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Abstract Image representation using feature descriptors is crucial. A number of
histogram-based descriptors are widely used for this purpose. However, histogram-
based descriptors have certain limitations and kernel descriptors (KDES) are
proven to overcome them. Moreover, the combination of more than one KDES
performs better than an individual KDES. Conventionally, KDES fusion is per-
formed by concatenating them after the gradient, colour and shape descriptors
have been extracted. This approach has limitations in regard to the efficiency as
well as the effectiveness. In this paper, we propose a novel approach to fuse different
image features before the descriptor extraction, resulting in a compact descriptor
which is efficient and effective. In addition, we have investigated the effect on the
proposed descriptor when texture-based features are fused along with the con-
ventionally used features. Our proposed descriptor is examined on two publicly
available image databases and shown to provide outstanding performances.

Keywords Kernel descriptor · Tamura features · Descriptor fusion · Image
classification · Image retrieval

1 Introduction

Effective and efficient image representation is essential in image processing appli-
cations, such as image classification and retrieval. With the increase in advanced
camera technologies and cheaper storage devices, a lot of images are captured ev-
eryday. To process this huge amount of images by representing them effectively
and efficiently is a challenging task. Images are commonly represented by various
feature descriptors which capture the pixel information and represent images in a
compact form. Image descriptors are broadly classified into global and local de-
scriptors. The former one describes an image as a whole. In contrast, the latter
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describes small or local regions of images. Local descriptors are usually more ro-
bust and discriminative than the global ones and therefore, they are popular and
widely used [45,14].

Over the years, many local descriptors have been proposed. Among them,
histogram-based descriptors, such as scale invariant feature transform (SIFT) [21],
histogram of oriented gradients (HOG) [7], Fuzzy colour histogram [18,6] are pop-
ular. Although they are easy to use, these descriptors suffer from information loss
due to the coarse quantization of pixel attributes. To overcome these limitations,
a set of kernel descriptors (KDES)[3] were proposed. KDES are specifically de-
signed that no quantization is performed on the pixel attributes. Instead, each
pixel equally participates in the matching between two image patches. Thus, ker-
nel descriptors provide more distinct and accurate information compared to the
histogram-based descriptors.

In addition, combination of descriptors instead of a single descriptor is more
effective approach to represent images. It has been shown that the performance
of combining all KDES is higher than the highest performing individual kernel
descriptor [3]. However, the conventional fusion approach as per [3] has limitations
with respect to the effectiveness, efficiency and storage. To overcome these issues,
in this paper we propose a novel fusion approach to extract kernel descriptor.
Specifically, our contribution in this paper is two-fold:

1. Fuse different image features (e.g. gradient, colour and shape) together be-
fore the descriptor extraction stage and compare the performance with the
conventional approach in terms of effectiveness and efficiency.

2. Investigate the performance when additional texture-based features are in-
corporated in the proposed fusion model along with the conventionally used
features (i.e. gradient, colour and shape).

Recently, different deep learning architectures have shown the higher effective-
ness in various image processing applications compared to the traditional feature
descriptors (e.g. histogram-based descriptors, kernel descriptors) [40,11]. However,
the traditional feature descriptors have their own advantages. First of all, the deep
learning architectures are often huge with many layers of neurons with millions
of parameters and require large set of training images for the appropriate tuning
and weight adjustments. In contrast, traditional feature descriptors can perform
satisfactorily with a small number of training images and fewer parameters need
to be tuned [22,46]. In addition, deep learning is generally treated as a black-box
and therefore, it is still not clear what visual information is being represented in
the complex features derived from a deep learning method. In some application
domains, e.g. in crime investigation and presentation of evidence in the court, it
is essential to explain how a computer algorithm or method derives its results.
Traditional feature descriptors are easier to explain and visualize [15]. Due to the
aforementioned reasons, further research and development of traditional feature
descriptors are still important and essential. Therefore, in this paper, our focus is
to improve an existing feature descriptor framework in terms of effectiveness and
efficiency.

The rest of paper is organized as follows. Section 2 discusses the motivation
behind our work followed by related works in Section 3. Proposed fusion approach
is explained in Section 4. Section 5 demonstrates descriptor dimensionality. The
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details of the experiments and results are given in Section 6. Finally, Section 7
concludes the paper.

2 Motivation

In this section we discuss our motivation behind the proposed descriptor. At first,
we describe the limitations of histogram-based descriptors followed by how KDES
overcome them. After that, we discuss the necessity of descriptor fusion and finally,
we introduce the approach to extract the proposed kernel descriptor.

During the extraction of histogram-based descriptors, pixel attributes are ap-
proximated or quantized to a pre-defined value or range which corresponds to a
bin of the histogram. Such a representation encounters two limitations as follows.

1. Histogram-based descriptors consist of several bins. The number of histogram
bins are user-defined and the magnitude of each bins are obtained by approxi-
mating individual pixel attributes using a pre-defined rule. The most common
approach of approximation is the division of the entire range of pixel attributes
into small intervals which correspond to the individual bins of a histogram. A
pixel attribute is approximated to a particular bin if it belongs to the corre-
sponding interval. While approximating pixel attributes, it may happen that
perceptually very similar pixels are falling into different bins and less similar
pixels are falling into the same bin. Therefore, it leads to less informative image
representation.

2. The pixel attributes of local image regions are approximated to fixed dimension
histograms, but the structural or spatial information of the regions is ignored.
Based on the concept of histogram-based descriptors, two spatially dissimi-
lar image regions with similar pixel attributes may form similar descriptors.
Therefore, these descriptors are not as effective as it could be with the spatial
information of pixel attributes incorporated.

Due to the two above limitations, the image representation with histogram-
based descriptors is less discriminative. To overcome this, the authors of [3] have
proposed a set of KDES. In the KDES framework, each pixel equally participates in
the process of similarity measurement between two images. Thus, the information
loss due to coarse quantization is minimized. In addition, in the KDES framework,
along with the pixel attributes, pixel positions are also considered while measuring
the similarities between images. Therefore, the spatial and structural information
of pixels in an image region is preserved.

Descriptor fusion is a standard approach to increase the effectiveness in im-
age representation. Individual descriptors capture one type of features and may
not be sufficient to represent images effectively. Therefore, to represent images
with multiple features simultaneously, descriptor fusion is required. In addition,
image representation can be made rotation-, translation- and occlusion-invariant
at the same time by fusing individual descriptors which are rotation-, translation-
and occlusion-invariant respectively. There are different fusion approaches exist
in the literature. For example, in [38,39,20], multiple kernel learning frameworks
are proposed for fusing the descriptors by a weighted summation of kernel ma-
trices computed over individual candidate descriptors. To fuse different features,
covariance matrices are also used for representing images effectively in [36,37,31].
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Serial fusion or the concatenation of diffrernt candidate descriptors into a single
robust descriptor is also a popular approach [30]. The descriptor fusion in [3] and in
the subsequent works is performed by the concatenation of image-level descriptors
of individual KDES. Although this conventional fusion approach shows higher
effectiveness, it still has several limitations. First of all, it is not an efficient process.
Secondly, It needs huge amount of storage. Finally, there is a risk of information
loss. These limitations are discussed in Section 3.2. To overcome these limitations
of conventional fusion, in this paper, we have proposed a novel approach where
image features (i.e. gradient, colour and shape) are fused before the descriptor
extraction stage, resulting in a more efficient and effective descriptor.

Conventionally, KDES are based on gradient, colour and shape features. How-
ever, the KDES framework can turn any kind of pixel attributes into a patch-based
descriptor [44,35,13]. Tamura features represent important texture information.
Originally [33], Tamura features are designed as global descriptors and a total of six
features have been proposed: Coarseness, Directionality, Contrast, Line-likeness,
Regularity and Roughness. However, as per human visual perception, the first
three features are very important as they are more effective in distinguishing dif-
ferent textures. To leverage the properties of Tamura features in representing local
image regions, authors of [17] have proposed a set of texture-based kernel descrip-
tors based on per-pixel Tamura features. In this paper, we have also investigated
the performance of the proposed descriptor when per-pixel Tamura features are
incorporated along with the conventionally used features into the proposed fusion
model.

3 Related Work

In this section, we discuss the basic idea of KDES extraction based on a match
kernel, followed by description of a set of relevant literature related to the KDES.
Thereafter, the conventional approach to fuse individual KDES is discussed.

3.1 Kernel Descriptors

In this section, the concept behind the extraction of KDES based on match kernels
is briefly explained using gradient kernel descriptors (GKDES). The match kernel
based on gradient is given by (1).

Kgrad(A,B) =
∑
z∈A

∑
z′∈B

m̃(z)m̃(z′)ko(θ̃(z), θ̃(z
′))kp(z, z

′), (1)

where A and B are two different image patches. m̃(z) represents the normalized
gradient magnitudes of pixels in Patch A. m̃(z)m̃(z′), a linear kernel which can
also be represented as km̃(z, z′) provides a weight to the contribution of each
pixel using gradient magnitudes to the overall match of Kgrad. ko(θ̃(z), θ̃(z

′)) =

exp(−γo∥θ̃(z)−θ̃(z′)∥2) is a Gaussian kernel over gradient orientations. To estimate
the difference between orientations at pixels z and z′, the authors of [3] computed
ko with normalized gradient vectors which are basically 2-D data containing x-
and y-directional gradients of individual pixels. kp(z, z

′) = exp(−γp∥z − z′∥2) is a
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Gaussian kernel over the 2-D position of pixels inside a patch and z (or z′) denotes
the 2D position. kp conveys how close two pixels are spatially.

Gradient kernel descriptor (GKDES) is based on Kgrad which consists of three
candidate kernels: km, ko and kp. In [3], GKDES is extracted using the feature
maps of these three candidate kernels and it is given by (2).

Fgrad(A) =
∑
z∈A

ϕm̃(z)ϕo(θ̃(z))⊗ ϕp(z), (2)

where ϕm̃(.), ϕo(.) and ϕp(.) are the feature maps of km̃, ko and kp respectively. ⊗
represents Kronecker product.

Fgrad is called the gradient kernel descriptor as it is derived from the gradi-
ent match kernel. Being a linear kernel, the feature map of km̃ is the normalized
gradient magnitudes only, i.e. ϕm̃(z) = m̃(z). For the other two candidate ker-
nels, feature maps cannot be extracted directly as they are non-linear (Gaussian)
kernels. Therefore, the feature maps ϕo(.) and ϕp(.) are approximated using a
set of basis vectors. GKDES extraction in [3] results in a very high-dimensional
descriptor and kernel principal component analysis (KPCA) is applied to reduce
the dimensionality. Similarly, colour and shape kernel descriptors can also be ex-
tracted.

After the proposal in [3], many researchers have improved the conventional
KDES in terms of effectiveness and efficiency. Moreover, due to its simplicity,
KDES have been successfully applied to different applications of image processing
and computer vision. To build image-level descriptors from the local descriptors,
hierarchical kernel descriptors (HKDES) are proposed in [2]. HKDES is extracted
from the match kernels defined over the patch-based KDES and spatial information
of image patches is incorporated within the extracted descriptors. To integrate the
image label information and to extract lower dimensional descriptors, supervised
kernel descriptors (SKDES) are proposed in [41]. Another supervised approach,
supervised efficient KDES (SEKD) is proposed in [43]. Instead of using joint basis
vectors, authors of [42] extracted efficient KDES (EKD) by automatically selecting
a small number of pivot features. Context kernel descriptors (CKD) [26] which
provide increased robustness are proposed by incorporating spatial context during
the descriptor extraction stage. In [4], a set of kernel descriptors are designed on
depth images to represent size, 3D shape and depth edge more effectively. In [28],
depth kernel descriptors are used for indoor scene labelling of RGB-depth images
by aggregating kernel descriptors over super-pixels.

In [3] and the subsequent modifications on it, the non-linear candidate kernels
take multi-dimensional data as input. In other words, the candidate kernels are
the Hadamard product of component kernels computed over 1-D data. Therefore,
if any image irregularity or noise exists, its effect becomes multiplicative and de-
grades the effectiveness of the overall performance. In addition, the descriptors are
originally extracted as high-dimensional and the dimensionality reduction process
increases the computational complexity [12] as well as potential of losing discrim-
inative information. To overcome these limitations, authors of [16] have proposed
improved kernel descriptors by leveraging the kernel properties. Specifically, the
candidate kernels are represented as the summation of component kernels which
are built using 1-D data. For example in [3], ko which is a candidate kernel of the
gradient match kernel takes a two-dimensional input of gradient vectors. In con-
trast, the corresponding candidate kernel k

′
o in [16] is the summation of kox and
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Fig. 1 Conventional fusion approach of kernel descriptors in [3]

koy which are the component kernels built using normalized x- and y- directional

gradients respectively, such that k
′
o = kox + koy. In this way, all candidate kernels

for each of the match kernels are modified and the resulting descriptors are ex-
tracted as lower dimensional and lesser noise-sensitive. The descriptors in [16] are
originally extracted as low-dimensional. So, there is no dimensionality reduction
needed and the corresponding risk of information-loss and higher computational
complexity are avoided.

3.2 Conventional Fusion of KDES and its Limitations

Individual KDES are based on a particular pixel attribute or an image feature.
They are more effective compared to their histogram-based counterparts. The
combination of descriptors instead of a single descriptor is even more effective to
represent images. In [3] authors have shown that the combined performance of all
three KDES is higher than the highest performing individual kernel descriptor.
We refer this fusion approach as the conventional fusion. It is shown by a flow
diagram in Figure 1. The same fusion approach is also considered in the subsequent
modifications on KDES. The conventional fusion approach has limitations with
respect to the efficiency, effectiveness and storage as follows.

1. Conventional fusion in [3] and in the subsequent literature is achieved by con-
catenating the image-level descriptors of gradient, colour and shape-based ker-
nel descriptors (i.e. serial fusion). This process includes local descriptor ex-
traction, dimensionality reduction and image-level descriptor encoding of each
KDES. This is a computationally expensive process.
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2. Due to the dimensionality reduction, individual KDES loses some information
and therefore, the effectiveness of the conventionally fused descriptor is also
affected.

3. Concatenation of image-level descriptors lead to a high dimensional representa-
tion which needs higher memory requirements and it is highly time-consuming
to process.

4 Proposed Fusion Approach

To address the above mentioned limitations, a novel fusion approach is proposed
in this section. The proposed approach will address the above limitations in the
following aspects.

1. In the proposed approach, different image features (i.e. gradient, colour, shape)
are fused before the descriptor extraction. Hence, a unique kernel descrip-
tor is extracted which contains all the distinct information of different pixel
attributes. To construct image-level descriptors, image-level encoding is per-
formed only once. For this reason, time complexity is reduced by almost one-
third compared to what is in [3].

2. There is no dimensionality reduction required in the extraction of the pro-
posed descriptor. Therefore, the chance of information loss is lower. Thus, the
proposed descriptor is more effective compared to the conventionally fused
descriptors.

3. Only one descriptor is extracted. Therefore, there is no need of image-level
descriptor concatenation which is needed for the serial fusion. Thus, each image
in the proposed scenario is represented with a lower dimensional descriptor
compared to the conventionally fused descriptors. Due to lower dimensionality,
memory requirement is lower and the processing of each image in the proposed
scenario is faster compared to what it is in [3].

The proposed approach can fuse any kind and any number of pixel attributes
together. At first, we have fused three conventionally used features (i.e. gradient,
colour and shape) to make a fair comparison with the baseline [3]. For that, we have
designed fused match kernel (FMK) and the resulting descriptor is named as fused
kernel descriptor (FKD). After that, we have investigated the performance when
texture-based features (i.e. per-pixel Tamura features) are also integrated into
the fusion model. Here, we have only considered first three Tamura features, i.e.
coarseness, directionality and contrast. In this scenario, we named the descriptor
as extended fused kernel descriptor (EFKD) extracted from the extended fused
match kernel (EFMK).

4.1 Formation of Fused Match Kernel

Kernel descriptors are based on a match kernel that are computed using individual
features (e.g.pixel attributes) over a dense patch (in [3], it is 16× 16 pixels patch
with 8 pixels of spacing) using a Gaussian function. For example, gradient kernel
descriptor is extracted from the gradient match kernel where the main component
is a candidate kernel computed using gradient vectors. By following the same
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approach, if we can design a candidate kernel that captures multiple features from
a dense patch, then the descriptor extracted from the corresponding match kernel
will contain information related to all the features considered. Therefore, we have
designed a kernelKM which captures gradient, colour and shape features. Based on
[32], the summation of valid kernels produces another valid kernel. We computed
KM as the summation of kernels computed using different features. Thereafter, a
unique match kernel named as fused match kernel (FMK) is proposed using KM
as follows.

KFused =
∑
z∈A

∑
z′∈B

KM (z, z′)k
′

p(z, z
′), (3)

where A and B are the image patches from two different images. z and z′ represent
the pixels of A and B patches respectively. KM (z, z′) = KG(z, z

′) + KC(z, z
′) +

KS(z, z
′). By summing up KG, KC and KS , the similarity scores obtained by them

are fused in KM . k
′
p(z, z

′) = kpx(z, z
′) + kpy(z, z

′) measures the spatial proximity
of pixels inside Patches A and B. kpx(z, z

′) = exp(−γp∥zx − z′x∥2) is a Gaussian
kernel over x position of pixels inside a patch and zx (or z′x) denotes the x pixel
position. Similarly, kpy is the Gaussian kernel over y position of pixels.

Match kernels corresponding to individual KDES are composed mainly of two
components. The first component is related to the corresponding pixel attribute.
The second component is same for each case and it is related to the pixel posi-
tions. KM used in (3) is the summation of KG, KC and KS which are the unique
components belonging to the gradient, colour and shape features respectively. The
definitions of KG, KC and KS are provided by (4), (5) and (6) respectively.

KG(z, z
′) = m̃(z)m̃(z′)k

′

o(θ̃(z), θ̃(z
′)), (4)

where KG measures the similarity between patches A and B in terms of pixel gra-
dients. m̃(z) and m̃(z′) are the normalized gradient magnitudes of Patches A and B

respectively. k
′
o(θ̃(z), θ̃(z

′)) = k
′
ox(θ̃x(z), θ̃x(z

′))+k
′
oy(θ̃y(z), θ̃y(z

′)). kox(θ̃x(z), θ̃x(z
′)) =

exp(−γo∥θ̃x(z)−θ̃x(z′)∥2) is a Gaussian kernel over normalized x- directional gradi-
ents. Similarly, koy is the Gaussian kernel over normalized y- directional gradients.

KC(z, z
′) = kcR(zR, z

′
R) + kcG(zG, z

′
G) + kcB(zB , z

′
B), (5)

where KC measures the colour similarity between patches A and B. kcR(zR, z
′
R) =

exp(−γc∥c(zR)− c(z′R)∥
2) is a Gaussian kernel over pixel intensity at red channel.

Similarly, kcG and kcB are the Gaussian kernels over pixel intensities at green
and blue channels respectively. If the image is grayscale, then KC is the Gaussian
kernel over pixel intensities.

KS(z, z
′) = s̃(z)s̃(z′)k

′

b(b(z), b(z
′)), (6)

where KS measures how two patches A and B are similar in terms of shape.
s̃(z) and s̃(z′) are the normalized standard deviations of pixel values in the 3× 3
neighbourhood around each pixel (z or z′) inside patches A and B respectively.
b(z) is a binary vector which is the local binary pattern (LBP) [25] of z around
3 × 3 neighbourhood. k′b(b(z), b(z

′)) = kb1(b1(z), b1(z
′)) + · · · + kb8(b8(z), b8(z

′)).
kb1, · · · , kb8 are the Gaussian kernels computed over individual dimensions of 8-D
LBP.
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After designing FMK, we have extended it by incorporating per-pixel Tamura
features [17]. Thus, resulting extended fused match kernel (EFMK) and it is given
by 7.

KEFused(A,B) =
∑
z∈A

∑
z′∈B

KEM (z, z′)k
′

p(z, z
′), (7)

whereKEM (z, z′) = KM (z, z′)+KT (z.z
′) andKT (z, z

′) = ks(s(z), s(z
′))+kψ(ψ(z), ψ(z

′))+
kcon(con(z), con(z

′)). KT sums up the similarity scores obtained using Ks, Kψ and
Kcon given by 8, 9 and 10 which are the Gaussian kernels computed over per-pixel
coarseness, directionality and contrast respectively.

Ks(s(z), s(z
′)) = exp(−γs∥s(z)− s(z′)∥2), (8)

where s(z) represents the Sbest value of a pixel z. Ks finds the similarity between
Sbest values. Sbest values for individual pixels are obtained by considering the same
approach as in [33].

Kψ(ψ(z), ψ(z
′)) = exp(−γψ∥ψ(z)− ψ(z′)∥2), (9)

where Kψ finds the similarity between the normalized (within [0,1]) ψ values of
pixels z and z′. ψ(z) = θ(z) for the corresponding |∆G|> t, where t is fixed as ‘12’ as
per [33]. Otherwise ψ(z) = ε(ε→ 0). The edge of a pixel is a vector and it has both

magnitude (|∆G|) and direction (θ) which are calculated as |∆G|= |∆H|+|∆V |
2 ,

θ = tan−1 |∆V |
|∆H| +

π
2 . ∆H and ∆V are obtained by applying Prewitt operator to the

corresponding pixel. Thresholding |∆G| by t helps to reject unreliable directions
which cannot be considered as edge points.

Kcon(con(z), con(z
′)) = exp(−γcon∥con(z)− con(z′)∥2), (10)

where Kcon finds the similarity between normalized (with [0,1]) contrast values at
z and z′. Contrast value per pixel is calculated as con(z) = (I −mn)/std. I is the
intensity of pixel z. mn and std are the mean and standard deviation of the pixel
intensities around the 3× 3 neighbourhood of the pixel z.

In the research area of feature extraction, the main kernels used in the liter-
ature are linear, polynomial and Gaussian. However, Gaussian kernel is the most
suitable to represent the complex relationship between data [27]. Hence, it is highly
popular among the researchers. The Gaussian kernel has been used in [3] and in
the consequent research done on KDES. Therefore, in our work, Gaussian kernels
are also used as the base kernels to match pixel attributes in the corresponding
match kernels to make a fair comparison with the existing methods.

4.2 Descriptor Extraction from Fused Match Kernel

To extract the descriptor from FMK, the same approach that has been taken
in [16] to extract descriptors from the match kernels is considered. At first, the
candidate kernels of KFused are represented in terms of their inner products as,
KM (z, z′) = ϕM (z)TϕM (z′) and k

′
p(z, z

′) = ϕ
′
p(z)

Tϕ
′
p(z

′), where ϕM (.) and ϕ
′
p(.)

are the feature maps of kM and k
′
p respectively. The descriptor extraction using

the feature maps is given by (11).
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FFused(A) =
∑
z∈A

ϕM (z)⊗ ϕ
′

p(z), (11)

KM is the linear summation of three kernels KG, KC and KS . Therefore, ϕM is
the concatenation of feature maps of these three kernels [32] and it is given by
(12).

(12)

KM (z, z′) = KG(z, z
′) +KC(z, z

′) +KS(z, z
′)

= ϕG(z)
TϕG(z

′) + ϕC(z)
TϕC(z

′) + ϕS(z)
TϕS(z

′)

=

[ ϕG(z)
ϕC(z)
ϕS(z)

]T [ ϕG(z
′)

ϕC(z
′)

ϕS(z
′)

]
,

from (12), it can be easily concluded that ϕM (.) =

[ ϕG(.)
ϕC(.)
ϕS(.)

]
=

[
ϕG(.) ϕC(.) ϕS(.)

]T
.

The feature maps of non-linear (Gaussian) kernels cannot be extracted directly.
Therefore, ϕG(.), ϕC(.), ϕS(.) and ϕp(.) are approximated using individual sets
of basis vectors as per [3,16]. Thereafter, ϕM (.) is approximated as ϕ̃M (.) by

concatenating the approximated feature maps of KG, KC and KS . Also, ϕ
′
p(.)

is approximated as ϕ̃
′
p(.). So, (11) is approximated and given by (13).

F̃Fused(A) =
∑
z∈A

ϕ̃M (z)⊗ ϕ̃
′

p(z). (13)

The descriptor given by equation (13) is the fused kernel descriptor (FKD).
A flow diagram to show how FKD is extracted and evaluated is given in Fig-
ure 2. The dimensionality of FKD is significantly lower compared to the original
dimensions of individual KDES in the baseline [3]. Therefore, no dimensionality
reduction is required for FKD. In contrast, to perform serial fusion in the base-
line, dimensionality reduction is performed for each participating KDES and it is
time-consuming process. In addition, to represent images using FKD, descriptor
extraction and image-level encoding done only once compared to n times in the
serial fusion (considering n different types of KDES take part in the corresponding
serial fusion). Therefore, FKD is more efficient in representing images compared
to the serial fusion in baseline.

The proposed fusion approach is not restricted to fuse only gradient, colour and
shape features. Due to it’s simplicity, any kind and any number of features can be
fused together to obtain a unique kernel descriptor. Thus, we have also extracted
a descriptor based on EFMK which is given by 7 and we named it extended fused
kernel descriptor (EFKD). To extract EFKD from EFMK, the same approach of
FKD extraction is considered. Feature maps of candidate kernels of EFMK are
approximated using individual sets of basis vectors. Subsequently, using all the
feature maps together, EFKD is extracted and it is given by 14.

FEFused(A) =
∑
z∈A

ϕEM (z)⊗ ϕ
′

p(z), (14)
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Fig. 2 Extraction and evaluation of FKD

where ϕEM (.) =

[
ϕM (.) ϕT (.)

]T
. KEM being a non-linear kernel, ϕEM (.) is

approximated as ϕ̃EM (.) by concatenating the approximated feature maps of KM
and KT . ϕT (.), the feature map of KT is approximated as ϕ̃T (.) by concatenating
the approximated feature maps of KS , Kψ and Kcon. Finally, (14) is approximated
and given by (15).

F̃EFused(A) =
∑
z∈A

ϕ̃EM (z)⊗ ϕ̃
′

p(z). (15)

EFKD extracted using proposed fusion approach is also lower in dimensional-
ity. Therefore, no dimensionality reduction needed. A detailed discussion on the
descriptor dimensionality is provided in the following section.

5 Descriptor Dimensionality

In this section, the dimensionality associated with the conventional and the pro-
posed fusion approaches will be compared for the local descriptor extraction as
well as for the EMK encoding stage.

It is already known that KDES are extracted using the feature maps of can-
didate kernels of the corresponding match kernels. To approximate the feature
maps, a set of basis vectors is needed. The basis vectors are constructed in the
similar way as in [16]. The size of the basis vectors chosen on kernel ko, kc, kb and
kp are 10 × 10, 5 × 5 × 5, 28 = 256 and 5 × 5 respectively. Therefore, the original
dimensionality of gradient, colour and shape KDES used in conventional fusion [3]
are (10×10)× (5×5) = 2500, (5×5×5)× (5×5) = 3125 and 256× (5×5) = 6400
respectively. In contrast, the size of basis vectors on kernel ko

′ is 10 + 10 = 20.
The size of basis vectors on kernel k

′
c is 5 + 5 + 5 = 15 for RGB images or 5 for
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Table 1 Comparison of dimensionalities between conventional fusion and FKD

Descriptor type
Conventional

fusion
FKD

Local descriptor
Gradient- 2500

510 (RGB)Colour- 3125
Shape - 6400 410 (Grayscale)

Image-level
descriptor

3000 1000

grayscale images. The size of basis vectors on k
′

b is (2+2+2+2+2+2+2+2) = 16
and the size of basis vectors on kernel kp

′ is 5 + 5 = 10. Therefore, descriptor di-
mensionality of the proposed FKD is (20 + 15 + 16) × 10 = 510 for RGB images
or (20 + 5 + 16)× 10 = 410 for grayscale images.

For the image-level representation, EMK encoding is done for the descriptors
used in conventional fusion as well as for the FKD. For the EMK encoding of each
local descriptor, the size of basis vectors chosen is 1000. i.e. the dimensionality of
feature maps for each descriptor for EMK encoding is 1000. Therefore, the image-
level descriptor dimensions of individual descriptors in the conventional fusion
and FKD are 1000. As the conventional fusion approach is the concatenation
of image-level descriptors of participating local descriptors. Therefore, the final
dimensionality of image-level descriptors of each image using conventional fusion
approach is 3000 (in the baseline [3], three local descriptors are concatenated). In
contrast, the final dimensionality of image-level descriptors to represent an image
using FKD is only 1000. For the better representation, dimensionality comparisons
are given in Table 1 which states that irrespective of the local descriptor extraction
or EMK encoding stage, FKD always deal with less dimensionality of descriptors
compared to the conventional fusion approach.

Similarly, we have also computed the dimensionalities of EFKD extraction and
encoding. All the feature maps required to extract FKD are also needed to extract
EFKD. In addition, feature maps belonging to ks, kψ, kcon are also needed. We
have chosen the sizes of basis vector sets on the candidate kernels belonging to
per-pixel Tamura coarseness (ks), Tamura directionality (kψ) and Tamura contrast
(kcon) are 5, 10 and 10 respectively. Therefore, the dimensionality of EFKD is
(20 + 15 + 16 + 5 + 10 + 10) × (5 + 5) = 760 for RGB images or (20 + 5 + 16 +
5 + 10 + 10) × (5 + 5) = 660 for grayscale images. The dimensionality of EFKD
is within the accepted range and efficient to process. Therefore, there is no need
for dimensionality reduction. In this case also, the size of basis vectors chosen for
EMK encoding of EFKD is 1000. Therefore, the image-level descriptor dimension
belonging to EFKD is 1000.

6 Experiments and Results

In this section, the experimental details and the results are provided. At first,
the test databases which are used to evaluate the classification and retrieval per-
formances are discussed. After that, experiment settings and computation time
are provided. Image classification and retrieval results are discussed thereafter,
followed by a detailed qualitative and quantitative analysis.
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Fig. 3 Sample images from Scene categories database

6.1 Test Databases

For the experiments, the following test databases are used. The motivation is
to compare the performance of FKD with the conventional fusion approach in
terms of both image classification and retrieval applications. In addition, we also
examine the performance of EFKD to investigate the effect of incorporating per-
pixel Tamura features into the proposed fusion model.

Scene categories database: The Scene categories database [19] contains 15
different classes of grayscale images. A set of sample images is shown in Figure
3. The number of images in the classes varies from 200 to 400 and in total, the
database consists of 4485 images. The average size of the images in this database is
300×250 pixels. The different classes of this database are (1) Bedroom, (2) Coast,
(3) Forest, (4) Highway, (5) Industrial, (6) Inside city, (7) Kitchen, (8) Living
room, (9) Mountain, (10) Office, (11) Open country, (12) Store, (13) Street, (14)
Suburb and (15) Tall building.

Caltech 101 database: The Caltech 101 database [10] contains 101 object
categories and Google background category. The number of images in each cate-
gory varies from 31 to 800 and in total, the database consists of 9146 images. The
resolutions of images in this database vary from very low to very high. However,
most of the images are of 300× 300 pixels on average. The different classes of this
database include animals, vehicles, flowers to architecture, musical instruments
and tools. A set of sample images from the database is given in Figure 4.

6.2 Experimental Settings

To extract kernel descriptors, the same experiment settings are considered as in
the baseline [3]. Individual images are resized to no larger than 300 × 300 pixels.
Local descriptors (descriptors for conventional fusion as well FKD and EFKD) are
extracted over patch sizes of 16×16 pixels with a spacing of 8 pixels. Image-level de-
scriptors are obtained by EMK encoding on local descriptors. Spatial information
in the image-level descriptors is incorporated using spatial pyramid grids (1 × 1,
2× 2 and 4× 4) during EMK encoding stage. All computations are performed in
the Matlab environment.
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Fig. 4 Sample images from Caltech 101 database

Table 2 Comparison of computation time (Sec) between conventional and proposed fusion
approaches

Descriptor type Conventional fusion FKD EFKD
Local descriptor 2.2666 1.2592 1.3275

Image-level descriptor 1.1831 0.2037 0.2212

6.3 Computation Time

While the classification and retrieval results are provided in the separate sub-
sections, comparison of computation time between conventional fusion and the
proposed fusion approaches is given in Table 2. Computation times are calculated
based on individual images and not for the whole image database. Computation
time to extract local descriptors in the conventional fusion approach is the total
time to extract three KDES for a single image. In contrast, in the proposed ap-
proach, it is the time to extract FKD or EFKD only. Computation time to obtain
the image-level descriptors in the conventional fusion approach is the total com-
putation time taken by EMK encoding of three local descriptors along with the
time taken to concatenate them. In contrast, in the proposed approach, it is only
EMK encoding of FKD or EFKD. From Table 2, it is clear that in both stages,
descriptors associated using the proposed fusion approach are more efficient than
the conventional one.

6.4 Image Classification

The comparison of classification accuracy of FKD with the conventional fusion
approach is given in Table 3 for the two databases considered here. Image classi-
fication is performed using support vector machine (SVM)-based classifiers with
Laplacian kernel as per the baseline [3]. LIBSVM [5] is used as the classifica-
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Table 3 Comparison of Classification accuracies (%) between conventional and proposed
fusion approaches

Database Conventional fusion[3] FKD EFKD
Scene categories 86.74 88.32 90.14

Caltech 101 74.58 77.84 80.61

Table 4 Comparison of Classification accuracies (%) of different methods

Method Scene categories Caltech 101
EFKD 90.14 80.61

EKD-All [42] 86.34 76.95
SKDES-All [41] 88.77 79.26
SEKD-All [43] 89.23 79.33

tion tool. A 10-fold cross-validation is performed on each database by randomly
splitting the individual databases to 10 training and test sets and the average of
10 iterations is reported here. The classification results show that the effective-
ness of FKD to classify images of both databases is higher than the conventional
fusion approach. The reasons for FKD is more effective than the conventional fu-
sion approach are threefold: first, the candidate kernels of the fused match kernel
from which FKD is extracted are constructed by summation instead of Hadamard
product of component kernels. Therefore, due to the usage of summation, FKD
captures more discriminative information [9] and it is less noise sensitive [16,17].
Second, to extract FKD, information fusion is done at patch level. In contrast, in
the conventional approach, information fusion is performed globally by concate-
nating image-level descriptors. As information fusion at patch level is performed
over the raw pixel attributes of local image regions, it can capture the variation
and correlation of pixel attributes more effectively than the global fusion of con-
ventional approach. Finally, individual descriptors in the baseline [3] undergo a
dimensionality reduction stage and it causes a risk of information loss. However,
there is no dimensionality reduction associated to FKD and therefore, there is a
minimum chance of information loss.

In Table 3, classification accuracies of EFKD for the databases considered
here are also provided. By looking at the performance of EFKD, we can easily
conclude that incorporation of per-pixel Tamura features into the proposed fusion
model enhanced the classification accuracy. Although, the computation time and
dimensionalities of EFKD and FKD are comparable.

Table 4 shows a performance comparison of our proposed approach (EFKD)
with the existing kernel descriptor-based methods in terms of classification accu-
racy. For a fair comparison, we have only considered the combined or serially fused
performance of kernel descriptors from these methods to compare the effectiveness
of EFKD. From Table 4, it is clear that our proposed fusion approach outperforms
the compared methods.

6.5 Image Retrieval

The task of image retrieval is to serach a database based on a query either to
find a particular image or an image from a class [23,34]. In this paper, the image
retrieval performances are measured by MAP values and using recall-precision
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Table 5 Comparison of MAP (%) based on top k retrieved images

Database k Conventional fusion [3] FKD EFKD
Scene categories 100 60.26 62.19 64.15

Caltech 101 30 58.38 60.84 61.94

curves. There are various similarity and dissimilarity measures between a query
image and the database images are available in the literature [29]. We have used
Laplacian kernel to obtain the similarity scores. Each image from the databases
is used as a query to retrieve rest of the images from the corresponding database.
For each query, based on the top ‘k’ retrieved images, MAP values are obtained
and recall-precision curves are plotted.

Precision measures how relevant the retrieved result is and recall measures
how many relevant results are retrieved. The mathematical forms of precision and
recall are given by (16) and (17) respectively [24,1].

Precision =
Number of relevant images retrieved

Total number of retrieved images
, (16)

Recall =
Number of relevant images retrieved

Total number of relevant images in the database
. (17)

Mean average precision (MAP) [8] summarises the precision and recall values
to a single value. To calculate MAP, average precision (AP) given by (18) needs to
be calculated. The AP for a single query ‘q’ is the mean over the precision scores
after each relevant retrieved item.

AP =
n∑
k=1

(Pk × r(k))/NR, (18)

where Pk is the Precision value at the kth retrieved image, r(k) is an indicator
function which equals 1 if the image at kth rank is relevant, otherwise 0, and NR
is the total number of relevant images retrieved. MAP is the mean of the average
precision values over the all sets of queries and it is given by (19).

MAP = 1/Nq

Nq∑
q=1

AP (q), (19)

where NQ is the total number of query images and AP (q) is the average precision
of query q.

A comparison of MAP values obtained using conventional fusion, FKD and
EFKD is given in Table 5. The corresponding recall-precision curves are given in
the Figures 5 and 6 for both databases respectively. From the retrieval results as
well, it is clear that irrespective of the databases considered here, FKD outperforms
in retrieving images compared to the conventional fusion as MAP values belonging
to FKD are always higher compared to the conventional fusion and FKD possesses
higher precision compared to the conventional fusion over the same recall rate. In
addition, it is clear that combining Tamura features with the gradient, colour
and shape features using the proposed fusion approach boosts the overall retrieval
performance.
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Fig. 5 Recall-Precision curve on Scene categories database

Fig. 6 Recall-Precision curve on Caltech 101 database



18 Priyabrata Karmakar et al.

Fig. 7 Retrieval example using conventional fusion

We have compared the performance of our proposed approach with the existing
KDES-based methods in terms of classification accuracy in Section 6.4. KDES-
based methods in the literature are used for classification task only. In this paper,
we aim to investigate how our proposed approach perform for image retrieval task
and compared the retrieval result of our proposed approach with the conventional
one. By comparing the trend of classification and retrieval results, it is theoretically
evident that our proposed approach will outperform the existing KDES-based
methods [42,41,43] for retrieval performance as well.

6.6 Qualitative and Quantitative Analysis

In this section, we provide further analysis on the effectiveness of the proposed
fusion approach compared to the conventional one. For simplicity, only FKD is used
here to represent the proposed fusion approach as FKD and the conventional fusion
contain equivalent information. In Figures 7 and 8, two retrieval examples are
provided using conventional fusion approach and FKD. The retrieval examples are
based on a Matlab-based interface which takes input as a query image and outputs
top 9 retrieved images. In both cases (i.e. Figures 7 and 8), same query image
(i.e. image of a butterfly) is used to find the similarities with rest of the database
images using a Laplacian kernel. It can be clearly observed that using FKD, all top
9 retrieved images are relevant, but using conventional fusion approach, only top
4 and 6-th ranked images are relevant. This is because, using FKD, there is least
information loss and less noise corruption occurs. In contrast, using conventional
fusion approach, information loss occurs due to dimensionality reduction and it is
more noise-sensitive.

To further investigate the above retrieval results, we have analysed the insight
of the data. Specifically, we examine how similarity scores of top 9 retrieved images
vary with respect to the query. The similarity scores using both approaches are
provided in Table 6. As per our experiment, when an image is matched with itself, a
similarity score of 1 will be obtained. This indicates, the higher the similarity score
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Fig. 8 Retrieval example using FKD

Table 6 Similarity scores of top 9 retrieved images based on a query

Retrieved images FKD
Conventional

fusion
Rank 1 0.9927 0.9914
Rank 2 0.9883 0.9866
Rank 3 0.9824 0.9807
Rank 4 0.9811 0.9785
Rank 5 0.9810 0.9743
Rank 6 0.9809 0.9735
Rank 7 0.9804 0.9711
Rank 8 0.9801 0.9695
Rank 9 0.9798 0.9691

of an image is, it will be retrieved as the higher ranked image. Now, if we see the
top 4 images using both approaches, they are similar. However, if we look into the
corresponding similarity scores obtained using both approaches, they are different.
More precisely, the similarity scores of top 4 images obtained using FKD are higher
compared to the scores obtained using the conventional fusion. Moreover, using
FKD among the top 9 retrieved images, no irrelevant images scored higher than
the relevant images. However, using the conventional fusion approach, 5-th ranked
image (irrelevant to the query) obtained higher score compared to the relevant
6-th ranked image. Also, using the conventional fusion approach, 7-,8- and 9-th
ranked images obtained higher scores in spite of being irrelevant to the query.

7 Conclusion

In this paper, we propose a novel fusion approach to extract kernel descriptors.
KDES framework can turn any kind of pixel attributes to a patch-based descrip-
tor. Conventionally, different types of KDES are fused using serial fusion approach
which is less-efficient and less-effective. Therefore, in this paper we have proposed
a novel approach that can be used to fuse any kind and any number of pixel
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attributes before the descriptor extraction in an efficient and effective way. In ad-
dition, we have also shown that incorporation of Tamura features into the proposed
fusion approach enhances the overall performance without significantly increasing
the time consumption and the descriptor dimensionality.
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