intrusion detection systems are implemented at dedicated devices within the network, where

it can inspect inbound and outbound network packets from all the computer systems.

5.3.2 Hardware Performance Counters (HPCs)

HPCs are a collection of special-purpose registers in modern microprocessors to collect the

counts of hardware-related activities, such as cache misses and cache hits for various cache

levels, pipeline stalls, processor cycles, instruction issues, and branch misprediction (Tang et

al., 2014). Initially developed by computer hardware engineers for debugging CPUs, HPCs

can also be programmed to calculate CPU events such as instruction types and executed code

paths.

However, the performance of the CPU is significantly affected by how a program uses its

resources, e.g. memory access patterns effecting cache performance, instruction control flow

effecting cache performance and branch prediction, the amount of inherent parallelism in the

instructions affecting the utilization of functional units, data cache misses indicating important

signs about slow/fast program code. Therefore, there are a lot of events happening inside a

CPU which indicate performance.

Cybersecurity researchers have proposed HPCs based techniques for identifying intrusions.

Intrusion detection system based on HPCs creates a profile of software by examining the

counter values standard regularly. Next, machine learning could be used to differentiate

malware behaviors among normal application. There are many advantages for building

intrusion Detection system based on HPCS. (1) Reduction in performance overhead in

detecting malware. (2) It is very hard for the attackers to bypass intrusion detection based on

HPCs as the HPCs features are reliable in showing the nature of the application, whether it is

normal or malware.

5.3.3 Threat Model

In this chapter, we focus on malware attacks that have a high level of privilege within the guest

VM. These malware can pose dangerous threats to the guest VM’s kernel space on both

hypervisor and operating system level, as it has sufficient privileges so that they may

successively change the boot process to run their malicious code, e.g. rootkit. Rootkits are used

by malware authors to avoid detection and maximize their probability of a successful attack on

the target computer systems.

The rootkit normally hides their attack activity, by changing the configuration of the operating

system to obscure specific processes, network ports, and directories; and installs Kernel Hooks

in an attempt to remain stealthy. Once the rootkit is set up, it controls the victim operating

system and is able to hide its persistence from traditional IDSs (Wang & Karri, 2016).

Detection systems attempt to identify these malicious activities by deploying IDS at higher

privilege levels, resulting in competition between security vendors an attacker to control the

lower levels of the system. Therefore, traditional detection mechanisms operate at the operating

system levels, such as memory-based integrity scanners or heuristic-based analysis, which are

not adequate to identify rootkits on lower system levels (Vinayakumar et al., 2019).

5.3.4 Motivation

Before we present our IDS, we will give an intuitive explanation of the underlying ideas. For

example, consider the two matrix operation code samples in Table 5. 2 The only difference

between the two is the order of the array indices on the inner loop. However, their performance

varies significantly because of cache performance.

 Example 1 Example 2

int main (void)
{
 int i, j;
 for (i = 0; i < 1000; i++)
 for (j = 0; j < 1000; j++)
 array[j][i]++;
 return 0;
}

int main (void)
{
 int i, j;
 for (i = 0; i < 1000; i++)
 for (j = 0; j < 1000; j++)
 array[i][j]++;
 return 0;
}

Table 5. 2 Two Examples of matrix manipulation

Table 5. 3 shows the results of the execution of both pieces of code while capturing four HPCs

related to the L1 cache. We execute those examples on Intel processors, running 64-bit

Windows 7 operating system (OS). As can be seen, Example 1 has a significant number of

cache misses.

 N
am

e Instruction
Executed

L1-I cache load
misses

Li-d cache load-
misses

L1-d cache store-
Misses

L1-d cache pre-fetch
misses

Ex
am

pl
e

1 21,270,318

1,991,540

999,121

1,092,899

993,746

Ex
am

pl
e

2 21,265,465

20,412

24,976

20,485

3,761

Table 5. 3 Values of two examples measured by HPCs

The difference in profiles between the two examples listed above raises a question – Can an

Intrusion detection system based on HPCs distinguish between malware and normal

applications? In this paper, we assess the effectiveness of HPCs in capturing the behavioral

semantics of a program. To this end, we profile normal applications and malicious applications

using HPCs and report the performance of building an intelligent intrusion detection system.

5.4 Related Work

Current IDSs can be categorized based on two main characteristics: the detection approach and

the malware features used for their detection. Various features are used to build IDSs, e.g.,

memory, dynamic instructions, system calls, registry entries, and others (Liao, Lin, Lin, &

Tung, 2013; Shakshuki, Kang, & Sheltami, 2013). The usage of low-level hardware events for

building intrusion detection system is a recent research direction. Consequently, there have

been very few related works focusing on how to use HPCs as features for building IDS, but

recently the feasibility of designing malware detection with performance counters has been

studied. Demme et al. found that existing performance counters can be used to identify malware

(Demme et al., 2013). They investigated a small set of program behavior within a family of

malware on Android and Intel Linux platforms. The work demonstrated that offline machine

learning techniques could be used to classify malware based on performance counters. They

achieved prediction accuracies ranging from 30% to 98% across different Android malicious

software. However, their methodology lacks any information about which HPC events could

be used for detection purpose (Huda et al., 2016).

The work of de Melo et al. (de Melo, 2009) used unsupervised machine learning to build

profiles of the HPC patterns of benignwares and then identify abnormalities. de Melo et al.

have applied F-Score as their feature selection and have provided a comparison of performance

while using different sampling frequencies for the HPCs. They used only two applications,

namely, Internet Explorer and Adobe Acrobat, in their proof of concept and Metasploit to

create the exploits for the applications. We avoid using F1-score feature selection as it does not

reflect any mutual dependence between the collected events. F-score discloses the

discriminative power of each feature individually as one score is calculated for the first feature,

and another score is calculated for the second feature. But it does not consider the utility of

everything on the combination of both features.

In (Ozsoy, Donovick, Gorelik, Abu-Ghazaleh, & Ponomarev, 2015), Ousoy et al. proposed a

Malware-Aware Processor (MAP), which is a sub-semantic hardware malware detector. This

work investigated several sub-semantic feature vectors, and built an online hardware-supported

malware detector while using various architectural features in distinguishing malware from

normal programs online.

5.5 Experimental Setup

To investigate if HPC deviation could be used as features to identify malware, we conducted

numerous feasibility experiments by building IDS using existing machine learning techniques

and validating their detection effectiveness based on the standard performance measures. In the

following sections, we describe our experimental setup and explain how we collect normal and

malware applications and extract their HPC features.

5.5.1 Measurement Infrastructure

All the experiments and measurements were executed on the VMWare Virtual Machine

environment, installed with Windows 7, 64-bit and running a single-core with 512 MB of

RAM. VTune Performance Analyzer (VirusTotal) was used to collect Hardware Performance

Counters (HPCs) from both malware and benignware. Anti-security was disabled and

connected to the network, while HPC features were extracted from malware. Every time a

programmed event occurred, the count register was incremented. The quantity of hardware

events that can be gathered simultaneously is limited by CPU abilities (Malladi, 2009).

5.5.2 Collection of Clean and Infected Measurements

In order to collect clean normal HPCs for windows, normal window’s command was executed,

such as nslookup, ping, tasklist, netstat, and ipconfig command were used as normal.

Figure 5.1 Distribution of malware and normal

25%

25%25%

25%

1 2 3 4

Figure 1 Distribution of the dataset

Each command was executed individually and HPCs were extracted. For HPC data collection

from malware, different variants of malware were used such as ZeroAcces, ZeusBoot, and

Turla. The malware was chosen that had the following capabilities: hide processes, hidden

services, hide listening TCP/UDP ports, hide kernel modules, hidden drivers, hide files and

hide registry entirely. After execution of a single command, VM is restored to the normal state.

This guarantees the HPC events are collected independently across normal and exploit

execution. The dataset used in this experiment contains 1,185 executable application in total,

as shown in Figure 2. Among them, 496 malicious software have been collected from the

honeynet project, VX Heavens (VX Heavens, 2011), Virus Total (Total, 2012) and other

sources. Three different attack techniques were included. Table 5. 4 shows a summary of the

three-malware functionalities used in this study.

Attack techniques Functionality
Direct kernel object manipulation
 (DKOM)

DKOM is a common malware method to hide possibly harmful processes,
drivers, files, and intermediate connections from the task manager and event
scheduler. Malware escalates the privileges of processes to gain control.

I/O Request Packet (IRP) hooking

Malware make specific files or processes disappears by avoiding them from
showing in any file entries or task managers e.g. hiding file using IRP
hooking or hiding process using IRP hooking

Process Hiding using System Service
Dispatch Table (SSDT) hooking

Malware can change the original pointer value of an entry by the address of
a function with the same prototype in kernel mode. For example, process
Hiding SSDT hooking or file hiding using SSDT Hooking

Table 5. 4 Malware attack techniques used in this study

In our study, 237 HPC features were extracted into vectors as presented in Table 5. 5. An

additional column of “class” has been added to each row in which extracted data is labeled as

“Malware” or “Normal” depending on the application type.

IC
A

C
H

E
.IF

E
T

C
H

_S
T

A
L

L

IC
A

C
H

E
.M

IS
SE

S

ID
Q

.A
L

L
_D

S
B

_C
Y

C
L

E
S_

4
_U

O
PS

ID
Q

.A
L

L
_D

S
B

_
C

Y
C

L
E

S_
A

N
Y

_U
O

PS
 ……

……
……

Class

4995 4652 3985 6725 …… Malware
5249 4554 4215 6474 …… Malware
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
4846 4662 4251 6547 …… Malware
4149 3055 1641 2633 …… Normal
4150 2772 2075 2698 …… Normal
4177 2474 1831 2602 …… Normal

Table 5. 5 HPC features were extracted into vectors Sample

5.6 Proposed Hybrid Model for IDS

We rely on machine learning techniques and use HPC features to build intrusion detection

system. Hybrid IDS is created to conquer the drawback of SIDS and AIDS as it coordinates

SIDS and AIDS to identify both zero-day and known attacks. In our approach, AIDS is utilized

to distinguish zero-day attacks, while SIDS is utilized to recognize understood attacks. The key

idea of our approach is to consolidate the benefits of both SIDS and AIDS to create robust IDS.

The techniques for creating and joining a few classifiers to achieve high accuracy is called

boosting. Our model contains the following components as shown in Figure 3.

• Hardware Feature Extraction - Extracting the HPC events from both malware and

benign ware.

• Feature selection – Selecting suitable features from 237 HPC features, which can

efficiently decrease the redundant and inappropriate features in the original large HPC

features. Feature selection often leads to increased detection accuracy and reduced false

alarm rate.

• SIDS: Normal Model Creation - Model is created using the HPC features selected by

the previous stage. Once the suitable subset of HPC features is nominated, this subset

is then used in the classifier training phase where machine learning techniques are

applied.

• AIDS: Anomaly Detection - Identifying abnormal behavior that differentiates from

normal behavior shown in Figure 3.

Model Building

Fe
at

ur
e

Ex
tr

ac
tio

n
an

d
 S

el
ec

tio
n

Model
Evaluation

M
al

w
ar

e
De

te
ct

io
n

Benignware

Malware

Signature Generation

Yes

SIDS Stage

Malware

Malware

Benignware

AIDS Stage

H
ar

dw
ar

e
Pe

rf
or

m
an

ce
 C

ou
nt

er

Training

Testing

 No

Figure 5.2 The high-level design of the HPC-based on Intrusion Detection System

Figure 5.2 shows Hybrid IDS that could overcome the disadvantage of SIDS and AIDS. Our

system integrates SIDS and AIDS to create an efficient hybrid IDS to detect both unknown and

known attacks. In our approach, AIDS is used to identify zero-day attacks, while SIDS is used

to identify well-known attacks. The central idea of the novel approach is to combine the

strengths and advantages of SIDS and AIDS to build further efficient IDS.

AIDS aims to profile the normal applications activity that would be accepted and would raise

a malicious alarm when the difference between a given observation at an instant and the normal

request exceeds a predefined feature selection threshold.

Applications profile is created by employing records that are recognised as benign actions.

Next, it observes the behaviour of the traffic and matches the new records with the built profiles

and attempts to identify abnormalities. If a malicious request is identified, the system will save

it in the signature database. The primary purpose of storing the malicious pattern in the database

is to achieving protection against a similar attack in the future.

5.6.1 Feature Extraction

Feature extraction should result in a set of non-redundant and low-dimensional features from

the HPCs. The HPC features applied in this study describe the typical behavior of an

application. They include various metrics, such as CPU Cycle, branch-instruction, and branch

misses. Table 5. 6 shows a sample of HPC features which are extracted at the program

execution stage. A kernel driver that configures the Hardware Performance Counters was

developed and written for collecting the microarchitectural events and storing them in a

database, which contains an execution of a million instructions to form the selected feature.

Event Name Description

ALL_BRANCHES

All (macro) branch instructions retired.

CONDITIONAL

Conditional branch instructions retired.

CONDITIONAL_PS

Conditional branch instructions retired.

NEAR_CALL

Direct and indirect near call instructions retired.

NEAR_CALL_PS

Direct and indirect near call instructions retired.

NEAR_CALL_R3

Direct and indirect macro near call instructions retired (captured in ring 3).

NEAR_CALL_R3_PS

Direct and indirect macro near call instructions retired.

ALL_BRANCHES_PEBS

All (macro) branch instructions retired.

NEAR_RETURN Return instructions retired.

NEAR_RETURN_PS Return instructions retired.

NOT_TAKEN

Not taken branch instructions retired.

NEAR_TAKEN Taken branch instructions retired.

NEAR_TAKEN_PS Taken branch instructions retired.

FAR_BRANCH Far branch instructions retired.

Table 5. 6 HPC Features

Figure 5.3 shows a comparison of the distribution of events from normal runs versus different

malware. Variations are cleared from baseline features because of the changing phases of

malicious execution. In a box plot, we draw a box from the first quartile to the third quartile.

In malicious activities, it has two malicious activities, namely, the application that hid the

process and the application that used TCP hooking to hide the TCP ports from netstat.exe. In

normal applications, normal applications were executed without any malicious activity.

Figure 5.3 Comparison of the distribution of events from normal runs versus different malware

A lot of extracted features can cause many problems, for example, misleading the classification

algorithm, over-fitting, decreasing generality, rising model complexity and the execution time.

These aspects can impact negatively when applying machine learning techniques on IDSs.

Every time the guest operating system needs to interact with the hardware, the Virtual Machine

Monitor (VMM) must intervene. Therefore, HPC features are extracted from this intervention.

Hence, any abnormality in performance traces can be used as signs of potential attacks. With

the extracted labeled collection, the relevance features are analyzed for both normal and attack

and to determine the most relevant feature.

HPC features are extracted from both normal and malicious application by using VTune, a tool

primarily designed to help programmers in optimizing their applications [19]. For malicious

activities, Zeus as malware is executed. In normal applications, normal applications are

executed without any malicious activity.

5.6.2 Feature selection

One of the main issues with IDSs is dealing with many irrelevant features, which can cause

overhead on the system. Therefore, most IDS apply feature selection. As some of the features

might be unimportant, which leads to the false detecting of malware. Therefore, the purpose of

the feature selection is to identify significant features that can be used in the IDS to detect

various malware efficiently.

We applied an information gain method for feature selection, due to its fast execution time to

select the best performing feature set for that particular type of model. Information gain is

regularly used to reveal how well each distinct attribute separates the given data set. The overall

entropy “I” of a given dataset “S” is described as (Gray, 2010).

𝐼(𝑆) = − ∑ 𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖

𝑐

𝑖=1

Where C is the total number of classes and 𝑝𝑖 is the portion of instances that belong to class i.

The decrease in entropy or the information gain is calculated for each feature:

𝐼𝐺(𝑆, 𝐴) = 𝐼(𝑆) − ∑
|𝑆𝐴,𝑣|

|𝑆|
𝑣ℇ𝐴

𝐼(𝑆𝑣)

For both normal and attack classes, information gain is calculated, and we removed the feature

set whose information gain was less than predetermined thresholds of 0.5. This calculation

involved the estimation of the conditional probabilities of a class for a given a term and entropy

computations. The feature with good information gain is considered the most discriminative

feature. Table 6 presents the information gain of HPC features. In total, 237 features are

examined. Among them, 22 HPCs are the most significant concerning malware detection. A

higher rank points out that the feature distinguishes well between normal and malware

applications. The features in Table 5. 7 are presented in the descending order of their

contribution in identifying malware.

Ranked Features
0.7814 BR_INST_RETIRED.ALL_BRANCHES_PS

0.6482 ITLB_MISSES.WALK_DURATION

0.6187 BR_INST_RETIRED.NEAR_CALL_R3_PS

0.6168 L2_RQSTS.DEMAND_DATA_RD_HIT

0.6083 BR_INST_EXEC.TAKEN_CONDITIONAL

0.6008 BR_INST_RETIRED.NEAR_RETURN_PS

0.5977 L2_RQSTS.REFERENCES

0.5965 BR_INST_RETIRED.ALL_BRANCHES

0.5902 L2_RQSTS.CODE_RD_HIT

0.583 BR_INST_EXEC.TAKEN_DIRECT_JUMP

0.5821 L2_LINES_IN.S

0.5794 BR_INST_RETIRED.NOT_TAKEN

0.5639 L2_RQSTS.CODE_RD_MISS

0.5612 L2_LINES_IN.E

0.5504 BR_MISP_EXEC.ALL_BRANCHES

0.5457 L2_RQSTS.ALL_DEMAND_REFERENCES

0.5327 L2_RQSTS.MISS

0.53 BR_INST_RETIRED.NEAR_CALL_R3

0.5252 OFFCORE_REQUESTS_OUTSTANDING.DEMAND_RFO

0.5183 MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_NONE

0.5169 BR_INST_EXEC.TAKEN_DIRECT_NEAR_CALL

0.5098 BR_INST_RETIRED.NEAR_CALL

Table 5. 7 Information gain for different HPC features

5.6.3 Building Classification Models

Once HPC features are selected, we ran experiments using Hybrid IDS to evaluate their

capability to distinguish between malicious and normal execution. In order to achieve high

accuracy and low false alarm rates, we combined two different classifiers execution (Quinlan,

1996). The proposed model involves two phases: the SIDS phase uses C5 classifier, and AIDS

stage one-class SVM is used. Each phase has two stages, training and testing. In the training

stage, the normal activities profile is labeled by using standard programs that are accepted as

normal behaviour; the testing stage new data set is used. The hybrid model can classify

activities of new users either normal profile (no attack) or deviation from the normal profile

(attack).

5.7 Performance Evaluation of the Proposed IDS

In this section, we provide the detailed results of the experiments achieved using the proposed

framework with the selected HPC features.

5.7.1 Evaluation Metrics for Models

 In this experiment, we have evaluated the effectiveness of our IDS using Confusion Matrix as

shown in Table 5. 8. Various elements are:

• True positive (TP): Number of correctly identified malicious code.

• True negative (TN): Number of correctly identified benign code.

• False positive (FP): Number of wrongly identified benign code, when a detector

identifies the benign file as a Malware.

• False negative (FN): Number of wrongly identified malicious code, when a detector

fails to detect the Malware because the virus is new and no signature is yet available.

• Total Accuracy: Proportion of completely accurately classified instances, either

positive or negative.

• The Detection Rate (DR) is calculated according to the following equation: 𝐷𝑅 (𝑖) =

Xii

∑ Xij6
i=1

 False alarm rate of IDSs can be computed by 𝐹 (𝑖) = 1 −
Xii

∑ Xij6
i=1

The accuracy is calculated according to the following equation:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/ (𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁)

 Class Predicted attack Predicated normal
Actual attack True positive (TP) False negative (FN)

Actual normal False positive (FP) True negative (TN)

Table 5. 8 Confusion Matrix

Table 5. 9 shows the confusion matrix, the element 𝑋(1 <= 𝑖 <= 6; 1 <= 𝑗 <=

 6) denotes the number of records that belong to class 𝑖 and were classified as class j by IDSs.

Therefore, based on the confusion matrix, we can easily compute other performance criteria.

Classified as a b C d e f
a=DKOM X11 X12 X13 X14 X15 X16

b=File Hiding IRP hooking X21 X22 X23 X24 X25 X26

c=File Hiding using SSDT Hooking X31 X32 X33 X34 X35 X36

d=port filtering using IRP Hooking X41 X42 X43 X44 X45 X46

e=Process Hiding using SSDT hooking X51 X52 X53 X54 X55 X56

f=Normal X61 X61 X63 X64 X65 X66

Table 5. 9 Confusion matrix of our proposed IDSS

5.7.2 Experiment Results

As discussed in the feature selection section, we determine the specific feature for each of

rootkit functionality, as well as the normal characteristics.

5.7.2.1 Stage one: SIDS Results
Confusion matrix results for C5 classifier in stage one is shown in Table 5. 11 malware

signature, we applied C5 , a rule learning program, to our training data (Cohen, 1995). C5 is

fast and creates accurate rule sets. Table 5. 10 presents generation c5 rules from the SIDS stage

for classifying all diversity of malware.

…………………………………….

…………………………………….

IF (BR_INST_RETIRED.NEAR_RETURN_PS <= 8455) and (BR_INST_EXEC.ALL_INDIRECT_NEAR_RETURN >=
682) THEN Class=Malware

IF (BR_INST_EXEC.TAKEN_INDIRECT_JUMP_NON_CALL_RET >= 5546) and (INST_RETIRED.PREC_DIST >=
19694) THEN Class=Malware

IF (RESOURCE_STALLS.ROB <= 862) and (IDQ.ALL_DSB_CYCLES_4_UOPS <= 1878) THEN class2=Netfilter
(68.0/0.0)

IF (BR_MISP_EXEC.ALL_BRANCHES <= 1280) and (BR_INST_RETIRED.NEAR_CALL_R3_PS >= 4825) and
(ITLB_MISSES.WALK_COMPLETED <= 484) THEN class2=Netfilter

IF (MEM_LOAD_UOPS_RETIRED.L2_HIT_PS <= 958) and (MEM_UOPS_RETIRED.ALL_LOADS_PS <= 8539)
THEN class2=file_ssdt

IF (BR_INST_EXEC.ALL_CONDITIONAL <= 17987) and (BR_INST_RETIRED.ALL_BRANCHES_PS >= 12354)
THEN class2=file_ssdt

IF (ICACHE.MISSES <= 1627) THEN class2=Process_ssdt

IF (BR_INST_RETIRED.NEAR_TAKEN_PS <= 12410) THEN class2=file _irp (99.0/0.0)

IF (DTLB_STORE_MISSES.STLB_HIT_2M >= 467) and (BR_MISP_RETIRED.NEAR_TAKEN >= 708) THEN
class2=Dkom (100.0/0.0)

…………………………………….

…………………………………….

Table 5. 10 Malware signature generation samples

Classified as a b c d E f

a=DKOM 99 0 0 0 0 1

b=File Hiding IRP hooking 7 93 0 0 0 0

c=File Hiding using SSDT Hooking 1 0 91 5 2 0

d=port filtering using IRP Hooking 3 0 0 93 0 2

e=Process Hiding using SSDT hooking 2 0 5 0 92 0

f=Normal 4 0 0 0 0 685

Table 5. 11 Confusion Matrix results of using C5

The detailed analysis of the accuracy of C5 decision tree classification is shown in Table 5. 12.

Classified as TP Rate FP Rate F-Measure

a=DKOM 0.49 0 0.658

b=File Hiding IRP hooking 1 0 1

c=File Hiding using SSDT Hooking 1 0.006 0.971

d=port filtering using IRP Hooking 1 0 1

e=Process Hiding using SSDT hooking 0.939 0 0.969

f=Normal 1 0.103 0.964

Weighted Avg. 0.952 0.06 0.945

Table 5. 12 Detailed analysis of accuracy by applying C5

Stage two: AIDs Results
One-class SVM with RBF kernel was implemented using LIBSVM. Results in the form of a

confusion matrix of stage two are shown in Table 5. 13.

Classified as a b c d E f
a = Dkom 100 0 0 0 0 0

b=File Hiding IRP hooking 0 100 0 0 0 0

c=File Hiding using SSDT Hooking 0 0 99 0 0 0

d=port filtering using IRP Hooking 0 0 0 98 0 0

e=Process Hiding using SSDT hooking 0 0 0 0 99 0

f = Normal 100 0 0 0 0 589

Table 5. 13 Confusion Matrix results of using one-class support vector machine

The detailed analysis of the accuracy of One-Class SVM classifier are shown inTable 5. 14.

Class TP Rate FP Rate F-Measure

a=DKOM 1 0.092 0.667

b=File Hiding IRP hooking 1 0 1

c=File Hiding using SSDT Hooking 1 0 1

d=port filtering using IRP Hooking 1 0 1

e=Process Hiding using SSDT hooking 1 0 1

f=Normal 0.855 0 0.922

Weighted Avg. 0.916 0.008 0.926

Table 5. 14 Detailed analysis of accuracy by applying one-class support vector machine

5.7.2.2 Stage Three: The Combination of the two stages

In Hybrid IDS, the C5 classifier is applied as a first stage, and one class SVM is employed as

the second stage to create hybrid IDS. Stacking ensemble methods is used to combine those

two stages. K-fold cross-validation is applied for assessing the results of a statistical analysis

generating an independent dataset using 10 folds. For k=10 folds, 90% of full data is used for

training and 10% for testing. Training and testing were performed using 10-fold cross-

validation on all malware and benignware dataset. Confusion matrix of the combination of the

classifiers in stage three is shown in Table 5. 15.

Classified as A b c d E f

a=DKOM 100 0 0 0 0 0

b=File Hiding IRP hooking 0 100 0 0 0 0

c=File Hiding using SSDT Hooking 0 0 95 1 2 1

d=port filtering using IRP Hooking 0 0 0 98 0 0

e=Process Hiding using SSDT hooking 0 0 3 0 96 0

f=Normal 3 0 0 0 0 686

Table 5. 15 Confusion matrix by using Hybrid classification

The accuracy of stage 3 is shown in Table 5. 16.

Class TP Rate FP Rate F-Measure ROC Area

DKOM 1 0.003 0.985 0.998

File Hiding IRP hooking 1 0 1 1

File Hiding using SSDT Hooking 0.96 0.003 0.964 0.978

port filtering using IRP Hooking 1 0.001 0.995 1

Process Hiding using SSDT hooking 0.97 0.002 0.975 0.984

Normal 0.996 0.002 0.997 0.997

Weighted Avg. 0.992 0.002 0.992 0.995

Table 5. 16 Detailed analysis of accuracy by applying the Hybrid classifier

As shown in Figure 5.4, the accuracy of detection of malware is 94.6% in stage one. While the

accuracy of detection of malware is 91.56% in stage two. In stage 3, the accuracy result is

99.16%, which has improved significantly as compared to stage 1 and stage 2. Therefore, the

general performance of the suggested framework is enhanced in terms of the detection rate and

low false alarms rate in contrast to the current methods.

Figure 5.4 Accuracy details results of all stages

5.8 Conclusion

 Hybrid intrusion detection system using low-level information such as HPCs would be highly

reliable against suspicious behavior that might be a zero-day attack. In addition, using HPC as

a feature provides robustness for IDS as it is difficult for a malware author to evade detection

94.60%

91.56%

99.16%

Stage One (C5 classifer) Stage Two (One class SVM) Our proposed method of
Hybird IDS

Accuracy

as high access privileges are required to attack at a lower level. In this chapter, we presented a

Low-Level Intrusion Detection System based on HPCs, and the central idea is to use HPCs to

build IDSs to detect malware. We have shown different kinds of HPCs feature that we were

able to extract from the computer system and used them to build IDS. We also investigated and

examined the significant HPCs features to differentiate between normal and abnormal activity.

Our results show that our hybrid IDS improved intrusion detection as it can also detect known

and unknown attacks as well. Paper has demonstrated with the use of these features to build

hybrid IDS are more reliable because it is difficult for a malware author to change hardware

information. Our proposed method has been evaluated with the use of recent windows rootkit.

Our experimental results indicated that our approach could detect malware with a high

detection accuracy of 99%. This demonstrates the value of using HPC and hybrid IDSs to

detect malware attacks successfully.

Chapter 6 : On the Detection of Internet of Things

Intrusion using Hybrid Intrusion Detection System

This chapter presents a Hybrid Intrusion Detection System which is novel in its ability to

protect IoT infrastructure and detect any abnormal activities. This chapter presents the design,

implementation, and evaluation of the proposed system. Results evaluating the performance of

the system show that combining two stages by applying stacking ensemble methods improved

the detection accuracy. Consequently, a combined model is advised to build IDS for IoT

systems. This chapter has addressed Research Question#4. This work in this chapter has been

published as the following paper:

A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab, "A Novel Ensemble of

Hybrid Intrusion Detection System for Detecting Internet of Things Attacks," vol. 8, no. 11,

p. 1210, 2019.

Chapter 7 : Conclusions and Future Directions

7.1 Overview

The research presented in the previous chapters highlights that identifying both the well-known

and the zero-day attacks with a high level of detection accuracy and low rate of false-alarm is

achievable by developing Hybrid Intrusion Detection System. This chapter concludes the

works presented in previous chapters and summarizes the contributions made in this thesis and

highlights the possible future research directions.

7.2 Discussion

The future of cybersecurity of information systems is firmly associated with business

continuity. The cyber-attacks will continue to increase as the cyber attackers are readily

developing new malicious strategies to attack. This will become worse with the advancement

of IT technologies usable in our everyday life. The rise in attack sophistication means the cyber

risks will keep on increasing and attacks will be damaging than ever before. Sophisticated

cyber-attacks also are motivating factors for defenders to safeguard data and the resources of

their organizations more effectively.

The current cybersecurity environment dictates that SIDS is not sufficient to prevent

sophisticated and emerging intrusions to the systems. On the other hand, network and behavior

analyses are vital to understanding attack techniques and can provide additional insight into

network vulnerability. Achieving comprehensive protection from malicious attacks is

becoming challenging with the help of existing detection techniques. The zero-day attacks get

realized only after the attacks have occurred as there is no information available on these

attacks. Therefore, it is vital to design attack detection systems capable of dealing with zero-

day attacks. This thesis presents research that provides a solution to tackle zero-day attacks.

In Chapter 2 of this thesis, a survey of a comprehensive evaluation of recent works, and the

datasets commonly employed for assessment purposes in this field are presented. We examined

a few research issues that have been considered in regard to intrusion detection. This chapter

also studies different well-known intrusion avoidance methods. An effective IDS should be

able to detect different kinds of attacks accurately including intrusions that incorporate evasion

techniques. Developing IDSs which are capable of overcoming the evasion techniques remains

a major challenge for this area of research. Overall thesis contribution is the development of

hybrid IDS that contains AIDS and SIDS as its components.

In chapter 3, we experimentally tested multiple data mining techniques to minimize both the

number of false negatives and false positives. The objective of this chapter was to find out the

best available classification technique for building AIDS. This study was implemented by

analysing the NSL-KDD dataset and then observing the performance of classification

algorithms. AIDS was able to identify and classify the attacks with low false alarms. It has

been shown that AIDS can be very effective if it achieves a high detection rate and low false

alarm. In this chapter, different machine learning techniques were applied to build efficient

AIDS. The efficiency of C5 classifier was examined along with other classifiers. Our results

showed a low alarm rate and IDS accuracy have improved.

Consequently, in Chapter 4 we proposed an intrusion detection framework to overcome the

weaknesses of existing frameworks and to enhance detection accuracy, decrease the false-

alarms rate with the ability to discover and identify the zero-day attacks intelligently. The main

contribution of our framework was the integration of the Signature Intrusion Detection System

with Anomaly Intrusion Detection System. In the proposed IDS, SIDS was applied to identify

previously known intrusions and AIDS was applied to detect unknown zero-day intrusions.

The goal of this framework was to exploit the individual strengths of each technique towards

building a hybrid framework for better detection. A number of widely adopted metrics

including accuracy and F-measure were applied to evaluate the efficacy of our proposed models

and to compare with existing approaches. We showed that an ensemble of C5 and one-class

SVM in two cascaded stages is superior to individual techniques. Our experimental results

showed that our suggested hybrid IDS attained superior overall performance in terms of

accuracy and false alarm rate compared with the other machine learning techniques and

approaches reported in previous studies. This suggests that our proposed technique will be very

useful for modern IDSs.

In Chapter 5, it was demonstrated that the proposed hybrid IDS framework can work at

hardware level attack detection as well. We experimentally showed how several types of

intrusions and attack techniques manifest in Hardware Performance Counters signal variations.

Studies have revealed the most significant HPCs which can be used in distinguishing malware.

Our results show that the HPCs are most impacted by the techniques of attack such as system

call hooking.

In chapter 6, the proposed framework was evaluated using IoT Botnet dataset, which includes

legitimate IoT network traffic and several types of attacks. The result showed that our methods

achieved high detection accuracy and a low false alarm rate.

7.3 Accomplishments

In this thesis, we have initially conducted a comparative study of various classifiers to act as

an IDS and then we have developed a hybrid IDS framework which can detect known and zero-

day attacks. Further, we have implemented our proposed framework on HPC to investigate the

performance of the proposed framework at hardware level intrusions. Finally, we also

investigated the performance of the hybrid IDs framework on IoT networks. This has shown

the robustness of our proposed framework in detecting known and unknown attacks in various

operating environments.

Chapter 2 presented an extensive literature review of IDS techniques and datasets used, and

this chapter’s work has been published as a journal paper.

It was shown in Chapter 3 that the C5 classifier is superior to other well-known classifiers as

an IDS system. Experimental results demonstrated C5’s superior performance overall in terms

of accuracy and false alarm rate as compared with the other machine learning techniques and

approaches reported in previous studies. This study established the strength of the C5 classifier

in designing modern IDSs.

Chapter 4 proposed a hybrid IDS by combining C5 and One-Class Support Vector Machine

classifiers. HIDS fuses the advantages of Signature intrusion detection systems and Anomaly-

based Intrusion Detection System. The aim of this framework was to identify both the well-

known and zero-day attacks with high detection accuracy and low false-alarm rates. The

proposed HIDS was evaluated using the NSL-KDD and the Australian Defense Force

Academy (ADFA) datasets. Our Studies showed improved performance of HIDS as compared

to SIDS in terms of detection rate and low false-alarm rates. In the proposed IDS, SIDS was

applied to identify previously known intrusions and AIDS was applied to detect unknown zero-

day intrusions. The goal of this framework was to exploit the individual strengths of each

technique toward building a hybrid framework for better detection. A number of widely

adopted metrics including accuracy and F-measure were used to evaluate the performance of

our proposed models and to compare with existing approaches. Our experimental results

showed that the proposed hybrid IDS outperformed other machine learning techniques and

approaches reported in previous studies in terms of accuracy and false alarm rate. For example,

the results from Chapter 4 showed the accuracy of 81.5 % in detecting malware with the use

of NSL-KDD Test+ dataset and 97.3% for ADFA dataset for SIDS stage. While the accuracy

of detection of malware was 72.2 % with the use of NSL-KDD Test+ dataset and 76.4% for

ADFA dataset for AIDS stage. For hybrid stage, the accuracy results improved to 83.2% and

97.4% respectively on the two datasets. Therefore, the proposed framework yields a higher

detection rate and lower false alarms rate in contrast to the standalone single stage, concluding

that HIDS enabled IDS can detect attacks more efficiently.

In Chapter 5, studies were presented on a hybrid framework for profiling normal and malicious

activities based on HPCs. Extensive experiments were conducted to study the effectiveness of

the HPCs that could distinguish between malware and normal applications. The performance

of the suggested approach was tested on windows-based malware families. An Intrusion

detection system using low-level information such as HPCs would be highly reliable against

suspicious behavior that might be a zero-day attack. Using HPC as a feature provides

robustness for IDS as it is difficult for a malware author to evade detection as high access

privileges required at the hardware level. We also showed different kinds of HPC features as

we were able to extract from the computer system and used them to build an IDS. We also

investigated and examined the significant HPC features in differentiating between normal and

abnormal activity. HPC based IDS are reliable because it is difficult for a malware author to

change hardware information. Our proposed method was evaluated on recent windows rootkit.

Experimental results indicated that our approach could detect malware with a high detection

rate of number 99%. This demonstrates the value of using HPCs in an IDS and makes the

detection more accurate.

Next, the proposed HIDS framework was evaluated using the Bot-IoT dataset, which includes

IoT network traffic originating from several types of attacks. These experiments showed that

the proposed hybrid IDS provided higher detection rate and lower false positive percentage as

compared to the SIDS and AIDS techniques alone. Results also showed that combining two

stages by applying stacking ensemble methods improved the detection accuracy. Consequently,

a hybrid model is advised to detect intrusions on IoT systems.

 7.4 Future Work and Final Thoughts

The IDS systems proposed in the thesis can be used and applied to other domains and can be a

base for future research. This section discusses several areas of research that can build on the

work proposed work in this thesis. The potential areas for future research are summarized below:

More features: Future research can explore a wider variety of features of the network system,

host system and IoT ecosystem for differentiating between normal and abnormal activities.

Using features from the hardware level can result in more reliable IDSs because it is difficult

for a malware author to change hardware information. The features need to be processed in

real-time to ensure that an IDS can cope with high-speed network traffic. An IDS approach

needs to detect the zero-day and complex attacks at the software level as well as at the hardware

level without any previous knowledge. This can be done by exploring both hardware and

software intrusion detection systems and extracting useful features of both HIDS and NIDS.

More Classifiers: The machine learning framework proposed in this research could include

more classification techniques. Several other classifiers could be added to this list, including

Logistic Regression and Ordinary Least Squares in the future research. Several Ensemble

Methods can be investigated in future work to achieve the best possible performance.

Different System: Our proposed Hybrid IDS, which is based on C5 Classifier and One-Class

Support Vector Machine, is applied on a software level, hardware level and IoT systems but it

has the potential in securing cloud computing, IoT ecosystem network, wireless network and

other systems. Future research can explore those areas.

Time and Space Complexity: The major limitation for real-time implementation of such

machine learning in malware detection is the time and space complexity. The disassembly,

parsing and feature extraction are time-consuming processes and need a lot of memory space

and CPU speed as well. In an automated Intrusion Detection system, these processes need to

be streamlined for better efficiency.

Zero-day attacks: Machine learning techniques can handle tasks when normal and intrusion

samples are available in training set in high numbers. But some intrusions are so infrequent

that we may have only one instance of intrusion for training. This is typical for zero-day attacks.

In this case, machine learning schemes that can support unbalanced datasets can be investigated

with our framework.

Another possible future work could be to identify all kinds of intrusion that target IoT and cloud

computing systems. Further, deep machine learning techniques can be applied for intrusion

detection for zero-day malware. The future intrusion detection systems could identify intrusions

while considering the behaviours of the malware for better accuracy.

Bibliography

1. Alazab, A., Abawajy, J., Hobbs, M., & Khraisat, A. (2013). Crime toolkits: The

current threats to web applications. Journal of Information Privacy and Security, 9(2),

21-39.

2. Alazab, M. (2015). Profiling and classifying the behavior of malicious codes. Journal

of Systems and Software, 100, 91-102. doi:https://doi.org/10.1016/j.jss.2014.10.031

3. Alazab, M., Venkatraman, S., Watters, P., Alazab, M., & Alazab, A. (2012).

Cybercrime: the case of obfuscated malware. In Global Security, Safety and

Sustainability & e-Democracy (pp. 204-211): Springer.

4. Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2014). Network Anomaly

Detection: Methods, Systems and Tools. IEEE Communications Surveys & Tutorials,

16(1), 303-336. doi:10.1109/SURV.2013.052213.00046

5. Branco, R. R., Barbosa, G. N., & Neto, P. D. (2012). Scientific but not academical

overview of malware anti-debugging, anti-disassembly and anti-vm technologies.

Black Hat.

6. Buczak, A. L., & Guven, E. (2016). A Survey of Data Mining and Machine Learning

Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys &

Tutorials, 18(2), 1153-1176. doi:10.1109/COMST.2015.2494502

7. Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011). Crowdroid: behavior-based

malware detection system for Android. Paper presented at the Proceedings of the 1st

ACM workshop on Security and privacy in smartphones and mobile devices,

Chicago, Illinois, USA.

8. Cohen, W. W. (1995). Fast effective rule induction. In Machine Learning Proceedings

1995 (pp. 115-123): Elsevier.

9. de Melo, A. C. (2009). Performance counters on Linux. Paper presented at the Linux

Plumbers Conference.

ttps://doi.org/10.1016/j.jss.2014.10.031
ttps://doi.org/10.1016/j.jss.2014.10.031

10. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan, S., &

Stolfo, S. (2013). On the feasibility of online malware detection with performance

counters. Paper presented at the ACM SIGARCH Computer Architecture News.

11. Deng, Z., Zhang, X., & Xu, D. (2013). Spider: Stealthy binary program

instrumentation and debugging via hardware virtualization. Paper presented at the

Proceedings of the 29th Annual Computer Security Applications Conference.

12. Dinaburg, A., Royal, P., Sharif, M., & Lee, W. (2008). Ether: malware analysis via

hardware virtualization extensions. Paper presented at the Proceedings of the 15th

ACM conference on Computer and communications security.

13. Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A survey on automated

dynamic malware-analysis techniques and tools. ACM Computing Surveys (CSUR),

44(2), 6.

14. Ehrenfeld, J. M. J. J. o. m. s. (2017). Wannacry, cybersecurity and health information

technology: A time to act. 41(7), 104.

15. Fan, Y., Ye, Y., & Chen, L. (2016). Malicious sequential pattern mining for automatic

malware detection. Expert Systems with Applications, 52, 16-25.

16. Garfinkel, T., & Rosenblum, M. (2003). A Virtual Machine Introspection Based

Architecture for Intrusion Detection. Paper presented at the Ndss.

17. Gray, R. M. (2010). Entropy and information theory: Springer Verlag.

18. Huda, S., Abawajy, J., Alazab, M., Abdollalihian, M., Islam, R., & Yearwood, J.

(2016). Hybrids of support vector machine wrapper and filter based framework for

malware detection. Future Generation Computer Systems, 55, 376-390.

doi:https://doi.org/10.1016/j.future.2014.06.001

19. Idika, N., & Mathur, A. P. J. P. U. (2007). A survey of malware detection techniques.

48, 2007-2002.

20. Khraisat, A., Gondal, I., & Vamplew, P. (2018). An Anomaly Intrusion Detection

System Using C5 Decision Tree Classifier, Cham.

21. Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of

intrusion detection systems: techniques, datasets and challenges. Cybersecurity, 2(1),

20. doi:10.1186/s42400-019-0038-7

ttps://doi.org/10.1016/j.future.2014.06.001
ttps://doi.org/10.1016/j.future.2014.06.001

22. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J., & Alazab, A. (2019). A

Novel Ensemble of Hybrid Intrusion Detection System for Detecting Internet of

Things Attacks. Electronics, 8(11), 1210.

23. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J., & Alazab, A. J. E. (2020).

Hybrid Intrusion Detection System Based on the Stacking Ensemble of C5 Decision

Tree Classifier and One Class Support Vector Machine. 9(1), 173.

24. Kramer, M., Braverman, M., Seinfeld, M. E., Garms, J., Marinescu, A. M.,

Chicioreanu, G. C., & Field, S. A. (2010). System and method of efficiently

identifying and removing active malware from a computer. In: Google Patents.

25. Lantz, B. (2019). Brett Lantz on implementing a decision tree using C5.0 algorithm.

Retrieved from https://hub.packtpub.com/brett-lantz-on-implementing-a-decision-

tree-using-c5-0-algorithm-in-r/

26. Lazarevic, A., Kumar, V., & Srivastava, J. (2005). Intrusion Detection: A Survey. In

V. Kumar, J. Srivastava, & A. Lazarevic (Eds.), Managing Cyber Threats: Issues,

Approaches, and Challenges (pp. 19-78). Boston, MA: Springer US.

27. Liao, H.-J., Lin, C.-H. R., Lin, Y.-C., & Tung, K.-Y. (2013). Intrusion detection

system: A comprehensive review. Journal of Network and Computer Applications,

36(1), 16-24.

28. Malladi, R. K. (2009). Using Intel® VTune™ Performance Analyzer Events/Ratios &

Optimizing Applications. http:/software. intel. com.

29. McAfee. (2016). McAfee Labs Threats Report: March 2016. Retrieved from

http://www.mcafee.com/au/resources/reports/rp-quarterly-threats-mar-2016.pdf

30. Ozsoy, M., Donovick, C., Gorelik, I., Abu-Ghazaleh, N., & Ponomarev, D. (2015).

Malware-aware processors: A framework for efficient online malware detection.

Paper presented at the 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA).

31. Pavlyushchik, M. A. (2014). System and method for detecting malicious code

executed by virtual machine. In: Google Patents.

32. Quinlan, J. R. (1996). Learning decision tree classifiers. ACM Comput. Surv., 28(1),

71-72. doi:10.1145/234313.234346

ttps://hub.packtpub.com/brett-lantz-on-implementing-a-decision-tree-using-c5-0-algorithm-in-r/
ttps://hub.packtpub.com/brett-lantz-on-implementing-a-decision-tree-using-c5-0-algorithm-in-r/
ttp://www.mcafee.com/au/resources/reports/rp-quarterly-threats-mar-2016.pdf
ttp://www.mcafee.com/au/resources/reports/rp-quarterly-threats-mar-2016.pdf

33. Sayadi, H., Patel, N., S. M, P. D., Sasan, A., Rafatirad, S., & Homayoun, H. (2018,

24-28 June 2018). Ensemble Learning for Effective Run-Time Hardware-Based

Malware Detection: A Comprehensive Analysis and Classification. Paper presented at

the 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).

34. Shakshuki, E. M., Kang, N., & Sheltami, T. R. (2013). EAACK—a secure intrusion-

detection system for MANETs. IEEE Transactions on Industrial Electronics, 60(3),

1089-1098.

35. Singh, B., Evtyushkin, D., Elwell, J., Riley, R., & Cervesato, I. (2017). On the

detection of kernel-level rootkits using hardware performance counters. Paper

presented at the Proceedings of the 2017 ACM on Asia Conference on Computer and

Communications Security.

36. Stakhanova, N., Basu, S., & Wong, J. (2007). A taxonomy of intrusion response

systems. International Journal of Information and Computer Security, 1(1), 169-184.

37. Stavroulakis, P., & Stamp, M. (2010). Handbook of information and communication

security: Springer Science & Business Media.

38. Tang, A., Sethumadhavan, S., & Stolfo, S. J. (2014). Unsupervised anomaly-based

malware detection using hardware features. Paper presented at the International

Workshop on Recent Advances in Intrusion Detection.

39. Total, V. (2012). VirusTotal-Free online virus, malware and URL scanner. Online:

https://www. virustotal. com/en.

40. Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A., &

Venkatraman, S. (2019). Deep Learning Approach for Intelligent Intrusion Detection

System. IEEE Access, 7, 41525-41550. doi:10.1109/ACCESS.2019.2895334

41. VirusTotal. Analyze suspicious files and URLs to detect types of malware Retrieved

from https://www.virustotal.com/#/home/upload

42. VX Heavens. (2011). VX Heavens Site. Retrieved from http://vx.netlux.org/

43. Wang, X., & Karri, R. (2016). Reusing hardware performance counters to detect and

identify kernel control-flow modifying rootkits. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 35(3), 485-498.

ttps://www./
ttps://www.virustotal.com/#/home/upload

ttps://www.virustotal.com/#/home/upload

http://vx.netlux.org/

44. Yan, L.-K., Jayachandra, M., Zhang, M., & Yin, H. (2012). V2E: combining

hardware virtualization and softwareemulation for transparent and extensible malware

analysis. ACM Sigplan Notices, 47(7), 227-238.

45. Zhang, F., Leach, K., Stavrou, A., Wang, H., & Sun, K. (2015). Using hardware

features for increased debugging transparency. Paper presented at the 2015 IEEE

Symposium on Security and Privacy.

These references are for the “Introduction, Chapter 5 and the Conclusions” sections and each
individual chapter has its own bibliography in its associated paper.

Appendix

Definitions

Malware: It is a term used for any software or program that caused harm for the

computer systems and affect its performance. Also described as any pace of code that has

changed removed from the software system which aims to affect and damage the system

functionality. There are many types of malware such as Viruses, Trojan, Worm, Ransomware

and many more.

Zero-day attacks: it is referred to the new attacks or unknown attack, which is just

created by the cybercriminals. Any new attack does not have any history of the detection system

is a zero-day attack. In the cybersecurity, the intrusion detection system can't detect this attack

as it doesn’t have a signature.

Cybercrimes: the type of crimes that take please on the computer system, includes any

crime from accessing others information illegally, phishing email, theft, distribute viruses to

hacking and spamming.

Zuse : it is one of the trojan horse packages that run on the Microsoft Windows .it is

mainly used to steal the bank accounts

Buffer Overflow: it is an attack that occurs when cybercriminals overload systems.

The attackers send code designed to cause a buffer overflow and hold original code and swap

it with malicious code.

https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Malicious_code

Denials-of Service (DoS): it is an attack that makes the network services not available.

It is produced by forcing a reset on the machine or network resource and make them

unavailable, then the users can’t connect sufficiently because of the service unavailability.

User to Root (U2R) attack: The attackers gain access as a normal host first and then

upgrades to the root access, which could lead to the exploitation of several vulnerabilities on

the computer system.

Remote to Local (R2L) attack: The cybercriminal sends packets to a remote system

by connecting with the network without having an account on the system.

Ensemble methods: it is the methods used to combine multiple machine learning

algorithms and to achieve better prediction results. By combining the decisions from various

machine learning models the overall performs will improve.

Dataset

The flowing section list sample of the dataset that we have collected and extracted from HPC
features which was used on chapter 5:

Class CPU_CLK_UNHALTED.REF_TSC L2_RQSTS.ALL_PF
 ICACHE.IFETCH_STALL BR_INST_RETIRED.NEAR_TAKEN
 BR_INST_RETIRED.NEAR_TAKEN_PS BR_INST_RETIRED.NOT_TAKEN
 BR_MISP_EXEC.ALL_BRANCHES
 L1D_PEND_MISS.PENDING_CYCLES
 L2_RQSTS.DEMAND_DATA_RD_HIT
 L2_RQSTS.DEMAND_DATA_RD_MISS BR_INST_RETIRED.NEAR_CALL_R3
 BR_INST_EXEC.TAKEN_INDIRECT_JUMP_NON_CALL_RET
 MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_NONE_PS
 L2_RQSTS.ALL_RFO L2_LINES_OUT.DEMAND_DIRTY
 L2_TRANS.L2_WB

 5421 1656 2564 7614 5923 8389 4182 822 0 4510 857
 0 706 1875 3146

 5804 2414 3084 6874 8175 8980 4723 1795 833 3490 448
 415 807 1691 2271

 6027 1004 4197 9120 9070 12352 4272 2627 1237 3537 78
 0 1053 862 2364

 6792 979 2420 5546 6119 7769 1842 1097 307 3430 722
 0 554 1571 2791

 6627 1162 3797 8583 8405 10412 3326 1029 372 1674
 2103 0 0 2027 2277

 6842 1295 3669 7132 5314 9804 5002 1226 306 3324 803
 0 2117 2654 4207

 5035 614 2908 7295 7716 8143 2818 1527 0 2718 971
 0 1488 2184 3775

 5688 889 4538 10222 9594 13071 2428 2947 524 3965
 1117 0 804 2326 5051

 6986 1448 3665 6721 6260 10889 3761 1026 409 3854
 1767 0 459 1387 4317

 7961 1667 6400 9272 11227 13617 5867 1833 787 5164 417
 0 1617 3442 2615

 4896 784 2536 7273 6758 7882 1852 2322 425 5785
 1388 0 0 2055 3683

 4621 846 4442 5820 6893 13044 4801 4354 0 4297 1694
 1192 1667 3144

 4082 1440 3341 8351 8215 9537 2171 1872 0 2953
 2199 776 844 2250 3500

 6025 1344 4187 7212 8299 13239 6045 2051 0 4332
 1280 0 1951 1616 1928

 5764 1345 4868 8894 8696 12602 3666 2714 0 3085 999
 0 1259 864 2869

 5422 1383 4173 8370 8196 10769 5168 1331 0 3085 461
 0 964 1290 3775

 4654 1293 4138 10346 8884 12286 4093 2237 923 2303 868
 0 823 2126 4402

 3422 445 2385 6124 6247 8484 3469 1906 500 3072 822
 0 428 1685 3886

 5304 1302 2640 6784 6124 9556 6776 1413 824 11340 623
 0 1214 2619 3149

 6498 529 3370 7559 7080 9402 3090 1002 504 5024
 1866 0 943 2663 2396

 5855 1207 7434 12850 11347 13881 3488 2992 487 3247
 2434 0 483 2231 3672

 4069 947 2449 6657 7192 8801 6706 2180 386 3629 76
 0 836 1621 2815

 5164 647 4109 8146 7883 10465 3340 1027 0 4489
 1873 0 755 1704 2135

 5936 492 2009 5132 4899 7745 4584 2528 0 2923
 1236 0 0 3192 1700

 6203 459 2909 5102 5387 6985 1698 896 399 2843 531
 0 925 1396 3583

 5262 1203 5263 10933 9467 15563 4048 3023 544 3813
 1248 0 783 2139 3175

 5186 1615 3206 7929 6782 10789 3611 1790 914 2997
 1144 0 470 1152 3053

 5495 976 7865 9413 9504 13493 5332 2627 0 2500
 1165 0 1453 2183 4005

 5815 1367 2816 5179 5028 9939 4676 1842 377 11354 906
 0 875 2416 3425

 4332 1473 3133 6136 6075 11185 4000 2914 859 3489
 1610 0 754 2084 2891

 5130 1103 3052 7204 6904 9492 5875 1437 386 3228
 1614 0 719 1667 3517

 5780 879 2720 8025 8958 10990 2065 2187 394 3456
 2447 0 1299 1950 3547

 5219 1327 4810 9177 8962 15768 2699 2745 481 4876 398
 461 1091 2225 3561

 7472 475 3475 6631 6673 10200 3182 1978 0 5194 743
 0 456 2023 2586

 6758 743 3679 7699 6652 10274 3444 1805 471 11459
 1260 0 1021 2168 4595

 6737 556 2540 7099 7313 9981 5800 1721 0 2929 540
 0 451 2267 2985

 6402 1940 4266 5206 7676 9548 5186 2159 433 1991 602
 0 1784 1591 2174

 5135 628 4516 11251 11126 13796 2234 2806 0 3364 906
 0 871 2922 3716

 7269 1198 3477 6245 5798 10292 5217 1843 0 11279
 1313 482 1962 1842 3249

 7414 1570 2826 6790 6458 8323 3964 3619 738 4187 897
 0 518 3903 2719

 5751 831 2770 6237 7029 11062 2326 2194 829 2080 846
 0 487 1908 3759

 5238 534 6436 8779 8857 12805 5769 3546 858 3850
 1399 0 1922 1687 3030

 4887 1846 3054 6917 6188 10050 5560 1430 404 3365
 2239 682 792 794 2850

 6220 1505 2853 3944 4194 6462 1858 2523 451 4729
 2112 0 794 1253 3616

 7760 1126 1898 6542 7085 11759 4642 2592 0 2986 828
 0 990 1337 2738

 5538 1791 2701 7569 5888 8500 4197 821 0 4598 883
 0 723 1570 3422

 5727 2388 3146 6955 8376 9126 4591 1864 813 3213 458
 445 803 1974 2214

 5909 1047 4247 9054 9005 12500 4292 2790 1357 3602 783
 0 854 1170 2323

 6709 964 2269 5622 6340 7976 2154 993 300 3631 708
 0 534 1436 2942

 6709 1028 3883 8605 8308 10522 3592 1099 387 1640
 2117 0 0 2494 2225

 6868 1376 3715 7232 5393 9871 4870 1121 324 3380 799
 0 2209 2543 4152

 5243 613 2803 7151 7698 8296 2565 1440 0 2750
 1353 0 1538 1995 3969

 5828 864 4733 9940 9655 12646 2256 3080 542 4123 949
 0 804 2457 5122

 6989 1221 3414 6609 6014 10996 3532 1120 383 3574
 1811 0 444 1186 4267

 7995 1728 6300 9124 11369 13554 5880 1727 785 5291 430
 0 1664 3491 2428

 4772 782 2374 7107 6722 7813 2156 2411 421 5882
 1639 0 0 1983 3974

 4657 848 4294 5576 6909 13034 4819 4205 0 4591
 1746 0 1407 1955 3178

 3549 823 2542 7795 8011 9045 1509 1258 0 2693
 1919 778 869 2138 2875

 5398 957 3651 6828 7743 12821 5206 1494 0 3938 991
 0 1560 980 1259

 5200 804 4082 8293 8446 12309 3446 2456 0 2586 996
 0 983 857 1947

 5151 968 3703 7740 7636 10171 4423 1106 0 2856 470
 0 943 700 3070

 4289 837 3650 9891 8167 11628 3595 1906 950 1838 882
 0 811 1940 3850

 2874 458 1837 5713 5558 8305 3044 1580 532 2412 825
 0 430 1071 3406

 4737 861 2263 6028 5536 8917 6438 995 807 10619 647
 0 927 1743 2532

 5827 517 2949 7173 6531 8984 2845 600 499 4565
 1540 0 912 2131 1970

 5629 1006 6735 12199 10732 13278 3133 2490 499 2573
 1969 0 471 1767 3355

 3396 953 1781 6106 6753 8569 6026 1738 391 3119 767
 0 846 735 2339

 4549 664 3689 7791 7486 10017 2854 775 0 3858
 1387 0 736 1269 1517

 5150 492 1688 4425 4058 7064 3719 2073 0 2380 936
 0 0 2461 1287

 5881 435 2428 4596 5057 6575 1325 831 427 2270 527
 0 936 776 3326

 4880 744 4555 10611 8974 14880 3511 2614 541 3561 703
 0 772 1612 2614

 4787 1314 2460 7379 6166 10179 3067 1166 901 2690 893
 0 493 875 2562

 5114 988 7483 8978 8998 13049 4543 2014 0 1871 630
 0 854 1593 3589

 5434 800 2337 4502 4736 9659 4085 1232 377 10788 881
 0 897 2015 2780

 4052 822 2376 5430 5629 10530 3615 2256 841 2883
 1209 0 756 1510 2342

 4622 799 2618 7018 6455 8730 5419 1019 403 2904
 1197 0 688 1254 3043

 5246 886 2506 7824 8398 10538 1493 1686 373 2850
 2203 0 937 1257 3288

 4682 636 4394 8499 8538 15427 2249 2371 491 4175 392
 469 949 2063 3195

 6971 463 3032 5931 6188 9374 2766 1649 0 4421 753
 0 470 1147 2160

 6590 743 3301 7258 6108 10053 2648 1490 491 10854 888
 0 923 1716 3897

 6051 586 2268 6613 6924 8997 4997 1390 0 2569 537
 0 453 1605 2758

 6236 1414 4117 4777 7177 8955 4680 1641 458 1554 623
 0 1196 1170 1595

 4610 621 3930 10608 10745 13368 1539 2299 0 2723 914
 0 861 2357 3001

 6632 980 2818 5858 5208 9994 4609 1570 0 10971 848
 486 1836 1412 2576

 6970 905 2047 6353 6157 7749 3134 3356 746 3725 892
 0 507 3415 2230

 5086 845 2376 5695 6458 10556 1847 1539 829 1450 840
 0 515 1610 3533

 4659 528 5734 8389 8618 12255 5264 2674 879 3344
 1052 0 1289 1308 2350

 4347 1087 2381 6266 5419 9644 5048 1077 413 2974
 1674 707 777 761 2277

 5642 933 2590 3488 3489 6026 1249 1873 456 4673
 1545 0 805 880 3210

 7186 826 1648 5782 6531 11037 4439 2177 0 2357 826
 0 996 917 2206

 4846 1247 2094 7220 5538 8186 3743 810 0 4149 881
 0 719 1209 2617

 5430 1935 2567 6278 7838 8384 4326 1453 824 2830 453
 444 781 1171 1894

 5675 875 3484 8444 8520 12003 3814 2433 830 3193 800
 0 783 835 1828

 6145 957 2034 5024 5821 7313 1170 751 299 3003 721
 0 545 1232 2423

 6355 708 3350 8100 7633 9970 3300 957 396 1101
 1538 0 0 1914 1678

 6238 803 3031 6369 4949 9373 4348 919 316 2830 793
 0 1848 2048 3697

 4860 611 2289 6647 7205 7980 2278 1143 0 1941 845
 0 1176 1336 3301

 5271 894 3888 9574 9069 12525 2027 2430 545 3581 782
 0 807 2109 4574

 6781 956 2779 6000 6525 7987 2047 1415 297 3701 698
 0 531 1748 2974

 6857 1448 4083 8957 8386 10629 3788 1422 390 1911
 2434 0 0 2332 2255

 7058 1674 3728 7176 5790 10173 5054 1526 296 3667 781
 0 2218 2791 4432

 5448 601 3125 7595 7745 8570 2769 1606 0 2777
 1447 0 1871 2160 4008

 6185 862 4838 10299 9851 13240 2554 3194 513 4361
 1186 0 788 2547 5412

 7272 1366 3784 6904 6462 11154 3728 1505 389 3901
 2012 0 435 1546 4524

 8178 2040 6597 9572 11553 13791 6105 2318 781 5731 409
 0 2106 3606 2845

 5261 771 2729 7365 7138 8259 2341 2637 409 607
 1765 0 0 2392 3984

 4969 832 4663 5846 7198 13270 4974 4469 0 4581
 1732 0 1535 2003 3220

 4556 1566 3391 8795 8542 9749 2211 2104 0 3377
 2697 783 839 2844 3674

 6358 1506 4714 7576 8417 13565 6191 2395 0 4449
 1628 0 2256 1920 1955

 6076 1421 4765 8984 8948 12929 4134 3006 0 3260 985
 0 1388 841 3092

 5817 1543 4353 8593 8423 10941 5064 1593 0 3611 4
 0 943 1516 4136

 4943 1370 4387 10378 8900 12583 4448 2646 914 2663 851
 0 809 2566 4698

 3605 441 2599 6360 6519 8723 3701 2289 508 3047 810
 0 428 1792 4210

 5607 1508 2946 6689 6409 9728 6928 1471 788 11476 620
 0 1586 2505 3429

 6758 517 3862 7767 7391 9575 3298 989 499 5363
 2191 0 931 2995 2698

 6443 1660 7599 12810 11584 14288 3645 3052 496 3414
 2581 0 442 2437 4056

 4289 948 2442 6749 7463 9223 6645 2325 375 4019 760
 0 829 1684 2887

 5318 635 4312 8748 8288 10772 3550 1417 0 4812
 2028 0 728 2048 2129

 6088 464 2423 5188 4910 7754 4559 2706 0 3073
 1528 0 0 3111 2225

 6469 431 2996 5245 5515 7447 2181 1143 409 3183 521
 0 929 1616 4050

 5286 1504 5505 11218 9945 15732 4067 3448 537 4119
 1385 0 750 2505 3343

 5728 2091 3298 8224 6787 10929 3630 2030 890 3433
 1537 0 465 1661 3369

 5825 989 8391 9876 9748 13989 5355 2702 0 2653
 1254 0 1548 2409 4219

 6234 1495 3058 5417 5481 10474 4823 2109 365 11426 885
 0 863 2839 3726

 4498 1453 3203 6341 6263 11215 4136 3072 836 3862
 1759 0 733 2436 3152

 5308 1443 3448 7557 7241 9528 6220 1732 378 3525
 2026 0 700 1909 3985

 6153 872 3181 8398 9052 11296 2228 2479 383 3442
 2629 0 1576 2176 3908

 5621 1316 5041 9320 9396 15883 2930 3034 484 5000 379
 463 1365 2690 4122

 7702 452 3640 6991 7022 10129 3294 2268 0 5422 733
 449 1891 2835

 7264 736 3973 7894 6892 10746 3472 2037 478 11763 1421
 1396 2485 4723

 6879 550 2976 7278 7682 10050 5877 1985 0 3190 531 0
 462 2448 3417

 5883 0 2788 7012 7355 11404 1358 2237 800 5955 1413 0
 841 2656 2513

 5581 1224 4118 8235 8235 10588 4959 1395 0 3256 444
 930 1395 3750

 4706 1000 4103 10256 8718 12308 4167 2273 909 2353 833
 784 2353 4490

 3265 417 2381 6190 6190 8571 3600 1951 488 2917 800
 408 1633 3871

 6364 496 3529 7647 7059 9412 3158 976 488 5000
 1860 0 909 2727 2449

 6087 1379 7333 12667 11333 14000 3462 2857 476 3182
 2400 0 435 2174 3846

 0 3994 930 2264 6415 7170 9057 6531 2222 370 3810 741
 0 808 1418 2745

 5091 625 4211 8421 7895 10526 3390 1081 0 4500
 1852 0 727 1818 2000

 6364 426 2857 5000 5357 7143 1961 1038 389 2927 513
 0 909 1364 3810

 5185 1111 5161 10968 9677 15484 3922 3077 513 3830
 1081 0 741 2222 3200

 4906 1739 2857 6939 6122 10204 5417 1538 385 3404
 2326 667 755 755 2807

 6154 1429 3014 4110 4110 6575 1739 2500 417 5000
 2083 0 769 1154 3600

 7805 1111 2000 6500 7000 11500 4706 2500 0 2963 800
 0 976 1463 2692

 5424 1887 2727 7727 5909 8636 4211 784 0 4545 851
 0 678 1695 3256

 5769 2326 3182 6818 8182 9091 4681 2000 800 3404 426
 408 769 1923 2347

 6000 1091 4000 9000 9000 12500 4444 2857 1429 3636 755
 0 1000 1000 2449

 6667 952 2456 5614 6316 7719 1905 1111 278 3500 690
 0 513 1538 2807

 6667 1132 3913 8696 8261 10435 3600 1111 370 1613
 2128 0 0 2222 2128

 6842 1277 3500 7000 5500 10000 4878 1127 282 3333 769
 0 2105 2632 4286

 5200 588 2800 7200 7600 8400 2553 1429 0 2593
 1071 0 1600 2000 3784

 5882 851 4583 10000 9583 12917 2407 3000 500 4000
 1053 0 784 2353 5098

 7083 1200 3590 6667 6154 10769 3571 1111 370 363
 1818 0 417 1250 4211

 8000 1852 6429 9286 11429 13571 5778 1923 769 5385 408
 0 1714 3429 2667

 5000 769 2520 7244 6772 7874 2041 2400 400 5854
 1404 0 0 2000 3784

 4681 816 4375 5625 6875 13125 4800 4242 0 4364
 1538 0 1277 1702 3111

 4513 1599 3343 8628 8669 9815 2268 2143 0 3508
 2552 791 858 2827 3788

 6290 1515 4554 7716 8650 13386 6074 2412 0 4714
 1627 0 2288 1968 2048

 6208 1565 4812 9048 9071 12969 4270 3172 0 3329 984
 0 1504 836 3001 5831 1480 4351 8387 8606 10975
 5121 1637 0 3560 464 0 955 1571 3991

 4981 1155 4291 10613 8956 12671 4533 2412 919 2567 846
 0 786 2718 4743

 3367 433 2587 6388 6442 8813 3774 2194 506 3304 813
 0 424 1840 4154

 5469 1622 2954 6851 6477 10004 7131 1401 786 11620 617
 0 1747 2494 3408

 6663 509 3899 7965 7334 9776 3407 984 510 5335
 2026 0 919 3116 2825

 6320 1629 7672 12972 11573 14260 3802 3226 489 3291
 2770 0 443 2534 4042

 5333 1702 3111 8000 6667 10667 3529 1778 889 3043
 1154 0 444 1333 31820 5532 968 8000 9600 9600
 13600 5238 2581 0 2500 1143 0 1277 2128 4082

 5957 1200 2745 5098 5098 10196 4516 1724 345 11315 870
 0 851 2553 3396

 4364 1333 2979 5957 5957 11064 4000 2857 816 3556
 1500 0 727 2182 2963

 5085 1250 3265 7347 6939 9388 5946 1481 370 3404
 1633 0 678 1695 3673

 5909 851 2941 8235 8824 11176 2000 2182 364 3333
 2449 0 1364 1818 3721

 5306 1176 4848 9091 9091 15758 2553 2791 465 4828 377
 444 1224 2449 3774

 7037 723 3810 7619 6667 10476 3158 1818 455 11407
 1200 0 1111 2222 4444

 6667 541 2791 6977 7442 9767 5714 1818 0 3043 513
 0 444 2222 3077

 6531 1702 4400 5200 7600 9600 5128 2128 426 2000 588
 0 1633 1633 2222

 5106 588 4444 11111 11111 13889 2105 2979 0 3111 889
 0 851 2979 3636

 7111 1333 3333 6250 5833 10417 5128 2000 0 11385
 1304 455 2222 1778 3265

 7500 1471 2545 6909 6545 8364 3922 3636 727 4242 870
 0 500 4000 2800

 5714 816 2745 6275 7059 10980 2400 2041 816 2174 816
 0 476 1905 3913

 5306 500 6316 8947 8947 12632 5714 3333 833 3784
 1429 0 2041 1633 3077

 4180 939 2437 6586 7570 9306 6674 2441 390 4152 759
 0 809 1670 3041

 5363 648 4464 8749 8140 10646 3651 1408 0 4607
 2082 0 738 2097 2293

C5 algorithm

The fowling article provides more details of C5 algorithm and why it is been used in our
research:(Lantz, 2019)

The C5.0 decision tree algorithm

The C5.0 algorithm has become the industry standard for producing decision trees because it

does well for most types of problems directly out of the box. Compared to other

advanced machine learning models, the decision trees built by C5.0 generally perform nearly

as well but are much easier to understand and deploy. Additionally, as shown in the following

table, the algorithm’s weaknesses are relatively minor and can be largely avoided.

Strengths

• An all-purpose classifier that does well on many types of problems.
• Highly automatic learning process, which can handle numeric or nominal features,

as well as missing data.
• Excludes unimportant features.
• Can be used on both small and large datasets.
• Results in a model that can be interpreted without a mathematical background (for

relatively small trees).
• More efficient than other complex models.

Weaknesses

• Decision tree models are often biased toward splits on features having a large
number of levels.

• It is easy to overfit or underfit the model.
• Can have trouble modeling some relationships due to reliance on axis-parallel

splits.
• Small changes in training data can result in large changes to decision logic.

https://subscription.packtpub.com/search?released=Available&concept=Machine%20Learning

• Large trees can be difficult to interpret and the decisions they make may seem
counterintuitive.

To keep things simple, our earlier decision tree example ignored the mathematics involved

with how a machine would employ a divide and conquer strategy. Let’s explore this in more

detail to examine how this heuristic works in practice.

Choosing the best split

The first challenge that a decision tree will face is to identify which feature to split upon. In

the previous example, we looked for a way to split the data such that the resulting partitions

contained examples primarily of a single class. The degree to which a subset of examples

contains only a single class is known as purity, and any subset composed of only a single class

is called pure.

There are various measurements of purity that can be used to identify the best decision tree

splitting candidate. C5.0 uses entropy, a concept borrowed from information theory that

quantifies the randomness, or disorder, within a set of class values. Sets with high entropy are

very diverse and provide little information about other items that may also belong in the set,

as there is no apparent commonality. The decision tree hopes to find splits that reduce entropy,

ultimately increasing homogeneity within the groups.

Typically, entropy is measured in bits. If there are only two possible classes, entropy values

can range from 0 to 1. For n classes, entropy ranges from 0 to log2(n). In each case, the

minimum value indicates that the sample is completely homogenous, while the maximum

value indicates that the data are as diverse as possible, and no group has even a small plurality.

In mathematical notion, entropy is specified as:

In this formula, for a given segment of data (S), the term c refers to the number of class levels,

and pi refers to the proportion of values falling into class level i. For example, suppose we

have a partition of data with two classes: red (60 percent) and white (40 percent). We can

calculate the entropy as:

> -0.60 * log2(0.60) - 0.40 * log2(0.40)

[1] 0.9709506

Copy

We can visualize the entropy for all possible two-class arrangements. If we know the

proportion of examples in one class is x, then the proportion in the other class is (1 – x). Using

the curve() function, we can then plot the entropy for all possible values of x:

> curve(-x * log2(x) - (1 - x) * log2(1 - x),

 col = "red", xlab = "x", ylab = "Entropy", lwd = 4)

Copy

This results in the following figure:

The total entropy as the proportion of one class varies in a two-class
outcome

As illustrated by the peak in entropy at x = 0.50, a 50-50 split results in the maximum entropy.

As one class increasingly dominates the other, the entropy reduces to zero.

To use entropy to determine the optimal feature to split upon, the algorithm calculates the

change in homogeneity that would result from a split on each possible feature, a measure

known as information gain. The information gain for a feature F is calculated as the difference

between the entropy in the segment before the split (S1) and the partitions resulting from the

split (S2):

One complication is that after a split, the data is divided into more than one partition.

Therefore, the function to calculate Entropy(S2) needs to consider the total entropy across all

of the partitions. It does this by weighting each partition’s entropy according to the proportion

of all records falling into that partition. This can be stated in a formula as:

In simple terms, the total entropy resulting from a split is the sum of entropy of each of the n

partitions weighted by the proportion of examples falling in the partition (wi).

The higher the information gain, the better a feature is at creating homogeneous groups after

a split on that feature. If the information gain is zero, there is no reduction in entropy for

splitting on this feature. On the other hand, the maximum information gain is equal to the

entropy prior to the split. This would imply the entropy after the split is zero, which means

that the split results in completely homogeneous groups.

The previous formulas assume nominal features, but decision trees use information gain for

splitting on numeric features as well. To do so, a common practice is to test various splits that

divide the values into groups greater than or less than a threshold. This reduces the numeric

feature into a two-level categorical feature that allows information gain to be calculated as

usual. The numeric cut point yielding the largest information gain is chosen for the split.

Note: Though it is used by C5.0, information gain is not the only splitting criterion that can

be used to build decision trees. Other commonly used criteria are Gini index, chi-squared

statistic, and gain ratio. For a review of these (and many more) criteria, refer to An Empirical

Comparison of Selection Measures for Decision-Tree Induction, Mingers, J, Machine

Learning, 1989, Vol. 3, pp. 319-342.

Pruning the decision tree

As mentioned earlier, a decision tree can continue to grow indefinitely, choosing splitting

features and dividing into smaller and smaller partitions until each example is perfectly

classified or the algorithm runs out of features to split on. However, if the tree grows overly

large, many of the decisions it makes will be overly specific and the model will be overfitted

to the training data. The process of pruning a decision tree involves reducing its size such that

it generalizes better to unseen data.

One solution to this problem is to stop the tree from growing once it reaches a certain number

of decisions or when the decision nodes contain only a small number of examples. This is

called early stopping or prepruning the decision tree. As the tree avoids doing needless work,

this is an appealing strategy. However, one downside to this approach is that there is no way

to know whether the tree will miss subtle but important patterns that it would have learned

had it grown to a larger size.

An alternative, called post-pruning, involves growing a tree that is intentionally too large and

pruning leaf nodes to reduce the size of the tree to a more appropriate level. This is often a

more effective approach than prepruning because it is quite difficult to determine the optimal

depth of a decision tree without growing it first. Pruning the tree later on allows the algorithm

to be certain that all of the important data structures were discovered.

Note: The implementation details of pruning operations are very technical and beyond the

scope of this book. For a comparison of some of the available methods, see A Comparative

Analysis of Methods for Pruning Decision Trees, Esposito, F, Malerba, D, Semeraro, G, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1997, Vol. 19, pp. 476-491.

One of the benefits of the C5.0 algorithm is that it is opinionated about pruning—it takes care

of many of the decisions automatically using fairly reasonable defaults. Its overall strategy is

to post-prune the tree. It first grows a large tree that overfits the training data. Later, the nodes

and branches that have little effect on the classification errors are removed. In some cases,

entire branches are moved further up the tree or replaced by simpler decisions. These

processes of grafting branches are known as subtree raising and subtree replacement,

respectively.

Getting the right balance of overfitting and underfitting is a bit of an art, but if model accuracy

is vital, it may be worth investing some time with various pruning options to see if it improves

the test dataset performance.

To summarize, decision trees are widely used due to their high accuracy and ability to

formulate a statistical model in plain language. Here, we looked at a highly popular and easily

configurable decision tree algorithm C5.0. The major strength of the C5.0 algorithm over

other decision tree implementations is that it is very easy to adjust the training options.

