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A B S T R A C T   

The air-entry value (AEV) suction, marking the transition between saturated and unsaturated soil mechanics, is 
arguably the most important parameter interpreted from the soil–water characteristic curve (SWCC); its accurate 
determination being essential for the prediction of unsaturated soil properties. The AEV is commonly obtained by 
a subjective and time-consuming graphical construction. This micro-article proposes an objective framework, 
developed based on a practical mathematical translation technique, for the AEV determination. Explicit equa
tions for the AEV are derived based on eleven well-established SWCC fitting functions, covering a wide range of 
functional complexities. In addition to its objective nature (providing unique interpretations of the AEV), the 
proposed framework complements numerical implementations of unsaturated soil constitutive models.   

1. Introduction 

The soil–water characteristic curve (SWCC), defined as the rela
tionship between the soil suction (i.e., soil–water matric potential ψ) and 
the amount of water held within the soil (often expressed in terms of 
degree of saturation S), is an integral part of the unsaturated soil me
chanics framework; it provides the information needed to characterize 
unsaturated soil properties [1]. The air-entry value (AEV), recognized as 
a suction state where entrance of air to the largest soil pore is first 
permitted during desaturation of a saturated soil [2], is arguably the 
most important parameter interpreted from the SWCC. An accurate 
determination of the AEV suction (ψAEV) is essential for the prediction of 
unsaturated soil properties, such as shear strength, volume change po
tential and relative permeability [3–5]. 

Referring to Fig. 1; the AEV suction state is commonly interpreted by 
a graphical construction, which is implemented to the fitted SWCC 
function plotted in the semi-logarithmic space of S:log10ψ [5]. Following 
the conventional graphical procedure, ψAEV (the abscissa of Point B) is 
defined as the intersection of the tangent line extended through the 
‘subjectively identified’ inflection point of the SWCC (Point I) with the 
horizontal line of S(ψ) = 1. Aside from its apparent ‘subjective’ nature, 
this graphical procedure can be time-consuming. Since S:ψ 

measurements are routinely expressed in terms of continuous SWCC 
fitting functions [6–15], these drawbacks can be eliminated by way of 
mathematical translation, allowing ψAEV to be expressed as explicit 
equations, thereby complementing computational analyses and numer
ical simulations that use ψAEV as an input parameter. While attempts of 
this nature have been made by Zhai and Rahardjo [16] and the authors 
in Soltani et al. [17] for the Fredlund & Xing [14] and van Genuchten 
[10] SWCC models, respectively, other well-established SWCC fitting 
functions have not yet been considered. Accordingly, this micro-article 
aims at deriving explicit equations for the AEV suction, considering 
eleven well-established SWCC models. 

2. Proposed framework 

The general functional expression for the SWCC (fundamentally 
valid up to the residual state condition) can be given as follows [1,18]: 

S(ψ)= SR + (1 − SR)F(ψ) (1)  

where S(ψ) = degree of saturation with respect to matric suction ψ 
(ML− 1T− 2); SR = residual degree of saturation (which can be fixed as 
zero or considered as an independent fitting parameter); and F(ψ) =
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SWCC model (or fitting function) that represents the effective degree of 
saturation — that is, F(ψ) = [S(ψ) − SR]/[1 − SR]. 

The mathematical translation technique is employed to derive 
explicit equations for the AEV suction based on eleven well-established 
continuous–unimodal F(ψ) models, listed as Equations (6)–(16) in 
Table 1 [6–15], covering a variety of different functional complexities. 
The proposed mathematical translation framework is elaborated in the 
following. 

The inflection point of the SWCC in the S:log10ψ space (Point I in 
Fig. 1) can be defined as the positive real root of the second derivative of 
Equation (1) with respect to log10ψ [17,20]: 

S1(ψ)=
dS(ψ)

dlog 10 ψ =
dS(ψ)

dψ ×ψ × ln 10= ln 10 ψ(1 − SR)F1(ψ) (2)  

S2(ψ)=
d2S(ψ)

d(log 10 ψ)2 =
dS1(ψ)

dψ ×ψ × ln 10=(ln 10)2ψ(1 − SR)[F1(ψ)

+ψF2(ψ)] ∋ S2(ψ I)= 0
(3)  

where S1(ψ) and S2(ψ) = first and second derivatives of Equation (1) 
with respect to log10ψ ; F1(ψ) and F2(ψ) = first and second derivatives of 
F(ψ) with respect to ψ; and ψ I = matric suction at the inflection point of 
the SWCC. 

Note that the degree of saturation at the inflection point can be 
calculated by substituting ψ = ψ I into Equation (1); let this be S(ψ I). For 
the eleven SWCC models examined, F1(ψ) and F2(ψ) are listed in Table 1 
as Equations (17)–(27) and (28)–(38), respectively. 

The slope of the tangent line extended through the inflection point 
can be calculated by substituting ψ = ψ I into Equation (2); let this be 
S1(ψ I). Making use of S1(ψ I), along with Point I (for which its abscissa is 
listed as Equations (39)–(49) in Table 2), the tangent line IB, as shown in 
Fig. 1, can be expressed as follows: 

IB : S(ψ)= S1(ψ I)log 10

(
ψ
ψ I

)

+ S(ψ I) (4) 

Finally, the intersection of lines IB and S(ψ) = 1 — shown as Point B 
in Fig. 1, with its abscissa representing the ‘inferred’ AEV suction (or 
ψAEV) — can be solved by equating Equation (4) to unity: 

ψAEV =ψ Iexp
[

1 − F(ψ I)

ψ IF1(ψ I)

]

(5) 

For the eleven SWCC models investigated, F(ψ I) and F1(ψ I) are pre
sented in Table 2 as Equations (50)–(60) and (61)–(71), respectively. 
Note that, for those SWCC models where S2(ψ) = 0 could not be solved 
explicitly, which was the case for the McKee & Bumb (Equation (13)) 
and Fredlund & Xing (Equation (15)) models, the positive real root of 
F2(ψ) = 0 (denoted as ψ*

I and defined as the inflection point of the SWCC 
in the arithmetic space of S:ψ) can be used in lieu of ψ I to avoid the need 
of implementing numerical root-finding algorithms. For the eleven 
SWCC models examined, the deduced AEV relationships are listed as 
Equations (72)–(82) in Table 2. 

3. Applications and future research 

Worked examples demonstrating the implementation of the pro
posed framework to a typical experimental S:ψ dataset reported in 
Uchaipichat and Khalili [21] are provided in Figure S1 of the Supple
mentary Material. Aside from its objective nature (providing unique 
interpretations of the AEV) and its apparent benefits for numerical 
implementations (of unsaturated soil constitutive models), the proposed 
framework can be adopted to critically (and accurately) examine the 
effects of the selected F(ψ) SWCC fitting function on the deduced AEV; 
an important aspect that has not yet been examined in the literature. 

Fig. 1. Typical illustration of the drying SWCC (with respect to sigmoid-type SWCC fitting functions). Note: Boundary Effect, Transition and Residual zones denote 
the different stages of soil desaturation; the water phase in the Residual zone is discontinuous. 
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Table 1 
Summary of the investigated SWCC models (or fitting equations), along with their first and second derivatives. Note: For details regarding the physical meaning of the 
model/fitting parameters (α, n and m), the reader is referred to the original source of the SWCC model.  

SWCC Reference SWCC Function F(ψ) First Derivative F1(ψ) Second Derivative F2(ψ) 

Burdine [6]  
1

[1 + (αψ)n
]

n − 2
n

(6)      − (n − 2)(αψ)n

ψ[1 + (αψ)n
]

2n − 2
n

(17)      
(n − 1)(n − 2)(αψ)n

[(αψ)n
− 1]

ψ2[1 + (αψ)n
]

3n − 2
n

(28)     

Gardner [7]  
1

1 + αψn (7)      
− nαψn

ψ(1 + αψn)
2 (18)      nαψn[(n + 1)αψn − (n − 1)]

ψ2(1 + αψn)
3 (29)     

Brutsaert [8]  
1

1 +
(ψ

α

)n (8)      − n
(ψ

α

)n

ψ
[
1 +

(ψ
α

)n]2 (19)      
n
(ψ

α

)n[
(n + 1)

(ψ
α

)n
− (n − 1)

]

ψ2
[
1 +

(ψ
α

)n]3 (30)     

Mualem [9]  
1

[1 + (αψ)n
]

n − 1
n

(9)      − (n − 1)(αψ)n

ψ[1 + (αψ)n
]

2n − 1
n

(20)      
(n − 1)(αψ)n

{1 + n[(αψ)n
− 1]}

ψ2[1 + (αψ)n
]

3n − 1
n

(31)     

van Genuchten [10]  
1

[1 + (αψ)n
]
m (10)      − nm(αψ)n

ψ[1 + (αψ)n
]
m+1 (21)      

nm(αψ)n
[(nm + 1)(αψ)n

− (n − 1)]
ψ2[1 + (αψ)n

]
m+2 (32)     

Tani [11]  
(

1+
ψ
α

)
exp

(
−

ψ
α

)
(11)      

− ψ
α2 exp

(
−

ψ
α

)
(22)      

(ψ − α
α3

)
exp

(
−

ψ
α

)
(33)     

McKee & Bumb [12]  

exp
(
−

ψ
α

)
(12)      − 1

α exp
(
−

ψ
α

)
(23)      

1
α2 exp

(
−

ψ
α

)
(34)     

McKee & Bumb [12]  
1

1 + exp
(ψ − α

n

) (13)      − exp
(ψ − α

n

)

n
[
1 + exp

(ψ − α
n

)]2 (24)      
exp

(ψ − α
n

)[
exp

(ψ − α
n

)
− 1

]

n2
[
1 + exp

(ψ − α
n

)]3 (35)     

Russo [13]  

[(
1 +

αψ
2

)
exp

(
−

αψ
2

)]
2

n + 2 (14)      − α2ψ
[(

1 +
αψ
2

)
exp

(
−

αψ
2

)]
2

n + 2

(n + 2)(αψ + 2)
(25)      

α2 [(αψ)2
− 2(n + 2)]

[(
1 +

αψ
2

)
exp

(
−

αψ
2

)]
2

n + 2

(n + 2)2
(αψ + 2)2 (36)     

Fredlund & Xing [14]  
1

{
ln
[
e +

(ψ
α

)n]}m (15)      − nm
(ψ

α

)n

ψ
[
e +

(ψ
α

)n]{
ln
[
e +

(ψ
α

)n]}m+1 (26)      
nm

(ψ
α

)n{
n(m + 1)

(ψ
α

)n
+
[(ψ

α

)n
− e(n − 1)

]
ln
[
e +

(ψ
α

)n]}

ψ2
[
e +

(ψ
α

)n]2{
ln
[
e +

(ψ
α

)n]}m+2 (37)     

Kosugi [15]  

1
2

erfc

[ln
(ψ

α

)

̅̅̅
2

√
n

]

(16)      − exp

⎧
⎨

⎩
−

[ln
(ψ

α

)

̅̅̅
2

√
n

]2
⎫
⎬

⎭

̅̅̅̅̅
2π

√
nψ

(27)      

[
n2 + ln

(ψ
α

)]
exp

⎧
⎨

⎩
−

[ln
(ψ

α

)

̅̅̅
2

√
n

]2
⎫
⎬

⎭

̅̅̅̅̅
2π

√
n3ψ2

(38)     

Note: exp = exponential function (i.e., exp[x] = ex where e is Napier’s constant); ln = natural logarithm function (i.e., ln[x] = loge[x]); erfc = complementary error 

function (i.e., erfc[x] = 1 −
2̅
̅̅
π

√

∫x

0

e− u2
du); the correction factor for the Fredlund & Xing SWCC model (Equation (15)) is assumed as C(ψ) = 1, as recommended by 

Leong and Rahardjo [19]. 
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Table 2 
Explicit equations for AEV determination.  

SWCC Reference Inflection Point ψI F(ψI) F1(ψI) Air-Entry Value ψAEV 

Burdine [6]  

ψ I =
1
α

( n
n − 2

)
1
n (39)      

(
n − 2
2n − 2

)
n − 2

n (50)      −
n
ψ I

(
n − 2
2n − 2

)
2n − 2

n (61)      ψ Iexp
{

2n − 2
n(n − 2)

[

1 −
(

2n − 2
n − 2

)
n − 2

n
]}

(72)     

Gardner [7]  

ψ I =

(
1
α

)
1
n (40)      

1
2

(51)      −
n

4ψ I
(62)      ψ Iexp

(

−
2
n

)

(73)     

Brutsaert [8]  

ψ I = α (41)      1
2

(52)      −
n

4ψ I
(63)      ψ Iexp

(

−
2
n

)

(74)     

Mualem [9]  

ψ I =
1
α

( n
n − 1

)
1
n (42)      

(
n − 1
2n − 1

)
n − 1

n (53)      −
n
ψ I

(
n − 1
2n − 1

)
2n − 1

n (64)      ψ Iexp
{

2n − 1
n(n − 1)

[

1 −
(

2n − 1
n − 1

)
n − 1

n
]}

(75)     

van Genuchten [10]  

ψ I =
1
α

(
1
m

)
1
n (43)      

( m
m + 1

)m
(54)      −

n
ψ I

( m
m + 1

)m+1
(65)      ψ Iexp

{
m + 1

nm

[

1 −
(

m + 1
m

)m]}

(76)     

Tani [11]  

ψ I = 2α (44)      3
e2 (55)      −

4
e2ψ I

(66)      ψ Iexp
(

3 − e2

4

)

(77)     

McKee & Bumb [12]  

ψ I = α (45)      1
e

(56)      −
1

eψ I
(67)      ψ Iexp(1 − e) (78)     

McKee & Bumb [12]  

ψ*
I = α (46)      1

2
(57)      −

1
4n

(68)      ψ*
I exp

(

−
2n
α

)

(79)     

Russo [13]  

ψ I =
2Gn

α

∋ Gn =
n + 2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(n + 2)(n + 18)

√

4

(47)      
[

1 + Gn

exp(Gn)

]
2

n + 2 (58)      −
2Gn

2

ψ I(n + 2)(Gn + 1)

[
1 + Gn

exp(Gn)

]
2

n + 2 (69)      
ψ Iexp

⎛

⎜
⎜
⎝

(n + 2)(Gn + 1)
{[

1 + Gn

exp(Gn)

] 2
n + 2 − 1

}

2Gn
2
[

1 + Gn

exp(Gn)

] 2
n + 2

⎞

⎟
⎟
⎠ (80)     

Fredlund & Xing [14]  

ψ*
I = α (48)      1

[ln(e + 1)]m
(59)      −

nm
ψ*

I (e + 1)[ln(e + 1)]m+1 (70)      ψ*
I exp

(
(e + 1)ln(e + 1){1 − [ln(e + 1) ]m }

nm

)

(81)     

Kosugi [15]  

ψ I = α (49)      1
2

(60)      −
1

̅̅̅̅̅
2π

√
nψ I

(71)      ψ Iexp
(

−

̅̅̅
π
2

√

n
)

(82)     

Note: exp = exponential function (i.e., exp[x] = ex where e is Napier’s constant); ln = natural logarithm function (i.e., ln[x] = loge[x]). 
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