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Abstract: This study employs the correlation coefficients technique to support emission sources
detection for indoor environments. Unlike existing methods analyzing merely primary pollution,
we consider alternatively the secondary pollution (i.e., chemical reactions between pollutants in
addition to pollutant level), and calculate intra pollutants correlation coefficients for characterizing
and distinguishing emission events. Extensive experiments show that seven major indoor emission
sources are identified by the proposed method, including (1) frying canola oil on electric hob,
(2) frying olive oil on an electric hob, (3) frying olive oil on a gas hob, (4) spray of household
pesticide, (5) lighting a cigarette and allowing it to smoulder, (6) no activities, and (7) venting session.
Furthermore, our method improves the detection accuracy by a support vector machine compared to
without data filtering and applying typical feature extraction methods such as PCA and LDA.

Keywords: indoor air quality; feature extraction; pollutant interaction; emission source detection;
emission events

1. Introduction

Some studies on indoor air quality were motivated by the desire to understand the
origins of the risks to the health of householders and the contribution of indoor emission
sources relative to outdoor sources, as both imply quite different intervention strategies.
Common indoor sources of airborne particles include combustion sources (primarily
heating and cooking) and tobacco smoke. Other sources include combustion (candles,
incense, etc.), household products (e.g., solvents, pesticides) and activities (e.g., dusting).
Identifying the contribution of each source, and the exposure to it, is central to the effort to
understand health effects and manage the risks. The magnitude, frequency and prevalence
of these sources are strongly related to individual lifestyles and behaviours. Thus, there is
huge potential for large variations in indoor emissions, air quality and exposures among
homes, as well as among occupants. For this reason, a technique was sought to identify
and quantify indoor emission sources in a form that could be deployed rapidly with ease
in multiple homes at low cost.

In general, there are two major pollution sources in indoor air quality analysis [1]. Pri-
mary pollution is emitted directly into the atmosphere, such as carbon monoxide (CO) and
carbon oxide (CO2) gas from burning or particulate matter (PM10) released from household
products. The level of pollutants can be easily detected by sensors, and existing measure-
ment studies focused on analysing the relationship between the levels of pollutants and
human health with respect to people who suffer from chronic conditions [2–4]. Secondary
pollution results from chemical reactions among pollutants in the atmosphere. However,
sensors cannot detect the reactions among pollutants in the atmosphere, because the contin-
uous reactions are invisible such as the carbonation reaction at different temperatures (the
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continuous change between CO2 and CO) [5]. Capturing the reaction among pollutants is
necessary for emission sources’ detection.

1.1. Related Work

So far, many pattern-recognition models have been used to detect emission sources.
Linear discriminant analysis (LDA) [6–8], principle component analysis (PCA) [9–11] and
genetic algorithms (GA) [12] have been used as feature-extraction methods, to magnify the
main orthogonal contributions that explain most of the pollutants of an emission source.
LDA, a supervised method, finds a linear combination of features that characterizes or
separates two or more classes of objects or events [13], which benefits data classification.
Joly and Peuch [6] used LDA to analysis eight indicators (pollutants) to separate rural and
urban sites. A preliminary study was conducted by Marié et al. [14], which focused on
analysing magnetic carriers to detect emission sources from primary sources (vehicles)
and on roads (paved area), road borders and surroundings areas. They found LDA to
be helpful at magnifying magnetic carriers in pollution sources. LDA has also been used
to support distinguishing two mountain valleys in the Central Pyrenees as a pollutant
behaviour analysis method to evaluate the data [15]. To determine local and regional
sources of PM10 and its geochemical composition in a coastal area, LDA was employed
in [16] to test the extent to which differences in the PM10 levels and chemical profiles with
varying atmospheric circulation and long-range transport were significant. PCA is an
unsupervised method, which is often used to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables by an orthogonal
transformation [17]. Kong et al. [9] applied PCA to analyse particulate matter emitted from
coal combustion, marine aerosol, vehicular emission and soil dust to identify the influence
of sea salt in TianJin, China. PCA was applied to identify the atmospheric emission sources
of soluble compounds in rainwater samples from crustal particles, marine aerosols, urban
traffic and a fertilizer factory [18]. Alternative research on PCA was conducted in [19] to
monitor snow melting by identifying six major factors for the observation of melting snow.

1.2. Motivation

To better identify emission sources in indoor environments, we argue that the relation-
ship among pollutants may offer useful knowledge as an important component of emission
source detection. The ability to capture complex patterns that occur as interactions among
pollutants can support emission source detection systems. In computational chemistry
studies, Pearson correlation analysis has been used as a tool to assist immunochemistry
to better understand the process of the antibody recognition of hapten molecules in a
competitive immunoassay [20]. The Pearson correlation has also been used to analyse the
influence of streams on nearshore water chemistry [21]. Rasmussen’s study [22] proposed
a global chemistry–climate model based on correlation coefficients to characterize the
surface O3 response to the year-to-year fluctuations in weather. In food chemistry, the
correlation coefficient is also beneficial to analyse the relationship between ORAC and Mail-
lard reaction-like products [23]. The main defect of existing feature-extraction methods for
emission source detection is that they rely on internal data to capture the unique attributes
of each entity; thus, they are not effective at discovering the interaction among pollutants.
For a general emission source, the consistency ratio could be lower, but the correlation
coefficient captures the relationship among various pollutants’ levels, as discussed above.

Starting from the observation of the emission sources, we developed a novel cor-
relation coefficient-based approach to support effective emission source detection. This
approach captured the invisible interaction among pollutants during emission events,
which is important information for emission sources’ identification. This empowered
the proposed approach to outperform recent feature extraction methods applied in other
emission source detection studies.
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1.3. Paper Organisation

The paper is organized as follows. In Section 2, we derive the proposed approach
to dynamic pollutant interaction analysis. In Section 3, we demonstrate the merits of our
approach by a comparison with existing methods. Finally, we conclude the paper and
discuss future work in Section 4.

2. Measurements and Method
2.1. Description of the Sampling Data

In this study, we used the NIWA-developed PACMAN (Particles and Context Mea-
surement Autonomous Node) device. The PACMAN instrument is able to record air
quality, as well as context information at 1Hz resolution. More detailed information can be
found in [24]. Table 1 shows the details of the parameters and sensors used in this study.

Table 1. Summary of the measured parameters and sensors in the PACMAN units.

Parameter Sensor Notes

Carbon monoxide (CO) Hanwei MQ-7 72 h warm-up period
90 s time resolution

Carbon dioxide (CO2) Hanwei MG-811 2 h warm-up period
Temperature (T) LM335A Measuring temperature

outside the enclosure
Movement (M) PIR 60◦ field-of-view
Distance (d) Maxbotix range finder 6.5 m range
Particulate Matter (PM10) Dust sensor baseline offset 1500 mV

Data were collected in a set of semi-controlled tests over several days in October 2012
where a single PACMAN unit was placed in the lounge of an otherwise unoccupied house,
as shown in Figure 1. Known particle emission activities were conducted and logged
manually. The emission activities included:

1. Frying canola oil on an electric hob;
2. Frying olive oil on an electric hob;
3. Frying olive oil on a gas hob;
4. Spraying of household pesticide;
5. Lighting a cigarette and allowing it to smoulder.

The experimental protocol involved in general four stages: pre-activity sampling
(baseline measurements), emission activity, emission activity halted and pollution allowed
to mix in the indoor air and venting of the house by opening external doors and windows
and using a fan to aid indoor–outdoor air exchange.

For labeling purposes, an event was counted as a sample in between the times when
the first flag was set (i.e., pre-activity sampling stage) until the emitting activity ended
(i.e., emission activity halted). In our experiment, we considered the venting session and
normal session (i.e., 10 min before each event and 10 min after each event) as two additional
reference events.

2.2. Data Quality Control

PACMAN was operated continuously during the tests, logging data at 1 Hz. The
data were checked for invalid instrument readings, but were not calibrated; therefore, the
data presented here did not correspond to actual pollutant concentrations. The data were
analysed using a moving window approach. This posed a problem to the definition of the
labels associated with the events/emission sources. Using the manual experiment logbook
as a basis, the different emission activities were labeled on the records, but for the sliding
windows’ analysis, only windows that had more than 50% of their data points with a given
label were considered as part of that event.



Appl. Sci. 2021, 11, 7542 4 of 12

Figure 1. The experimental environment.

2.3. Correlation Coefficient-Based Emission Sources’ Detection

The proposed method to define representative indoor events was based on the pro-
cessing of air quality time series and consisted of three steps: (i) selecting an appropriate
continuously sliding window and fitting the range of the continuous sequence of air quality
network data, (ii) removing short-term fluctuations associated with the influence of local
emission sources from the original measurements, taking into account the correlation de-
termined from the correlation coefficient analysis, and (iii) mapping the correlation factors
into an nonlinear space for emission source recognition. For clarity of presentation, we
summarize most notations used in the paper in Table 2.

Table 2. A summary of the notation used in this paper.

X ∈ RT×M The basic data structure, which can cover a majority of the indoor conditions
t The index of the time point
T Total elapsed time
x(t) ∈ R1×M Samples at time t
w The size of the sliding window
M The total number of observed pollutants
m The index of the pollutant
N = T − w + 1 The total number of subsequences
i The index of the sliding window
C A set of matrices extracted by slicing time series with sliding window w
ci ∈ Rw×M An extracted subsequence from the ith sliding window
ri,j,k The correlation coefficient of two pollutants (i.e., jth and kth) for the ith sliding window

2.3.1. Time Series Analysis

Given a time series data X = {x(1), x(2), . . . , x(t), . . . , x(T)} involving emission L
events, in which x(t) = {a1(t), a2(t), . . . , aM(t)} denotes a data sample consisting of M
chemical contaminants and T represents elapsed time. A single point is insufficient for
emission sources detection, but a time series could be very long, sometimes containing
millions of observations. To analyze the relationship between pollutants, it is desirable
to apply a sliding window w to X that will produce a sequence of shorter time series.
Figure 2 shows the procedure of sliding windows subsequence extraction with any of the
real-valued representations.
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Figure 2. Data sequences X with length T, the subsequence of length w = 120 and the subsequences extracted by a sliding
window c. Note that the sliding windows overlap.

As a result, we stored all extracted subsequences as C = {c1, c2 . . . , cn}, where
n = T − w + 1 is the number of subsequences and ci = {x[(t) : (t + w − 1)]} represents
a subsequence. Note that the corresponding label yi is included in the calibration data
according to the events of emission sources for each subsequence.

2.3.2. Data Filtering

To remove short-term fluctuations associated with the noise of the measurements from
observed pollutants, the correlation coefficient was included in this work to establish the
relationships among pollutants in each time window. The correlation is a measure of the
strength of relationship among pollutants in a subsequence ci.

As ci approximates the original time series with a combination of M pollutants in the
ith sliding window, we represent ci as a combination of M column vectors,

ci = {ai,1, ai,2, . . . , ai,M}, (1)

where ai,m = {ai,m(1), ai,m(2) . . . , ai,m(w)} represents the mth pollutant vector for the ith
sliding window.

For each sliding window i, we define the correlation model as a covariance of every
two pollutants,

ri,j,k = r(ai,j ,ai,k)
, j 6= k, j, k = 1, 2 . . . M, (2)

in which the population correlation between two pollutants is calculated as:

r(ai,j ,ai,k)
=

Cov(ai,j, ai,k)√
Var(ai,j) ∗Var(ai,k)

=
E((ai,j − E(ai,j))(ai,k −E(ai,k))√
E(ai,j −E(ai,j))2E(ai,k −E(ai,k))2

(3)

=
∑w

t=1(aj,i(t)− āj,i)(ai,k(t)− āi,k)√
∑w

t=1(ai,j(t)− āi,j)2 ∑w
t=1(ai,k(t)− āi,k)2

where Var is the variance function, Cov is the covariance function and E is the mathematical
expectation. The correlation coefficient r(ai,j ,ai,k)

is a number between −1 and 1, which
expresses the degree that, on an average, two pollutants change correspondingly. If one
increases when the second pollutant increases, then there is a positive correlation. In this
case the correlation coefficient will be closer to 1. If one decreases and the other increases
simultaneously, then there is a negative correlation and the correlation coefficient will be

closer to −1. As a result, we obtain a correlation efficient matrix D ∈ Rn×M(M−1)
2 as,
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D =


r1,1,2 r1,1,3 . . . r1,M,M−1
r2,1,2 r2,1,3 . . . r2,M,M−1

... . . .
...

rn,1,2 rn,1,3 . . . rn,M,M−1


= {ri}n

i=1

(4)

in which ri ∈ R1×M(M−1)
2 represents one data instance. The class label of the instance yi is

given according to events of emission sources for each sliding window. Now, the problem
of emission event detection is to seek an optimal solution to f ∗ : ri → yi, i = 1, . . . , n.

2.3.3. Support Vector Machine Classification

SVM [25] performs structural risk minimization in the framework of regularization
theory. Given training set D = {xi, yi}N

i=1, with the label yi ∈ (−1,+1) indicating the class
to which the vector xi ∈ Rd belongs, SVM’s target is to find a linear separating hyperplane
with a maximum margin in the higher feature space. For the linearly inseparable case, a
nonlinear kernel function k(xi, xj)|i 6= j, i, j = 1, 2, . . . N is applied on SVM to transform
the input space to a higher dimensional feature space, so that the classes may be linearly
separable prior to calculating the separating hyperplane. In this work, air quality data
were considered as a linearly inseparable case, and only a Gaussian RBF kernel function
was attempted for emission sources’ detection due to its good generalization and without
the guidance from those prior experiences.

The normal form of the SVM classifier is defined as follows:

f (xi) = (w · φ(xi)) + b, (5)

where “·” means a dot product and φ(xi) refers to the kernel function k(xi, xj) =
〈
Φ(xi), Φ(xj)

〉
,

which enables performing a linear classification in a higher dimensional feature space.
The Gaussian RBF kernel function can be represented as:

k(xi, xj) = exp

(
−||xi − xj||2

σ2

)
, (6)

where σ2 is the parameter that determines the bandwidth of the Gaussian RBF kernel. The
decision function can then be expressed as:

f (x) = sgn

(
N

∑
i=1

αik(xi, x) + b

)
, (7)

where α and b are the optimal decision parameters that are tuned through cross-validation tests.

3. Results

In this section, we conducted experiments where we applied the proposed correlation
coefficient method to emission source detection and compared it with the conventional
PCA and LDA methods in terms of classification performance. We used here a support
vector machine for all feature-extraction methods to find the class label of a test vector.

3.1. Pollutants Interaction Knowledge

Figure 3 visualizes the pollutants interaction knowledge in terms of its effectiveness
for emission sources classification. The left column figures plot the original pollutants level,
and the right column figures present the distribution of correlation coefficients from a pair
of pollutants. As seen in Figure 3a,c, before data filtering it is very hard to distinguish
the two events “Frying canola oil, electric hob” and “Smoking”. In contrast, the right
column Figure 3b,d present the data distributions of pollutants interaction represented
by correlation coefficients, where the two emission events differences are seen magnified
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in the pollutants interaction space. In addtion, a 3D data distribution of pollutants levels
and pollutants interaction for both observed events with session “Venting” and “Normal”
are presented in Figure 3e,f, respectively. It is evident that the discriminant capability of
pollutants interaction knowledge is much better than that from the original pollutant levels.

(a) (b)

(c) (d)

(e) (f)

Figure 3. (a) Levels of contaminants obtained from PACMAN for event “frying canola oil, electric
hob”; (b) deterministic components obtained after data filtering for event “frying canola oil, electric
hob” (c) levels of contaminants obtained from PACMAN for event “smoking”; (d) deterministic
components obtained after data filtering “smoking”; (e) the native organization of contaminants for
the two events with sessions “venting” and “normal” distributed in 3D space; (f) the filtered data for
the two events with sessions “venting” and “normal” distributed in 3D space.

3.2. Accuracy

To conduct the experimentation, the original feature vectors are transformed by the
proposed correlation method from an M-dimensional to M(M−1)

2 -dimensional space. The

classification accuracy in percentage is obtained from SVM for the M(M−1)
2 dimensional

correlation space and M dimensional PCA and LDA spaces, respectively. The performance
comparison results are summarized in Table 3. We also report in the table the results when
no feature extraction is conducted (denoted as “without data filtering") and with the same
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SVM classifier applied to get the classification performance. We present the generalization
accuracy averaged over 100 trials (denoted as average accuracy) and calculate the standard
deviation (denoted as stdev) and the accuracy change (denoted as growth) when two
different sliding windows are applied. As seen from the table, it is evident that the
correlation coefficient method is performing much better than the LDA and PCA technique,
as well as the case of without data filtering on detecting all seven emission events including
(1) frying canola oil on electric hob, (2) frying olive oil on an electric hob, (3) frying olive oil
on a gas hob, (4) spray of household pesticide, (5) lighting a cigarette and allowing it to
smoulder, (6) no activities, and (7) venting session.

3.3. Sensitivity and Robustness

To verify the sensitivity and performance of the three feature-extraction methods, the
accuracy and standard deviations under different sliding window sizes were analysed.
In the following, the results of each performance index are demonstrated and discussed
in detail.

Figure 4 reveals the average accuracy and standard deviation variation under the
condition of different sliding window sizes. As seen from the figure, the lowest performance
of the proposed method appeared when the sliding window was 30 s. As larger sliding
window sizes were imported into the system, the performances of the proposed method
rose consistently and finally reached the highest accuracy of 80.35%. In comparison, PCA
did not perform as well as the proposed method for any sliding window size greater than
40 s. LDA and without data filtering gave better performances than the proposed method,
when the sliding window size was smaller than 60 s. However, all accuracies were less than
60%. The proposed method started to surpass all the other three methods when the sliding
window rose to 60 s. When the sliding window increased further to 90 s, the proposed
methods accuracy grew to over 60%, while the remaining methods were still in a range
below 60%.

Table 4 reports the numerical testing results of the above experiments. As seen from
the table, the accuracy grew in general for all methods, and the proposed method received
the highest positive growth for most cases. Furthermore, the standard deviations of the
proposed method were steady for different sliding window sizes. The largest standard
deviation of the proposed method was merely 0.7064%, which was even smaller than the
smallest standard deviations from LDA (i.e., 2.9167%), PCA (i.e., 4.1153%) and without
data filtering (i.e., 1.0551%). This indicated that the proposed method had outstanding
robustness properties, as measured by the standard deviation.



Appl. Sci. 2021, 11, 7542 9 of 12

Table 3. A comparison of the algorithms using classification accuracy in percentage as a prototype for the events (1) frying canola oil on an electric hob, (2) frying olive oil on an electric
hob, (3) frying olive oil on a gas hob, (4) spraying of household pesticide, (5) lighting a cigarette and allowing it to smoulder, (6) no activities and (7) venting session.

Correlation Coefficient PCA

Accuracy Confusion Matrix Accuracy Confusion Matrix

80.14%

class 1 2 3 4 5 6 7

29.49%

class 1 2 3 4 5 6 7

1 305.44 9.72 0.20 0.44 3.84 11.48 37.52 1 155.44 19.68 0.24 2.52 65.76 29.36 95.64

2 16.76 484.28 0.92 0.16 4.16 21.44 151.96 2 18.80 344.60 57.08 0.12 27.40 64.64 167.04

3 0.20 1.32 387.12 1.36 0.24 2.60 10.36 3 1.36 150.72 91.52 0.12 26.48 46.68 86.32

4 0.32 0 0.52 125.16 0.20 0.16 0.36 4 30.60 21.00 15.16 8.40 0 13.92 37.64

5 8.36 14.08 0.84 0.52 188.08 11.12 88.04 5 26.00 19.52 4.36 0.04 210.00 7.00 44.12

6 16.16 38.96 2.68 0.40 13.32 773.24 170.92 6 134.92 348.64 84.40 6.36 59.52 126.28 255.56

7 25.36 57.92 6.24 0.36 26.60 62.44 1882.20 7 388.96 295.96 282.04 11.68 233.52 259.52 589.44

LDA Without data filtering

Accuracy Confusion matrix Accuracy Confusion matrix

49.54%

class 1 2 3 4 5 6 7

57.95%

class 1 2 3 4 5 6 7

1 3.76 1.20 0 0 2.88 24.92 335.88 1 57.00 5.48 0 0 0.68 0.92 304.56

2 2.96 304.44 0 12.20 1.40 13.16 345.52 2 1.08 580.64 0 0 0.84 36.24 60.88

3 0.28 0 343.60 0 0 0.04 59.28 3 0 0 403.20 0 0 0 0

4 0 0.76 0 17.24 0 0 108.72 4 5.08 0 0 100.16 0 0 21.48

5 8.96 0.00 0 0 5.24 39.40 257.44 5 0 0.04 0 0 7.44 1.64 301.92

6 27.96 16.88 25.08 0 23.52 273.44 648.80 6 31.24 75.88 2.52 0 37.84 381.40 486.80

7 37.20 61.44 38.76 32.60 48.92 227.28 1614.92 7 62.72 139.08 110.60 100.08 92.24 88.48 1467.92
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Figure 4. The performance variation of target-feature-extraction methods under the condition of
different sliding window sizes.

Table 4. Comparison of four feature extractions under the condition of different sliding window sizes.

Feature Extraction Method
The Sliding Window Size

30 60 90 120 150 180 210 240

Correlation coefficient
average accuracy 19.32% 49.06% 61.50 % 68.36% 72.59% 78.19% 80.35% 80.14%

growth - 29.74% 12.44 % 6.86 % 4.23 % 5.60% 2.17% −0.21 %
stdev 0.0001 0.6185 0.7064 0.6170 0.4945 0.4358 0.4906 0.4958

LDA
average accuracy 46.06% 46.32 % 47.77% 46.81% 48.70% 49.32% 50.01% 49.54%

growth - 0.26% 1.45% −0.96% 1.89% 0.63% 0.69% −0.47%
stdev 4.6216 2.9167 3.4096 4.3471 4.1156 3.6775 3.9270 4.7798

PCA
average accuracy 21.61% 26.44% 25.91% 29.82% 26.68% 27.63% 28.07% 29.49%

growth - 4.83% −0.53% 3.92% −3.15% 0.96% 0.44% 1.42%
stdev 8.1703 5.4214 4.1153 5.1970 6.6487 4.3547 5.1603 5.8455

Without data filtering
average accuracy 51.74% 47.27% 47.17% 52.45% 54.69% 56.01% 58.47% 57.95%

growth - −4.47% −0.10 % 5.28% 2.24% 1.33% 2.45% −0.52%
stdev 4.5254 5.1515 4.8287 4.95 4.5594 4.3840 1.4620 1.0551

4. Conclusions

In this study, the correlation of pollutants is mathematically calculated for the detection
of emission sources in indoor environment. Extensive experiments have confirmed the
effectiveness and efficiency of our correlation calculation in real-time detecting emission
sources under various experimental settings, which covers seven emission events: (1) frying
canola oil on electric hob, (2) frying olive oil on an electric hob, (3) frying olive oil on a gas
hob, (4) spray of household pesticide, (5) lighting a cigarette and allowing it to smoulder,
(6) no activities, and (7) venting session.

Its worth noting that compared to the case without capturing pollutants interaction
data, the detection accuracy of the proposed correlation calculation increases over 20%.
It follows that pollutants interaction is indicating a predictive relationship that can be
exploited to identify an emission event. The additional information (pollutants correlation)
related to the emission sources is necessary and useful for the identification of the emission
source in indoor environment.
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