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Abstract

Background: DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate
(eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African
Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific
differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach.

Methods: The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants
for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina
450K or EPIC arrays. Ethnicity-stratified analyses were performed using linear mixed models adjusting for age, sex,
smoking, and study-specific and technical variables. Summary results were meta-analyzed within and across
ethnicities. Findings were assessed using integrative epigenomics methods and pathway analyses.
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(Continued from previous page)

Results: We identified 93 DMPs associated with eGFR at an FDR of 0.05 and replicated 13 and 1 DMPs across
independent samples in trans-ethnic and African American meta-analyses, respectively. The study also validated 6
previously published DMPs. Identified DMPs showed significant overlap enrichment with DNase I hypersensitive
sites in kidney tissue, sites associated with the expression of proximal genes, and transcription factor motifs and
pathways associated with kidney tissue and kidney development.

Conclusions: We uncovered trans-ethnic and ethnic-specific DMPs associated with eGFR, including DMPs enriched
in regulatory elements in kidney tissue and pathways related to kidney development. These findings shed light on
epigenetic mechanisms associated with kidney function, bridging the gap between population-specific eGFR-
associated DNAm and tissue-specific regulatory context.

Keywords: Epigenetic, Kidney function, Gene regulation, Kidney development, DNA methylation

Background
The kidney has a central role in body homeostasis
through the regulation of blood pressure, fluid, and elec-
trolytes and by removing endogenous and exogenous
toxins. Reduced kidney function measured using esti-
mated glomerular filtration rate (eGFR) defines chronic
kidney disease (CKD). CKD affects 14.5% of the adult
US population and is a leading cause of death and dis-
ability [1, 2]. CKD has a high burden among non-
European US ethnic groups, but mechanisms for this
health disparity are poorly understood [3]. A better un-
derstanding of the mechanisms influencing kidney func-
tion may provide insights into CKD occurrence and risk.
Complex interactions between genetic, lifestyle, and

environmental exposures likely contribute to the ob-
served eGFR variation across populations. DNA se-
quence variation accounts for 7.6% of the estimated
heritability of eGFR in trans-ethnic genome-wide associ-
ation studies (GWAS) [4]. Epigenetic modifications of
the genome such as DNA methylation (DNAm) are her-
itable and contribute to gene regulation. DNAm consists
of the addition of a methyl group to cytosines, typically
at cytosine-guanine dinucleotides (CpG sites). DNAm is
influenced by lifetime exposures and may provide clues
on ethnic-specific differences influencing eGFR. Differ-
ential DNAm at CpG sites can be studied using microar-
rays with reasonable genome-wide coverage through
epigenome-wide association studies (EWAS) [5, 6].
Recent EWAS in whole blood have identified differen-

tially methylated positions (DMPs) associated with blood
pressure and eGFR, and disease states such as CKD and
rapid decline in eGFR [7–11]. Early studies had modest
sample sizes (40 to 407 individuals) or were limited to a
single ethnic group [7–9]. A large EWAS performed sep-
arate discovery analyses within the Atherosclerosis Risk
in Communities (ARIC, 2264 African Americans) and
the Framingham Heart Study (FHS, 2395 white partici-
pants) followed by cross-replication of findings [11]. The
study identified 19 DMPs for eGFR or CKD. Overall,
these studies support a role for DNAm in CKD-related

traits. However, previous studies did not account for im-
portant potential confounders such as smoking status
and cumulative exposure in the discovery group, which
have widespread effects on DNAm patterns [12] and are
risk factors for CKD, nor did they assess DNAm at CpG
sites across multiple ethnic groups during discovery.
The main aim of this study is to identify DNAm pat-

terns associated with eGFR in multi-ethnic studies using
data from European/European American (EA), African
American (AA), and Hispanic/Latino (H/L) participants.
We performed both trans-ethnic and ethnic-specific
EWAS using whole blood-based Illumina DNAm data
assayed in participants of the Women’s Health Initiative
(WHI), the Multi-Ethnic Atherosclerosis Study (MESA),
and the Jackson Heart Study (JHS). We replicated our
findings in the HyperGEN, Generation Scotland, and
CATHGEN studies, in addition to analyzing results via
look-ups in a published study [11]. We identified DMPs
associated with eGFR in trans-ethnic and ethnic-specific
analyses, and provided supporting evidence for the con-
tribution of identified DMPs to kidney function and de-
velopment using in silico approaches and human kidney
tissue-specific data.

Methods
Study design and populations
Our study design included a discovery step comprising
three population-based studies (WHI, MESA, and JHS)
and three replication studies (HyperGEN, Generation
Scotland, and CATHGEN) (Additional file 1: Fig. S1).
WHI is a study of postmenopausal women (aged 50–79
years), comprising 161,808 women recruited from 40 US
clinical centers who participated in an observational
study or in clinical trials during 1993–1998 as previously
described [13–16]. MESA is a multi-ethnic study of sub-
clinical cardiovascular disease and risk factors for cardio-
vascular disease [17], consisting of 6814 asymptomatic
men and women aged 45–84 (38% EA, 28% AA, 22% H/
L, and 12% Asian) recruited from six field centers across
the USA and examined in 2000–2002, followed by four
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subsequent examination periods. JHS is a study of car-
diovascular disease and its risk factors in AA, comprising
5306 African Americans aged 21 to 94 years recruited
from the Jackson, MS, metropolitan area from 2000 to
2004, with four follow-up exams [18]. HyperGEN is a
family-based study with a sib-pair design. Hypertensive
African American sibships were recruited from Forsyth
County, NC, and from the community-at-large in Bir-
mingham, AL, from 1995 to 2000 [19]. Generation
Scotland is a family-based and population-based study
consisting of 23,690 European participants recruited via
general medical practices across Scotland between the
years 2006 and 2011 [20]. CATHGEN is a biorepository
of clinical samples from a prospectively collected clinical
cohort of individuals undergoing cardiac catheterization
at Duke University [21]. Both discovery and replication
included multi-ethnic studies. Study descriptions are
shown in Additional file 2: Supplementary Methods.

Phenotypes
Serum creatinine-based eGFR was estimated using the
Chronic Kidney Disease Epidemiology equation which
includes age, sex, and a constant for AA [22].

Epigenetic data and quality control
Briefly, preprocessing included removal of probes with de-
tection p values > 0.01 in > 10% of samples and samples
with detection p values > 0.01 in > 1% of probes. Beta values
were normalized using beta-mixture quantile (BMIQ)
normalization method (WHI-BAA and WHI-EMPC) [23],
the normal-exponential out-of-band (NOOB) preprocess-
ing method (JHS, MESA, CATHGEN) [24], Subset Quan-
tile Normalization (SQN) (CATHGEN) [25], or dasen
(Generation Scotland) [26]. Batch effect correction was per-
formed using ComBat [27] or adjusting batch as a covariate.
CpGs overlapping with the list of potentially polymorphic
sites in the relevant ethnic group and cross-reactive probes
were removed [28]. Cell proportions were estimated using
the reference-based Houseman method for whole blood
[29]. To adjust for population structure, principal compo-
nents (PCs) or ethnic-informative markers were obtained
from the genome-wide genotype data available using stand-
ard methods [30]. DNAm sites were annotated to include
chromosome, position, UCSC gene names, relationship to
CpG islands, location in gene enhancer regions, and DNase
I hypersensitive sites (DHSs) using Illumina’s annotation
file [31]. Detailed methods for MESA, which have not been
previously published, are included in Additional file 2: Sup-
plementary Methods.

EWAS
Methylation betas were used as predictors for eGFR in
ethnic-stratified analyses, adjusting for age, sex, smoking
history (current, past, and no smoking, and pack-years),

4 to 10 principal components, cell type composition, and
study-specific covariates. DMPs were modeled by fitting
robust linear models (or linear mixed models in JHS to
account for family relationships) and performing robust
standard error calculations via the 'sandwich' package.
These analyses were performed using R version 3.5.3.
Because of the small samples within each ethnicity in
MESA, we fitted linear models in that study without ro-
bust estimation. EWAS results were meta-analyzed
across all samples and within each ethnicity using fixed-
effect inverse-variance weighted methods implemented
in METAL. We required a minimum of two studies for
meta-analyses. We used an FDR < 0.05 (Benjamini-
Hochberg).
EWAS analyses were subsequently performed in

HyperGEN (AA), Generation Scotland (EA), and CATH
GEN (AA and EA) using the same statistical protocols
as in discovery analyses. For trans-ethnic replication, we
combined all the replication samples and used a
Bonferroni-adjusted p-value cutoff for the 78 tests that
were performed (p = 6.4E−04). We also considered if the
direction of effects between discovery and replication
samples was concordant. For ethnic-specific replication,
we used EA replication samples for EA or H/L discovery
meta-analyses, while for AA replication, we used AA
replication samples, a Bonferroni-corrected p < 2.1E−03,
and consistency in direction of effects. We also
attempted to replicate DMPs from a published study
[11]. This published study used eGFR instead of DMPs
as a predictor in models and therefore the estimates
were not comparable to our study.

In silico annotation using eFORGE and eFORGE-TF, and
pathway analyses
We performed functional overlap analysis of DMPs with
eFORGE version 2.0, analyzing the default top 1000
probes from EA, AA, H/L, and all-ethnic probe sets for
overlap enrichment across DNase I hotspots from the
Roadmap Epigenomics Consortium [32, 33]. To ascer-
tain whether the observed enrichment was robust and
associated with top probe sets below the EWAS signifi-
cance threshold, we applied additional eFORGE analyses
across the 5 top EA CpG sets (comprising CpGs 1–
1000, 1000–2000, 2000–3000, 3000–4000, 4000–5000,
ordered by p-value), to detect overlap enrichment across
DNase I hotspots from the Roadmap Epigenomics Con-
sortium [32, 33]. We thus performed integrative epige-
nomics analyses on data from the Roadmap
Epigenomics consortium [34] using the eFORGE frame-
work (https://eforge.altiusinstitute.org/) [32, 33]. To fur-
ther understand eFORGE enrichment results, we
performed TF motif analysis on the probes underlying
eFORGE tissue-specific enrichment signal for kidney.
We used the eFORGE-TF module, seeking to uncover
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the main TF motifs associated with our DNase I hotspot
enrichment for top sites [33]. We used PANTHER ana-
lysis via the AmiGO framework to uncover pathways as-
sociated with the identified TF motifs [35].

meQTL data in the whole blood
We used publicly available data from the biobank-based
integrative omics study (BIOS) QTL database [36, 37]
and cis-meQTL data from the FHS (n = 4170 partici-
pants, 450K DNAm panel, 1000G imputed data, defined
within 2-Mb window) [38]. We also used meQTL data
from mQTLdb [39].

meQTL in normal kidney tissue
We analyzed a total of 211 individuals with matching
kidney genome-epigenome information from TRAN
Scriptome of renaL humAn TissuE Study (TRANSLAT
E), an extension of the TRANSLATE study (TRANSLAT
E-T), Renal gEne expreSsion and PredispOsition to car-
diovascular and kidNey Disease (RESPOND), and mo-
lecular analysis of mechanisms regulating gene
expression in post-ischemic injury to renal allograft
(REPAIR) (n = 192), in addition to normal samples with
available genotype and kidney DNAm profiles from the
National Institutes of Health (NIH) Tissue Cancer Gen-
ome Atlas (TCGA) (n = 19) [40–43]. Kidney tissue sam-
ples from TRANSLATE, RESPOND, and TCGA were
taken from the healthy, unaffected by cancer part of the
organ after elective nephrectomies, and renal specimens
in TRANSLATE-T and REPAIR studies were collected
as pre-implantation biopsies from deceased donors’ kid-
neys before transplantation [40, 42, 43]. Information on
local recruitment teams, genotyping, and DNAm
methods are included in Additional file 2: Supplemen-
tary Methods. In total, 374,826 CpG sites were available
for further analyses after quality control filters. For post-
EWAS DMP analysis, we conducted kidney cis-meQTL
analysis on 62 DMPs (out of 374,826) from the study.
For GWAS SNP analysis, we conducted kidney cis-
meQTL analysis on a set of published eGFR GWAS
SNPs [44]. The cis-meQTL analysis was conducted on
195 kidney DNA samples that passed all quality control
criteria. For analysis, we used the FastQTL pipeline [45].
We used normalized M-values and genotype information
for all genotyped and imputed variants passing the qual-
ity control filters under an additive mode of inheritance.
Regression models included age, sex, genotyping array,
source of tissue indicator (nephrectomy/kidney biopsy),
the top three PCs derived from genotyped autosomal
variants (genotype PCs), and six PCs derived from
methylation array control probes (methylation PCs). The
FastQTL cis-region was defined as ±1Mb from each
tested CpG/SNP position. For EWAS DMP blood-
kidney meQTL comparison analysis, we compared

DMP+kidney meQTL CpGs to blood meQTL CpGs
from mQTLdb and calculated the percentage of overlap
for data from both sources.

eFORGE analysis for kidney meQTL CpGs
Standard eFORGE analyses were performed using de-
fault settings. For kidney meQTL CpGs, we analyzed
eGFR SNPs overlapping kidney DNase I hotspots (top
category from https://forge2.altiusinstitute.org/files/
0x454A546E8E9C11EA8198793F5BFE3F98/index.html).
We searched for these SNPs in the kidney meQTL file,
obtaining preliminary associated meQTL CpGs (nominal
p-value < 0.05) and preliminary non-associated meQTL
CpGs (nominal p-value > 0.95), for the same set of SNPs.
Standard eFORGE analyses were performed on both of
these sets.

Results
Overview of EWAS results
The study design is shown in Fig. 1 and Additional file 1:
Fig. S1. Discovery EWAS meta-analyses included up to
5428 individuals, with 2879 AA, 1737 EA, and 812 H/L
participants (Additional file 3: Table S1). Quality control
of DNAm data and protocol analyses for each study are
shown in Additional file 3: Table S2. We performed ana-
lyses within each study and ethnic group using standard
statistical protocols followed by meta-analyses of the
overall samples and within each ethnicity. The quantile-
quantile and Manhattan plots for meta-analyses are
shown in Additional file 1: Fig. S2. Lambdas for meta-
analyses were 0.987 (AA), 1.001 (EA), 1.065 (H/L), and
1.194 (trans-ethnic meta-analysis). Across our discovery
analyses, we identified a total of 93 DMPs associated
with eGFR at an FDR of 0.05. Of these, 78 DMPs were
identified in trans-ethnic meta-analyses, 23 DMPs in the
meta-analysis of AA, 5 in the meta-analysis of H/L, and
5 in the meta-analysis of EA, with some overlap in DMP
findings between trans-ethnic and ethnic-specific results.
Indeed, most of the DMPs identified in trans-ethnic

analyses were also present in one or more ethnic groups
(Fig. 1a). However, the overlap between DMPs of AA
and EA was small. Trans-ethnic replication included up
to 8109 participants from three studies (Generation
Scotland, CATHGEN, and HyperGEN), composed of
participants of EA and AA (9% of replication samples)
(Additional file 1: Fig. S1) [11]. Replication of EA or H/L
findings included Generation Scotland and CATHGEN
EA samples (n = 7349) and AA included CATHGEN and
HyperGEN samples (n = 760). Among the significantly
identified trans-ethnic DMPs (Bonferroni corrected p-
value and consistent direction of effects), 13 of 78 repli-
cated (Table 1), and among the significantly identified
DMPs in ethnic-specific meta-analyses, 1 of 5 AA DMPs
replicated (cg14871770 at CYP2C9) (Additional file 3:
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Table S3). Despite independent replication in AA,
cg14871770 overlapped with trans-ethnic replicated
DMPs (Fig. 1b). Twelve additional DMPs had replication
(with consistent direction of effects) in trans-ethnic
meta-analyses (Additional file 3: Table S3a). The DMP
cg14871770 overlapped between trans-ethnic and AA

meta-analyses, and the cg17944885 at the ZNF20-
ZNF788P locus was previously described [11]. Several of
the replicated DMPs were expression quantitative trait
methylation loci (eQTM) or cis-meQTL CpGs in whole
blood in FHS and (BIOS QTL) (Table 1) [36–38]. Repli-
cation results for all DMPs are shown in Additional file 3:

b.a. Top 1000 CpGs from each ethnicity
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Fig. 1 Overview of trans-ethnic and ethnic-specific CpGs associated with kidney function. a Venn diagram showing trans-ethnic and unique CpGs
across the top 1000 sites for European Americans (EA), African Americans (AA), Hispanic/Latino (H/L), and trans-ethnic groups. b Euler diagram
showing the number of overlapping CpGs (1) between trans-ethnic replicated DMPs (13) and discovery ethnic-specific DMPs for African
Americans -AA- (5). c Study design, consortium information, sample size, and the number of significant DMPs for both trans-ethnic and ethnic-
specific EWAS analyses. Details shown both for discovery (top) and replication analyses (bottom). For these analyses, consortia include the
Women’s Health Initiative (WHI), the Jackson Heart Study (JHS), MESA, HyperGEN, Generation Scotland, and CATHGEN. In addition, we used kidney
DNAm data from the TRANSLATE, TRANSLATE-T, RESPOND, and REPAIR studies for cis-meQTL analyses and Roadmap Epigenomics data
for eFORGE DHS analyses
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Tables S3a (trans-ethnic analyses) and Additional file 3:
Table S3b (ethnic-specific analyses). Forest plots for each
of the replicated DMPs are shown in Additional file 1:
Fig. S3. We also replicated 6 DMPs identified in a prior
publication (DMPs located at genes DAZAP1,
KIAA1549L, TUBGCP4/ZSCAN29, JAZF1, ZNF20-
ZNF788P, LDB2) (Additional file 3: Table S4) [11].

Overlap of eGFR-associated DMPs with genes and
regulatory elements
To understand the regulatory context of our DMPs, we
annotated the 13 replicated significant DMPs with the
closest gene and other information including epigenomic
peaks, tissue-specific gene expression via RNA-seq, and
chromatin interaction annotations. One of our DMPs
(cg11789371) is located in an intron of HSP90AA1, a
gene involved in protecting kidney tissue from inflam-
mation, ischemia, and oxidative damage, and assisting
with cellular repair (Fig. 2) [46]. HSP90 (heat shock pro-
tein 90) has a physiological role in eGFR regulation
through the nitric oxide pathway and is a drug target
candidate for kidney diseases [46]. Indeed, inhibition of
HSP90 has been shown to reduce eGFR in animal
models [46]. DMP cg11789371 overlaps epigenomic an-
notations from the ENCODE consortium including
DNase I hypersensitive sites in kidney cells, among other
cell types. This DMP is a cis-meQTL CpG regulated by
rs11621083, a variant located upstream in an intron of
HSP90AA1. The DMP also forms part of a GeneHancer

interacting site, contacting the promoter of WDR20 and
an alternative promoter of HSP90AA1 which is located
50 kb away. The entire region surrounding this DMP
contains a number of genes expressed in the kidney, sev-
eral of which seem to interact with these two promoters.
Genes from this locus presenting RNA-seq expression in
the kidney include DYNC1H1, MOK, ZNF839, WDR20,
and HSP90AA1. Taken together, annotations for our
DMP cg11789371, which overlaps an intron of
HSP90AA1, a gene associated with eGFR regulation, sug-
gest a potential link between DNA methylation and
eGFR regulation through the nitric oxide pathway.

DMPs for eGFR are enriched for kidney regulatory
function related to kidney development
To further understand the regulatory potential and chro-
matin context of our EWAS findings across different tis-
sues, we performed integrative epigenomics analyses on
data from the Roadmap Epigenomics consortium [34]
us ing the eFORGE framework (ht tps : / /e forge .
altiusinstitute.org/) [32, 33]. We found enrichment for
kidney-specific DNase I hotspots, which has also been de-
scribed in GWAS of eGFR (Fig. 3a, d) [4, 47]. eFORGE
showed consistent enrichment results for kidney-specific
DNase I hotspots when applied to the top EA discovery
probes, showing a corresponding trend with study p-value
(analyses performed using the “EPIC” setting with 1000
repetitions, BY correction). In addition, analysis with
eFORGE-TF uncovered significant enrichment for several

Table 1 Main findings from trans-ethnic EWAS meta-analyses for 13 replicated DMPs

Our study discovery Sample size by
DNAm array

Replication GS/
CATHGEN/HyperGEN

Combined
discovery and
replication

DMP Chr Position (hg38) Gene Effect p 450K EPIC 850 K Effect p Effect p

cg13235761^ 1 203,592,452 − 37.61 4.33E−06 3048 2378 − 25.28 5.08E−05 − 29.81 1.88E−09

cg26099045^* 2 64,064,666 14.82 5.74E−06 3050 2378 11.24 1.01E−04 12.81 3.26E−09

cg04428662^Ω* 4 2,932,461 MFSD10 − 30.84 3.21E−06 3049 2378 − 34.94 3.43E−07 − 32.82 5.51E−12

cg23174201^* 5 151,674,695 SPARC − 35.83 5.10E−06 3050 2378 − 34.87 1.72E−07 − 35.27 4.02E−12

cg17170437 6 44,229,461 SLC29A1 − 47.62 1.96E−06 N/A 2378 − 18.62 1.49E−04 − 24.24 3.80E−08

cg14871770 10 96,658,622 CYP2C9, CYPC19 − 53.12 1.98E−06 N/A 2378 − 25.87 1.70E−04 − 33.36 1.23E−08

cg02157636 11 68,709,367 TESMIN − 53.21 2.15E−06 N/A 2378 − 27.25 1.14E−05 − 33.33 8.58E−10

cg26039141^Ω 11 75,402,116 RPS3 − 39.14 3.40E−06 3050 2378 − 33.42 1.78E−05 − 36.06 2.90E−10

cg22593432^* 13 32,001,768 − 29.91 1.54E−07 3050 2378 − 17.66 1.79E−04 − 22.64 4.61E−10

cg11789371^* 14 102,085,048 HSP90AA1 − 35.40 4.44E−06 3050 2378 − 22.66 3.58E−04 − 27.80 1.41E−08

cg05796561 18 57,128,273 − 45.24 2.96E−06 N/A 2378 − 22.91 1.69E−04 − 29.24 1.41E−08

cg17944885^Ω* 19 12,114,920 ZNF20, ZNF788P − 32.71 1.41E−09 3048 2378 − 16.34 5.67E−07 − 20.72 1.24E−13

cg15787712^ 19 13,837,429 LOC284454, MIR23 − 37.60 6.00E−09 3050 2378 − 28.65 2.06E−05 − 33.30 9.01E−13

p-value for replication < 6.4E−04 (Bonferroni correction for 78 DMPs tested). Four of the 13 DMPs that replicated were non-450K probes (cg17170437, cg14871770,
cg02157636, cg05796561). Results from combined discovery and replication are also shown
GS Generation Scotland, N/A not applicable
^cis-meQTL from the BIOS QTL [36, 37]
ΩExpression quantitative trait methylation (eQTM) data from the BIOS QTL (enrichment p-value <0.01) [36, 37]
*cis-meQTL in the Framingham Heart Study [38]
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transcription factor (TF) motifs (including motifs for
OSR1, OSR2, TBX1, and PAX2). OSR1, OSR2, TBX1, and
PAX2 have all been shown to have roles in kidney devel-
opment (Fig. 3c) [48–50]. To further understand the path-
ways underlying TF motif enrichment, we performed
PANTHER pathway analysis using significant TF motifs
[35]. This analysis uncovered pathways associated with

kidney development, including metanephros development
(8.1 × 10−3), mesonephros development (9.7 × 10−3), and
retinoic acid receptor signaling pathway (6.4 × 10−3) (Add-
itional file 3: Table S5). Overall, these findings suggest that
epigenetic changes related to eGFR are enriched in kidney
regulatory regions and pathways related to kidney
development.
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Fig. 2 eGFR-associated differentially methylated position cg11789371. a HSP90AA1 gene browser shot showing (from top to bottom) genome
coordinates, local genes, NHGRI/EBI GWAS catalog SNPs, GTEx gene expression quantified via RNA-seq across different tissues, H3K27ac peaks
across 7 ENCODE cell lines, GeneHancer regulatory elements, Genecards TSSs, GeneHancer chromatin interactions, ENCODE chromatin
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2 region determined by ENCODE ChIA-PET across several cell lines, and the promoter of HSP90AA1. All browser shots were generated using the
UCSC genome browser (https://genome.ucsc.edu/) on human genome build hg19
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eGFR GWAS variants, meQTL CpGs, and tissue-specific
DNase I hotspots
Previous reports and our analyses confirm that eGFR
GWAS variants are enriched for kidney DNase I hot-
spots (Fig. 3b, Additional file 1: Fig. S4) [4, 47], indicat-
ing that genotypes might function through kidney-
specific regulatory pathways, potentially converging with
identified EWAS DMPs through mechanisms which are
not fully understood. To explore this further, we used
mQTLdb [39] to identify meQTL CpG targets of eGFR-
associated GWAS SNPs obtained from the GWAS cata-
log [44, 51]. These significant meQTL CpGs linked to
GWAS SNPs revealed significant overlap with eGFR
EWAS sites in our study (p < 0.002, Fig. 4a) and pre-
sented significant enrichment for kidney, renal cortex,
and renal pelvis, among other tissues (Fig. 4b, d, Add-
itional file 1: Fig. S5). These results support a model in
which meQTL CpGs linked to eGFR GWAS SNPs over-
lap with EWAS DMPs and tend to localize to kidney
DNase I hotspots, with potential involvement in their
regulatory action (Fig. 4c). To assess these findings in
human kidney tissue, we analyzed meQTL CpGs of
eGFR SNPs localizing to kidney DNase I hotspots. The
meQTL CpGs were identified from DNAm data from
195 normal kidney tissue samples (acquired from elect-
ive nephrectomies—taking the non-cancer affected seg-
ment—or from kidney donors) as reported previously
[40–42]. While kidney meQTL CpGs not associated with
eGFR SNPs (nominal p-value> 0.95) showed no enrich-
ment in kidney DNase I hotspots (Additional file 1: Fig.
S6), the kidney meQTL CpGs with a nominal p-value <
0.05 were enriched in kidney DNase I hotspots (Add-
itional file 1: Fig. S7) for the same GWAS SNPs. These
results support the aforementioned findings using eGFR
SNP-associated meQTL CpGs from mQTLdb [39]. Add-
itionally, we evaluated the overlap between kidney
meQTL CpGs and blood meQTL CpGs (mQTLdb) for
our top EWAS DMPs. The majority (58.3%) of these
kidney meQTL CpGs were also mQTL CpGs in blood.

Discussion
Main findings
This study used trans-ethnic and ethnic-specific analyses
of multi-ethnic cohorts to identify and replicate DMPs
associated with eGFR. Our main findings include repli-
cated DMPs at 13 sites from trans-ethnic analyses and 1
DMP from AA-specific analyses, which may reflect the
larger AA discovery sample compared to other ethnic
groups. All associations were newly identified in this
study, except for the ZNF20-ZNF788P locus, which was
previously described in two separate eGFR EWAS, includ-
ing a population-based cohort and an HIV-infected cohort
[11, 52]. Several DMPs were associated with accessible
chromatin sites in kidney tissue, suggesting a regulatory
role for these sites. Overall, our study identified 12 previ-
ously unreported DMPs that replicated, in addition to 6
previously published DMPs for eGFR among our 93 dis-
covery DMPs [11]. These findings support an association
between DNAm and eGFR, reflecting a convergence of
lifetime influences of genetic effects, lifestyle, behaviors,
and environmental exposures [53–55].

Differences between ethnicities
Our approach of studying multi-ethnic groups identified
DMPs from trans-ethnic and ethnic-specific analyses. This
approach contrasts with a prior study that performed sep-
arate EA and AA analyses with cross-replication across
these groups [11]. Across our two largest ethnic-specific
samples (AA and EA), there was little overlap between
DMPs from discovery analysis, although several discovery
ethnic-identified DMPs did overlap with trans-ethnic find-
ings (Fig. 1a). The DMP cg14871770, which is located be-
tween CYP2C9 and CYP2C19 (cytochrome P450 family 2
subfamily C members 9 and 19), was identified both in
ethnic-specific and trans-ethnic analysis. The closest
GWAS SNP to this DMP is rs4110517, a SNP associated
with blood pressure identified in a multi-ethnic cohort
[56]. CYP2C9 and CYP2C19 encode members of the cyto-
chrome P450 superfamily of enzymes. Cytochrome P450

(See figure on previous page.)
Fig. 3 Tissue-specific integrative analysis indicates potential effect on kidney and relation with eGFR GWAS loci. a eFORGE analysis for top 1000
eGFR CpGs: the x axis indicates tissues/cell type samples used in the analysis; the y axis shows eFORGE enrichment (−log10 p-value) of the CpG
set with DNase I hotspots for a range of tissue samples (significant samples in black). The highest ranked sample set (highest black points) shows
the most significant enrichment is for kidney samples, which are highly ranked for the top 1000 CpGs associated with eGFR. b FORGE2 analysis
for eGFR SNPs from GWAS catalog: the x axis indicates tissues/cell type samples used in the analysis; the y axis shows FORGE2 enrichment
(−log10 p-value) of the SNP set with DNase I hotspots for a range of tissue samples (significant samples in black). The highest ranked sample set
(highest black points) shows the most significant enrichment also is for kidney samples, which are highly ranked for the top 249 SNPs associated
with eGFR (taken from the GWAS catalog, https://www.ebi.ac.uk/gwas/, downloaded 10 April 2020). c TF motif enrichment results for EA probes
driving eFORGE tissue-specific enrichment signal: the x axis indicates TF motifs from TRANSFAC, JASPAR, Taipale/SELEX, and Uniprobe databases;
the y axis shows eFORGE-TF enrichment (−log10 hypergeometric p-value) of the input DMP set with TF motifs overlapping open chromatin sites
for fetal kidney samples. Enrichment values for each TF motif are colored according to BY FDR-corrected q-value. A number of TF motifs involved
in kidney development overlap top EA probes including OSR1, OSR2, TBX1, and PAX2. d Aggregated eFORGE results for EA probes: the x axis
indicates sets of the top ranked DMPs used in the analysis (each set contains 1000 DMPs); the y axis shows eFORGE enrichment (−log10 p-value)
of each of the DMP sets with open chromatin sites for kidney (red) and other tissue samples (gray). The highest ranked probe set (set 1, left)
shows the most significant enrichment for kidney samples, which remain highly ranked for probe sets 2–5, in decreasing order of study p-value
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Fig. 4 (See legend on next page.)
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proteins are monooxygenases that catalyze many reactions
involved in the synthesis of cholesterol, other steroids, and
other lipids, and in drug metabolism. CYP2C19 genotype
is associated with the metabolism of compounds influen-
cing both renal function and hypertension [57]. The rele-
vance of ethnic-specific findings to clinical phenotypes
will need further evaluation in studies with larger samples
inclusive of multiple ethnicities to define improved
DNAm signatures for eGFR that may be unique to one
single ancestry. Our findings suggest reduced utility of
DNAm biomarkers for eGFR in diverse populations if dis-
covery EWAS is performed in a single homogenous
population.

Relevance of HSP90AA1 locus
Among other findings, we report a replicated trans-
ethnic DMP (cg11789371) associated with eGFR that
localizes to an intron of HSP90AA1 (heat shock pro-
tein 90 alpha family class A member 1), a gene
expressed in podocytes, parietal epithelial cells, prox-
imal tubular cells, endothelium, and mesangial cells
in normal kidney tissue, with gene expression in-
creasing in glomerulonephritis and acute kidney in-
jury [46]. The gene product, HSP90, regulates renal
blood flow and eGFR through nitric oxide metabol-
ism and plays a role in protein folding [46]. HSP90
and other heat shock proteins are candidate drug
targets for a variety of kidney diseases [46, 58].
Treatment with radicicol, an inhibitor of HSP90, has
been shown to reduce eGFR in animal models [58].
DMP cg11789371 overlaps an accessible chromatin
region in kidney cells, and a GeneHancer interacting
site contacting the promoters of WDR20 and
HSP90AA1. These and other different annotations
point to a potential regulatory role in kidney tissue
for this eGFR-associated DMP.

Integrative epigenomics and pathway analysis
We detected a significant overlap of eGFR GWAS SNP-
associated meQTL CpGs with kidney DNase I hotspots.

Additionally, our eGFR EWAS DMPs were enriched for
kidney DNase I hotspots. These findings suggest poten-
tial links between the regulatory action of both geno-
types and epigenetic DNAm elements. Importantly,
these integrative epigenomic analyses considered all tis-
sues available instead of only kidney tissue.
While some regions of the methylome show tissue

specificity [59], EWAS have also shown that some
DMPs are shared across different tissues, e.g., the
AHRR locus DNAm patterns in response to smoking
are shared across multiple tissues [60]. Pan-tissue
findings for AHRR suggest similar underlying path-
ways in response to the same environmental stimulus
[60]. Regarding discrepancies in trans-ethnic results,
both genetic and environmental differences could be
at play, potentially interacting with each other. In this
context, our findings of both a kidney-specific DNase
I hotspot and GWAS meQTL enrichment for a whole
blood-based EWAS could be due to both genetic and
environmental origins and warrant further research of
kidney tissue DNAm in association with eGFR. In-
deed, such results raise the intriguing hypothesis that
tissue-specific enrichments observed separately in
GWAS and EWAS might be related by the same gen-
omic variants, thus aiding the integration of both ap-
proaches (Fig. 4a). It is important to highlight that
both whole blood and kidney tissue eQTLs were ob-
tained from individuals of European ethnicity [40–43].
The identification of eGFR DNAm signature-

associated pathways is an important step towards char-
acterizing epigenetic mechanisms for this physiologic
trait and may provide clues to underlying mechanisms
for CKD. Identified DMPs highlight an association with
pathways of kidney development, which can influence
nephron endowment at birth and subsequent CKD risk
[48–50, 61]. Our in silico results were influenced by our
DNAm findings in healthy adult kidney. Therefore, path-
way results from this study support epigenetic effects
during developmental windows with long-term influence
on eGFR, which warrant further investigation.

(See figure on previous page.)
Fig. 4 eGFR EWAS CpGs present a significant overlap with eGFR GWAS-driven meQTL effects. a Histogram of 1000 random background
simulations (249 random SNPs each), for EWAS-meQTL overlap across the ARIES blood meQTL dataset (http://www.mqtldb.org/). Two hundred
forty-nine unique significant SNPs from the eGFR GWAS by Hellwege et al. yield 13 SNP-meQTL-EWAS DMP sites in the Aries cohort (p = 2.0E−03,
empirical test, red dot and arrow), while background SNP sets overlap a mean of 0.912 SNP-meQTL-EWAS sites. b Histogram of 1000 random
background simulations (249 random SNPs each), for meQTL-kidney DNase I hotspot overlap across Roadmap Epigenomics “Kidney” sample
datasets (https://egg2.wustl.edu/roadmap/web_portal/). Two thousand seven hundred thirty-three meQTL targets of 249 unique significant SNPs
from the eGFR GWAS by Hellwege et al. overlap Roadmap kidney DNase I hotspots 519 times (p < 0.001, empirical test, red dot and arrow), while
background SNP sets overlap Roadmap kidney DNase I hotspots a mean of 67.021 times (SD = 24.754). c Schematic showing the association of
eGFR GWAS SNPs with meQTL target CpGs and eGFR EWAS CpGs (both in red text), some of which overlap kidney-specific DNase I hotspots
(shown in blue, arrows indicate statistical association—not genomic contact). For comparison, a representation of a background SNP is shown. d
Results from eFORGE analysis of significant ARIES meQTL CpGs associated with eGFR GWAS SNPs, indicating a higher-than expected overlap with
the kidney, renal cortex, and renal pelvis DNase-seq hotspots (for additional results, see Additional file 1: Fig. S5)
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Limitations
This study is limited by the use of whole blood as
the main tissue (chosen due to its availability). The
discovery datasets included both the Illumina 450K
and the EPIC 850K arrays, which contributed to dif-
ferences in sample sizes and power to detect associa-
tions for some CpGs (Table 1). Post hoc power
analyses suggest adequate power to detect DNAm
differences of the range observed in the study (Add-
itional file 2: Supplementary Methods). The methods
for normalization of the DNAm beta values and
study-specific quality control varied (Additional file 3:
Table S2). However, we applied standardized proto-
cols for data harmonization and statistical analyses
in addition to stringent quality control as part of our
meta-analyses. Our findings showed no heterogeneity
of effects across studies (Additional file 1: Fig. S3),
suggesting that results are robust to study-specific
quality control and normalization procedures. Add-
itionally, our reported DMPs replicated in independ-
ent samples, further validating our results. It is
important to consider whether these DNAm sites as-
sociated with eGFR in blood are also applicable to
effects in kidney tissue. We attempted to answer this
by examining our identified meQTLs in normal kid-
ney tissue in the TRANSLATE study. However, kid-
ney tissue studies still have small sample sizes and
lack ethnic diversity. While epigenomic mapping
consortia such as Roadmap Epigenomics and EN-
CODE have made important steps to increase the
free availability of a wide range of tissue and cell
type-specific datasets, the important issue of includ-
ing additional epigenomics mapping data sets for
other ancestries remains to be addressed. It is im-
portant to highlight that we only observe eFORGE
kidney enrichment for top EA probes. While this
kidney-specific DNase I hotspot enrichment has been
further confirmed by analyzing ranked DMPs in
study p-value order (Fig. 3d), it is not apparent for
DMPs from other ethnicities, or for DMPs for ana-
lysis comprising all ethnicities. DNase-seq datasets
for these samples originate from the Roadmap Epige-
nomics consortium [34], which focused mainly on
tissue samples obtained from EA individuals. With-
out datasets from diverse ethnic groups, it will be
difficult to conclusively study inter-ethnic epige-
nomic variability or perform tissue-specific analyses
for loci from GWAS and EWAS performed on indi-
viduals of non-European origin.

Conclusions
We identified trans-ethnic and ethnic-specific differ-
ential DNAm positions, validated prior published

associations, and showed that several eGFR DMPs
identified in this study replicated in independent sam-
ples. We have also shown that some of the DMPs are
meQTL CpGs, many of which are associated with
pathways relevant for kidney tissue regulation and de-
velopment. Our findings include a DMP at
HSP90AA1, a gene involved in the regulation of eGFR
in kidney tissue. Identification of trans-ethnic and
ethnic-specific DMPs and elucidation of their poten-
tial functional impact are preliminary steps towards
identifying disease-associated epigenetic mechanisms
that are specific to a particular population or shared
across different populations.

Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13073-021-00877-z.

Additional file 1: Supplementary Figures. Figure S1 to S7. Study
design, QQ plots, Manhattan plots, forest plots and eFORGE/FORGE2
analyses.

Additional file 2: Supplementary Methods. Description of different
constituent cohorts and studies, in addition to power analyses.

Additional file 3: Supplementary Tables. Tables S1 to S5.
Descriptive characteristics, quality control and processing, and results.

Acknowledgements
The authors thank the CATHGEN Steering Committee, the faculty and staff of
the Duke cardiac catheterization lab, and the CATHGEN participants for
making this work possible. We are grateful to all the families who took part,
the general practitioners and the Scottish School of Primary Care for their
help in recruiting them, and the whole Generation Scotland team that
includes interviewers, computer and laboratory technicians, clerical workers,
research scientists, volunteers, managers, receptionists, healthcare assistants,
and nurses. The authors also wish to thank the staff and participants of the
JHS. The authors thank the WHI investigators and staff for their dedication
and the study participants for making the program possible.

Authors’ contributions
Advised or performed statistical analyses (CEB, AB, MKL, JCM, MDS, RJ, DLM,
XX, AP, JME, APM, REM, SB, SIB, SJL). Study design (CEB, SJL, NF).
Generated data (YL, RPT, DVDB, EAW, LH, HJK, LR, LL, EL, PD, KE, WEK, SS,
HKT, XJ, FJC, AAB, SSR, MI, DKA, ERH, JIR, AC, CH, SH, MT). CEB and NF wrote
the paper with contributions from all other authors. All authors read and
approved the final manuscript.

Funding
This study was supported by the National Institutes of Health R01-
MD012765, R01-DK117445, and R21-HL140385 to NF. The TRANSLATE studies
and MT are supported by British Heart Foundation project grants PG/17/35/
33001 and PG/19/16/34270, Kidney Research UK grant RP_017_20180302,
and Medical University of Silesia grants KNW-1-152/N/7/K and KNW-1-171/N/
6/K. WT206194. DLM and REM are supported by Alzheimer’s Research UK
major project grant ARUK-PG2017B-10. CH is supported by an MRC University
Unit Programme Grant MC_UU_00007/10 (QTL in Health and Disease). SJL
and MKL are supported by the Intramural Program of the NIH, National
Institute of Environmental Health Sciences (ZO1 ES043012). SB acknowledges
funding from the Wellcome Trust (218274/Z/19/Z). CEB and SIB are supported
by the Intramural Research Program of the Division of Cancer Epidemiology
and Genetics, National Cancer Institute, NIH.
The CATHGEN study was supported by NIH grants HL095987 and HL036587.
Generation Scotland (GS) received core support from the Chief Scientist
Office of the Scottish Government Health Directorates (CZD/16/6) and the
Scottish Funding Council (HR03006). Genotyping and DNA methylation
profiling of the GS samples was carried out by the Genetics Core Laboratory

Breeze et al. Genome Medicine           (2021) 13:74 Page 12 of 16

https://doi.org/10.1186/s13073-021-00877-z
https://doi.org/10.1186/s13073-021-00877-z


at the Clinical Research Facility, University of Edinburgh, Edinburgh, Scotland,
and was funded by the Medical Research Council UK and the Wellcome
Trust (Wellcome Trust Strategic Award “STratifying Resilience and Depression
Longitudinally” (STRADL; Reference 104036/Z/14/Z)).
Support for the Multi-Ethnic Study of Atherosclerosis (MESA) projects are
conducted and supported by the National Heart, Lung, and Blood Institute
(NHLBI) in collaboration with MESA investigators. Support for MESA is pro-
vided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159,
75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161,
75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163,
75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-
95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-
001079, and UL1-TR-001420. Also supported in part by the National Center
for Advancing Translational Sciences, CTSI grant UL1TR001881, and the
National Institute of Diabetes and Digestive and Kidney Disease Diabetes
Research Center (DRC) grant DK063491 to the Southern California Diabetes
Endocrinology Research Center. The TOPMed MESA Multi-Omics project was
conducted by the University of Washington and LABioMed
(HHSN2682015000031/HHSN26800004).
The Jackson Heart Study (JHS) is supported and conducted in collaboration
with Jackson State University (HHSN268201800013I), Tougaloo College
(HHSN268201800014I), the Mississippi State Department of Health
(HHSN268201800015I), and the University of Mississippi Medical Center
(HHSN268201800010I, HHSN268201800011I, and HHSN268201800012I)
contracts from the National Heart, Lung, and Blood Institute (NHLBI) and the
National Institute for Minority Health and Health Disparities (NIMHD). The
views expressed in this manuscript are those of the authors and do not
necessarily represent the views of the National Heart, Lung, and Blood
Institute; the National Institutes of Health; or the US Department of Health
and Human Services. The funders had no role in the design and conduct of
the study; in the collection, analysis, and interpretation of the data; and in
the preparation, review, or approval of the manuscript.
The WHI program is funded by the National Heart, Lung, and Blood Institute,
National Institutes of Health, US Department of Health and Human Services,
through contracts HHSN268201600018C, HHSN268201600001C,
HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C. A
full listing of WHI investigators can be found at http://www.whi.org/
researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%2
0Long%20List.pdf”.
The Hypertension Genetic Epidemiology Network (HyperGEN) Study is part
of the National Heart, Lung, and Blood Institute (NHLBI) Family Blood
Pressure Program; collection of the data represented here was supported by
grants U01 HL054472, U01 HL054473, U01 HL054495, and U01 HL054509.
The HyperGEN: Genetics of Left Ventricular Hypertrophy Study was
supported by NHLBI grant R01 HL055673 with whole-genome sequencing
made possible by supplement -18S1. The epigenetic data in HyperGEN was
funded by an American Heart Association Cardiovascular Genome-Phenome
Study Pathway Grant Award 15GPSPG23890000.

Availability of data and materials
Investigators interested in retrieving the controlled-access data at dbGap
for WHI-BAA23 and MESA should apply using identifiers
phs000200.v10.p3 and phs001416.v1.p, respectively (available online at
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs000200.v10.p3 and https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001416.v1.p1). The summary results from this
study are placed in dbGaP with accession number phs000930.v8.p1.
While awaiting data release via dbGaP, data are available at https://sph.
unc.edu/wp-content/uploads/sites/112/2021/02/EWAS_COGENT.tar. Access
to the WHI-EMPC DNA methylation dataset is available upon request to
www.whi.org. DNA methylation datasets from JHS and HyperGEN have been re-
cently generated and upload to dbGap is ongoing. JHS data are available on re-
quest from www.jacksonheartstudy.org and HyperGEN data are available from the
corresponding author from Ammous et al. [62]. Currently, JHS and WHI datasets
are available through a scientific review application process directed to each re-
spective study publication and presentation committee. Data can be obtained
from the coordinating center of WHI and JHS after signing a data use agreement
with the study. For research projects that meet the rules for access, CATHGEN data
are available from the CATHGEN Steering Committee. Relevant requests are to be
sent to the contact person at the CATHGEN Steering Committee, Melissa Hurdle
(melissa.hurdle@duke.edu). According to the terms of consent for GS participants,

access to individual-level data (omics and phenotypes) must be reviewed by the
GS Access Committee. Applications should be made to
access@generationscotland.org. The source code used for the eFORGE analyses is
publicly available at https://github.com/charlesbreeze/eFORGE [32] and https://
github.com/charlesbreeze/eFORGE-TF [33].

Declarations

Ethics approval and consent to participate
All participants provided informed written consent to participate in these
studies, and studies were approved by the Institutional Review Boards at
each recruiting site.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Division of Cancer Epidemiology and Genetics, National Cancer Institute,
National Institutes of Health, Department Health and Human Services,
Bethesda, MD, USA. 2UCL Cancer Institute, University College London,
London WC1E 6BT, UK. 3Altius Institute for Biomedical Sciences, Seattle, WA
98121, USA. 4Department of Biostatistics, University of North Carolina, Chapel
Hill, NC 27516, USA. 5Epidemiology Branch, National Institute of
Environmental Health Sciences, National Institutes of Health, Department of
Health and Human Services, Research Triangle Park, NC 27709, USA. 6Division
of Biomedical Informatics and Personalized Medicine, University of Colorado
Anschutz Medical Campus, Aurora, CO, USA. 7Division of Cardiovascular
Sciences, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester, UK. 8Centre for Genomic and Experimental Medicine, Institute of
Genetics and Molecular Medicine, University of Edinburgh, Crewe Road,
Edinburgh EH4 2XU, UK. 9Department of Psychiatry and Behavioral Sciences,
Duke University Medical Center, Durham, NC 27701, USA. 10Department of
Biostatistics, University of Alabama, Birmingham, AL, USA. 11Department of
Public Health Sciences and Medicine, Loyola University Chicago, Maywood,
IL, USA. 12Division of Nephrology and Hypertension, Loyola University
Chicago, Maywood, IL, USA. 13Department of Genetics, University of North
Carolina, Chapel Hill, NC, USA. 14Department of Pathology & Laboratory
Medicine, Larner College of Medicine, University of Vermont, Burlington, VT,
USA. 15Duke Molecular Physiology Institute, Duke University Medical Center,
Durham, NC, USA. 16Department of Biochemistry, Larner College of Medicine,
University of Vermont, Burlington, VT, USA. 17Center for Genetic
Epidemiology, Department of Preventive Medicine, Keck School of Medicine
of USC, University of Southern California, Los Angeles, CA, USA. 18Division of
Cardiology, Department of Medicine, School of Medicine, Duke University,
Durham, NC, USA. 19Department of Preventive Medicine, Northwestern
University Feinberg School of Medicine, Chicago, IL, USA. 20Center for Global
Oncology, Institute of Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA. 21Department of Epidemiology,
University of North Carolina, Chapel Hill, NC, USA. 22Department of Medicine,
University of North Carolina, Chapel Hill, NC 27599, USA. 23School of Health
and Life Sciences, Federation University Australia, Ballarat, VIC, Australia.
24Department of Physiology, University of Melbourne, Parkville, VIC, Australia.
25Department of Cardiovascular Sciences, University of Leicester, Leicester,
UK. 26Laboratory of Environmental Epigenetics, Departments of
Environmental Health Sciences and Epidemiology, Columbia University
Mailman School of Public Health, New York, NY, USA. 27Center for Public
Health Genomics, University of Virginia, Charlottesville, VA, USA. 28Centre for
Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research,
The University of Manchester, Manchester, UK. 29Department of
Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA.
30College of Public Health, University of Kentucky, Lexington, KY, USA.
31Durham VA Health System, Durham, NC 27705, USA. 32The Institute for
Translational Genomics and Population Sciences, Department of Pediatrics,
The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical
Center, Torrance, CA, USA. 33Department of Medicine, University of
Mississippi Medical Center, Jackson, MS, USA. 34MRC Human Genetics Unit,
Institute of Genetics and Cancer, University of Edinburgh, Crewe Road,
Edinburgh EH4 2XU, UK. 35Department of Human Genetics, David Geffen

Breeze et al. Genome Medicine           (2021) 13:74 Page 13 of 16

http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000200.v10.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000200.v10.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001416.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001416.v1.p1
https://sph.unc.edu/wp-content/uploads/sites/112/2021/02/EWAS_COGENT.tar
https://sph.unc.edu/wp-content/uploads/sites/112/2021/02/EWAS_COGENT.tar
http://www.whi.org
http://www.jacksonheartstudy.org
mailto:melissa.hurdle@duke.edu
mailto:access@generationscotland.org
https://github.com/charlesbreeze/eFORGE
https://github.com/charlesbreeze/eFORGE-TF
https://github.com/charlesbreeze/eFORGE-TF


School of Medicine, University of California Los Angeles, Los Angeles, CA
90095, USA. 36Department of Biostatistics, Fielding School of Public Health,
University of California Los Angeles, Los Angeles, CA 90095, USA.
37Manchester Heart Centre and Manchester Academic Health Science Centre,
Manchester University NHS Foundation Trust, Manchester, UK.

Received: 10 July 2020 Accepted: 24 March 2021

References
1. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-

sex specific mortality for 264 causes of death, 1980–2016: a systematic
analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:
1151–210.

2. Saran R, Robinson B, Abbott KC, Bragg-Gresham J, Chen X, Gipson D, Gu H,
Hirth RA, Hutton D, Jin Y, Kapke A, Kurtz V, Li Y, McCullough K, Modi Z,
Morgenstern H, Mukhopadhyay P, Pearson J, Pisoni R, Repeck K, Schaubel
DE, Shamraj R, Steffick D, Turf M, Woodside KJ, Xiang J, Yin M, Zhang X,
Shahinian V. US renal data system 2019 annual data report: epidemiology of
kidney disease in the United States. Am J Kidney Dis. 2020;75(1):A6–7.
https://doi.org/10.1053/j.ajkd.2019.09.003.

3. Saran R, Robinson B, Abbott KC, Agodoa LYC, Bhave N, Bragg-Gresham J,
Balkrishnan R, Dietrich X, Eckard A, Eggers PW, Gaipov A, Gillen D, Gipson D,
Hailpern SM, Hall YN, Han Y, He K, Herman W, Heung M, Hirth RA, Hutton D,
Jacobsen SJ, Jin Y, Kalantar-Zadeh K, Kapke A, Kovesdy CP, Lavallee D, Leslie
J, McCullough K, Modi Z, Molnar MZ, Montez-Rath M, Moradi H,
Morgenstern H, Mukhopadhyay P, Nallamothu B, Nguyen DV, Norris KC,
O’Hare AM, Obi Y, Park C, Pearson J, Pisoni R, Potukuchi PK, Rao P, Repeck K,
Rhee CM, Schrager J, Schaubel DE, Selewski DT, Shaw SF, Shi JM, Shieu M,
Sim JJ, Soohoo M, Steffick D, Streja E, Sumida K, Tamura MK, Tilea A, Tong L,
Wang D, Wang M, Woodside KJ, Xin X, Yin M, You AS, Zhou H, Shahinian V.
US renal data system 2017 annual data report: epidemiology of kidney
disease in the United States. Am J Kidney Dis. 2018;71(3):A7. https://doi.
org/10.1053/j.ajkd.2018.01.002.

4. Morris AP, Le TH, Wu H, Akbarov A, van der Most PJ, Hemani G, et al. Trans-
ethnic kidney function association study reveals putative causal genes and
effects on kidney-specific disease aetiologies. Nat Commun. 2019;10(1):29.
https://doi.org/10.1038/s41467-018-07867-7.

5. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association
studies for common human diseases. Nat Rev Genet. 2011;12(8):529–41.
https://doi.org/10.1038/nrg3000.

6. Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population
epigenomic variation. Nat Rev Genet. 2016;17(6):319–32. https://doi.org/10.1
038/nrg.2016.45.

7. Qiu C, Hanson RL, Fufaa G, Kobes S, Gluck C, Huang J, Chen Y, Raj D, Nelson
RG, Knowler WC, Susztak K. Cytosine methylation predicts renal function
decline in American Indians. Kidney Int. 2018;93(6):1417–31. https://doi.org/1
0.1016/j.kint.2018.01.036.

8. Smyth LJ, McKay GJ, Maxwell AP, McKnight AJ. DNA hypermethylation and
DNA hypomethylation is present at different loci in chronic kidney disease.
Epigenetics. 2014;9(3):366–76. https://doi.org/10.4161/epi.27161.

9. Wing MR, Devaney JM, Joffe MM, Xie D, Feldman HI, Dominic EA, Guzman
NJ, Ramezani A, Susztak K, Herman JG, Cope L, Harmon B, Kwabi-Addo B,
Gordish-Dressman H, Go AS, He J, Lash JP, Kusek JW, Raj DS, for the Chronic
Renal Insufficiency Cohort (CRIC) Study. DNA methylation profile associated
with rapid decline in kidney function: findings from the CRIC study. Nephrol
Dial Transplant. 2014;29(4):864–72. https://doi.org/10.1093/ndt/gft537.

10. Richard MA, Huan T, Ligthart S, Gondalia R, Jhun MA, Brody JA, Irvin MR,
Marioni R, Shen J, Tsai PC, Montasser ME, Jia Y, Syme C, Salfati EL,
Boerwinkle E, Guan W, Mosley TH Jr, Bressler J, Morrison AC, Liu C,
Mendelson MM, Uitterlinden AG, van Meurs JB, Franco OH, Zhang G, Li Y,
Stewart JD, Bis JC, Psaty BM, Chen YDI, Kardia SLR, Zhao W, Turner ST,
Absher D, Aslibekyan S, Starr JM, McRae AF, Hou L, Just AC, Schwartz JD,
Vokonas PS, Menni C, Spector TD, Shuldiner A, Damcott CM, Rotter JI,
Palmas W, Liu Y, Paus T, Horvath S, O’Connell JR, Guo X, Pausova Z, Assimes
TL, Sotoodehnia N, Smith JA, Arnett DK, Deary IJ, Baccarelli AA, Bell JT,
Whitsel E, Dehghan A, Levy D, Fornage M, Heijmans BT, ’t Hoen PAC, van
Meurs J, Isaacs A, Jansen R, Franke L, Boomsma DI, Pool R, van Dongen J,
Hottenga JJ, van Greevenbroek MMJ, Stehouwer CDA, van der Kallen CJH,
Schalkwijk CG, Wijmenga C, Zhernakova A, Tigchelaar EF, Slagboom PE,
Beekman M, Deelen J, van Heemst D, Veldink JH, van den Berg LH, van

Duijn CM, Hofman A, Uitterlinden AG, Jhamai PM, Verbiest M, Suchiman
HED, Verkerk M, van der Breggen R, van Rooij J, Lakenberg N, Mei H, van
Iterson M, van Galen M, Bot J, van ’t Hof P, Deelen P, Nooren I, Moed M,
Vermaat M, Zhernakova DV, Luijk R, Bonder MJ, van Dijk F, Arindrarto W,
Kielbasa SM, Swertz MA, van Zwet EW. DNA methylation analysis identifies
loci for blood pressure regulation. Am J Hum Genet. 2017;101(6):888–902.
https://doi.org/10.1016/j.ajhg.2017.09.028.

11. Chu AY, Tin A, Schlosser P, Ko Y-A, Qiu C, Yao C, Joehanes R, Grams ME, Liang
L, Gluck CA, Liu C, Coresh J, Hwang SJ, Levy D, Boerwinkle E, Pankow JS, Yang
Q, Fornage M, Fox CS, Susztak K, Köttgen A. Epigenome-wide association
studies identify DNA methylation associated with kidney function. Nat
Commun. 2017;8(1):1286. https://doi.org/10.1038/s41467-017-01297-7.

12. Sikdar S, Joehanes R, Joubert BR, Xu C-J, Vives-Usano M, Rezwan FI, Felix JF,
Ward JM, Guan W, Richmond RC, Brody JA, Küpers LK, Baïz N, Håberg SE,
Smith JA, Reese SE, Aslibekyan S, Hoyo C, Dhingra R, Markunas CA, Xu T,
Reynolds LM, Just AC, Mandaviya PR, Ghantous A, Bennett BD, Wang T,
Consortium TBIOS, Bakulski KM, Melen E, Zhao S, Jin J, Herceg Z, Meurs J,
Taylor JA, Baccarelli AA, Murphy SK, Liu Y, Munthe-Kaas MC, Deary IJ, Nystad
W, Waldenberger M, Annesi-Maesano I, Conneely K, Jaddoe VWV, Arnett D,
Snieder H, Kardia SLR, Relton CL, Ong KK, Ewart S, Moreno-Macias H,
Romieu I, Sotoodehnia N, Fornage M, Motsinger-Reif A, Koppelman GH,
Bustamante M, Levy D, London SJ Comparison of smoking-related DNA
methylation between newborns from prenatal exposure and adults from
personal smoking. Epigenomics. 2019;11:1487–1500, 13, doi: https://doi.
org/10.2217/epi-2019-0066.

13. Design of the Women’s Health Initiative clinical trial and observational
study. The Women’s Health Initiative study group. Control Clin Trials. 1998;
19:61–109.

14. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, Shumaker S,
Wang CY, Stein E, Prentice RL. Implementation of the Women’s Health
Initiative study design. Ann Epidemiol. 2003;13(9):S5–17. https://doi.org/10.1
016/S1047-2797(03)00043-7.

15. Howard BV, Van Horn L, Hsia J, Manson JE, Stefanick ML, Wassertheil-Smoller
S, et al. Low-fat dietary pattern and risk of cardiovascular disease: the
Women’s Health Initiative Randomized Controlled Dietary Modification Trial.
JAMA. 2006;295(6):655–66. https://doi.org/10.1001/jama.295.6.655.

16. Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, et al.
Calcium plus vitamin D supplementation and the risk of fractures. N Engl J
Med. 2006;354(7):669–83. https://doi.org/10.1056/NEJMoa055218.

17. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR,
Greenland P, Jacob DR Jr, Kronmal R, Liu K, Nelson JC, O'Leary D, Saad MF,
Shea S, Szklo M, Tracy RP. Multi-ethnic study of atherosclerosis: objectives
and design. Am J Epidemiol. 2002;156(9):871–81. https://doi.org/10.1093/aje/
kwf113.

18. Taylor HA, Wilson JG, Jones DW, Sarpong DF, Srinivasan A, Garrison RJ, et al.
Toward resolution of cardiovascular health disparities in African Americans:
design and methods of the Jackson Heart Study. Ethn Dis. 2005;15:S6–4–17.

19. Akinyemiju T, Do AN, Patki A, Aslibekyan S, Zhi D, Hidalgo B, Tiwari HK,
Absher D, Geng X, Arnett DK, Irvin MR. Epigenome-wide association study
of metabolic syndrome in African-American adults. Clin Epigenetics. 2018;
10(1):49. https://doi.org/10.1186/s13148-018-0483-2.

20. Smith BH, Campbell A, Linksted P, Fitzpatrick B, Jackson C, Kerr SM, Deary IJ,
MacIntyre DJ, Campbell H, McGilchrist M, Hocking LJ, Wisely L, Ford I, Lindsay
RS, Morton R, Palmer CNA, Dominiczak AF, Porteous DJ, Morris AD. Cohort
Profile: Generation Scotland: Scottish Family Health Study (GS:SFHS). The study,
its participants and their potential for genetic research on health and illness.
Int J Epidemiol. 2013;42(3):689–700. https://doi.org/10.1093/ije/dys084.

21. Kraus WE, Granger CB, Sketch MH, Donahue MP, Ginsburg GS, Hauser ER,
et al. A guide for a cardiovascular genomics biorepository: the CATHGEN
experience. J Cardiovasc Transl Res. 2015;8(8):449–57. https://doi.org/10.1
007/s12265-015-9648-y.

22. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek
JW, Manzi J, van Lente F, Zhang YL, Coresh J, Levey AS, CKD-EPI Investigators.
Estimating glomerular filtration rate from serum creatinine and cystatin C. N
Engl J Med. 2012;367(1):20–9. https://doi.org/10.1056/NEJMoa1114248.

23. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D,
Beck S. A beta-mixture quantile normalization method for correcting probe
design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics.
2013;29(2):189–96. https://doi.org/10.1093/bioinformatics/bts680.

24. Fortin J-P, Triche TJ, Hansen KD. Preprocessing, normalization and
integration of the Illumina HumanMethylationEPIC array with minfi.

Breeze et al. Genome Medicine           (2021) 13:74 Page 14 of 16

https://doi.org/10.1053/j.ajkd.2019.09.003
https://doi.org/10.1053/j.ajkd.2018.01.002
https://doi.org/10.1053/j.ajkd.2018.01.002
https://doi.org/10.1038/s41467-018-07867-7
https://doi.org/10.1038/nrg3000
https://doi.org/10.1038/nrg.2016.45
https://doi.org/10.1038/nrg.2016.45
https://doi.org/10.1016/j.kint.2018.01.036
https://doi.org/10.1016/j.kint.2018.01.036
https://doi.org/10.4161/epi.27161
https://doi.org/10.1093/ndt/gft537
https://doi.org/10.1016/j.ajhg.2017.09.028
https://doi.org/10.1038/s41467-017-01297-7
https://doi.org/10.2217/epi-2019-0066
https://doi.org/10.2217/epi-2019-0066
https://doi.org/10.1016/S1047-2797(03)00043-7
https://doi.org/10.1016/S1047-2797(03)00043-7
https://doi.org/10.1001/jama.295.6.655
https://doi.org/10.1056/NEJMoa055218
https://doi.org/10.1093/aje/kwf113
https://doi.org/10.1093/aje/kwf113
https://doi.org/10.1186/s13148-018-0483-2
https://doi.org/10.1093/ije/dys084
https://doi.org/10.1007/s12265-015-9648-y
https://doi.org/10.1007/s12265-015-9648-y
https://doi.org/10.1056/NEJMoa1114248
https://doi.org/10.1093/bioinformatics/bts680


Bioinformatics. 2017;33(4):558–60. https://doi.org/10.1093/bioinformatics/
btw691.

25. Touleimat N, Tost J. Complete pipeline for Infinium(®) Human Methylation
450K BeadChip data processing using subset quantile normalization for
accurate DNA methylation estimation. Epigenomics. 2012;4(3):325–41.
https://doi.org/10.2217/epi.12.21.

26. Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-
driven approach to preprocessing Illumina 450K methylation array data.
BMC Genomics 2013;14:293, 1, doi: https://doi.org/10.1186/1471-2164-14-2
93.

27. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–
27. https://doi.org/10.1093/biostatistics/kxj037.

28. Chen Y, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW,
Gallinger S, Hudson TJ, Weksberg R. Discovery of cross-reactive probes and
polymorphic CpGs in the Illumina Infinium HumanMethylation450
microarray. Epigenetics. 2013;8(2):203–9. https://doi.org/10.4161/epi.23470.

29. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ,
Nelson HH, Wiencke JK, Kelsey KT. DNA methylation arrays as surrogate
measures of cell mixture distribution. BMC Bioinformatics. 2012;13(1):86.
https://doi.org/10.1186/1471-2105-13-86.

30. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D.
Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet. 2006;38(8):904–9. https://doi.org/10.1038/ng1
847.

31. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al. High density DNA
methylation array with single CpG site resolution. Genomics. 2011;98(4):288–
95. https://doi.org/10.1016/j.ygeno.2011.07.007.

32. Breeze CE, Paul DS, van Dongen J, Butcher LM, Ambrose JC, Barrett JE,
Lowe R, Rakyan VK, Iotchkova V, Frontini M, Downes K, Ouwehand WH,
Laperle J, Jacques PÉ, Bourque G, Bergmann AK, Siebert R, Vellenga E, Saeed
S, Matarese F, Martens JHA, Stunnenberg HG, Teschendorff AE, Herrero J,
Birney E, Dunham I, Beck S. eFORGE: a tool for identifying cell type-specific
signal in epigenomic data. Cell Rep. 2016;17(8):2137–50. https://doi.org/10.1
016/j.celrep.2016.10.059.

33. Breeze CE, Reynolds AP, van Dongen J, Dunham I, Lazar J, Neph S, et al.
eFORGE v2.0: updated analysis of cell type-specific signal in epigenomic
data. Bioinformatics. 2019;35:4767–9.

34. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J,
Bilenky M, Yen A, et al. Integrative analysis of 111 reference human
epigenomes. Nature. 2015;518:317–30.

35. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene
function analysis with the PANTHER classification system. Nat Protoc. 2013;
8(8):1551–66. https://doi.org/10.1038/nprot.2013.092.

36. Bonder MJ, Luijk R, Zhernakova DV, Moed M, Deelen P, Vermaat M, et al.
Disease variants alter transcription factor levels and methylation of their
binding sites. Nat Genet. 2017;49(1):131–8. https://doi.org/10.1038/ng.3721.

37. Zhernakova DV, Deelen P, Vermaat M, van Iterson M, van Galen M,
Arindrarto W, van 't Hof P, Mei H, van Dijk F, Westra HJ, Bonder MJ, van
Rooij J, Verkerk M, Jhamai PM, Moed M, Kielbasa SM, Bot J, Nooren I, Pool R,
van Dongen J, Hottenga JJ, Stehouwer CDA, van der Kallen CJH, Schalkwijk
CG, Zhernakova A, Li Y, Tigchelaar EF, de Klein N, Beekman M, Deelen J, van
Heemst D, van den Berg LH, Hofman A, Uitterlinden AG, van Greevenbroek
MMJ, Veldink JH, Boomsma DI, van Duijn CM, Wijmenga C, Slagboom PE,
Swertz MA, Isaacs A, van Meurs JBJ, Jansen R, Heijmans BT, 't Hoen PAC,
Franke L Identification of context-dependent expression quantitative trait
loci in whole blood. Nat Genet 2017;49:139–145, 1, doi: https://doi.org/10.1
038/ng.3737.

38. Huan T, Joehanes R, Song C, Peng F, Guo Y, Mendelson M, Yao C, Liu C, Ma
J, Richard M, Agha G, Guan W, Almli LM, Conneely KN, Keefe J, Hwang SJ,
Johnson AD, Fornage M, Liang L, Levy D. Genome-wide identification of
DNA methylation QTLs in whole blood highlights pathways for
cardiovascular disease. Nat Commun. 2019;10(1):4267. https://doi.org/10.103
8/s41467-019-12228-z.

39. Gaunt TR, Shihab HA, Hemani G, Min JL, Woodward G, Lyttleton O, Zheng J,
Duggirala A, McArdle WL, Ho K, Ring SM, Evans DM, Davey Smith G, Relton
CL. Systematic identification of genetic influences on methylation across the
human life course. Genome Biol. 2016;17(1):61. https://doi.org/10.1186/s13
059-016-0926-z.

40. Xu X, Eales JM, Akbarov A, Guo H, Becker L, Talavera D, Ashraf F, Nawaz J,
Pramanik S, Bowes J, Jiang X, Dormer J, Denniff M, Antczak A, Szulinska M,

Wise I, Prestes PR, Glyda M, Bogdanski P, Zukowska-Szczechowska E,
Berzuini C, Woolf AS, Samani NJ, Charchar FJ, Tomaszewski M. Molecular
insights into genome-wide association studies of chronic kidney disease-
defining traits. Nat Commun. 2018;9(1):4800. https://doi.org/10.1038/s41467-
018-07260-4.

41. Cancer Genome Atlas Research Network. Comprehensive molecular
characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–
9. https://doi.org/10.1038/nature12222.

42. Rowland J, Akbarov A, Eales J, Xu X, Dormer JP, Guo H, Denniff M, Jiang X,
Ranjzad P, Nazgiewicz A, Prestes PR, Antczak A, Szulinska M, Wise IA,
Zukowska-Szczechowska E, Bogdanski P, Woolf AS, Samani NJ, Charchar FJ,
Tomaszewski M. Uncovering genetic mechanisms of kidney aging through
transcriptomics, genomics, and epigenomics. Kidney Int. 2019;95(3):624–35.
https://doi.org/10.1016/j.kint.2018.10.029.

43. Tomaszewski M, Eales J, Denniff M, Myers S, Chew GS, Nelson CP,
Christofidou P, Desai A, Büsst C, Wojnar L, Musialik K, Jozwiak J, Debiec R,
Dominiczak AF, Navis G, van Gilst WH, van der Harst P, Samani NJ, Harrap S,
Bogdanski P, Zukowska-Szczechowska E, Charchar FJ. Renal mechanisms of
association between fibroblast growth factor 1 and blood pressure. J Am
Soc Nephrol. 2015;26(12):3151–60. https://doi.org/10.1681/ASN.2014121211.

44. Hellwege JN, Velez Edwards DR, Giri A, Qiu C, Park J, Torstenson ES, Keaton
JM, Wilson OD, Robinson-Cohen C, Chung CP, Roumie CL, Klarin D,
Damrauer SM, DuVall SL, Siew E, Akwo EA, Wuttke M, Gorski M, Li M, Li Y,
Gaziano JM, Wilson PWF, Tsao PS, O’Donnell CJ, Kovesdy CP, Pattaro C,
Köttgen A, Susztak K, Edwards TL, Hung AM. Mapping eGFR loci to the renal
transcriptome and phenome in the VA million veteran program. Nat
Commun. 2019;10(1):3842. https://doi.org/10.1038/s41467-019-11704-w.

45. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient
QTL mapper for thousands of molecular phenotypes. Bioinformatics. 2016;
32(10):1479–85. https://doi.org/10.1093/bioinformatics/btv722.

46. Chebotareva N, Bobkova I, Shilov E. Heat shock proteins and kidney disease:
perspectives of HSP therapy. Cell Stress Chaperones. 2017;22(3):319–43.
https://doi.org/10.1007/s12192-017-0790-0.

47. Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, et al. A catalog of
genetic loci associated with kidney function from analyses of a million
individuals. Nat Genet. 2019;51(6):957–72. https://doi.org/10.1038/s41588-01
9-0407-x.

48. Xu J, Liu H, Chai OH, Lan Y, Jiang R. Osr1 interacts synergistically with Wt1
to regulate kidney organogenesis. PLoS One. 2016;11(7):e0159597. https://
doi.org/10.1371/journal.pone.0159597.

49. Jiang H, Li L, Yang H, Bai Y, Jiang H, Li Y. Pax2 may play a role in kidney
development by regulating the expression of TBX1. Mol Biol Rep. 2014;
41(11):7491–8. https://doi.org/10.1007/s11033-014-3639-y.

50. Alam-Faruque Y, Hill DP, Dimmer EC, Harris MA, Foulger RE, Tweedie S,
Attrill H, Howe DG, Thomas SR, Davidson D, Woolf AS, Blake JA, Mungall CJ,
O’Donovan C, Apweiler R, Huntley RP. Representing kidney development
using the gene ontology. Plos One. 2014;9(6):e99864. https://doi.org/10.13
71/journal.pone.0099864.

51. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A,
Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS Catalog, a
curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(D1):
D1001–6. https://doi.org/10.1093/nar/gkt1229.

52. Chen J, Huang Y, Hui Q, Mathur R, Gwinn M, So-Armah K, Freiberg MS,
Justice AC, Xu K, Marconi VC, Sun YV. Epigenetic associations with
estimated glomerular filtration rate among men with human
immunodeficiency virus infection. Clin Infect Dis. 2020;70(4):667–73. https://
doi.org/10.1093/cid/ciz240.

53. Collins AJ, Foley RN, Gilbertson DT, Chen S-C. United States Renal Data
System public health surveillance of chronic kidney disease and end-stage
renal disease. Kidney Int Suppl (2011). 2015;5:2–7.

54. Xue JL, Eggers PW, Agodoa LY, Foley RN, Collins AJ. Longitudinal study of
racial and ethnic differences in developing end-stage renal disease among
aged medicare beneficiaries. J Am Soc Nephrol. 2007;18(4):1299–306.
https://doi.org/10.1681/ASN.2006050524.

55. Collins AJ, Foley RN, Herzog C, Chavers B, Gilbertson D, Herzog C, et al. US
Renal Data System 2012 annual data report. Am J Kidney Dis. 2013;61(A7):
e1–476.

56. Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok P-Y,
Iribarren C, Chakravarti A, Risch N. Genome-wide association analyses using
electronic health records identify new loci influencing blood pressure
variation. Nat Genet. 2017;49(1):54–64. https://doi.org/10.1038/ng.3715.

Breeze et al. Genome Medicine           (2021) 13:74 Page 15 of 16

https://doi.org/10.1093/bioinformatics/btw691
https://doi.org/10.1093/bioinformatics/btw691
https://doi.org/10.2217/epi.12.21
https://doi.org/10.1186/1471-2164-14-293
https://doi.org/10.1186/1471-2164-14-293
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.4161/epi.23470
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1038/ng1847
https://doi.org/10.1038/ng1847
https://doi.org/10.1016/j.ygeno.2011.07.007
https://doi.org/10.1016/j.celrep.2016.10.059
https://doi.org/10.1016/j.celrep.2016.10.059
https://doi.org/10.1038/nprot.2013.092
https://doi.org/10.1038/ng.3721
https://doi.org/10.1038/ng.3737
https://doi.org/10.1038/ng.3737
https://doi.org/10.1038/s41467-019-12228-z
https://doi.org/10.1038/s41467-019-12228-z
https://doi.org/10.1186/s13059-016-0926-z
https://doi.org/10.1186/s13059-016-0926-z
https://doi.org/10.1038/s41467-018-07260-4
https://doi.org/10.1038/s41467-018-07260-4
https://doi.org/10.1038/nature12222
https://doi.org/10.1016/j.kint.2018.10.029
https://doi.org/10.1681/ASN.2014121211
https://doi.org/10.1038/s41467-019-11704-w
https://doi.org/10.1093/bioinformatics/btv722
https://doi.org/10.1007/s12192-017-0790-0
https://doi.org/10.1038/s41588-019-0407-x
https://doi.org/10.1038/s41588-019-0407-x
https://doi.org/10.1371/journal.pone.0159597
https://doi.org/10.1371/journal.pone.0159597
https://doi.org/10.1007/s11033-014-3639-y
https://doi.org/10.1371/journal.pone.0099864
https://doi.org/10.1371/journal.pone.0099864
https://doi.org/10.1093/nar/gkt1229
https://doi.org/10.1093/cid/ciz240
https://doi.org/10.1093/cid/ciz240
https://doi.org/10.1681/ASN.2006050524
https://doi.org/10.1038/ng.3715


57. Imamura CK, Furihata K, Okamoto S, Tanigawara Y. Impact of cytochrome
P450 2C19 polymorphisms on the pharmacokinetics of tacrolimus when
coadministered with voriconazole. J Clin Pharmacol. 2016;56(4):408–13.
https://doi.org/10.1002/jcph.605.

58. Ramírez V, Mejía-Vilet JM, Hernández D, Gamba G, Bobadilla NA. Radicicol, a
heat shock protein 90 inhibitor, reduces glomerular filtration rate. Am J
Physiol Renal Physiol. 2008;295(4):F1044–51. https://doi.org/10.1152/ajprenal.
90278.2008.

59. Lowe R, Slodkowicz G, Goldman N, Rakyan VK. The human blood DNA
methylome displays a highly distinctive profile compared with other
somatic tissues. Epigenetics. 2015;0, 10, 4, 274, 281, doi: https://doi.org/10.1
080/15592294.2014.1003744.

60. Tsai P-C, Glastonbury CA, Eliot MN, Bollepalli S, Yet I, Castillo-Fernandez JE,
Carnero-Montoro E, Hardiman T, Martin TC, Vickers A, Mangino M, Ward K,
Pietiläinen KH, Deloukas P, Spector TD, Viñuela A, Loucks EB, Ollikainen M,
Kelsey KT, Small KS, Bell JT. Smoking induces coordinated DNA methylation
and gene expression changes in adipose tissue with consequences for
metabolic health. Clin Epigenetics. 2018;10(1):126. https://doi.org/10.1186/
s13148-018-0558-0.

61. Barker DJP, Bagby SP, Hanson MA. Mechanisms of disease: in utero
programming in the pathogenesis of hypertension. Nat Clin Pract Nephrol.
2006;2(12):700–7. https://doi.org/10.1038/ncpneph0344.

62. Ammous F, Zhao W, Ratliff SM, Kho M, Shang L, Jones AC, Chaudhary NS,
Tiwari HK, Irvin MR, Arnett DK, Mosley TH, Bielak LF, Kardia SLR, Zhou X,
Smith J. Epigenome-wide association study identifies DNA methylation sites
associated with target organ damage in older African Americans.
Epigenetics. 2020:1–14. https://doi.org/10.1080/15592294.2020.1827717.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Breeze et al. Genome Medicine           (2021) 13:74 Page 16 of 16

https://doi.org/10.1002/jcph.605
https://doi.org/10.1152/ajprenal.90278.2008
https://doi.org/10.1152/ajprenal.90278.2008
https://doi.org/10.1080/15592294.2014.1003744
https://doi.org/10.1080/15592294.2014.1003744
https://doi.org/10.1186/s13148-018-0558-0
https://doi.org/10.1186/s13148-018-0558-0
https://doi.org/10.1038/ncpneph0344
https://doi.org/10.1080/15592294.2020.1827717

	Epigenome-WideCopyright
	Federation University ResearchOnline
	https://researchonline.federation.edu.au


	s13073-021-00877-z
	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study design and populations
	Phenotypes
	Epigenetic data and quality control
	EWAS
	In silico annotation using eFORGE and eFORGE-TF, and pathway analyses
	meQTL data in the whole blood
	meQTL in normal kidney tissue
	eFORGE analysis for kidney meQTL CpGs

	Results
	Overview of EWAS results
	Overlap of eGFR-associated DMPs with genes and regulatory elements
	DMPs for eGFR are enriched for kidney regulatory function related to kidney development
	eGFR GWAS variants, meQTL CpGs, and tissue-specific DNase I hotspots

	Discussion
	Main findings
	Differences between ethnicities
	Relevance of HSP90AA1 locus
	Integrative epigenomics and pathway analysis
	Limitations

	Conclusions
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note


