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ABSTRACT:

Extraction of individual pylons and wires is important for modelling of 3D objects in a power line corridor (PLC) map. However, 
the existing methods mostly classify points into distinct classes like pylons and wires, but hardly into individual pylons or wires. 
The proposed method extracts standalone pylons, vegetation and wires from LiDAR data. The extraction of individual objects is 
needed for a detailed PLC mapping. The proposed approach starts off with the separation of ground and non ground points. The 
non-ground points are then classified into vertical (e.g., pylons and vegetation) and non-vertical (e.g., wires) object points using 
the vertical profile feature (VPF) through the binary support vector machine (SVM) classifier. Individual pylons and vegetation are 
then separated using their shape and area properties. The locations of pylons are further used to extract the span points between two 
successive pylons. Finally, span points are voxelised and alignment properties of wires in the voxel grid is used to extract individual 
wires points. The results are evaluated on dataset which has multiple spans with bundled wires in each span. The evaluation results 
show that the proposed method and features are very effective for extraction of individual wires, pylons and vegetation with 99%
correctness and 98% completeness.

1. INTRODUCTION

In the past few years assessment and monitoring of power line
corridor (PLC) is gaining importance and has become an area
of active research. The conventional methods for inspection of
electric network rely on the participation of ground personnel
and airborne camera to patrol power lines (PLs) and have
limitations such as need of intensive labour and low efficiency.
Remote sensors such as optical images, synthetic aperture radar
(SAR) images and airborne laser Sacanner (ALS) data for PLC
monitoring is part of an active research now a days. To date,
optical and SAR images are commonly used to extract PLC
objects. But these sensors have limitations such as weather
dependency and occlusion. Airborne light detection and
ranging (LiDAR) has been proven a powerful tool to overcome
these limitations to enable more efficient inspection. A detailed
survey on PLC monitoring methods is given in (Matikainen et
al., 2016).

Majority of the studies in literature has focused on extraction
and classification of pylons, wires and vegetation points as
whole, less concentration has been given in extraction of
individual object points which is very important for 3D
modelling. Therefore, the goal of this paper is to focus on
extraction of individual PLC key objects i.e., wires, pylons and
trees.

2. RELATED WORK

In the literature, the PL object extraction methods based
on point clouds fall to two main classes: supervised
and unsupervised classification methods. The unsupervised
methods generally employ statistical analysis and pattern
∗Corresponding author

recognition techniques like the Hough transform (HT) and
RANdom SAmple Consensus (RANSAC) to extract PL objects.
Axelsson (Axelsson, 1999) proposed a classification algorithm
based on the minimum descriptor length criterion using the
laser reflectance data and multiple echoes. The classification
results were refined by using HT algorithm in the 2D grid space.
The iterative HT was applied on the grid data in (Melzer and
Briese, 2004) to extract lines and clustered them together to
get positions of pylons. Zhu and Hyyppä (Zhu, 2014) used
statistical analysis of height, intensity and histogram analysis
to detect PL points and performed a shape-based analysis to
separate PLs from other objects. A voxel-based piecewise line
detection technique was proposed by (Jwa et al., 2009) to group
PL points in fragments and to reconstruct them using catenary
curve equation. These unsupervised methods provide high level
of automation, but certain assumptions are based on geometric
and radiometric characteristics of point cloud, therefore the
classification rules are hard to transfer from a point cloud to
another.

As for the supervised classification, (McLaughlin, 2006) used
the Guassian mixture model to extract transmission lines (TLs)
from airborne LiDAR data. Sohn et al. (Sohn et al., 2012) used
the Markov Random Field (MRF) classifier to separate objects
with linear and planner features. Then, the linear features not
representing wires were converted into 2D grid and the Random
Forests (RF) classifier was applied to detect pylons. Finally,
the RANSAC was applied on the PL candidates to form line
segments. Kim and Sohn (Kim and Sohn, 2011) computed
21 features using voxel- and sphere-based neighbourhoods and
used the RF to categorise data into five classes : grounds,
vegetations, pylons, wires and buildings. Kim and Sohn (Kim
and Sohn, 2010) used point-based and voxel-based features to
classify PL objects using RF classifier. Guo et al. (Guo et al.,
2015) used the JointBoost classifier with geometric features to

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019 
14th 3D GeoInfo Conference 2019, 24–27 September 2019, Singapore

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W8-91-2019 | © Authors 2019. CC BY 4.0 License.

 
91



classify PL scene and optimise the results using a graph-cut
segmentation method. Wang et al. (Wang et al., 2017) proposed
a semi-automated PL classification method constructing PLC
direction using the HT with RANSAC algorithms and applied
the Support Vector Machine (SVM) classifier to classify PL
points using a slanted cylindrical neighbourhood.

The supervised classification-based methods require large
training datasets which are hard to collect for desired results and
an unbalanced sampling in the training set increases the rate of
misclassification. The reason is that pylons and wires are minor
classes in any scene. For example, the dataset used in (Kim ,
Sohn) had only 0.81% points for pylons. The use of unbalanced
classes of data gives inaccurate results. Moreover, most of
the previous classification methods described the extracted PL
objects as whole classes and less attention has been given to
extraction of individual wires, pylons and vegetation.

The main objective of the proposed method is to extract
standalone pylons, vegetation and wires from LiDAR data using
supervised and unsupervised methods. While the methods in
literature were more focused on classification of points as whole
class and did not extracted the wires individually from complete
corridor. The supervised method is employed initially by using
support vector machine (SVM) classifier to separate vertical
and non vertical points by through vertical profile features
(VPF). From the non ground points, individual pylons and
vegetation are extracted using their shape and area properties.
The PL is made up of multiple spans. The location of two
successive pylons are used to extract span points between them.
The span points are further divided in to individual wire points
by using the alignment properties of wires in a 3D voxel grid.

The remainder of this paper is structured as follows. Section III
describes the proposed method in detail. Section IV presents the
experimental setup with results and discussions for evaluation
of the proposed method. Finally, conclusion is presented with a
brief on future research directions in Section V.

3. PROPOSED METHOD

Figure 1 illustrates the work flow of the proposed method. The
steps in red rectangle are for pylon and vegetation extraction
while the steps in blue rectangle belong to wire extraction.

First, the input points are divided into ground and non-ground
points, while the later contains objects such as pylons, wires
and vegetation. The non-ground points are then classified
into vertical (e.g., pylons and vegetation) and non-vertical
(e.g., wires) object points using the VPF through the binary
SVM classifier. A binary mask is generated from the vertical
object points, from where individual pylons and vegetation
are extracted by using their shape and area properties. For
extraction of wires, individual span points are first extracted
between the pylon locations. Then, points in each span are used
to extract the individual wires by using their alignment property
in voxels. Finally, the wire segments are concatenated to get
each individual wire in corridor. Figure 2(a) shows a sample
scene of 517 m long from the test dataset and it will be used to
describe the steps of the proposed method.

Figure 1. The work flow of the proposed method.

3.1 Extraction of Pylons and Vegetation

Usually a height of 1 m (Awrangjeb et al., 2017) is added to
the local digital terrain model (DTM) height to separate the
non-ground points from the rest, which contains points from the
ground and the low height vegetation. Although the DTM can
be generated from the LiDAR data, we assume it is available
with the data. If not available, it can be generated by using
software like MARS Explorer (, n.d.). The non-ground points,
as shown in Figure 2(b), are expected to contain only the objects
of interest, such as pylons and wires in this case. However,
the test dataset has a moderate high vegetation (trees). Pylons
and trees in the data show vertical continuity, while wires hang
over the terrain surface and, thus, show vertical discontinuity.
By exploiting this property, the VPF are extracted by using the
method described in (Kim , Sohn), where voxel grids of 5 m
× 5 m × 5 m are generated over the test area and each voxel
is divided into fixed segments of 1 m height. The number of
“continuous on segments” Cn and the number of “continuous
off segments” Cf are computed for each voxel. While wires
show low value for Cn but high value for Cf , vegetation and
pylons display the opposite. Thereafter, the supervised SVM
classifier is used to divide the LiDAR points into two sets:
vertical and non-vertical points. Figures 2(c) and (d) illustrate
the vertical and non-vertical points, respectively, for the sample
scene.

The vertical points include pylons and trees. For separation
of these objects a binary mask M , shown in Figure 2(e), is
generated using the method described in (Awrangjeb et al.,
2017). The resolution of M is set fixed at 0·25 m (Awrangjeb et
al., 2017) and all pixels are initially filled with 1 (white). Then,
for each non-ground point within a pixel, a neighbourhood (e.g.,
3 × 3, consistent with the point density) is filled with 0 (black).
Due to random and sparsity properties of the input LiDAR data,
M is flood filled to remove holes. In Figure 2(e) a magnified
version of a few objects are shown before and after the filling.

A connected component analysis is carried out on the filled
image to obtain individual object boundaries. Assuming the
maximum length or width of a pylon is 10 m, an area threshold
Ta = 100 m2 (Awrangjeb et al., 2017) is applied to remove
trees with large horizontal areas. For each surviving connected
component, all the non-ground points Pb within its boundary
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Figure 2. (a) A sample scene, (b) Non-ground points, (c) Vertical object points, (d) Non-vertical object points, (e) Binary mask, and (f)
Height bins for points of a pylon and a tree.

are taken and a 3D cuboid is formed based on the minimum
and maximum Easting (x), Northing (y), and Height (z) values,
where x and y values are estimated from Pb, but z values are
from the dataset.

These values are based on the fact that pylons reach the
maximum heights of the wires attached to them, while trees
usually do not reach these maximum heights. Therefore, for a
vegetation there is a huge gap towards the top of the cuboid, but
for a pylon there is no, or a little gap exists at the top (see Figure
2(f)). The cuboid is then divided into bins bn, where n ≥ 1, in
the height direction. The value of n is empirically set to be 12
based on the input point density. While for a smaller value of n
there may be many bins exist without any points from the top to
bottom of a pylon, for a larger value of n there may be no bins
exist without any points of a tree. The number of points in each
bin is counted using bn, if there is at least 1 empty bin exists for
a component, that component is marked as a tree, otherwise as
a pylon. Finally, for each pylon its location is obtained as the
mean of its points.

3.2 Extraction of wires

In this step the non-vertical points are further processed to
obtain the individual wires. In PLC object extraction it is hard
to extract wire points as individual wire points due to their
same linear properties. Thus, the following facts of overhead

PL structure are used: Wires do not intersect each other
but maintain an adequate clearance to avoid unsafe contact
themselves and they are hanged above the ground level at a
certain height and carry the same direction in a span (Beaty
, Fink). By using these characteristics a voxel traversing
algorithm is developed to extract wire points into individual
wires. Figure 1 shows the step for wire extraction. Figure 3
shows the wires in a span with their labels to illustrate the wire
extraction algorithm. The detail of each step is given below:

1. Span Extraction: The transmission wires in a PLC is made
up of numbers of segments (spans). These spans are connected
to each other through pylons. Thus the extraction of individual
pylons with their locations is helpful in determining these
spans. Once pylons with their locations have been identified
they are used to obtain the non-vertical points Ps for each span,
i.e., points between two successive pylons in a corridor. The
span extraction reduce the size of data points and makes the
further processing of wire points easier.

2. Voxelization: The space between two pylons is divided into
regular 3D grid. The 3D grid makes the processing complicated
but unlike 2D grid it does not compromise on geometrical
information of points in each grid cell (voxel). Each cuboid in
a grid act as an individual voxel V . The size of V is kept to
0·5 m × 0·25 m × 0·25 m as the minimum gap between two
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Figure 3. Wires labelling.

adjacent wires in the dataset is 0·5 m. The size of V is very
important and derived through analysis of the input LiDAR
points. This should be selected wisely as too small or big voxel
size can give an inaccurate result. All voxels in a span are
not occupied with points. The voxels between and outside the
wire points are empty as all other objects are already removed
earlier. Each V is given either of the two status by counting
the number of points in it: Empty voxel VE , if it does not have
any points or one point, and occupied voxel VO, if it has two or
more points. The location of each V can be indexed by using
the values row (i), column (j) and height (k). The maximum
value of i, j and k are calculated as:

i = b (xmax − xmin)

l
c

j = b (ymax − ymin)

w
c

k = b (zmax − zmin)

h
c

(1)

where xmax, ymax, zmax = maximum coordinates of x, y, z
xmin, ymin, zmin = minimum coordinates of x,y, z
l, w, h = length, width, height of voxel
i, j, k = location of voxel

3. Level of wires in span: The height (h) of points in each
voxel with reference to ground is calculated and mean of height
is allocated to corresponding VO to check that all wires at at the
same height or different. If all the wires have approximately
same height (i.e., the difference of maximum height hmax and
minimum height hmin is less then 1) the value of H will be set
to 1 else set to 2. This value will be used in an algorithm to
label wire points. The value of H can be calculated as :

H =

{
1 if h is approximately same
2 otherwise

(2)

where h = minimum and maximum height difference in span
H= wire height levels

The value of H increases if height level of wires in PLC urges.
The minimum value of H is 1, i.e., all the wires are hanged at

Figure 4. Feature extraction.

the same height. For the given sample scene the value of H is 2
(see Figure 3).

4. Horizontal count: For each VO two numbers Ca1 and Ca2

expressing the count of VE voxels on its both sides across the
span are calculated. Figure 4 shows the directions to count these
two values. This counting stops when a VO voxel is found at the
same height or the algorithm reaches the last voxel in the same
direction. The value of Ca2 is high and the value of Ca1 is
low for the right most (i.e., W1 and W7) wires see in Figure 3),
while the value of Ca1 is high and the value of Ca2 is low for
the left most wire (i.e., W6 and W8 wires in a Figure. 3).

5. Vertical count: For each VO a height count Ch from the
ground level in terms of VE voxels in the height direction is
calculated. Figure 4 shows the direction to count this value.
The value of Ch will be high for top wires, e,g., wires W7 and
W8 have high Ch values, then wires W1 to W6 in Figure 3.

6. Voxel Labelling: The VO for which Ca1, Ca2 and Ch values
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neither heigh nor low will be considered in the next iteration for
labelling. Thus, points in each voxels VO are labelled according
to the values of VO by calculating range (R) using an equation
given below.

R = [nl + 1, nl + 2H], (3)

where nl = 0 in first iteration
and R is allocated to nl in next iteration

In every iteration the voxels with very high and low values will
be labelled using a value of R. The value of Ca1 is high and
Ca2 low for right most wire while the values are opposite for
left most wires. So, in every iteration the left most and right
most wires will be labelled. The thresholds in algorithm has
been set representing the high and low values based on density
of LiDAR point cloud data.

The voxel meeting the criteria will be labelled with values from
R. The rest of the voxels will remain unlabelled and will be
considered in the next iterations. This algorithm will proceed
iteratively until all the VO are labelled. This algorithm is
efficient as only VO and its neighbouring voxels are considered
for labelling. The huge amount of empty voxels VE are only
counted for Ca1, Ca2 and Ch . Finally, the voxels with the same
labels are combined together to get the same wire points. The
algorithm will do the extraction of wires in each span and will
extract the individual wire points. Thus the wires are extracted
in the form of segments of wire points. Once the extraction
is accomplished the complete wire from PLC is formed by
concatenated wire segments.

4. EXPERIMENTAL EVALUATION

This section is divided into four main sections. The brief
overview on a dataset has been provided in section 3.1. Section
3.2 gives an overview on experiment set up. Section 3.3
presents the results and discussion on accuracy assessment of
the PLC key objects extraction. Finally, the comparison of
proposed method with the previous methods.

4.1 DATASET

Figure 5 shows the dataset from Maindample, Victoria,
Australia. It is 5,560 m long and 330 m wide. The density of the
input point cloud is 23.7 points/m2. There are 2 transmission
line corridors (TLCs) and one distribution line corridor (DLC).
Each of the two TLCs has 13 pylons, so 26 in total. The only
DLC is under the two TLCs and does not have enough points,
therefore, excluded in this study. The total number of points in
the dataset is 32,708,377, though the number of non-grounds
is only 2,097,265 (16.5% of the total points). There are a total
14 spans in each TLC, where each span has eight wires at two
height levels (3 × 2 + 2 × 1). The dataset also comes with
a DTM (Digital Terrain Model) which is a 3D representation
(x,y,z) of the earth surface and help to convert the individual
input point height to the local ground height.

4.2 EXPERIMENT

The proposed method is implemented in MATLAB R2018b on
Intel(R) Core(TM) on Intel(R) Core(TM) i7 CPU @ 2.70GHz
processor and 16 GB RAM. Table 1 shows the summary of the
ground truth used for evaluation of results. As the size of the

Figure 5. (a) Dataset with ground points, (b) Dataset
without ground points.

dataset is very big so it is hard to collect ground truth for all
points in the scene for evaluation. Only the first 6 spans of
each of the two TLCs (total 12 spans out of 28) are used for
evaluation of the proposed scheme. Points with height less than
1 m are not included in the ground truth data, as these points
are assumed as terrain points. The number of wires in Table 1
is calculated by counting the number of wires in each span.

4.3 RESULTS AND DISCUSSIONS

For performance evaluation, object-based and point-based
completeness Cm, correctness Cr and quality Ql metrics are
used and they are defined as follows (Wang et al., 2017):

Cm =
TP

TP + FN
,

Cr =
TP

TP + FP
,

Ql =
TP

TP + FP + FN
,

(4)

Where TP is truly detected pylons and wires for object-based
evaluation and truly extracted pylon and wire points for
point-based evaluation. FP is falsely detected wires and pylons
and FN is pylons and wires which are not detected by the
proposed method. Figure 6(a) shows the extracted pylon
locations. These locations are used to find the wire points
within spans. Figure 6(b) and (c) shows the extracted pylons
and vegetation in TLC1 and TLC2. Figure 6(d) and (e) show the
magnified version of an extracted pylon and a tree in a dataset.

For object-based evaluation, the total number of detected pylons
and the total number of extracted wires in a dataset including
the one in DLC are considered. Table 2 shows the object-based
evaluation results for the dataset. All pylons in TLCs are
detected except the ones which are located in the DLC. All
the 224 wires in TLCs are extracted except the ones which are
on the DLC. The object-based and point-based results are not
provided for vegetation due to the absence of the ground truth
for individual trees.

Pylons Wires
Comp. Corr. Qual. Comp. Corr. Qual.

92.8 100 92 92.5 96 92.5

Table 2. Object-based evaluation on the whole dataset.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019 
14th 3D GeoInfo Conference 2019, 24–27 September 2019, Singapore

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W8-91-2019 | © Authors 2019. CC BY 4.0 License.

 
95



Sites A Points Total
Area All Wire Pylon Trees Span Wires Pylons

TLC 1 1,170 × 330 56,515 50,679 5,001 835 6 48 6
TLC 2 667 × 530 435,579 36,062 3,860 395,657 6 48 6
Total 1837×860 486,258 86,741 8,861 396,492 12 96 12

Table 1. Summary of the two ground truth sites.

Figure 6. (a) Pylon locations, (b) Extracted pylons, (c) Extracted vegetation, (d) Individual pylon, (e) Individual tree.

Table 3 shows point-based evaluation for wire and pylon points.
In both sites, some of the wire points are misclassified as
pylon points (see Figure. 6(d)) as these wire points are very
close to pylons and hard to separate using vertical profile
features. Localisation error of pylon locations is also calculated
by estimating the difference between the two mean points of

the extracted pylon and corresponding ground truth pylon data.
Figures 7(a) and (b) show the extracted wires in both corridors.
There are some errors in detecting PL points in adjacent wires
see Figure 7(b). This is due to the fact that the points of
adjacent wires are very close to each other. A voxel can have
points from two adjacent wires in that case some of the the
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TLC Wires Pylons
Comp. Corr. Qual. Comp. Corr. Qual. 2D error. 3D error.

TLC 1 97.7 98.6 98.4 98.9 99.8 99.7 0.19 0.34
TLC 2 98.1 99.2 98.63 98.5 99.7 99.6 0.06 0.28

Average 97.9 98.9 97.015 99.9 99.75 99.65 0.12 0.31

Table 3. point-based evaluation on the dataset.

Figure 7. (a) Extracted wires in TLC 1, (b) Extracted wires in TLC 2, (c) Extracted wires, pylons and vegetation points.

points may be wrongly misclassified. Though there is no wrong
classification of PL points which are not in adjacent wires.
Also, some of the points may be misclassified as pylon points
as they may be very close to pylons and are not extracted as
wire points in the first step see Figure 6(d).

Table 5 shows the running time for different steps of the
proposed method when it is applied to the large dataset (5,560
m × 330 m) with more than 32.5 million points in the input
point cloud data. For each step in the table the fastest time is
recorded from about ten runs. The time is proportional to the
size of dataset and the size of each span.

Step Section Time(mins.)
Removal of ground points 3.1 1.2
VPF feature calculation 3.1 2.3
Final Pylons and trees 3.1 3.4

Wire extraction(each span) 3.2 2.5

Table 4. Running time for different steps of the proposed
method.

4.4 Comparison with existing methods

The novelty of this study is the individual wire extraction,
where the previous studies mostly focused on classification of
wires as a whole class. Where (Kim and Sohn, 2010) (Guo et
al., 2015) (Wang et al., 2017) offered point- based accuracy of
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with 97.33% 93.4% 98% respectively. The proposed method
provide 98.9% correctness for the extracted wire points.

Only few studies have given an automated solution for
individual PL extraction in which they had presented results
in few spans and didn’t extract the complete wire from PLC.
such as a method in (Jwa et al., 2009) is based on automated
voxle-based solution for PL extraction and reconstruction with
completeness of 93.4%. (Cheng et al., 2014) proposed a
method to extract PLS from Urban areas using vehicle-borne
LiDAR data with correctness and completeness of 100% and
97.2% respectively. The proposed method has achieved better
accuracy i.e., 98% and 99% in terms of completeness and
correctness. Moreover, we have used 2 corridors, while each
corridor has 14 spans to do the evaluation of proposed method.
However the proposed algorithm may give less accurate results
in the case of occlusion and noisy wires occlusion. In that case
pre-processing steps, will be required to remove the noise to
perform the voxel-based extraction.

5. CONCLUSION

In this work, we have addressed the issue of extraction of
individual pylons and wires which are very important for
modelling of 3D objects in a power line corridor (PLC) map.
Existing methods mostly classify points into distinct classes
like pylons and wires, but hardly into individual pylons or
wires. The extraction of individual objects is important for a
detailed PLC mapping.

To overcome the above mentioned shortcomings this paper
proposes a framework that combines the supervised and
unsupervised methods to extract individual PLC objects. A
voxel-based algorithm is developed to do an extraction of
individual wires by using the PL characteristics. The proposed
method shows 98% and 99% completeness and correctness for
pylons and wires respectively. In future, we will investigate the
modelling of wire points using the catenary curve equation and
will perform the extraction of PLC objects in more complex
datasets which have occluded and noisy wires. Also, the
location of pylons, wires and vegetation can be further used to
monitor the vegetation near PLC to prevent the risk from tall
and growing trees closely to power lines.
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