
Agoraphilic Navigation Algorithm in
Dynamic Environment

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

by

Hasitha Sanjeewa Hewawasam

November, 2021

DECLARATION

I hereby declare that the thesis entitled “Agoraphilic Navigation Algorithm

in dynamic environment” submitted by me, for the award of the degree of Doctor of

Philosophy to Federation University is a record of bonafide work carried out by me

under the supervision of Prof. M. Y. Ibrahim, Dr. G. Kahandawa, and Dr. T. Choudhury.

I further declare that the work reported in this thesis has not been submitted

and will not be submitted, either in part or in full, for the award of any other degree or

diploma in this institute or any other institute or university.

Date: Haitha Hewawasam28/03/2022

ABSTRACT

This thesis presents a novel Agoraphilic (free space attraction [FSA])-based nav-

igation algorithm. This new algorithm is capable of undertaking local path planning

for robot navigation in static and dynamic environments with the presence of a moving

goal. The proposed algorithm eliminates the common weaknesses of the existing navi-

gation approaches when operating in unknown dynamic environments while using the

modified Agoraphilic concept.

The Agoraphilic Navigation Algorithm in Dynamic Environment (ANADE) pre-

sented in this thesis does not look for obstacles (problems) to avoid; rather, it looks for

free space (solutions) to follow. Therefore, this algorithm is also a human-like opti-

mistic navigation algorithm. The proposed algorithm creates a set of Free Space Forces

(FSFs) based on the current and future growing free space around the robot. These Free

Space Forces are focused towards the current and future locations of a moving goal and

finally generate a single attractive force. This attractive force pulls the robot through

current free space towards the future growing free space leading to the goal. The new

free space concept allows the ANADE to overcome many common problems of nav-

igation algorithms. Several versions of the ANADE have been developed throughout

this research to overcome the main limitation of the original Agoraphilic algorithm and

address the common weaknesses of the existing navigation approaches. The ANADE

I uses an object tracking method to identify the states (locations) of moving objects

accurately. The ANADE II uses a dynamic obstacle prediction methodology to iden-

tify the robot’s future environments. In the ANADE III, a novel controller based on

fuzzy logic was developed and combined with the new FSA concept to provide optimal

navigational solutions at a low computational cost. In the ANADE III, the effective-

ness of the ANADE II was further improved by incorporating the velocity vectors of

the moving objects into decision-making. In the ANADE IV, a self-tuning system was

successfully applied to the ANADE III to take advantage of the performances of free

space attraction-based navigation algorithms.

The proposed final version of the algorithm (ANADE V) comprises nine main mod-

ules. These modules are repeatedly used to create the robot’s driving force, which pulls

i

the robot towards the goal (moving or static). An obstacle tracking module is used to

identify the time-varying free spaces by tracking the moving objects. Further, a tracking

system is also used to track the moving goal. The capacity of the ANADE was strength-

ened further by obstacle and goal path prediction modules. Future location prediction

allowed the algorithm to make decisions by considering future environments around the

robot. This is further supported by a self-tuning, machine learning–based controller de-

signed to efficiently account for the inherent high uncertainties in the robot’s operational

environment at a reduced computational cost.

Experimental and simulation-based tests were conducted under dynamic environ-

ments to validate the algorithm. Further, the ANADE was benchmarked against other

recently developed navigation algorithms. Those tests were focused on the behaviour

of the algorithm under challenging environments with moving and static obstacles and

goals. Further, the test results demonstrate that the ANADE is successful in navigating

robots under unknown, dynamically cluttered environments.

Keywords: Agoraphilic, navigation, mobile robots, moving goal, dynamic environ-

ments.

ii

ACKNOWLEDGEMENT

This research work would not have been possible without the Australian Gov-

ernment Research Training Program (RTP) Fee-Offset Scholarship through Federation

University of Australia. I am especially indebted to all my research supervisors, Prof.

Yousef Ibrahim, Dr. Gayan Kahandawa and Dr. Tanveer Choudhury. Their immense

knowledge and plentiful experience have encouraged me, providing with guidance and

council I need to succeed in the PhD program.

Thank you, Prof. Yousef, for providing me extensive personal and professional

guidance and teaching me a great deal about both scientific research and life in general.

My heartfelt thanks go to Dr. Gayan who has been supportive of my career goals

and for his guidance, encouragement, and useful critiques of this research.

Further I am grateful to all of those with whom I have had the pleasure to work

during this research.

Special thanks are due to my family. I would like to thank my wonderful parents,

whose love and guidance are with me in whatever I pursue. They are the ultimate role

models. Also, I wish to thank my loving and supportive wife, Hasini and my one and

only sibling, Reshan, who had their constant faith in me.

iii

TABLE OF CONTENTS

ABSTRACT . i

ACKNOWLEDGEMENT . iii

LIST OF FIGURES . ix

LIST OF TABLES . xvi

LIST OF TERMS AND ABBREVIATIONS xviii

LIST OF PUBLICATIONS . xx

1. Chapter 1: Introduction 1

1.1 Background and Significance . 1

1.2 Expected Outcomes and Contribution of the Research 9

1.3 Outline of the Thesis . 12

2. Chapter 2: Literature Review 15

2.1 Background and Significances . 15

2.2 Popular Navigation Techniques Capable of Navigating Robots in Dy-

namic Environments . 17

2.2.1 Artificial Potential Field (APF) 17

2.2.2 Genetic Algorithm . 19

2.2.3 Fuzzy Logic . 19

2.2.4 Artificial Neural Networks (ANN) 20

2.2.5 Reinforcement Learning . 21

2.2.6 Particle Swarm Optimisation . 21

2.2.7 Bacterial Foraging Optimisation 22

2.2.8 Ant Colony Optimisation . 23

2.3 Discussion . 23

2.4 Summary . 31

iv

3. Chapter 3: Object Tracking 36

3.1 Introduction . 36

3.2 Physical- and Statistical-Based Obstacle Tracking 39

3.2.1 Physical-Based Tracking . 39

3.2.2 Statistical-Based Tracking . 40

3.2.3 Comparison of Statistical-Based Tracking and Physical-Based Track-

ing . 40

3.3 Benchmarking Model . 40

3.3.1 Simulation Setup . 43

3.3.2 Point-Based Obstacle Tracking Algorithms 44

3.3.3 Kalman Filter–Based Obstacle Tracking Algorithms 45

3.3.4 Extended Kalman Filter (KF)-Based Obstacle Tracking Algorithms 47

3.3.5 Particle Filter-Based obstacle Tracking Algorithms 50

3.3.6 Comparison of Algorithms According to the State Estimator . . . 53

3.4 Results and Discussion . 54

3.4.1 Testing Results . 54

3.5 Summary . 57

4. Chapter 4: Agoraphilic Navigation Algorithm in Dynamic Environ-

ment with Tracking (ANADE I) 59

4.1 Introduction . 59

4.2 The Architecture of the ANADE I . 60

4.2.1 Pseudocode . 61

4.3 Main Modules in the ANADE I . 62

4.3.1 Dynamic Obstacle Tracking module 62

4.3.2 Free Space Attraction Module 66

4.4 Results and Discussion . 74

4.4.1 Navigation in Dynamic Environment with Two Moving Obstacles 77

4.4.2 Benchmarking of the ANADE I 79

4.4.3 Limitations of the ANADE I . 81

4.5 Summary . 83

v

5. Chapter 5: Agoraphilic Navigation Algorithm in Dynamic Environ-

ment with Tracking and Prediction (ANADE II) 86

5.1 Introduction . 86

5.2 The Architecture of the ANADE II . 87

5.2.1 Main Steps of the ANADE II . 89

5.3 Main Modules in the ANADE II . 91

5.3.1 Sensory Data Processing Module 91

5.3.2 Dynamic Obstacle Tracking Module 93

5.3.3 Dynamic Obstacle Path Prediction Module 94

5.3.4 Current Global Map Generation Module 96

5.3.5 Future Global Map Generation Module 96

5.3.6 Free Space Attraction Module 98

5.3.7 Instantaneous Driving Force Component Generation Module . . . 98

5.3.8 Instantaneous Driving Force Component Weighing Module and

Final Robot’s Driving Force . 99

5.3.9 Robot’s Motion Command Generation Module 99

5.4 Experimental Testing and Analysis of Results 101

5.4.1 Simulation Test . 102

5.4.2 Real World Experiments . 108

5.5 Summary . 125

6. Chapter 6: Artificial Intelligence Based-Agoraphilic Navigation Al-

gorithm in Dynamic Environment (ANADE III) 128

6.1 Introduction . 128

6.2 The Architecture of the ANADE III . 129

6.3 New Main Modules Used in ANADE III to Optimise the Performance . . 132

6.3.1 Force-Shaping Module . 132

6.4 Results and Discussion . 142

6.4.1 Experiment 1: An Obstacle Moving Towards the Goal from the

Start Point . 143

6.4.2 Experiment 2: An Obstacle Moving Towards the Start Point from

the Goal . 146

vi

6.4.3 Experiment 3: An Obstacle Moving Perpendicularly Across the

Robot’s Path . 149

6.4.4 Experiment 4: Three Moving Obstacles Simultaneously Challeng-

ing the Robot and Pushing the Robot Towards a Trap 153

6.4.5 Experimental Comparison of the ANADE III with Other Recent

Approaches . 155

6.4.6 A Qualitative Comparison Between ANADE III with Recent Nav-

igation Approaches . 158

6.5 Summary . 159

7. Chapter 7: Self-Tuning Artificial Intelligence–Based Agoraphilic Nav-

igation Algorithm in Dynamic Environment (ANADE IV) 161

7.1 Introduction . 161

7.2 Different Types of Agoraphilic Behaviours-Needed to Optimise the Nav-

igation Algorithm . 162

7.2.1 Goal Seeking . 162

7.2.2 Safe Travel . 164

7.2.3 Normal Travel . 166

7.2.4 Safe Right Side . 169

7.2.5 Safe Left Side . 171

7.3 Supervisory Controller . 174

7.3.1 Low Resolution Space and Velocity Histogram 174

7.3.2 Sector States Generation Fuzzy Logic Controller 174

7.4 Motion Behaviour Selection Module . 179

7.5 Force-Shaping Module with Self-Tuning Fuzzy Logic Controller 180

7.6 Results and Discussion . 182

7.6.1 Effects of Different Knowledge Bases in Navigation 183

7.7 Summary . 198

8. Chapter 8: Agoraphilic Navigation Algorithm in Dynamic Environ-

ment with a Moving Goal (ANADE V) 202

8.1 Introduction . 202

8.2 The Architecture of the ANADE V . 203

vii

8.3 The New Modules Used in the ANADE V to Track and Hunt a Moving

Goal . 204

8.3.1 Moving Goal Tracking Module 204

8.3.2 Moving Goal Path Prediction Module 208

8.3.3 Machine Learning–Based Force-Shaping Module 211

8.4 Machine Learning–Based Controller for Force-Shaping Module 212

8.4.1 Training and Test Data Generation 213

8.5 Results and Discussion . 218

8.5.1 Simulation Results . 218

8.5.2 Experiment Test Results . 227

8.6 Summary . 236

9. Chapter 9: Conclusion 239

REFERENCES . 241

viii

LIST OF FIGURES

1.1 This experimental test results demonstrates the original Agoraphilic al-

gorithm’s ability to navigate between closely spaced obstacles (walls)

without oscillations and ability to address the GNRON problem [32]. . . 7

1.2 This experimental result demonstrates the original Agoraphilic algo-

rithm’s ability to navigate in a cluttered environment [33]. 8

1.3 This experimental result demonstrates the original Agoraphilic algo-

rithm’s ability to avoid oscillation in a narrow passage [34]. 9

2.1 Basic Steps Needed for Mobile Robot Navigation 17

2.2 Basic Path Planning Methods. 18

2.3 Process Flowchart of a Basic Gnetic Algorithm. 20

2.4 Steps of Particle Swarm Optimisation 22

2.5 Navigation Algorithms Capable of Navigating Robots in Dynamic En-

vironments . 26

2.6 A Comparison of Classical and Heuristic Approaches Based on Pub-

lished Papers . 29

2.7 Navigation Techniques Based on Velocity Adaptation and Moving Ob-

ject Prediction . 32

2.8 Navigation Techniques Based on the Ability to Navigate in a Dynamic

Environment with a Moving Goal . 33

2.9 Published Validation Methods (Simulations and Experiments) of Dif-

ferent Navigation Techniques . 35

2.10 Methods Used for Validating Navigation Techniques 35

3.1 Obstacle Tracking Techniques . 38

3.2 Block diagram of the developed simulation platform 45

3.3 Estimation Results of the Kalman Filter–Based Algorithm 47

3.4 Estimation Results of the Extended Kalman Filter–Based Algorithm . . 49

ix

3.5 Estimation Results of a Particle Filter–Based Algorithm 53

3.6 Estimation Error Comparison between Kalman Filter–, Extended Kalman

Filter– and Particle Filter–Based Algorithms 56

3.7 Estimation Error Comparison between Kalman Filter–, Extended Kalman

Filter– and Particle Filter–Based Algorithms 57

4.1 Block Diagram of the ANADE I . 61

4.2 Transformation Processes of a Global Map to a Polar Map 67

4.3 Kth Sector with a Sector Angle of θsec, Having ‘m’ Number of Occupied

Cells, Each with an Enlarged Radius of ‘r’ 70

4.4 Free Space Histogram for a Simple Environment 71

4.5 Free Space Force Created by Normalised the Free Space Histogram . . 71

4.6 Force-shaping Coefficient. 72

4.7 Summation of Scaled Force Vectors. 74

4.8 Block diagram of the developed simulation platform to test ANADE . . 76

4.9 Robot’s Path without Influence of Moving Objects (case 1) 78

4.10 Robot’s Path without Influence of Moving Objects (case 2) 79

4.11 Comparison of Navigation Paths under the Improved Artificial Potential

Field Method and the ANADE I . 81

4.12 The Robot’s Path with Three Moving Obstacles Challenging the Robot

at the Same Time . 83

4.13 The Robot’s Surroundings at around t = 75 s with a Dynamically Clut-

tered Environment . 84

4.14 The Robot’s Surroundings at around t = 110 s with a Dynamically Clut-

tered Environment . 84

5.1 Block Diagram of the ANADE II . 90

5.2 Main Steps of the Robot’s Driving Force Generation of the ANADE II . 92

5.3 The Input and Outputs of the Dynamic Obstacle Tracking Module . . . 94

5.4 The Input and Outputs of the Dynamic Obstacle Path Prediction Module 95

5.5 The Inputs and Output of the Current Global Map Generation Module . 96

5.6 The Inputs and Output of the Future Global Map Generation Module . . 98

5.7 The Input and Output of the Instantaneous Driving Force Component

Generation Module . 98

x

5.8 The Input and Output of the Instantaneous Driving Force Component

Weighing Module . 99

5.9 The Input and Output of the Robot’s Motion Command Generation

Module . 100

5.10 Robot model . 102

5.11 Effect of Prediction on Mobile Robot Path with Three Moving Obstacles 104

5.12 Effect of Prediction on the Robot’s Speed Variations in Dynamic Envi-

ronment with Multiple Moving Obstacles 105

5.13 Effect of Prediction on Mobile Robot Path with Three Moving Obsta-

cles Challenging the Robot at the Same Time 107

5.14 The Robot’s Surroundings at around t = 75 s with Dynamically Clut-

tered Environment . 108

5.15 The Robot’s Surroundings at around t = 110 s with Dynamically Clut-

tered Environmentt . 109

5.16 Experimental Setup . 111

5.17 RGB and Depth Images Captured from Real SenseTM Camera 112

5.18 The Experimental Environment—Locations of the Robot, Moving Ob-

stacles and Static Obstacles in Experiment 5 at Time Instant 1 114

5.19 The Robot’s and Obstacle’s Path Observed in Experiment 1 with their

Locations Shown at Time Instants T1 to T4 115

5.20 Instantaneous driving force component generation process for a partic-

ular time instance (T2). 116

5.21 Instantaneous Driving Force Components and the Final Instantaneous

Driving Force at Time Instant T2 (FT2) 117

5.22 Robot’s and Obstacle’s Path Observed in Experiment 2 with their Loca-

tions Shown at Time Instants T1 to T4 118

5.23 The Robot’s Path with Slow-Moving and Fast-Moving Objects with

Their Locations Shown at Time Instants T1 to T4 120

5.24 The Robot’s Normalised Driving Force Variation over Fifty Iterations . 120

5.25 The Robot’s and Obstacle’s Path Observed in Experiment 4 with their

Locations Shown at Time Instants T1 to T5 122

xi

5.26 The Robot’s and Obstacle’s Path Observed in Experiment 5 with their

Locations Shown at Time Instants T1 to T5 124

6.1 Block diagram of ANADE III . 131

6.2 A Block Diagram of the Fuzzy Logic Controller 134

6.3 FSH Used to Derive the Membership Function for Input θdiff 135

6.4 Input Membership Functions of the Fuzzy Controller 141

6.5 Output Membership Functions of the Fuzzy Controller 141

6.6 Robot’s Path Observed in Experiment 1 without the New FLC. The Lo-

cations of the Robot and Moving Obstacle are Shown at Four Different

Time Instants (T1-T4) . 145

6.7 The Robot’s Path Observed in Experiment 1 with the New FLC Oper-

ating. The Locations of the Robot and Moving Obstacle are Shown at

Four Different Time Instants (T1-T4) 146

6.8 The Robot’s Path Observed in Experiment 1 with a Static Obstacle (This

Configuration Creates a Local Minimum for the APF Method). The

robot’s Locations at Three Different Time Instances are Shown as T1-T3 146

6.9 The robot’s path observed in experiment 2 without the new FCL. The

locations of the robot and moving obstacle (MO) are shown at three

different time-instants (T1-T3) . 149

6.10 The robot’s path observed in experiment 2 with the new FLC. The loca-

tions of the robot and moving obstacle (MO) are shown at five different

time-instants (T1-T5) . 149

6.11 The Robot’s Path Observed in Experiment 3 without either the New

FLC or the DOPP Module Operating. The Locations of the Robot and

Moving Obstacle are shown at Three Different Time Instants (T1-T3) . 150

6.12 The Robot’s Path Observed in Experiment 3 with the New FLC but

without the DOPP Module Operating. The Locations of the Robot and

Moving Obstacle are shown at Three Sifferent Time Instants (T1-T3) . . 150

6.13 The Robot’s Path Observed in Experiment 3 with Both the New FLC

and the DOPP Modules Enabled. The Locations of the Robot and the

Moving Obstacle are shown at Four different Time-Instants (T1-T4) . . 151

xii

6.14 The Robot’s Observed Path in Experiment 4. The Locations of the

Robot and Moving Obstacles (MO1-MO3) are shown at Six Different

Time instants (T1-T6) . 155

6.15 ANADE III and MBCGA. The Robot’s and Obstacles’ Locations at

Four Different Time-Instants, T1-T4. 157

6.16 ANADE and FWDOA. The Robot’s and Obstacles’ Locations at Four

Different Time-Instants, T1-T4. 158

6.17 ANADE III and APF-TBM. The Robot’s and Obstacles’ Locations at

Four Different Time-Instants T1-T4 159

7.1 Goal Seeking . 163

7.2 Input Membership Function for the First Input θdiff of the Fuzzy Con-

troller for Goal-Seeking Behaviour . 164

7.3 Safe Travel . 165

7.4 Input Membership Function for the First Input θdiff of the Fuzzy Con-

troller for Safe Travel Behaviour . 166

7.5 Normal Travel . 167

7.6 Input Membership Function for the First Input θdiff of the Fuzzy Con-

troller for Normal Travel Behaviour 168

7.7 Safe Right Side . 170

7.8 Input Membership Function for the First Input θdiff of the Fuzzy Con-

troller for Safe Right Side Behaviour 171

7.9 Safe Left Side . 172

7.10 Input Membership Function for the First Input θdiff of the Fuzzy Con-

troller for Safe Left Side Behaviour . 173

7.11 Low Resolution Histogram . 175

7.12 The Block Diagram of the Sector States Generation Fuzzy Logic Con-

troller . 176

7.13 Membership Functions of dLRH,k . 177

7.14 Membership Functions of vLRHk
. 177

7.15 Output Membership Functions of the Fuzzy Controller 178

7.16 Flowchart of the Algorithm Used in the Motion Behaviour Selection

Module . 180

xiii

7.17 Block Diagram of the New Force-Shaping Module 182

7.18 The Robot’s Path Observed in Experiment 1, Case1 185

7.19 The Robot’s Speed Observed in Experiment 1, Case1 185

7.20 The Robot’s Path Observed in Experiment 1, Case 2 186

7.21 The Robot’s Speed Observed in Experiment 1, Case 2 187

7.22 The Robot’s Path Observed in Experiment 1, Case 3 188

7.23 The Robot’s Speed Observed in Experiment 1, Case 3 188

7.24 The Robot’s Path Observed in Experiment 1, Case 4 189

7.25 Figure 7.25: The Robot’s Speed Observed in Experiment 1, Case 4 . . . 190

7.26 The Robot’s Path Observed in Experiment 2, Case 1 192

7.27 The Robot’s Path Observed in Experiment 2, Case 1 193

7.28 The Robot’s Path Observed in Experiment 2, Case 3 194

7.29 The Robot’s Path Observed in Experiment 2, Case 4 195

7.30 The Robot’s Path Observed in Experiment 3 with the Self-Tuning Fuzzy

Logic Controller and the Normal Fuzzy Logic Controller, Discussed in

Chapter 6 . 199

7.31 The Robot’s Speed Observed in Experiment 3 with the Self-Tuning

Fuzzy Logic Controller . 200

8.1 Block Diagram of the ANADE V . 205

8.2 The input and outputs of the goal tracking module. 208

8.3 The Inputs and Output of the Goal Path Prediction Module 208

8.4 The Inputs and Output of the Current Global Map Generation Module . 210

8.5 The Inputs and Output of the Future Global Map Generation Module . . 211

8.6 Block Diagram of the New Machine Learning–Based Force-Shaping

Module . 212

8.7 Dataset Generation Procedure. 213

8.8 Input Membership Functions of the Fuzzy Controller 216

8.9 Output Membership Functions of the Fuzzy Controller 217

8.10 The Robot’s Path Observed in Simulation Experiment 1 220

8.11 The Robot’s Path Observed in Simulation Experiment 2 222

8.12 The Robot’s Path Observed in Simulation Experiment 3 223

8.13 TThe Robot’s Path Observed in Simulation Experiment 4 225

xiv

8.14 The Robot’s Normalised Driving Force Magnitude Variation over Ex-

periment 4 . 226

8.15 The Robot’s Path Observed in Simulation Experiment 5 228

8.16 The Robot’s Normalised Driving Force Magnitude Variation over Ex-

periment 5 . 229

8.17 The Robot’s Path Observed in Experiment 230

8.18 The Robot’s Paths Observed in the Simulation Test (Comparison 1) . . . 232

8.19 The Robot’s Normalised Driving Force Variations Observed in the Sim-

ulation Test (Comparison 1) . 233

8.20 The Robot’s Paths Observed in the Experimental Test (Comparison 2) . 235

8.21 The Robot’s Speed Variations Observed in the Experimental Test (Com-

parison 2) . 235

8.22 A Video of ANADE V Navigating a Robot in a Dynamic Environment

(GIF video playback speed ∼ 9×) . 236

xv

LIST OF TABLES

2.1 General Advantages and Disadvantages of Base Algorithms 26

2.2 Detailed Analysis of Published Algorithms Based on Identified Key Pa-

rameters. 29

2.3 Identified General Weaknesses and Proposed Solutions in the ANADEs. 33

3.1 Advantages and Disadvantages of Physical-Based and Statistical-Based

Tracking . 41

3.2 Performance of the Particle Filter with Different Numbers of Particles . 52

3.3 Comparison of Algorithms . 54

3.4 Summarised simulation conditions . 54

4.1 Benchmarking test results of ANADE I 80

4.2 Experimental Conditions of Experiment 2 81

5.1 Experimental Conditions of Experiment 1 103

5.2 Comparative Results of Experiment 1 105

5.3 Experimental Conditions of Experiment 2 106

5.4 Hardware Specifications of TurtleBot3 Waffle Pi 113

5.5 Summarised Information of Experiment 3 119

6.1 Structure of the Fuzzy Rule Bases. 137

6.2 Summarised Test Results of Experiment 1 144

6.3 Summarised test results of experiment 2 148

6.4 Summarised tTest Results of Experiment 3 152

6.5 Summarised Test Results of Experiment 4 154

6.6 A Qualitative Comparison Between ANADE III with Other Approaches 159

7.1 Structure of the Fuzzy Rule Bases Used in the Supervisory Controller . 178

7.2 Summarised test results of experiment 1. 190

7.3 Summarised Test Results of Experiment 2 196

8.1 Experimental Conditions of Experiment 2. 219

xvi

8.2 Test Results Summary of Simulation Experiment 2 221

8.3 Test Results Summary of Simulation Experiment 3 223

8.4 Test Results Summary of Simulation Experiment 4 225

8.5 Initial Conditions of Experiment 5 . 226

8.6 Test Results Summary of Simulation Experiment 5 228

8.7 Initial Conditions of the Experiment 229

8.8 Test Results Summary of the Experimental Test 231

8.9 Initial Conditions of Comparison Test 1 231

8.10 Summarised Test Results of Comparison Test 1 233

8.11 Initial Conditions of Comparison Test 2 (Experimental Test) 234

8.12 Summarised test results of the comparison test 2 (Experimental test) . . 236

xvii

LIST OF TERMS AND ABBREVIATIONS

ACO Ant Colony Optimisation

AI Artificial Intelligence

ANADE Agoraphilic Navigation Algorithm in Dynamic Environment

ANN Artificial Neural Network

APF Artificial Potential Field

BFO Bacterial Foraging Optimisation

BPF Bacterial Potential Field

BPTT Back Propagation Through Time

CGM Current Global Map

DBT Detection-Based Tracking

DFT Detection-Free Tracking

DOPP Dynamic Obstacle Position Prediction

DOT Dynamic Obstacle Tracking

EKF Extended Kalman Filter

FGM Future Global Maps

FL Fuzzy Logic

FLC Fuzzy Logic Controller

FSA Free Space Attraction

FSF Free Space Forces

FSH Free Space Histogram

FWDOA Fuzzy-Wind Driven Optimization Algorithm

GA Genetic Algorithm

GM Global Map

GNRON Goal Non-Reachable with Obstacles Nearby problem

IAPFM Improved Artificial Potential Field Method

IDFC Instantaneous Driving Force Component

KF Kalman Filter

MBCGA Matrix-Binary Codes-Based Genetic Algorithm

xviii

MBS Motion Behaviour Selection

MCL Monte Carlo Localisation

MGA Matrix-binary codes based Genetic Algorithm

ML Machine Learning

MO Moving Obstacle

OAFLC Obstacle Avoidance Fuzzy Logic Controller

PDF Probability Density Function

PF Particle Filter

PSO Particle Swarm Optimisation

RL Reinforcement Learning

RMC Rvobot’s Motion Commands

SDP Sensory Data Processing

SI Safety Index

SO Static Obstacle

SS Sector Status

SSGFLC Sector States Generation Fuzzy Logic Controller

TFLC Tracking Fuzzy Logic Controller

TSP Travelling Salesman Problem

WDO Wind Driven Optimisation

xix

LIST OF PUBLICATIONS

1. H. S. Hewawasam, Y. Ibrahim, G. Kahandawa, and T. Choudhury, ”Agoraphilic

Navigation Algorithm under Dynamic Environment,” IEEE/ASME Transactions

on Mechatronics, pp. 1-1, 2021, doi: 10.1109/TMECH.2021.3085943.

2. H. S. Hewawasam, M. Y. Ibrahim, G. Kahandawa, and T. A. Choudhury, ”Ago-

raphilic navigation algorithm in dynamic environment with obstacles motion track-

ing and prediction,” Robotica, pp. 1-19, 2021, doi: 10.1017/S0263574721000588.

3. H. S. Hewawasam, M. Y. Ibrahim, G. Kahandawa, and T. Choudhury, “Com-

parative study on object tracking algorithms for mobile robot navigation inGPS-

denied environment,” in Proc. IEEE Int.Conf. Ind. Technol., 740 2019, pp.

19–26.

4. H. S. Hewawasam, M. Y. Ibrahim, G. Kahandawa, and T. A. Choudhury, “Devel-

opment and bench-marking of Agoraphilic navigation algorithm in dynamic en-

vironment,” in Proc. IEEE 28th Int. Symp. Ind. Electron., 2019, pp. 1156–1161.

5. H. S. Hewawasam, M. Y. Ibrahim, G. Kahandawa, and T. Choudhury, “Ago-

raphilic navigation algorithmin dynamic environment with and without predic-

tion ofmoving objects location,” in Proc. 45th Annu. Conf. IEEE Ind. Electron.

Soc., 2019, vol. 1, pp. 5179–5185.

6. H. S. Hewawasam, M. Y. Ibrahim, G. Kahandawa, and T. A. Choudhury, “Evalu-

ating the performances of the Agoraphilic navigation algorithm under dead-lock

situations,” in Proc. IEEE 29th Int. Symp. Ind. Electron., 736 2020, pp. 536–542.

7. H. S. Hewawasam, Y. Ibrahim, G. Kahandawa, and T. Choudhury, ”The Ago-

raphilic Navigation Algorithm under Dynamic Environment with a Moving Goal,”

in Proc. IEEE 30th Int. Symp. Ind. Electron., 2021.

8. H. S. Hewawasam, Y. Ibrahim, and G. Kahandawa, ”Past, Present and Future

of Path-Planning Algorithms for Mobile Robot Navigation in Dynamic Environ-

ments,” IEEE Open Journal of the Industrial Electronics Society (submitted-under

review).

9. H. S. Hewawasam, Y. Ibrahim, and G. Kahandawa, ”Self-Tuning Agoraphilic Al-

gorithm for Robots Navigation in Dynamic Environmentsl,” Journal of Intelligent

and Robotic Systems, Elsevier (submitted).

10. H. S. Hewawasam, Y. Ibrahim, and G. Kahandawa, ”Machine Learning-based

Agoraphilic Navigation Algorithm for use in Dynamic Environments with a Mov-

ing Goal,” IEEE/ASME Transactions on Mechatronics (submitted-under review).

11. H. S. Hewawasam, Y. Ibrahim, and G. Kahandawa, ”New Fuzzy Logic-Based

Agoraphilic Navigation Algorithm in Dynamic Environments,” Mechatronics, El-

sevier (submitted).

xxi

1

Chapter 1: Introduction

1.1 Background and Significance

Robotics plays a major role in the contemporary world. Compared to fixed robots,

mobility promises to be the next frontier in robotics. Mobile robots promise addi-

tional capacity to end users in new advanced applications. These applications in-

clude mining [1], space [2], surveillance [3], military applications[4] , hospital work

[5], agriculture[6] and many others [7]. Navigation is an important element of mo-

bile robots’ functionality. Unlike driverless cars’ operating conditions, in most circum-

stances, the mobile robot’s operational environment is not specifically engineered for

the robot. Therefore, from a navigational perspective, the mobile robot must be able

to operate in an unpredictable environment. Further, this environment will, in most

cases, be dynamic. This environmental complexity requires the robot to make naviga-

tional decisions in real time. Therefore, an efficient, autonomous navigation system is

characterised by an ability to navigate robots in unknown dynamic environments using

real-time decision-making algorithms.

The literature describes a number of fundamental navigational methods, including

the roadmap approach, cell decomposition, mathematical programming and the Artifi-

cial Potential Field (APF) method. The roadmap approach is also known as the Restric-

tion, Skeleton and Highway approach. In this approach, the free C-space (i.e., the set of

feasible motions) is retracted, reduced to, or mapped onto a network of one-dimensional

lines. In the roadmap approach, the solution for the navigation problem converts to a

graph searching problem by limiting the solution to a network. The Silhouette method

[8], Subgoal Network method [9], Voronoi diagram approach [10] and visibility graph

approach [11] are some of the commonly used roadmaps.

In cell decomposition methods, the free C-space is decomposed into a set of simple

cells and the adjacency relationship among the cells are computed. In this approach,

cells that belong to the starting point and the end point are connected through a sequence

of connected cells. The concept of cell decomposition was used in [12].

The mathematical programming approach represents the requirement of obstacle

avoidance with a set of inequalities on the configuration parameters. Mathematical

programming is formulated as a mathematical optimisation problem that finds a curve

between the start and goal configurations, minimising a certain scalar quantity.

In APF-based algorithms, the robot is modelled as a particle in the space, while

the goal and obstacles are modelled as charged particles. The goal creates an attractive

force on the robot, and obstacles create repulsive forces. The robot is pushed and pulled

by these attractive and repulsive forces until it reaches the goal [13]. The basic concepts

of these methods are used in many novel navigation algorithms.

Among these methods, the APF-based method has been used widely because of

its simplicity and adaptability. However, there are some well-documented problems

inherent in APF methods [14] such as,

1. Trap situations or Dead-locks (local minima)

2. No passage between closely spaced obstacles

2

3. Oscillations in the presence of obstacles

4. Oscillations in narrow passages

5. Goal Non-Reachable with Obstacles Nearby problem (GNRON)

6. In dynamic environments traditional approaches fail to achieve the navigation

task.

Researchers have tried to overcome this problem in many ways. Harmonic function-

based methods are one of the methods used for generating local minima free potential

functions. Kim et al. [15] developed a method based on a panel method to represent

obstacles with different shapes to derive potential fields. In this approach, harmonic

functions are used to eliminate local minima problems. Some other approaches that use

harmonic functions to generate local minima free potential fields are discussed in [16–

18]. Another method to overcome deadlock situations is introducing a virtual obstacle

concept. Iraji et al. [19] proposed a methodology that uses virtual obstacles in deadlock

situations to create an extra repulsive force at the trapping point to push the robot away

from the local minima. In this approach, certain criteria have been introduced to identify

situations in which virtual obstacles should be used. Park et al. [20] have also proposed

a similar methodology using virtual obstacle methodology to avoid traps. Li et al. [21]

also attempted to address the local minima issue by redefining the potential function

by introducing virtual targets. Another novel approach to avoid deadlock situations is

discussed in [22]. Authors have proposed an obstacle avoidance method based on APF

and gravity chain.

As mentioned in [23], APF-based algorithms suffer from the inability to reach the

goal when there is a big object close to it. In this situation, the robot receives a repulsive

3

force from the big obstacle that is higher than the attractive force created by the goal.

Therefore, the robot fails to reach its destination. Ge and Cui [23] proposed a method-

ology to overcome the GNRON problem by using several tuning parameters to shape

the potential function.

Ran et al. [24, 25] have also tried to address some of the problems inherited with

the traditional APF algorithm. The method used in [24] has reduced the oscillations

in the presence of obstacles by using an advanced calculation methodology. Newton’s

method was used in this approach for calculating the gradient of the potential field, and

the gradient calculation was used to smooth the trajectory. However, this method drains

computational resources [26].

Sfeir [26] implemented a framework to address the GNRON problem and reduce the

oscillations in the presence of obstacles. In this approach, the original potential fields

of the obstacles are modified using a tuning parameter. Further, this method is capable

of navigating robots in unknown environments while reducing some problems of APF

algorithms. However, there is no proper way to find the tuning parameter. This is the

main disadvantage of this framework.

Montiel et al. [27] an algorithm called Bacterial Potential Field (BPF). This uses the

APF method with a Bacterial Evolutionary Algorithm to obtain a better path planning

algorithm and to reduce the drawbacks of the traditional APF method. The proposed

technique is capable of navigating robots in environments with static obstacles (SOs)

and moving obstacles (MOs). Further, the BPF algorithm uses the start, goal and obsta-

cle positions as features to obtain a sequence of objective points that the mobile robot

must attain. A sequence of objective points is transformed into a path using the gradient

information influenced by attractive and repulsive forces.

4

Siming et al. [28] also developed an APF-based algorithm that is suitable to use in

dynamic environments. This algorithm employs a methodology to avoid the GNRON

problem. The algorithm uses a virtual target to modify the repulsive fields at local ex-

treme points. A special subroutine is used when the robot is at a local extreme point. In

this special subroutine, if the robot, obstacle and goal are in a straight line, a virtual tar-

get is introduced. In [29], the problem of navigating robots in dynamic environments is

addressed. The proposed solution is based on developing a Fuzzy Logic (FL) APF fill-

ing an autonomous robot’s workspace by combining the attractive and repulsive forces

acting on the robot from two FL expert subsystems. This APF is conducted by initially

sensing the surrounding dynamic environment by the robot and localisation.

Kovacs et al. [30] presented a concept for the path planning of mobile robots in

household environments. The APF algorithm has been extended by motion character-

istics of household animals. This algorithm also attempts to extend the APF algorithm

to unknown dynamic environments. In this algorithm, the repulsive potential function

created by obstacles is not monotonic. Therefore, this method allows the obstacles to

attract the robot in certain cases depending on the distance and parameter range. How-

ever, this algorithm assumes that the position and velocity of moving objects can be

accurately measured.

To date, there have been many published attempts at alleviating some or all of the

aforementioned limitations. All the new methodologies tried to address the limitations

of the traditional APF algorithm while keeping its inherent conceptual problem. In

other words, the published work in this field has tried to treat the bad outcomes of the

APF algorithm instead of fixing its actual conceptual problem. Therefore, most of the

new APF-based algorithms have lost some of the main advantages of the classical APF

5

approach, such as simplicity and less use of computational resources.

However, a novel fundamental method has been introduced by Ibrahim and McFetridge

[31], called ‘Agoraphilic algorithm’, to resolve the conceptual problem of the traditional

APF method. The Agoraphilic algorithm introduced a new free space attraction (FSA)

concept that allows the algorithm to use just one attractive force to drive the robot to the

goal.

As discussed above in APF methods, the robot is navigated to the goal by the vector

summation of attractive and repulsive forces created by the goal and obstacles. Under

the static environment, the robot can easily get into a position where the attractive force

is equal to the repulsive forces acting on the robot. This makes the resultant force on the

robot zero. Consequently, the robot gets stuck in these local minima and fail to reach its

goal. In contrast, the Agoraphilic navigation algorithm creates only one attractive force

on the robot. This force is developed from the free-space concept. Consequently, the

robot moves towards the goal as long as there is free-space around it. As a result of this

original Agoraphilic algorithm avoid the dead lock situation with its fundamental free

space attraction concept. Furthermore, as discussed in [32] original Agoraphilic algo-

rithm can successfully navigate in between closely spaced obstacles without oscillations

because of free space attraction concept. Unlike in APF method, in free space attrac-

tion method robot is not pushed by the nearby obstacles. As a result, as long as there is

enough free space in between closely space obstacles robot is pulled through the pas-

sage between the two obstacles without any oscillation, Fig. 1.1. Also the experimental

test results presented in [33] show the ability of the original Agoraphilic algorithm to

avoid obstacles without performing oscillations in a cluttered area (see Fig. 1.2). In

APF-based methods, if the robot is moved through a narrow passage, repulsive forces

6

are created on the two sides of the robot. These repulsive forces create oscillations. In

contrast, as discussed above, in the original Agoraphilic algorithm robot is only pulled

by an attractive force created by the free space. Therefore, the Agoraphilic algorithm

avoids oscillation in a narrow passage. The corresponding experimental test results are

shown in Fig. 1.3. Another advantage of the original Agoraphilic algorithm is, that it

has addressed the GNRON problem. Although there is a large obstacle behind the goal

the robot is still pulled by the free space between the robot and the goal. Therefore,

the robot is capable to reach the goal. Experimental test results shown in Fig.1.1 is an

example for this case.

Fig. 1.1 This experimental test results demonstrates the original Agoraphilic algorithm’s
ability to navigate between closely spaced obstacles (walls) without oscillations and
ability to address the GNRON problem [32].

Note. The two paths shown in this figure are for different tuning setups of the original Agoraphilic
algorithm

As mentioned, the original Agoraphilic algorithm addressed the principal issues

of the APF-based method by introducing the new FSA (Agoraphilic) concept. This

concept is a fundamentally new approach to mobile robot navigation.

However, the main problem with the original Agoraphilic algorithm was that it was

restricted to being used in static environments. This presents significant problems to

most real-world applications for mobile robots, as they frequently operate in unknown

dynamic environments. This limitation of the original Agoraphilic algorithm provided

7

Fig. 1.2 This experimental result demonstrates the original Agoraphilic algorithm’s
ability to navigate in a cluttered environment [33].

the primary motivation for this research: the ANADE.

Dynamic environments are characterised by high levels of uncertainty, thereby pre-

senting significant challenges to navigation algorithms [35]. Navigation techniques

based on artificial intelligence (AI) are frequently used to address this problem. Among

these, FL is commonly used to overcome uncertainties at a low computational cost.

Most alternative navigation algorithms fail to use the velocities of MOs as an input

for decision-making (future discussed in Chapter 2). This is due to the difficulty of

estimating the velocity vectors of MOs [36]. Consequently, most existing navigation

algorithms are unable to navigate robots in uncertain dynamic environments, which

leads to a suboptimal performance or system failure in complex situations [36].

8

Fig. 1.3 This experimental result demonstrates the original Agoraphilic algorithm’s
ability to avoid oscillation in a narrow passage [34].

1.2 Expected Outcomes and Contribution of the Research

This research introduces a novel navigation method based on the FSA concept proposed

in the original Agoraphilic navigation algorithm. This new navigation algorithm is ca-

pable of navigating robots not only in static environments but also in unknown dynamic

environments with moving targets. The principal contributions that originate from this

research are as follows.

1. Agoraphilic Navigation Algorithm in Dynamic Environment with Tracking

9

(ANADE I)

The Agoraphilic Navigation Algorithm in Dynamic Environment with tracking (ANADE

I) that was developed in this research was proven to navigate mobile robots in simple dy-

namic environments. The ANADE I is an FSF-based optimistic algorithm. It uses only

attractive forces created by current free space in the robot’s surrounding environment.

The ANADE I uses an object tracking method to accurately identify the states (location)

of moving objects. This algorithm drives the robot through current free spaces leading

to the goal. This proposed methodology was able to overcome the main limitation of

the original Agoraphilic algorithm, which is limited only to static environments, while

keeping its advantages in static environments.

2. Agoraphilic Navigation Algorithm in Dynamic Environment with Tracking

and prediction (ANADE II)

In dynamically cluttered environments, having a short-term path prediction of un-

known MOs helps the algorithm make smart decisions. The new Agoraphilic Navi-

gation Algorithm in Dynamic Environment with tracking and prediction (ANADE II)

was developed to improve ANADE I’s performances by incorporating prediction. The

ANADE II is also a local path planner to navigate mobile robots in unknown static

and dynamic environments. The new algorithm takes an optimistic approach to solving

navigation problems. It does not look for obstacles to avoid but for space solutions

to follow. Compared to the ANADE I, the ANADE II uses a dynamic obstacle pre-

diction methodology to identify the robot’s future environments. The ANADE II pulls

the robot through the future growing free space passages leading to the goal, whereas

the ANADE I only considered the current free space. Further, the ANADE II pro-

poses a novel architecture for the ANADEs that can also be adapted by other virtual

10

force–based or field-based navigation algorithms to improve their performances. The

ANADE II successfully improved the performances of the ANADE I in dynamically

cluttered environments. The optimistic approach of the new algorithm combined with

future dynamic objects prediction makes the ANADE II superior to the ANADE I.

3. Artificial Intelligence (AI)- based Agoraphilic Navigation Algorithm in Dy-

namic Environment (ANADE III)

Unknown dynamic environments are characterised by high levels of uncertainty. AI-

based methods are frequently used to address this problem. A novel controller based

on FL was developed and combined with the new FSA concept to provide optimal

navigational solutions for this at a low computational cost. Further, the effectiveness

of the ANADE II was further improved upon by incorporating the velocity vectors of

MOs in decision-making.

4. Self-tuning Artificial Intelligent based Agoraphilic Navigation Algorithm in

Dynamic Environment (ANADE IV)

In mobile robot navigation, the robot faces new and different circumstances regu-

larly. Therefore, if the navigation algorithm can identify new circumstances and change

the decision-making behaviour, the robot can adapt to new situations successfully. This

adaptation increases the safety and efficiency of the navigation process. Therefore,

to further improve the performance of the algorithm, a new self-tuning Fuzzy Logic

Controller (FLC) was developed. The Self-Tuning Artificial Intelligence–Based Ago-

raphilic Navigation Algorithm in Dynamic Environment (ANADE IV) has maximised

decision-making flexibility.

5. Agoraphilic Navigation Algorithm in Dynamic Environment with a moving

goal (ANADE V)

11

Only a few navigation algorithms can track and hunt a moving goal in an unknown

dynamic environment. However, there are practical applications when the robot has to

follow or hunt a moving goal. Therefore, in this research, the ANADE was further im-

proved to address this issue. In this algorithm, new goal tracking, goal path prediction

modules and a machine learning (ML)–based controller are used. These new mod-

ules are combined with other modules used in the ANADE IV to give the Agoraphilic

Navigation Algorithm in Dynamic Environment with a Moving Goal (ANADE V) the

capability to track and hunt a moving target in a dynamically cluttered environment

while keeping all the advantages of the ANADE V. Further, this novel algorithm intro-

duces the use of the FSA concept in hunting moving targets in both static and dynamic

environments.

1.3 Outline of the Thesis

The remainder of the thesis is divided into eight chapters. These chapters describe the

general background of the study, the continuous development of the proposed novel

algorithm, experimental validation of each stage of development and a detailed conclu-

sion.

Chapter 2 presents the general overview of navigation techniques capable of navi-

gating robots in dynamic environments. This literature review also shows the common

weakness and research gaps in the field.

Chapter 3 discusses about moving obstacle tracking. Tracking is one of the main

components identified as needed in the process of developing an Agoraphilic (FSA)-

based navigation method capable of navigating a robot in unknown dynamic environ-

ments. Different types of tracking methods are discussed in this chapter. Also, a suitable

12

tracking method to mix with the FSA concept was identified.

Chapter 4 discusses the ANADE I, which is the algorithm that introduces the fun-

damental building blocks for Agoraphilic-based navigation algorithms capable of navi-

gating robots in static and dynamic environments.

Chapter 5 introduces a new architecture with a prediction method. The ANADE

II was developed to further improve the performances of the ANADE I. This chapter

shows the step-by-step development of the ANADE II. Also, an experimental validation

of the ANADE II and a detailed comparison between the ANADE II and the ANADE I

is provided.

Chapter 6 discusses the Artificial Intelligence–Based Agoraphilic Navigation Algo-

rithm in Dynamic Environment (ANADE III), which is the novel AI-based version of

the ANADEs. This chapter gives an overview of both the development of the ANADE

III and what improvements were made. This chapter also shows the integration of an AI-

based technique for force shaping, which improved the performance of the algorithm.

This chapter also validates the new algorithm and its improvements via experimental

results.

Chapter 7 discusses the ANADE IV, which is an improved version of the ANADE

III. This chapter gives detailed information about the different types of behaviours

needed by any navigation algorithm to be successful in local path planning. This chap-

ter also demonstrates how the force-shaping module can be altered to create different

types of decision-making behaviours. The approach proposed in this chapter allows the

ANADE IV to self-tune the algorithm according to the robot’s current circumstances.

This chapter also validates the algorithm and its improvements via experimental results.

Chapter 8 discusses the ANADE V, which is the first Agoraphilic-based naviga-

13

tion algorithm capable of hunting a moving target in a static or dynamically cluttered

environment. This chapter shows how we can use the basic FSA concept with other

developed modules to track and hunt a moving target. Further, simulation and experi-

mental test results are provided in this chapter to validate the algorithm.

Chapter 9 presents a detailed summary of the research outcomes.

14

2

Chapter 2: Literature Review

2.1 Background and Significances

Mobile robots play an important role in many sectors in the contemporary world. They

are used in many applications to improve efficiency, increase accuracy and reduce any

risk involved for humans. Most of the time, mobile robots’ environment is unknown and

dynamic. Therefore, mobile robot navigation is a complicated task. This has sparked

the interest of many researchers in developing methodologies to address the mobile

robot navigation problem. The primary task in navigation is either to reach a predeter-

mined goal or to follow a predetermined path without any collisions.

Autonomous navigation is subdivided into four main subtasks [37] (see Fig. 2.1):

1. The robot collects information from its environment using a sensory system (per-

ception)..

2. The robot identifies its location in the environment (localisation).

3. The robot decides how to manoeuvre to reach the goal without collision (path

planning).

4. The robot controls its motions to follow the desired path.

Among the above four tasks, path planning is one of the most important areas that

are the focus of this research. This chapter discusses the different up-to-date types of

robot path planning methods used for navigating mobile robots in dynamic environ-

ments.

In general, the path planning methodologies are classified into two main groups:

classical approaches and heuristic approaches. In the literature, the roadmap approach,

cell decomposition, mathematical programming and the APF method can be identified

as frequently used classical path planning methods (see Fig. 2.2).

The classical methods are simple, have low computational cost and are easy to im-

plement. Therefore, they are preferred in many real-time path planning applications and

may produce good results, especially in static environments [38].

However, most of the classical methods, except the APF method, failed to handle

the high uncertainties in dynamic environments. Therefore, the APF method is the

only classical method that became famous among researchers developing navigation

algorithms suitable for dynamic environments [39].

Conversely, heuristic methods such as a genetic algorithm (GA), FL, Artificial Neu-

ral Networks (ANNs), Reinforcement Learning (RL), Particle Swarm Optimisation

(PSO), Bacterial Foraging Optimisation (BFO) and Ant Colony Optimisation (ACO)

are becoming famous among the researchers in the field (see Fig. 2.2).

In this chapter, the major aspects of the mobile robot navigation methods in dynamic

environments are analysed (study was conducted using 62 papers with 75% papers in

last ten years), and classifications of the diverse approaches that identify recent trends,

weaknesses and active areas are provided.

16

Path Planning
algorithm

Sensory System Environment

Localisation and
map generation

Motion control

Goal

Robot

Fig. 2.1 Basic Steps Needed for Mobile Robot Navigation

2.2 Popular Navigation Techniques Capable of Navigating Robots in Dy-

namic Environments

2.2.1 Artificial Potential Field (APF)

In the APF model, the robot is considered a point mass while the goal and obstacles are

modelled as force fields. The goal creates an attractive force, and the obstacles create

repulsive forces on the robot. Those forces push and pull the robot towards the goal

while avoiding obstacles. The direction and the magnitude of the resultant force vector

denote the direction of the robot’s velocity vector and magnitude, respectively. The

17

Fig. 2.2 Basic Path Planning Methods.

original research focused only on SOs.

However, the concept was also extended to dynamic environments. In a dynamic

environment, the algorithm assumes that there is only one obstacle close to the robot.

The possibility of colliding with the obstacle is calculated by a function of the distance

between the robot and the obstacle and the relative velocity of the obstacle with respect

to the robot [40]. When the distance between the robot and the obstacle increases and

the relative velocity decreases, the avoidability measure increases. Nak et al. used a

virtual distance function as the avoidability measure, which emphasises the distance

metric over the speed. The algorithm can make the robot avoid obstacles that are closer

18

or further away by tuning this function. A potential force is generated accordingly

to match with the original potential field method. Numerous studies have used this

concept to navigate robots in dynamic environments. Further, some studies have used

this concept when the goal is moving.

2.2.2 Genetic Algorithm

GA is an optimisation methodology that is commonly used to generate solutions for

combined optimisation and search problems. This method follows the basic principles

of genetic and natural selection. Applications of GA were mainly focused on the field

of computer science. However, GA-based methods are also used in the field of mobile

robot navigation. The GA starts without any knowledge of the correct solution and

depends completely on the responses of the environment and the evolutionary operators

to arrive at the best solution [41] (see Fig. 2.3).

2.2.3 Fuzzy Logic

FLCs are either a rule- or knowledge-based system. Those FLC systems comprise a

set of fuzzy rules. These fuzzy rules are generated based on the domain knowledge of

human experts. The simplicity of rule-based systems, the low computational cost and

the capability to perform a wide variety of tasks make FL-based methods quite popular

among researchers [42]. FL is a very versatile AI-based technique for mobile robot

navigation, with the ability to represent the fuzzy rules using linguistic terms. Further,

FL systems are identified as reliable decision-making systems under high uncertainty

and with incomplete information.

19

Start
Development of

population

Fitness
Function

Selection

Genetic
Operation

Up date the
population

Reach the Goal Stop
Yes

No

Fig. 2.3 Process Flowchart of a Basic Gnetic Algorithm.

2.2.4 Artificial Neural Networks (ANN)

The ANN techniques were initially used for computer science–based work, such as

image processing and pattern recognition. ANNs are inspired by the mechanism of

the human brain. ANNs are complicated networks of artificial neurons, commonly

known as nodes. These networks are capable of solving AI-based problems. ANNs can

behaviour handle high levels of uncertainties that exist in dynamic environments. There

have been numerous attempts at developing ANN-based navigation algorithms capable

of navigating robots in dynamic environments.

20

2.2.5 Reinforcement Learning

RL is an unsupervised ML algorithm that tries to maximise a reward signal. In RL,

an agent is taught how to map situations to actions. The agent is not directly told

which action to perform but instead is told which action can offer the highest reward.

In challenging situations, actions may affect not only the next reward but also all the

subsequent rewards throughout the process. In RL, trial and error and delayed rewards

are the main distinguishing features [43]. There are several different learning algorithms

that fall into an RL category, such as Q-learning, deep RL and Double Q-learning.

However, all these methods have a common goal of teaching the agent to reach a target

by interacting with the environment [44].

2.2.6 Particle Swarm Optimisation

PSO is a population-based optimisation technique that adopts the motion of school-

ing fish and bird flocks. The PSO technique was introduced in 1995 by Eberhart et al.

[45]. It has some similarities to other evolutionary computation techniques. The process

starts with a population of random solutions and seeks the optimal solution. In PSO,

potential solutions are known as particles. In the process, a set of current optimum par-

ticles is identified. The other particles follow the current optimal particles. PSO’s high

efficiency in terms of speed and memory requirements inspired most of the researchers

to adapt this technique to use for mobile robot navigation in dynamic environments.

The decision-making process of the algorithm is shown in Fig. 2.4.

21

Start

Randomly develop
the initial

population

Calculate the
Fitness

Select the Best

Update particle
potions and

velocities
Stop

Fig. 2.4 Steps of Particle Swarm Optimisation

2.2.7 Bacterial Foraging Optimisation

The BFO algorithm was introduced by Passino in 2002 [46]. This optimisation algo-

rithm adapts the behaviour of Escherichia coli bacteria. E. coli is a cell body with

eight to 10 rotating flagella attached to the body randomly. E. coli bacteria move in

their surrounding environment by performing two main actions: ‘run’ and ‘tumble’.

The bacteria run or tumble by rotating their flagella in an anticlockwise or clockwise

direction. In addition to motion, E. coli bacteria propagate to renew their colony and

eliminate the weaker or older individuals. There are three main parts of the behaviour

of the bacteria:

1. Chemotaxis: Bacteria use flagellation to move.

2. Reproduction: Reproduction is a way of renewing the colony, as well as removing

22

the inefficient individuals. The efficient individuals are used for reproduction.

Reproduction is also an optimisation behaviour of BFO.

3. Elimination and dispersal: One major variation in the environment is the reduction

of food concentration. At certain reproduction rounds in the bacterial lifecycle,

the diffusion processes take place [47].

2.2.8 Ant Colony Optimisation

ACO is used to solve the combinatorial optimisation problem. The population-based

ACO algorithm adopts the behaviour of ants. Ants are skilled to discover the shortest

path to their food source from their nest [48]. The ACO algorithm finds the solutions

to the Travelling Salesman Problem (TSP) using agents called ants. Ants use a special

pheromone, which they deposit on the edge of the TSP graph to communicate with

others [49]. This optimisation algorithm is also used as the base algorithm to develop

navigation algorithms capable of navigating robots in dynamic environments.

2.3 Discussion

Based on the methodologies presented in this study, it was apparent that navigation

algorithms can be classified as classical and heuristic approaches. A number of clas-

sical approaches are discussed in this chapter, including APF, cell decomposition, the

roadmap approach and mathematical programming. Those methods were popular in

the early days in developing navigation algorithms. The classical methods are simple,

have a low computational cost and are easy to implement. Therefore, they were chosen

for many real-time path planning applications. Also, classical methods have obtained

good results, especially in static environments. However, most of these methods failed

23

to handle the high uncertainties in dynamic environments. Thus, modified APF meth-

ods are still used as the base method in many new navigation algorithms for navigating

robots under dynamic environments (see Fig. 2.5).

Conversely, heuristic methods are considered more intelligent and effective com-

pared to classical methods as they can adapt to the uncertainty of constantly changing

environments. Consequently, heuristic-based methods are used in most navigation algo-

rithms for robots in dynamic environments. However, most of the heuristic approaches

need a learning phase with high computational cost (see Table 2.1).

Table 2.2 provides a detailed analysis of the algorithms used to date for navigating

robots in dynamic environments. The analysis was based on some key parameters, such

as the basic concept used, the ability to navigate through multiple moving objects, the

ability to track a moving goal and the ability to track and estimate the states of mov-

ing objects. The analysis also considered the algorithms that considered the velocities

of moving objects in decision-making and the ability of the algorithm to predict the

future environments of the robot and included validation of the algorithm via simula-

tion and experiments. This analysis showed the number of classical methods suitable

for dynamic environments is extremely low compared to the heuristic methods that are

suitable (see Fig. 2.6). According to this study, APF is the only classical method used

for developing navigation algorithms for dynamic environments. Among the consid-

ered algorithms, 19% use FL, 7% use GA and 15% use the APF algorithm as the base

algorithm (see Fig. 2.5). It was also found that there has also been a considerable

number (12%) of successful navigation algorithms developed using other methods.

It is important to take the velocity of the moving objects into account in the decision-

making for navigation in dynamic environments [50]. However, there are only a few

24

algorithms that incorporate the velocity information for decision-making (see Fig. 2.7).

This is a major drawback of most of the algorithms. Most of the existing sensory

systems do not give velocity information; they only give distance information. This

is one of the main reasons for not incorporating velocity information in navigation.

Some algorithms have estimated the velocities by simply finding the rate of change of

displacement based only on distance information. In some studies, it has been argued

that noisy sensory information can give inaccurate velocity estimations. A feasible

solution for this issue would be fusing a low computational cost tracking system to

estimate the velocities of moving objects with the basic navigation algorithms.

Only a few algorithms use a prediction system in unknown dynamic environments

(see Fig. 2.7). A short-term prediction system could improve the efficiency of navi-

gation algorithms. Further, a prediction system can help the robot navigate in critical

conditions with multiple MOs challenging the robot at the same time [51]. However,

there are few algorithms that can perform the navigation task successfully when there

is a moving goal (see Fig. 2.8).

Almost all the algorithms have been verified using simulation tests (see Fig. 2.10).

However, only 35% of the navigation algorithms surveyed have been validated via real

experiments (see Fig. 2.10). Moreover, very few algorithms have been tested for their

behaviour when multiple moving objects challenge the robot at the same time and for

their decision-making when the robot is heading to a trap.

25

Fig. 2.5 Navigation Algorithms Capable of Navigating Robots in Dynamic Environ-
ments

Tab. 2.1 General Advantages and Disadvantages of Base Algorithms

Base-algorithm Advantages Disadvantages

Artificial

Potential Field

1. Less computational cost 1. Tedious parameter tuning

2. Simple to implement 2. Local minima problem

3. High adaptability 3. Oscillations

4. Inability to reach a goal when

a large goal is nearby

Genetic

algorithm

1. Generate high quality accu-

rate solutions

1. Can develop oscillations

2. Hard to implement in dy-

namic environments

Artificial Neural

Networks

1. Nonlinear mapping capability 1. Needs to go through a huge

learning process

26

Base-

Algorithm

Advantages Disadvantages

2. Capable of parallel processing 2. Computational cost is high

Impossible to come up with a

transfer function

3. Learning ability

4. System can be retrained when

the conditions are changed

Fuzzy Logic

1. Capable of representing hu-

man thinking

1. Selecting the right rules and

membership functions are criti-

cal

2. Can mimic the actions of a

manual robot operator.

3. Fuzzy rules are transparent

and clear. (as using the linguis-

tic variables)

4. Can handle high uncertainties

Reinforcement

Learning

1. Learn by collecting experi-

ences

1. High computational cost

2. Needs some initial training.

Particle Swarm

Optimisation

1. Less computational complex-

ity

1. Possibilities of getting tarped

in local minimums in complex

environments

27

Base-

Algorithm

Advantages Disadvantages

2. High efficiency in terms of

speed and memory requirements

2. Less accurate and practical

than genetic algorithm

Bacterial

Foraging

Optimisation

1. Ability to solve the multi-

difficulty scheduling problem ef-

fectively

1. High computational cost min-

imums in complex environments

Ant Colony

Optimisation

1. Requires fewer control pa-

rameters

1. Slow convergence

28

Fig. 2.6 A Comparison of Classical and Heuristic Approaches Based on Published Pa-
pers

Tab. 2.2 Detailed Analysis of Published Algorithms Based on Identified Key Parame-
ters.

Base

method-

olog

APF GA FL ANN RL PSO BF ACO Others

Algorithms

that can

navigate

with

multiple

MOs

[39],

[52],

[53],

[54],

[55],

[56]

[57],

[58],

[59]

[60],

[61],

[62],

[55],

[63],

[64],

[65],

[66]

[67],

[68],

[69],

[70]

[71],

[72],

[73]

[60],

[74],

[75]

[76],

[56]

[77],

[61],

[78]

[50],

[79],

[80],

[81],

[82]

29

Algorithms

capable of

hunting a

moving

goal

[54],

[55]

[68],

[70]

[50],

[80],

[81]

Algorithms

that use a

tracking

method to

track MOs

[39],

[53]

[67] [50],

[80]

Algorithms

that use a

prediction

method to

predict the

motion of

MOs

[53] [69] [50],

[79],

[80],

[82]

Algorithms

that use

velocity/

relative

velocities

of MOs in

decision-

making

[39],

[53],

[54],

[55]

[61] [67],

[69],

[70]

[71],

[73]

[50],

[79],

[80],

[82]

30

Algorithms

validated

by sim-

ulation

tests

[39],

[52],

[53],

[54],

[55],

[56]

[57],

[58],

[59]

[60],

[61],

[62],

[55],

[63],

[64],

[65],

[66]

[67],

[68],

[69],

[70]

[71],

[72]

[60],

[74],

[75]

[76],

[56]

[77],

[61],

[78]

[50],

[79],

[80],

[81],

[82]

Algorithms

validated

by exper-

imental

tests

[39],

[52],

[53]

[57] [62],

[63],

[64],

[66]

[67],

[69]

[71],

[73]

[80],

[79]

2.4 Summary

This chapter has presented a comprehensive summary of the up-to-date methodologies

that are attempted to be used for mobile robot navigation in dynamic environments.

The discussed methods were divided into two main groups: (i) classical methods and

(ii) heuristic methods. Path planning approaches such as APF, GA, FL, ANN, RL, PSO,

BFO and ACO were considered for this review. An investigation was also conducted

on path planning algorithms based on identified key features. This investigation helps

to understand the common drawbacks of existing algorithms and the research gaps in

the field of interest.

In general, it was noticed that many path planning algorithms used in dynamic en-

31

Fig. 2.7 Navigation Techniques Based on Velocity Adaptation and Moving Object Pre-
diction

vironments not only do not use a proper method to track MOs but also do not adapt the

velocities of moving objects in the navigation decision-making process.

From this literature review, it was also identified that AI-based techniques are more

suitable to handle high uncertainties in unknown dynamic environments. Also, the

review has shown that there are only a few navigation algorithms capable of navigating

robots in dynamic environments with a moving goal. Almost all of the algorithms used

in this review have been verified by simulation tests. However, a conceivable number

of algorithms (63%) have not been experimentally validated.

As mentioned in Chapter 1, in this research, we developed a navigation algorithm

capable of navigating robots in unknown dynamic environments using an Agoraphilic

(FSA) concept while eliminating the aforementioned common weaknesses. Table 2.3

shows the proposed solutions to address these limitations along the path of developing

the novel ANADE.

Chapter 3 further investigates suitable object tracking methodologies to combine

with an FSA concept to successfully track the locations and estimate the velocities of

32

Fig. 2.8 Navigation Techniques Based on the Ability to Navigate in a Dynamic Envi-
ronment with a Moving Goal

MOs.

Tab. 2.3 Identified General Weaknesses and Proposed Solutions in the ANADEs.

Identified general weakness Proposed solution

Not having an integrated tracking

method to locate moving obstacles.

A tracking algorithm is introduced in the

ANADE I (Chapter 4), which is also

used by the ANADE II, III, IV and V to

track moving obstacles.

Not having a methodology to adapt the

velocities of moving objects in the navi-

gation decision making process.

Obstacle moving velocity–based path

prediction method is introduced in the

ANADE II (Chapter 5), which is also

used by the ANADE III, IV and V.

33

Identified general weakness Proposed solution

Not handling high uncertainties in un-

known dynamic environments well

Fuzzy Logic Controller (FLC) is intro-

duced in the ANADE III (Chapter 6).

A further improved self-tuning FLC was

used in the ANADE IV (Chapter 7) and

the ANADE V (Chapter 8).

Not hunting a moving goal in unknown

dynamic environments well

ANADE V (Chapter 8) is an FSA-based

navigation system capable of following

and hunting a moving target in unknown

dynamic environments.

Limited experimental validation The ANADE II, III, IV, and V are vali-

dated via experiments.

34

Fig. 2.9 Published Validation Methods (Simulations and Experiments) of Different Nav-
igation Techniques

Fig. 2.10 Methods Used for Validating Navigation Techniques

35

3

Chapter 3: Object Tracking

3.1 Introduction

Navigating mobile robots and autonomous vehicles in unknown, dynamically cluttered

environments is a challenging task. As discussed in Chapter 2, to navigate mobile robots

safely and efficiently in dynamically cluttered environments would require moving ob-

stacle tracking with reliable locations and velocity (states) estimation. The short-term

state prediction of obstacles and accurate obstacle tracking are fundamental require-

ments for the safe and efficient navigation of mobile robots in unknown, dynamically

cluttered environments.

A considerable amount of research is being done in the fields of obstacle tracking

and target tracking. Estimating the locations of MOs can be achieved by using obstacle

tracking and prediction algorithms [83–89]. In this chapter selected tracking methods

are modelled and tested under common benchmarking obstacle motion conditions to

evaluate the suitability of selected algorithms for local path planning problem.

The main steps of obstacle tracking can be identified as obstacle detection, obsta-

cle classification and obstacle tracking [90]. There are two main strategies used for

obstacle detection: detection-free tracking (DFT) and detection-based tracking (DBT)

[91] (see Fig. 3.1). In DFT, obstacles are tracked manually. In DBT, some specific al-

gorithms—such as frame difference, background subtraction and optical flow are used

[83]. When multiple obstacle tracking is considered, various sensors are used, such as

laser range finder sensors [85, 92, 93], sonar sensors [92] and cameras [83, 94], where

computer vision also plays an important role [89, 90, 95, 96].

Once the obstacles are detected, obstacle differentiation methods are used to identify

obstacles separately. Obstacle classification methods have been developed based on

obstacles’ appearance and motion. In the final step, obstacle tracking and the estimation

of the states of the obstacle is conducted. Obstacle tracking algorithms can be divided

into three main groups [97] (see Fig. 3.1):

1. physical-based methods

2. statistical-based methods

3. cooperative-based methods.

The physical-based obstacle tracking algorithms can be further divided into three

main groups [91]:

• point-based methods

• Kernel-based [98]

• Silhouette-based methods [99].

Physical-based tracking methods are commonly used to estimate the positions of

MOs and track them in a dynamic environment. Reasons for using physical-based

tracking methods will be discussed in Section 3.2.

MOs can be divided into two groups: slow-manoeuvring and fast-manoeuvring ob-

stacles. Slow-manoeuvring obstacles have a constant velocity or small acceleration.

37

Fig. 3.1 Obstacle Tracking Techniques

Fast-manoeuvring obstacles rapidly change their velocity [100]. Generally, dynamic

obstacles can be considered slow-manoeuvring obstacles if a sufficiently high sampling

rate is maintained [101]. Those obstacles can be tracked by point-based algorithms.

When slow-manoeuvring obstacles are tracked by point-based algorithms, motion

models for these obstacles must be derived [97, 101]. A few motion models have been

developed for slow-manoeuvring obstacles. Constant velocity models and constant ac-

celeration models are widely used to model the motion of slow-manoeuvring obstacles.

This chapter analyses the physical-based obstacle tracking algorithms used for the on-

line obstacle tracking of slow-manoeuvring obstacles for mobile robot navigation.

38

3.2 Physical- and Statistical-Based Obstacle Tracking

Obstacle tracking algorithms can be divided into three main groups based on their mo-

tion estimation approach, as mentioned in Section 3.1: physical-based, statistical-based

and cooperative-based methods. Cooperative-based tracking methods are developed

by combining the physical- and statistical-based methods. Cooperative-based tracking

methods require knowledge about the behaviours of MOs, which has to be collected

and processed in advance [97]. Because of this limitation, cooperative-based methods

are not suitable for most online tracking applications in unknown environments. A thor-

ough comparative study on physical- and statistical-based algorithms has been provided

in this section.

3.2.1 Physical-Based Tracking

Physical-based location tracking techniques generally assume that a motion model can

be developed to represent the movements of a dynamic obstacle. This can be achieved

if the required parameters (e.g., measurements, system matrix and sampling time) are

known. Those techniques usually employ an algorithm to estimate the current location,

velocity, acceleration and orientation of MOs. Coefficients of the motion model are

learned by an online learning process. The motion model is then used to compute the

next states of the MOs [97].

Physical-based tracking and prediction can be completed by using a Kalman Filter

(KF), Extended Kalman Filter (EKF) or Particle Filter (PF).

39

3.2.2 Statistical-Based Tracking

In this method, MOs tend to move in accordance with certain trajectories that depend

on the nature of the obstacle and the architecture of the environment. These estimation

methods use a two-stage process involving a learning stage and a prediction stage. De-

spite that this method can be used for long-term prediction, the learning stage require-

ment makes it unsuitable for online tracking [102]. Grid-based techniques [103, 104]

and cluster-based techniques [105] are some of the common algorithms used in this

method.

3.2.3 Comparison of Statistical-Based Tracking and Physical-Based Tracking

As shown in Table 3.1, physical-based tracking velocity in the nth sample is good for on-

line, short-term prediction of slow-manoeuvring acceleration obstacles in an unknown

dynamic environment. Statistical-based tracking methods are good for offline, short- or

long-term prediction of known MOs in a known dynamic environment. Therefore, it is

essential to use a physical-based tracking method if the application needs online track-

ing. Point-based algorithms can be identified as a subgroup of physical-based tracking.

3.3 Benchmarking Model

As stated in Section 3.1, if a good sampling rate is maintained, an MO can be considered

a slow-manoeuvring obstacle. In this section, a slow-manoeuvring obstacle is modelled

with constant acceleration. The same model was used to examine and compare the

tracking performance for KF-, EKF- and PF-based algorithms. The motion model is

expressed in Equations 3.1-3.8

40

Tab. 3.1 Advantages and Disadvantages of Physical-Based and Statistical-Based Track-
ing

Advantages Disadvantages

Ph
ys

ic
al

ba
se

d

Online prediction
method

Needs a proper motion
model

Can start prediction
from the first time
step(in most cases)

In most cases, it takes
contest acceleration or ve-
locity models which will
reduce the accuracy of es-
timation.

Low computation
cost

Inaccurate in long term
prediction.

Can predict location,
velocity , accelera-
tion (in some cases),
orientation, angular
velocity, angular ac-
celeration (in some
cases)

Sudden changes in obsta-
cles’ motion may create
issues in prediction.

Good for short-term
prediction

Noisy measurements due
to noisy sensors

St
at

is
tic

al
ba

se
d

No need of a motion
model

Needs offline training

There are no accel-
eration or velocity
constrains

Motion patterns have to
be derived.

Has fewer issues
with noises

Motion rules have to be
made

Can predict long-
term states of obsta-
cles

41

s = ut+ 1/2at2 (3.1)

v = u+ at (3.2)

where:

s
def
= distance travelled in a sample

u
def
= velocity in nth sample

a
def
= acceleration

v
def
= velocity in n+ 1th sample

Applying 1 and 2 to the x-direction

x(t+ 1) = x(t) + dx(t)/dt× t+ 1/2× ax(t)× t2 (3.3)

dx(t+ 1)/dt = dx(t)/dt+ ax(t)× t (3.4)

Applying 1 and 2 to the y-direction:

y(t+ 1) = y(t) + dy(t)/dt× t+ 1/2× ay(t)× t2 (3.5)

dy(t+ 1)/dt = dy(t)/dt+ ay(t)× t

x(t+ 1)

y(t+ 1)

dx(t+ 1)/dt

dy(t+ 1)/dt

=

1 0 t 0

0 1 0 t

0 0 1 0

0 0 0 1

x(t)

y(t)

dx(t)/dt

dy(t)/dt

+

1/2t2 × ax

1/2t2 × ay

t× ax

t× ay

1+w(t)(3.7)

42

where:

x(t)
def
= position in the x-direction

y(t)
def
= position in the y-direction

w(t)
def
= process noise

When an obstacle is tracked in two-dimensional space, its location (x, y) can be

measured. Therefore, the output equation can be developed as shown in Equation 3.8

 x(t)

y(t)

 =

 1 0 0 0

0 1 0 0

x(t)

y(t)

dx(t)

dy(t)

+ v(t) (3.8)

where:

v(t)def
= measurement noise

3.3.1 Simulation Setup

A simulation platform was developed using MATLAB to analyse the tracking perfor-

mances of the KF-, EKF- and PF-based algorithms. The developed simulation platform

consists of four main parts,

1. Single moving object motion simulator

2. Sensory system

3. Tracking algorithm running section

4. Output display, results plotting and statistical data providing system

The single moving object simulator mimics the motion behaviour of a moving ob-

ject. The objects starting position, starting velocity and its instantaneous acceleration

43

can be changed accordingly. The simulator measures the location of the object. The de-

veloped simulation platform assumes that the existing sensory system and its software

systems detect the object and measure its location, Fig. 3.2. There is a number of differ-

ent types of object detection methods and object location measuring systems. However,

in this thesis they are not the main research areas. Therefore, the developed simulation

platform assumes that the existing sensory system and its software systems detect the

objects and measure their location with noise. Consequently, the behaviour of the sen-

sory system was simply mimicked by adding noise to the actual location of the moving

object (However, when the real-world experiments are conducted to test the navigation

algorithm developed in this research, a colour-based object detection and location mea-

suring systems were used to detect multiple objects and measure their locations. These

will be further discussed in Section 4.4 and 5.4).

In the tracking algorithm running section, KF-, EKF- and PF- based algorithms

were used to track a moving object and estimate its location and velocity in real-time.

The last section of this simulation platform is the output display, results plotting and

statistical data providing system. This system shows the actual motion of the moving

object, real-time measurements of the noisy sensory system and estimated locations of

the moving objects by tracking algorithm. Furthermore, at the end of the simulation test

this provides charts and other statistical data to analyse the used tracking algorithm.

3.3.2 Point-Based Obstacle Tracking Algorithms

In point-based obstacle tracking, feature points of MOs are used to represent and track

the MOs [106]. A KF, EKF and PF are some of the powerful approaches used in point-

based multiple obstacle tracking algorithms.

44

Moving object Sensory system
A

ct
u

al
 lo

ca
ti

o
n

 o
f

m
o

vi
n

g
o

b
je

ct

Sensory nose

Tracking
Algorithm

N
o

is
y

lo
ca

ti
o

n
 o

f
m

o
vi

n
g

 o
b

je
ct

Output display,
results plotting and

data providing
system

Es
ti

m
a

te
d

 lo
ca

ti
o

n

o
f

m
o

vi
n

g
 o

b
je

ct
Es

ti
m

a
te

d
 v

el
o

ci
ty

o

f
m

o
vi

n
g

 o
b

je
ct

Real time display

Plots

Statistical data

Initial condition
and instantaneous

acceleration

Simulation platform

Fig. 3.2 Block diagram of the developed simulation platform

3.3.3 Kalman Filter–Based Obstacle Tracking Algorithms

KF-based algorithms work in two process states: the prediction state and the correction

or update state. In the prediction state, a KF yields the estimates of current state vari-

ables, along with their own uncertainties. In the update state, pre-estimates are updated

by a weighted average [107].

These algorithms are recursive and use the current measurement and estimation in

the previous sample to track an MO. A KF does not assume that the errors are Gaussian.

However, the filter does produce the exact conditional probability estimate in the special

case of if all the errors are Gaussian distributed [107]. If a system can be described by

linear system equations, the standard KF-based algorithms can be used to estimate the

states of the system.

3.3.3.1 Example Algorithms Using Kalman Filter Techniques

Two examples of algorithms using KF technique are presented and analysed in this

chapter.

a) First example

45

Elbagir et al. [108] demonstrated the use of a KF to predict future positions and ori-

entations of freely moving obstacles. However, the proposed algorithm and framework

has limited constraints when it is applied to robot motion planning in dynamic environ-

ments. The main advantage of the proposed framework is its ability to start predicting

the states from the first time step without needing a prior history [108].

b) Second example

In this example, Gomez-Ortega et al. presented a predictive navigation system for

mobile robots in [109]. The system deals with unexpected MOs whose future positions

over a prediction horizon are estimated with a KF approach. GAs have been used for

real-time optimisation problems involved in the model-based predictive control problem

[109].

3.3.3.2 Analysing the Algorithms

The performance of the KF-based algorithms was analysed using the benchmarking mo-

tion model described in Section 3.3. Both algorithms used a common filter for obstacle

tracking. This filter was redeveloped using MATLAB. The obstacle model developed

in Section 3.3 was tracked in one direction using the developed filter (used in the above

two algorithms). Observed graphs are shown in Fig. 3.3. Simulation conditions are

shown in Tab. 3.4.

The obstacle was tracked for 10 s with a sampling period of 0.1 s. The graph in Fig.

3.3 shows the actual position of the MO, its measured or observed position from the

sensor and its estimated position using the KF with respect to time. When the measured

and estimated positions are compared, it is clear that the KF technique has improved

tracking accuracy.

46

Fig. 3.3 Estimation Results of the Kalman Filter–Based Algorithm

From the analysis, it can be justified that the KF-based obstacle tracking algorithms:

• use a developed motion model for dynamic obstacles

• can predict states of the MO one-time step ahead

• assume that previous and current positions are available from sensory devices

• are capable of tracking slow-manoeuvring obstacles

3.3.4 Extended Kalman Filter (KF)-Based Obstacle Tracking Algorithms

When the system is nonlinear, KF-based algorithms do not converge [110]. Therefore,

the KF cannot be used for tracking nonlinear systems. The EKF-based algorithms lin-

earises the state space model using first-order approximation. The mean and covariance

of states are propagated using Jacobian matrices [111]. Once the function is linearised

using a Jacobian matrix, these algorithms use the filter operating point to estimate the

states. This process is performed at each time step in EKF-based algorithms.

To use EKF-based algorithms for a nonlinear system, transition and observation

models can be nonlinear, but they should be differentiable. At the same time, process

47

noise and measurement noise should have zero mean Gaussian distributions.

3.3.4.1 Example Algorithms Using Extended Kalman Filter Techniques

The following two examples have attempted to use an EKF.

a) First example

Madhavan et al. [92] reported work that had been conducted using an EKF-based

algorithm for an MO prediction framework for off-road autonomous navigation. This

method can predict an MO’s future position for the path planning of unmanned ground

vehicle navigation in dynamic environments. The short-term predictions are based on

an EKF working symbiotically with a probabilistic obstacle classification scheme. The

proposed framework was shown to deliver reliable position estimates for a wheeled

vehicle.

b) Second example

Rebai et. al. [93] proposed a method to detect and track MOs. The method was

based on an EKF algorithm for tracking mobile obstacles. In this approach, the authors

have used a laser range finder to detect MOs. Once the obstacles are detected and

classified, the EKF-based algorithm deals with dynamic obstacle tracking (DOT). This

is achieved by a set of EKF, where an EKF is initialised for each mobile obstacle and

evaluated for the prediction and update phases. The authors have modelled the MO

nonlinearly; hence they had to use an EKF-based algorithm. The motion model that

was used is expressed in Equations 3.9-3.11.

48

Fig. 3.4 Estimation Results of the Extended Kalman Filter–Based Algorithm

xk+1 = xk + vk.∆t.cos(θk) (3.9)

yk+1 = yk + vk.∆t.sine(θk) (3.10)

θk+1 = θk + ∆θ (3.11)

Where the state vector isX = [x, y, θ]′. Also, x, y are the coordinates of the obstacle

centre, θ is the direction of the velocity vector, ′v′ is the translational velocity and ∆θ is

the orientation change.

3.3.4.2 Analysing the Algorithms

These two algorithms have used an EKF-based technique to predict and track MOs.

The filters used in the above two algorithms were redeveloped using MATLAB. The

same benchmarking model in Section 3.3 was tracked by the developed filter with the

same conditions previously used. Observed results are shown in Fig. 3.4. Simulation

conditions are shown in Tab. 3.4.

49

Fig. 3.4 shows the actual position of the MO, its measured or observed position from

the sensor and its estimated position using the PF with respect to time. It was observed

that the sensors’ measured or observed positions were noisy and had a considerably

higher margin for error. However, it was also observed from the obtained results that

the estimated positions are much more accurate than the measured position (see Fig.

3.4). That was the effect of applying the filter.

From the analysis, the EKF-based obstacle tracking algorithms:

• can be used to track slow manoeuvring obstacles

• use an obstacle model

• can predict one step ahead

• are capable of tracking non-linear systems (developed filter proves the linearisa-

tion)

3.3.5 Particle Filter-Based obstacle Tracking Algorithms

PF-based algorithms are sequential Monte Carlo methods based on point mass (or ‘par-

ticle’) representations of probability densities [112, 113]. PF-based methods eliminate

the main constraints of KF methods. Therefore, PF-based methods can be applied to

any state space model (nonlinear and non-Gaussian). To model dynamic systems, the

focus will be on the discrete-time formulation of the problem. At least two models

are required for PF-based algorithms to analyse and make inferences about a dynamic

system [113]: (i) a model describing the evolution of the state with time (the system

model) and (ii) a model relating the noisy measurements of the state (the measurement

model). It has been assumed that these models are available in a probabilistic form.

50

A posterior probability density function (PDF) of the state is constructed in a Bayesian

approach. All available information, including the measurements, are used to develop

the PDF. This PDF embodies all available statistical information. Therefore, it repre-

sents a broader solution to the estimation problem. In principle, an optimal estimate

of the state may be obtained from the PDF. For smoother navigation, an estimate is re-

quired every time that a measurement is received. In this case, a recursive filter is used

as a convenient solution. The prediction stage uses the system model to predict the state

PDF for the next iteration. The update operation uses the latest measurement to modify

the prediction PDF. This is achieved using Bayes’ theorem. This is the mechanism for

updating knowledge about the target state in light of the extra information from new

data [113].

3.3.5.1 Example Algorithms Using Particle Filter Techniques

Two examples of algorithms using the PF technique are presented and analysed in this

chapter.

a) First example

The presented method in [112] is based on PFs and Sample-Based Joint Probabilis-

tic Data Association (SJPDAF). This method can be used to deal with nonlinear and

non-Gaussian models. It uses a probability density description of the model instead of

a linear and Gaussian model. It is mentioned that PFs are used to estimate the states of

nonlinear and non-Gaussian systems. PFs are used to approximate a posterior density

function as a set of weighted samples (‘particles’) to estimate states.

b) Second example

Almeida et al. presented a method for tracking multiple MOs in dynamic environ-

51

Tab. 3.2 Performance of the Particle Filter with Different Numbers of Particles

Number of parti-
cles

Max. Error/m Variation/m2 Computation
time/s

100 5.169 10.08 0.2864
1000 3.7494 1.8363 4.4930
5000 2.6349 1.2633 123.3613

ments using particles filters and SJPDAFs [114]. However, the research problem that

was addressed was the development of a sensor-based method to track MOs around the

robot. This framework is capable of modelling the dynamic environment and predicting

the states of MOs. This allows the robot to detect and track several MOs using a range

finder sensor. PFs and SJPDAFs are the methods used in this approach.

3.3.5.2 Analysing the Algorithms

A PF algorithm was developed using MATLAB to analyse its performance. An obstacle

with the same motion model (described in Section 3.3) was tracked using a PF model

(simulation conditions are shown in Tab. 3.4.). Then results were plotted, as shown in

Fig. 3.5 (PF with 100 particles). The performance of the PF was further analysed by

changing the number of particles used in the filter results, as shown in Table 3.2. For

the comparative study, a PF with 100 particles was used to keep the computation time

in-rage with the other two methods.

Fig. 3.5 shows the actual position of the MO, its measured or observed position

from the sensor and its estimated position using the PF with respect to time. It was no-

ticed that the measured or observed positions were noisy and had a considerably higher

margin for error. However, this noise was suppressed, resulting in a more accurate

estimation following the application of the filter.

It was also observed that when a higher number of particles were used (see Table

52

Fig. 3.5 Estimation Results of a Particle Filter–Based Algorithm

3.2), the estimation error was further reduced, but the computation time was consider-

ably increased (see Table 3.2).

From the analysis, the PF-based obstacle tracking algorithms:

• can be used to track slow-manoeuvring obstacles

• can be used to track non-Gaussian models

• use an obstacle motion model

• become more accurate when the filter uses more particles

• can track non-linear systems

3.3.6 Comparison of Algorithms According to the State Estimator

A general comparison of the algorithms based on error distribution, computation cost

and the system model is provided in Table 3.3. KF-based algorithms can be used to

track linear Gaussian systems. EKF-based state estimators are capable of tracking non-

53

Tab. 3.3 Comparison of Algorithms

State estimator System model Error distribution Computation cost
KF Linear Gaussian Low
EKF Non-linear (locally

linear)
Gaussian Low

PF Non-linear/linear Non- Gaussian
/Gaussian

High

Tab. 3.4 Summarised simulation conditions

Starting point of the MO (x coordinate) 0 cm
Initial speed of MO in x direction 0 cm/s
Base acceleration 1.5 cm/s2
simulated measurement available for
tracking algorithm

Location of MO (with sensory noise)

Simulation scenario An obstacle moves (an instantaneous ran-
dom noise was added to the acceleration
of obstacle to mimic the natural motion
pattern) on a straight line (on x axis) is
tracked by different tracking algorithms

linear but Gaussian systems. PF-based algorithms can track nonlinear and non-Gaussian

systems.

3.4 Results and Discussion

3.4.1 Testing Results

Three selected algorithms (KF-, EKF- and PF-based algorithms) were used to track a

slow-manoeuvring obstacle that moves in a straight line with a constant acceleration

with random acceleration noise. Gaussian distributed noise was used for measurement

and process noise in all three cases. The same sampling rate was maintained in all

three algorithms. The discussed simulation platform in Section 3.3.1 was used to con-

duct these tests. As shown in Fig. 3.2 the only available simulated measurement for

the tracking algorithm was the location of the object with sensory noise. Summarised

simulation conditions are shown in Table 3.4.

54

In all three cases, the actual, measured and estimated positions were plotted in the

same graph, as shown in Fig. 3.3-3.5. The difference between the actual and estimated

positions, which is known as estimation error, was then calculated for each estimation.

The estimation errors for all three algorithms were plotted in the same graph, as shown

in Fig. 3.6. Maximum estimation error, the variance of estimation errors and com-

putation time for each case were calculated and displayed in the bar chart shown in

Fig. 3.7. The developed graphs and bar chart were used to analyse the performances

of each algorithm in terms of accuracy. A brief analysis of computation time was also

completed.

Fig. 3.3–3.5 show the actual, measured and estimated positions of a single MO,

which was tracked using KF-, EKF- and PF-based algorithms, respectively. The num-

ber of particles in the PF algorithm was adjusted to 100 to compare the accuracy and

keep the computation time of the PF in the same range as the KF and EKF. The results

show that tracking was significantly improved by using these algorithms. As shown in

Fig. 3.3–3.5, the measured positions (black lines) are quite deviated from the actual po-

sitions (red lines). After applying the tracking algorithms, the accuracy of the estimated

positions (green lines) improved. Fig. 3.6 shows the estimation error of the algorithms

during the entire process. The results in Fig. 3.6 show that when a slow-manoeuvring

obstacle is tracked by the KF-based algorithm, the estimation error and variation are

smaller compared to that of the other two methods. The PF-based algorithm shows

higher variations in estimation error.

The maximum estimation error was found with PF-based algorithms compared with

that of the other two algorithms. The error was around 5.1 cm (for a = 1.5cm/s2, and the

sampling period is 0.1 s, then the maximum error was 5.1 cm). The KF-based algorithm

55

Fig. 3.6 Estimation Error Comparison between Kalman Filter–, Extended Kalman Fil-
ter– and Particle Filter–Based Algorithms

has the lowest maximum estimation error, as shown in Fig. 3.7. The maximum esti-

mation error for the KF-based algorithm was 0.7 cm. The PF-based algorithm had the

highest estimation error variance, with the lowest being in the KF-based algorithm, as

shown in Fig. 3.7. The accuracy of the PF can be improved by increasing the number of

particles, as shown in Table3.2. However, the computation time is increased compared

with that of the other two methods. As shown in Fig. 3.7, the computation times for the

KF, EKF and PF were 0.21834 s, 0.2938 s and 0.2864 s, respectively. The KF-based

algorithm was slightly faster than the other tested algorithms.

When the overall estimation error is considered, during the entire estimation pro-

cess, the KF-based algorithm had the lowest error, while the PF-based algorithm had

the highest, as shown in Fig. 3.7. As mentioned in Section 3.1, by maintaining a good

sampling rate an MO can be considered a slow-manoeuvring obstacle [101]. Therefore,

during two neighbouring samples the motion model can be taken as a linear model.

This is the reason why KF produced the lowest positioning error in these tests although

a moving object with a random acceleration noise was tracked.

56

Fig. 3.7 Estimation Error Comparison between Kalman Filter–, Extended Kalman Fil-
ter– and Particle Filter–Based Algorithms

3.5 Summary

In this chapter, KF-, EKF- and PF-based dynamic obstacle tracking methods were de-

veloped to track slow-manoeuvring obstacles in a dynamic environment. The moving

obstacles were modelled as constant acceleration obstacles by maintaining a sufficient

sampling rate.

The conducted comparative simulation tests showed that KF-based algorithms are

more accurate than are EKF- and PF-based algorithms. EKF-based algorithms are more

suitable for tracking nonlinear but Gaussian models because the EKF linearises the state

space model. If the system model is nonlinear and non-Gaussian, then PF-based algo-

rithms would be a better option due to their point mass representations of probability

densities. However, the accuracy of the PF-based algorithm was low when tracking the

constant acceleration model under the used benchmarking motion model. This can be

improved by increasing the number of particles; however, this will lead to an increased

computation cost. It can be concluded that KF-based algorithms perform better in track-

57

ing slow-manoeuvring obstacles for mobile robot navigation in unknown, dynamically

cluttered environments.

Chapter 4 discusses how a KF-based tracking algorithm is used in the development

process of a novel Agoraphilic-based navigation algorithm. This novel algorithm is

capable of navigating robots in unknown dynamic environments.

58

4

Chapter 4: Agoraphilic Navigation Algorithm in Dynamic

Environment with Tracking (ANADE I)

4.1 Introduction

This chapter presents the development of a novel ANADE: the ANADE I. The ANADE

I takes an optimistic view of the environment and employs the FSA concept. This

novel algorithm is capable of programming mobile robots to manoeuvre in unknown

environments that are both static and dynamic.

The ANADE I is an ‘optimistic’ navigation algorithm that introduces the fundamen-

tal building block for FSA-based navigation algorithms to operate in dynamic environ-

ments. The navigation of the mobile robot is based on the principle of looking for free

space rather than avoiding obstacles. This approach has eliminated many drawbacks

(mentioned in Chapter 1) of the potential field-based algorithms. The ANADE I uses a

KF-based tracking methodology to estimate the location and velocity of unknown mov-

ing objects with high accuracy (see Section 3.3). The estimated locations of the moving

objects are combined with static object locations in the robot’s visible region to gen-

erate time-varying free space attractive forces. These time-varying forces facilitate the

collision-free manoeuvring of the robot to the goal in unknown dynamic environments.

The ANADE I models the robot as a particle in the space. The free space around

the robot creates attractive forces on the robot. These force vectors can move the robot

in an unknown environment arbitrarily without any collision. However, these forces do

not guarantee that the robot will move to a specific target. Therefore, a force-shaping

method is used to focus the force vectors towards the goal. As mentioned in Section

3.4, in dynamic environments, sensory systems do not accurately identify the locations

of moving objects. Therefore, a tracking methodology is also included in this algo-

rithm. ANADE I was developed to perform the overall navigation task according to the

architecture discussed in the next section.

4.2 The Architecture of the ANADE I

A modular-based architecture was used in developing the ANADE I algorithm (see Fig.

4.1). This architecture introduces two fundamental modules with four submodules for

FSA-based navigation algorithms in dynamic environments, as follows:

1. Dynamic Obstacle Tracking (DOT) module

2. Free Space Attraction (FSA) module

(a) Free-Space Histogram (FSH) generation module

(b) Free-Space Forces (FSF) generation module

(c) Force shaping module

(d) Force simulation module

These modules will be used (with improvements) in all the future ANADEs dis-

cussed in this thesis.

In the ANADE I, the tracking module takes the sensory data as its input then gener-

ates a map using the accurately estimated locations of MOs combined with the location

60

of SOs. The generated map of the robot’s environment is fed into the FSH generation

module (see Fig.4.1). The generated FSH is then converted to a set of FSFs by the FSF

generation module. Subsequently, the force-shaping module regulates the FSFs such

that the robot will move towards the goal. Finally, the force simulation module gen-

erates the final driving force of the robot for the current iteration. This process occurs

in every iteration until the robot reaches the goal. The behaviour of the ANADE I is

further explained by the pseudocode provided in Section 4.2.1.

In ANADE I following assumption was made

1. The robot is considered as a particle in the space. (This assumption is addressed

by introducing a safety boundary. Further explained in sub-section 4.3.2)

Fig. 4.1 Block Diagram of the ANADE I

4.2.1 Pseudocode

Step 1: Start the algorithm.

Step 2: Sensory data are taken and fed into the tracking module.

Step 3: The tracking module estimates the location of moving objects.

61

Step 4: Based on the current locations of MOs (from one output of the tracking module)

and the locations of SOs (from the sensory module), a global map is generated.

Step 5: The free space passages in a global map are identified by the FSH generation

module. Convert the global map into an FSH (see Fig. 4.1).

Step 6: The generated FSH is converted to a set of FSFs by the FSF generation module.

Step 7: The force-shaping module focuses the FSFs towards the goal.

Step 8: The set of shaped forces are fed into the force simulation module. This module

produces one single driving force for the global map.

Step 9: If the robot has reached the goal, go to Step 10. If not, repeat Step 2–9.

Step 10: Stop

4.3 Main Modules in the ANADE I

4.3.1 Dynamic Obstacle Tracking module

The DOT module tracks the position (centre) of obstacles processed by the sensory

system (further discussed in Chapter 5). Then it generates the estimated states of MOs,

which provides their velocity and position. The obstacle boundary is applied to the

estimated position (centre) to incorporate the size of the obstacle.

The proposed DOT module is broken down into three sections: (i) measurement

model, (ii) process model and (iii) KF.

The proposed process model is a mathematical model that tries to mimic the be-

haviour of MOs. This process model is used to pre-estimate the states of moving ob-

jects. The pre-estimates from the process module does not have a high accuracy due

62

to process noise (wk) generated by the process model. Conversely, the locations of the

moving objects are measured by the sensory system and based on the output of the

sensory system, and the measurement model was developed. The measured states (lo-

cations of MOs) also contain errors due to the measurement noise (vk) of the sensors.

Therefore, it is essential to use both pre-estimated states from the process model and

measured states from the measurement model to estimate the actual position and veloc-

ity of moving objects with increased accuracy (see Chapter 3). As shown in Section

3.4, a KF is used to combine the outputs of these two models. The final estimated lo-

cations (output of the KF-based algorithm) of moving objects are combined with static

object locations (the algorithm does not use the tracking modules for static obstacles)

to generate a global map.

The development of the KF-based tracking module is shown in the following equa-

tions. This tracking solution is repeatedly used to track multiple moving obstacles. In

one program cycle multiple KFs are sued. The number of used KFs are equal to the

available number of moving obstacles.

The kinematic model of MOs is defined in Equations 4.1 and 4.2.

xk

yk

ẋk

ẏk

 =

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

xk−1

yk−1

ẋk−1

ẏk−1

+

ax × dt2

2

ay × dt2

2

ax × dt

ay × dt

× u(t) + wk (4.1)

63

 xk

yk

 =

 1 0 0 0

0 1 0 0

+ vk

(4.2)

The prior estimation (state estimation based on the previous state estimation) and

globalised sensory data (measurements [xk,m,yk,m]) are combined using the filter shown

in Eq. 4.3 to derive the optimal state estimations for each moving obstacle in each

iteration.

xk

yk

ẋk

ẏk

 =

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

xk−1

yk−1

ẋk−1

ẏk−1

+

ax × dt2

2

ay × dt2

2

ax × dt

ay × dt

× u(t) + kk

 xk,m

yk,m

−

1 0

0 1

0 0

0 0

T

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

xk−1

yk−1

ẋk−1

ẏk−1

+

ax × dt2

2

ay × dt2

2

ax × dt

ay × dt

× u(t)

)}
(4.3)

In this expression kk (Kalman Gain) is found by using Eq. 4.4;

64

kk = pk

1 0

0 1

0 0

0 0

T

1 0

0 1

0 0

0 0

T

pk

1 0

0 1

0 0

0 0

−1

(4.4)

Where:

pk =

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

 pk−1

1 0 0 0

0 1 0 0

dt 0 1 0

0 dt 0 1

+Q

(4.5)

At each iteration following the optimal state estimation of every moving obstacle,

pk is updated as shown in Eq.4.6.

pk =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

− kk

1 0 dt 0

0 1 0 dt

dt 0 1 0

0 dt 0 1

×

pk−1

1 0 dt 0

0 1 0 dt

dt 0 1 0

0 dt 0 1

+Q (4.6)

The updated pk is used as p(k−1) in Eq.4.5 to re-calculate the new pk in the next

iteration.

where:

ax = (ẋk−1 − ẋk−2)/dt

ay = (ẏk−1 − ẏk−2)/dt

65

vk ∼ N(0,R) (R=measurement error covariance)

wk ∼ N(0,Q) (Q=process noise)

p
def
= error covariance

(xk,yk) def
= estimated position of the MO

(xkm,ykm) def
= measured position of the MO

(ax,ay) def
= acceleration of the MO

The generated global map is used as an input for the FSA module in the ANADE I.

4.3.2 Free Space Attraction Module

The FSA module consists of four submodules:

1. the FSH generation module

2. the FSF generation module

3. the force-shaping module

4. the force simulation module.

4.3.2.1 Free Space Histogram Generation Module

The Free Space Histogram (FSH) generation module creates a robot-centred polar map

using a global map. This polar map is then converted to a histogram that represents the

distance profile of a global map with respect to the robot. The FSH is the first step of

generating the Free Space Forces (FSFs). The FSH generation module takes a global

map (the coordinate frame with respect to the global axis system) as its input. From this

global map, the obstacle location information is extracted and a new two-dimensional

local map is generated with respect to the robot’s location (see Fig. 4.2). The process

66

involved in transforming the global map to a polar map is shown in Fig. 4.2. The

corresponding coordinate relationships are described in 4.7 to Equations 4.9.

Obstacle boundary

O
cc

u
p

ie
d

 c
el

ls

Robot

(0,0)

(xoc,g, yoc,g)

xg

yg

Global map

Obstacle boundary

Robot

(xoc,l, yoc,l)

Local map

(0,0)

yr

xr

Obstacle boundary

Robot

Polar map

xr

yr

q
α

(xr,g, yr,g)

Robot

Sectors and cells in
a polar map

Se
ct
o
rs

Cells

Occupied cells

Goal

Fig. 4.2 Transformation Processes of a Global Map to a Polar Map

 Xoc,g

Yoc,g

 =

 cos(β) −sin(β)

sin(β) cos(β)

×
 Xoc,l

Yoc,l

+

 Xr,g

Yr,g

 (4.7)

β
def
= orientation of the robot

67

q =
√
X2
oc,l + Y 2

oc,l (4.8)

α = tan−1
(
Yoc,l
Xoc,l

)
(4.9)

The data reduction methodology involved in this module converts this two-dimensional

local map into a one-dimensional histogram. The conversion process is described be-

low.

The polar map is initially divided into Z neighbouring sectors, which themselves are

divided into cells. The cells occupied by the obstacles boundaries (see Fig. c4RevFig1)

in all the sectors are identified. As previously mentioned, the Agoraphilic algorithm

assumes the robot is a particle in the space. The ignored robot’s volume is compensated

by this module. This is accomplished by enlarging the size of all the occupied cells. The

radius of each cell is increased to the sum of the robot’s radius (rr) and a predetermined

safety boundary (rs). These elements are shown in Fig. 4.3. In each sector, the closest

occupied cell to the robot is considered. The minimum distance to the safety boundary

corresponding to this cell is the sector distance (dk). The derivation of dk is described

by Equations 4.10 and 4.11. The FSH is then obtained, as described in Equation 4.12.

li = min
{√

(xr − x)2 + (yr − y)2
}

(4.10)

68

x ∈ {xi,1, xi,2, ..., xi,j, ..., xi,n−1, xi,n}

y ∈ {yi,1, yi,2, ..., yi,j, ..., yi,n−1, yi,n}

where:

li = minimum distance to the safety boundary of ith occupied cell

(xi,j ,yi,j)= jth boundary coordinate of ith occupied cell’s safety boundary

n=number of boundary coordinates

dk = min{L} (4.11)

where:

L= {l1,l2,...,li,...,lm}

m=number of occupied cells in kth sector

FSH = {d1,d2,...,dk,...,do−1, do}

(4.12)

where:

o=number of sectors

As an example, a point on the safety boundary corresponding to obstacle 1 (OB1)’s

boundary is 28.3 m (dk) away from the robot with an angle of 1480 to the x-axis. This

information is represented by the spick ‘A’ in the FSH (see Fig. 4.4).

69

Fig. 4.3 Kth Sector with a Sector Angle of θsec, Having ‘m’ Number of Occupied Cells,
Each with an Enlarged Radius of ‘r’

4.3.2.2 Calculation of Free Space Forces

As mentioned in Chapter 1, unlike potential field-based methodologies that use two

virtual forces to navigate the robot towards the goal, the Agoraphilic method employs

only one force. This force is an attractive force that pulls the robot towards the open

space in the general direction of the goal [115]. The initial force (Fk) generated by

each sector in the FSH is directly proportional to the square of the normalised distance

correspondent to that sector (see Equation 4.13). If the distance in the FSH is greater

than the predetermined dmax, the initial force for that sector is taken as uk (see Equation

4.13). The square of the normalised distance creates a greater bias towards the free

space (see Figure 4.5).

70

Fig. 4.4 Free Space Histogram for a Simple Environment

Fig. 4.5 Free Space Force Created by Normalised the Free Space Histogram

If the robot reaches a safety boundary of an object, dk reaches 0. This makes the

initial force(s) in that particular section(s) reduced to 0. This causes the robot to stop

moving any closer to the object and prevents collisions.

Fk =

(
dk
dmax

)2

× uk (4.13)

Where:

71

uk = [cos(θk) sin(θk)]

θk = sector angle

4.3.2.3 Generation of the Force-Shaping Coefficients

The attractive forces need to be shaped to navigate the robot to its goal. In a force-

shaping task, a weighting methodology is used in the ANADE I to increase the magni-

tude of FSFs towards the goal with respect to the FSFs pointing away from the goal. The

shaping coefficient (δ) is decided according to Eq. 4.14. As shown in Fig. 4.5, shaping

coefficient values have a maximum of 1 when an initial force of a sector (Fk) is aligned

with the goal and pointed towards the goal. If an initial force of a sector is perpendicular

to the goal or when Fk does not produce a positive force component towards the goal,

the corresponding shaping coefficient gets its minimum value of 0. Scaled sector forces

are generated by scaling the initial sector forces using force-shaping coefficients (see

Fig. 4.6).

Fig. 4.6 Force-shaping Coefficient.

72

δ(θ) =

2
π
θ + 1, if −π/2 ≤ θ ≤ 0;

−2
π
θ + 1, if 0 ≤ θ ≤ π/2;

2
π
θ − 3, if 3π/2 ≤ θ ≤ 2π;

−2
π
θ − 3, if −3π/2 ≤ θ ≤ 2π;

0, otherwise.

(4.14)

4.3.2.4 Summation of Scaled Force Vectors

In the ANADE I, the robot’s motion commands (RMCs) are generated by this module

(this is not the case for the ANADE II, III and IV). This module takes a set of shaped

FSFs as its input and generates an Instantaneous Driving Force Component (IDFC)

(Fc; see Eq. 4.15). In Eq. 4.15, F1 to FK are a set of FSFs, and the corresponding

force-shaping coefficients are denoted by δ1 to δK .

In ANADE I, the IDFC is derived by taking the vector summation of shaped FSFs

and multiplying by a constant scalar (λ), which is defined according to Eq. 4.16, Fig.

4.7. This keeps the upper bound of Fc to be 1. In Eq. 4.16, θ is the angle difference

between two sectors. FkSin(kθ) gives the force component of the Fk (initial force of

sector k) in the direction of the goal (the sector on the robot goal line gets kθ = 90).

When the robot’s surroundings are free of obstacles, all initial forces (Fk) become uk.

Therefore, the IDFC becomes its maximum (Fcmax). To keep the upper bound of the

IDFC (Fc) as 1, λ is defined as Eq. 4.16.

~Fc = λ(δ1 ~F1 + δ2 ~F2 + ...+ δK ~FK) (4.15)

Fc⇒ Fcmax when Fk ⇒ uk

Therefore,

73

Goal

Obstacle

Goal

Obstacle

Obstacle Obstacle

δ
8 F

8

Fig. 4.7 Summation of Scaled Force Vectors.

~Fcmax = λ

∫ π

0

~uk.Sin(θ)dθ

~Fcmax = λ
K∑
k=1

~uk.Sin(kθ)

but, Fcmax is defined as

~Fcmax = 1

Therefore,

λ =
1

K∑
k=1

~uk.Sin(kθ)

(4.16)

4.4 Results and Discussion

A simulation platform was developed using MATLAB to analyse the performances of

the developed ANADE algorithm. The developed simulation platform consists of six

main parts,

1. Moving obstacle motion simulator

2. Static obstacle simulator

74

3. Robot’s motion simulator

4. Sensory system simulator

5. ANDE algorithm running section

6. Output display, results plotting and statistical data providing system

The moving obstacle motion simulator mimics the motion behaviour of moving

obstacles. The obstacles’ starting positions, stating velocities and their instantaneous

acceleration can be changed accordingly, Fig. 4.8. The static obstacle simulator places

static obstacles in the robot’s simulation environment. The simulation module used as

the sensory system measures the location of the moving and static obstacles. The de-

veloped simulation platform assumes that the existing sensory system and its software

systems detects the obstacles and measure their location. There are number of different

types of obstacle detection methods and obstacle location measuring systems, however,

in this thesis, these are not the main research areas. Therefore, the developed simulation

platform assumes that the existing sensory system and its software systems detects the

obstacles and measure their location with a noise. Consequently, the behaviour of the

sensory system was simply mimicked by adding noise to actual location of the moving

obstacles. However, when the real-world experiments are conducted to test the naviga-

tion algorithm developed in this research, a colour-based obstacle detection and location

measuring systems were used to detect multiple obstacles and measure their locations.

These will be further discussed in Section 5.4.2. Also, the sensory system assumes the

robot’s onboard sensors and localization systems provides the robot’s location and ve-

locity. In real-world experiments the used research robot platform is capable of giving

its current location with respect to the global axis system through an inherent simple

75

Moving objects

Sensory system
A

ct
u

al
 lo

ca
ti

o
n

 o
f

o
b

st
ac

le
s

Sensory nose

Agoraphilic
Navigation
Algorithm

Sp
ec

if
ic

 lo
ca

ti
o

n
s

o
f

d
et

ec
te

d

o
b

st
a

cl
es

Output display,
results plotting and

data providing
system

Real time display

Plots

Statistical data

Initial condition
and instantaneous

acceleration

Simulation platform

Static Objects

Robot’s motion

R
o

b
o

t’
s

m
o

ti
o

n

st
a

tu
s

Robot’s motion
command Robot’s motion

status

d
eb

u
g

g
in

g

in
fo

rm
a

ti
o

n

Fig. 4.8 Block diagram of the developed simulation platform to test ANADE

localization method provided by the research robot platform.

In the algorithm running section, Fig. 4.8, the developed ANADE I algorithm was

used to navigate a robot in different dynamic environments. The last section of this

simulation platform is the output display, results plotting and statistical data providing

system. This system shows the actual motion of the moving obstacles, the robot and

static obstacles. This system also shows the real time robot’s environment, the path of

the robot, paths of moving obstacles and other statistical data to analyse the algorithm.

Using the above discussed simulation platform, a number of simulation tests were

conducted to test the performance of the ANADE I. Of them, two random tests are

presented in Section 4.4.1. Further, the new proposed algorithm was tested and bench-

marked against an APF-based algorithm in a similar dynamic environment (see Section

4.4.2). The ANADE I was also tested under a dynamic environment with cluttered MOs

to check the limitations of the algorithm (see Section 4.4.3).

76

4.4.1 Navigation in Dynamic Environment with Two Moving Obstacles

Case 1: A dynamic working environment used in [116] was remodelled and used in this

test to validate and compare the performances of the algorithm in a dynamic environ-

ment. In this test, the working environment consists of static objects and two moving

objects. The position of static and dynamic obstacles and velocities of the dynamic

obstacles are initially unknown by the robot. In the simulation, according to [116], the

initial coordinates of the robot’s position were set to (0, 0), with zero initial velocity.

The goal was placed at (100, 100) dm. The preliminary coordinates of MO1 and MO2

are established to (55, 72) dm and (30, 15) dm, respectively. MO1 got a velocity of

–2 dm/s in the y-direction. The velocity of MO2 was –2 dm/s towards the x-direction.

From this environment landscape, the closest distance between the robot and MO1 oc-

curs when MO1 is at (55, 55) dm position. The minimum distance between the robot

and MO2 occurs when MO2 is at coordinates of (25, 15) dm. In both cases, MO1 and

MO2 are not close enough to the robot to make a collision. Therefore, in this case,

MO1 and MO2 have no influence on the robot to change its path. Therefore, the robot

did not change its moving direction from start to goal (see Fig. 4.9).

Case 2: As the next experiment, MO1 and MO2 were placed at (15, 18) dm and

(25, 15) dm, respectively, at the start. In this experiment, the robot’s starting position

and goal locations were kept unchanged. It was observed in this case when MO2 moved

from its starting point to (18, 15) dm location that the distance between the robot and

MO2 was less than the allowed safety distance. Therefore, MO2 changed the free

space around the robot. This influenced the FSH, which led to changing the FSFs in

the particular sectors where MO2 was located. As FSFs changed, the resultant force

that had pointed to the goal in previous controlled cycles was also changed. After the

77

Fig. 4.9 Robot’s Path without Influence of Moving Objects (case 1)
Note. MOB1 = moving obstacle 1; MOB2 = moving obstacle 2.

distance between the robot and MO2 was more than the allowed safety distance, the

robot started following ‘space’, which is pointed towards the goal (see Fig. 4.9.). The

changes that occurred on the robot’s path due to MO2 are shown by section A in Fig.

4.10. MO1 crossed the safety boundary at (55, 53) dm. In this region, MO1 influenced

the FSHs, where the sector forces pointing to MO1 become smaller, and the resultant

force points to a free space and manoeuvres the robot to the goal without making a

collision. These deviations are clearly visible in Fig. 4.10.

These results prove that the modified Agoraphilic algorithm discussed in this chap-

ter has improved the original Agoraphilic algorithm by eliminating one of its major

limitations and allows the Agoraphilic algorithm to be used in unknown dynamic envi-

ronments.

78

Fig. 4.10 Robot’s Path without Influence of Moving Objects (case 2)

4.4.2 Benchmarking of the ANADE I

Two independent simulation runs are shown in Fig. 4.11: one with the new Agoraphilic

algorithm and the other with the improved artificial potential field method (IAPFM)

proposed in [116]. The performances of both methodologies were compared under the

environmental conditions.

Both the algorithms have found a collision-free path to navigate the robot to the

goal. However, it could identify some different decisions taken by two algorithms dur-

ing certain cases. In section A, both algorithms steered the robot almost in the same

path, but when MO2 attempted to collide with the robot, it was observed that the robot

changed its path to be longer to avoid the obstacle in the IAPFM approach compared

to in the new Agoraphilic approach. In section B, it can be observed that the IAPFM

approach tries to change its moving direction because of the repulsive forces created

by the SOs. Conversely, the new Agoraphilic algorithm produced a path with lesser

changes to the moving direction. The Agoraphilic algorithm is an optimistic algorithm

79

Tab. 4.1 Benchmarking test results of ANADE I

Algorithm Path length Number of direction changers
Agoraphilic 148 dm 3
IAPFM 168 dm 5
Comparison 10% shorter (with Ago-

raphilic)
40% less direction changers
(with Agoraphilic)

that finds the space to move instead of avoiding obstacles. Due to this characteristic,

the Agoraphilic algorithm manages to minimise the unwanted direction changes in nav-

igation. In section C, when MO1 comes closer to the robot. IAPFM-based algorithms

avoid the object by passing the object in its moving direction. This decision taken by

the IAPFM is costly, as it has increased the length of the path. In this case, the robot is

followed by MO1, and the repulsive force created by MO1 has kept pushing the robot

away from the goal. The robot with the new Agoraphilic algorithm faced the same

situation, but it made an interesting, human-like decision (see Fig.4.11).

The new Agoraphilic algorithm manoeuvred the robot to move against MO1 and

pass it. This made the path shorter (10%) compared to when the IAPFM was used, Tab.

4.1. After this point, the robot moved directly to the goal, but when the IAPFM was

used, some direction changes were observed. In the IAPFM, five direction changes were

observed, while our algorithm made only three direction changes (40% fewer changes).

Therefore, the newly developed Agoraphilic algorithm had fewer interruptions in the

navigation to the goal. As the Agoraphilic-based algorithm creates fewer interruptions

than does the IAPFM-based algorithm, the robot could move towards the goal with the

maximum speed in most sections of the navigation path. As mentioned above, the new

Agoraphilic algorithm produced a much shorter and effective path compared to that

produced by the IAPFM-based algorithm.

80

Fig. 4.11 Comparison of Navigation Paths under the Improved Artificial Potential Field
Method and the ANADE I

Tab. 4.2 Experimental Conditions of Experiment 2

Object Initial Position
(x,y) (cm)

Initial Velocity
(x,y) (cm/s)

Goal (-200,950) (0,0) stationary
Robot (-150,-1000) (0,0)
Moving Obstacle1 (MO1) (-500, -200) (1.5, 1.5)
Moving Obstacle2 (MO2) (-550,100) (4.3, 0.4)
Moving Obstacle3 (MO3) (250, 350) (-2.0, -0.8)

4.4.3 Limitations of the ANADE I

This experiment was conducted under conditions mentioned in Table 4.2 with three

SOs. The aim of the experiment was to test the behaviour of algorithms in dynamically

cluttered, complex environments with many MOs challenging the robot at the same

time (see Fig. 4.12).

During this experiment, it was observed at around the seventy-fifth iteration that two

passages (i.e., Passage 1 and Passage 2) were created by MOs.

81

Key observations at the seventy-fifth iteration (t = 75 s) are as follows:

Observation 1: Passage 1 has more free space compared to Passage 2.

Observation 2: The free space of Passage 1 is decreasing, and the free space of Passage

2 is increasing (see Fig. 4.13).

At around the seventy-fifth iteration, the ANADE I pulled the robot towards Passage

1. The ANADE I chose this option because of Observation 1, as outlined above. At

around the one hundred and tenth iteration (t = 110 s), the states of Passage 1 and

Passage 2 had changed.

Key observations at the one hundred and tenth iteration (t = 110 s) are as follows:

Observation 3: Passage 1 has more free space compared to Passage 2.

Observation 4: The free space of passage 1 is decreasing, and free space of Passage 2

is increasing (Fig. 4.14).

At around the one hundred and tenth iteration, the ANADE I kept pulling the robot

towards Passage 1 because of Observation 3, as outlined above. However, the intelligent

decision should be to change the robot’s direction towards Passage 2, although it has

less free space at that moment. As a result of these decisions, the robot controlled by

the ANADE I became trapped in Passage 1 and collided with MO3.

The key findings of this experiment are as follows:

1. In dynamic cluttered environments, the ANADE I may fail to navigate robots to

the goal safely.

2. The algorithm could be more effective in dynamic environments if it can make

decisions based not only on current free space but also on future growing and

diminishing free space.

82

Fig. 4.12 The Robot’s Path with Three Moving Obstacles Challenging the Robot at the
Same Time

Note. Different coloured (blue, green and purple) multiple circles depicted in the figure are the
movement paths of MO1, MO2 and MO3

4.5 Summary

The ANADE I developed in this research was proven to successfully navigate mobile

robots in dynamic environments. The ANADE I is a free space attraction-based opti-

mistic algorithm. It uses only attractive forces created by the current free space in the

robot’s surrounding environment. The new algorithm drives the robot through current

free spaces, leading it to the goal. This new proposed methodology was able to over-

come the main limitation of the original Agoraphilic algorithm (i.e., that the algorithm

is limited to static environments) and keep its advantages in static environments.

83

Fig. 4.13 The Robot’s Surroundings at around t = 75 s with a Dynamically Cluttered
Environment

Note. Different coloured (blue, green and purple) multiple circles depicted in the figure are the
movement paths of MO1, MO2 and MO3

Further, this chapter presented a comparative analysis with currently published work

on robots’ navigation using the improved artificial potential field-based method. The

conducted comparative study proved that due to its ‘optimistic’ decision-making ap-

proach, the new ANADE I is able to navigate robots in a path that is approximately

10% shorter and with 40% fewer direction changes than when the improved artificial

potential field-based algorithm is used. Therefore, it can be concluded that the ANADE

Fig. 4.14 The Robot’s Surroundings at around t = 110 s with a Dynamically Cluttered
Environment

Note. Different coloured (blue, green and purple) multiple circles depicted in the figure are the
movement paths of MO1, MO2 and MO3

84

I is a successful method to use to navigate robots in dynamic environments.

However, the ANADE I was designed only to navigate robots in dynamic environ-

ments where multiple MOs do not challenge the robot at the same time. The ANADE

I does not use any obstacle path prediction method. As mentioned in Chapter 2, most

of the navigation algorithms fail to adopt the velocities of MOs for its decision-making.

The ANADE I also suffers from this common weakness. Consequently, the ANADE I

considers only the current free space around the robot in its decision-making. However,

when the environment is complex and challenging, decision-making that is based only

on the current environment is not sufficient. The robot may not reach the goal safely

and efficiently. This was verified by the simulation experiment conducted and presented

in Section 4.3.3. However, this problem can be overcome by improving the algorithm.

Chapter 5 presents the ANADE II, which makes decisions based on current and future

growing and diminishing free spaces.

85

5

Chapter 5: Agoraphilic Navigation Algorithm in Dynamic

Environment with Tracking and Prediction (ANADE II)

5.1 Introduction

A new mobile robot navigation algorithm, the ANADE II, is proposed in this chap-

ter. The ANADE II is a natural extension of the ANADE I that primarily focuses on

overcoming the challenges associated with the ANADE I when tackling multiple MOs

attacking the robot at the same time. These challenges were explained in detail in Sec-

tion 4.4.

The ANADE II incorporates a predictive module to predict future free spaces. This

chapter proposes a new architecture to allow Agoraphilic-based navigation algorithms

to accommodate short-term predictions in decision-making. The new algorithm (ANADE

II) does not look for obstacles to avoid but instead looks for current free space leading to

future growing free space passages towards the goal. This also follows the fundamental

characteristic of the FSA (Agoraphilic) concept. As the proposed algorithm also uses

the FSA concept, it could eliminate some of the common issues in general navigation

approaches [28].

1. This stops the robot getting oscillated in narrow corridors.

2. The robot can reach the goal even when there is a large obstacle behind the goal.

3. The algorithm allows the robot to pass through narrow corridors.

Further, the tracking module is used effectively by the new algorithm to estimate

not only the current location accurately but also the velocity of MOs. Consequently, the

novel algorithm has added advantages, such as:

1. knowing the accurate locations of MOs

2. being able to make decisions based on the velocities of MOs.

The new algorithm also predicts the future environments with respect to the global

axis system and calls them Future Global Maps (FGMs). Main submodules run in the

prediction stage to generate future driving forces. These future driving forces that are

generated from the novel FGM concept influence the robot’s current driving force to

navigate the robot successfully in challenging environments.

5.2 The Architecture of the ANADE II

A new modular-based architecture was used to incorporate short-term predictions in-

volved in the ANADE II. This architecture increases the flexibility of improving the

algorithm’s modular vice without performing major modifications to other modules.

The ANADE II comprises the following eight main modules:

1. Sensory Data Processing (SDP) module

2. Dynamic Obstacle Tracking (DOT) module

3. Dynamic Obstacle Position Prediction (DOPP) module

87

4. Current Global Map (CGM) generation module.

5. Future Global Map (FGM) generation module.

6. Free Space Attraction (FSA) module.

(a) current and future FSH generation module

(b) FSF generation module

(c) force-shaping module

(d) Instantaneous Driving Force Component (IDFC) generation module

7. IDFC weighting module.

8. Robot’s Motion Command (RMC) generation module

The SDP module collects sensory data from the sensors mounted on the robot

(RealSenseTM LiDAR Camera, encoders and associated equipment) and transforms all

robot-centric data to a world reference frame (global positioning system). The tracking

module then generates two outputs, a set of locations of MOs and a set of velocity values

of MOs within the map using the globalised sensory data (see Fig. 5.1). Subsequently,

the algorithm is divided into two sections, as follows (see Fig.5.2):

1. the IDFC (Fc) generation for the CGMs (CGM-Fc1)

2. the IDFC (Fc) generation for FGM-Fc2, Fc3, . . . , FcN (Prediction)

The IDFC generation for the CGM-Fc1 section of the algorithm uses the current

environment of the robot (the CGM) and generates the component force (Fc1) based on

the current surroundings of the robot. In this process, the CGM becomes the input for

the FSH generation module. The generated FSH is then converted to a set of FSFs by

88

the FSF generation module. Subsequently, the force-shaping module regulates the FSFs

such that the robot will move towards the goal. Finally, the IDFC generation module

generates the final driving force component (Fc) for the CGM using the shaped FSFs.

The second output of the tracking module (the current states of MOs) is used as

the input for the dynamic objects position prediction module. This returns N-1 FGMs,

where N is the final prediction of the DOPP module. Each FGM is input into the FSH

generation module. The generated FSH is then converted to a set of predictive FSFs by

the FSF generation module. Subsequently, the force-shaping module shapes the FSFs

such that the robot will move towards the goal. Then, the IDFC generation module gen-

erates the final force component (Fc) for the corresponding FGM. This process occurs

for each FGM.

Finally, all the IDFCs (Fc1, Fc2, ..., FcN) related to the CGMs and FGMs are input

into the IDFC weighing module. This module generates the final driving force (the

robot’s actual driving force) for the current iteration (see Fig. 5.1). This process repeats

for each iteration. The behaviour of the ANADE II is further explained in Section 5.2.1.

5.2.1 Main Steps of the ANADE II

Step 1: Start the algorithm

Step 2: Sensory data are taken from the robot’s sensory system and fed into the SDP

module.

Step 3: The SDP module converts all the sensory data to a global axis system.

Step 4: The tracking module estimates the location and velocity of moving objects.

Step 5: Based on the current locations of MOs (one output of the tracking module) and

89

Fig. 5.1 Block Diagram of the ANADE II
Note. SDP = Sensory Data Processing; MO = moving obstacle; CGM = current global map; DOPP =
Dynamic Obstacle Position Prediction; FGM = future global map; FGM N = ; IDFC = instantaneous

driving force component; FSH = Free Space Histogram; FSF = Free Space Force; RMC = robot’s
motion command.

locations of SOs (from the sensory module), the CGM is generated.

Step 6: Based on the estimated locations and velocities of MOs, the location of SOs and

the robot’s states (location and velocity) surrounding the robot in future iterations

are predicted. The predicted future environments are generated (FGMs). (After

Step 6, there is one CGM and multiple FGMs. Each of these maps goes through

Steps 6–10.)

Step 7: The free space passages in a global map are identified by the FSH generation

90

module. The global map is also converted into an FSH (see Fig. 5.2).

Step 8: The generated FSH is converted to a set of FSFs by the FSF generation module.

Step 9: The force-shaping module focuses the FSFs towards the goal.

Step 10: The set of shaped forces are fed into the IDFC generation module. This mod-

ule produces one single force for the particular global map known as the IDFC

(Fc,N).

Step 11: All the IDFCs (Fc1, Fc2, . . . , FcN) are fed into the IDFC weighing module.

This creates the instantaneous driving force for the current iteration. This is the

robot’s actual driving force.

Step 12: If the robot has reached the goal, go to Step 12. Repeat Steps 2–12, inclusive.

Step 13: Stop

The development of the main modules of the ANADE II is discussed in Section 5.3.

5.3 Main Modules in the ANADE II

The ANADE II imports the FSA module from the ANADE I, with minor modifications.

The new proposed algorithm in this chapter also uses the tracking module used in the

ANADE I, with minor modifications. Therefore, in this section, the modifications made

to the tracking module are discussed. Further, the development process of the other

novel modules is discussed in this section.

5.3.1 Sensory Data Processing Module

The ANADE II is validated via experimental tests. Therefore, this new SDP module had

to be introduced. The SDP module takes sensory data from the robot’s sensory system

91

Fig. 5.2 Main Steps of the Robot’s Driving Force Generation of the ANADE II
Note. CGM = current global map; FGM = future global map; FSH = Free Space Histogram; FSF = Free

Space Force; Fc = force component

as its input. There are two sensory systems used to capture the robot’s environment:

1. 3600 LiDAR sensor

2. RealSenseTM camera (depth camera)

The SDP module receives LiDAR data as a point cloud. This point cloud is gener-

ated with respect to the robot’s coordinate system. The red, green and blue data captured

by the RealSenseTM Camera and the point cloud are pre-processed by a separate sys-

tem (further discussed in Sections 5.4). This system runs an image processing algorithm

and combines depth information to provide the locations of obstacles with respect to the

92

robot’s axis system. All data received with respect to this system are converted to the

world reference frame through Eq. 5.1.

 Xg

Y g

 =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

×
 Xr

Y r

+

 Xrg

Y rg

 (5.1)

where:

θ
def
= orientation of the robot

(Xg, Y g)
def
= coordinates with respect to

the world reference frame

(Xr, Y r)
def
= coordinates with respect to

the robot’s axis system

(Xrg, Y rg)
def
= robot’s current position with

respect to the world reference frame

5.3.2 Dynamic Obstacle Tracking Module

In the ANADE II, the object tracking module takes positions of obstacles from sensors

as its input. The module runs the same KF-based algorithm discussed in Chapter 4 but

generates two outputs (whereas the tracking module used in Chapter 4 provides just one

output, which is a set of locations of moving objects; see Fig. 5.3):

1. the estimated locations of MOs

2. the estimated velocities of MOs.

These two outputs are fed into the dynamic obstacle path prediction module as well

as into the CGM generation module.

93

Fig. 5.3 The Input and Outputs of the Dynamic Obstacle Tracking Module

5.3.3 Dynamic Obstacle Path Prediction Module

The navigation algorithm identifies future growing or diminishing free spaces with the

assistance of the DOPP module. The DOPP module estimates future states (location

and velocity) of MOs in the robot’s environment.

The DOPP module uses globalised sensory data (the sensory data captured by the

robot are transformed to the global frame as discussed in Section 5.3.1) and information

about the current states of MOs from the tracking modules as its primary inputs. The

DOPP module then forecasts the robot’s anticipated environmental configuration for

future iterations and predicts sets of future locations of MOs (see Fig. 5.4).

These future location sets of MOs are the outputs of the DOPP module (if the pre-

diction is performed for t + n iterations, there will be n – 1 future locations in one set).

Future states (positions and velocities) of MOs are predicted using the prediction model

described in Eq. 5.2 (equation is defined in the global fram). The predictions are up-

dated at each iteration, and new predictions are made according to the updated state

data.

94

x(t+ n)

y(t+ n)

dx(t+ n)/dt

dy(t+ n)/dt

=

1 0 nT 0

0 1 0 nT

0 0 1 0

0 0 0 1

x(t)

y(t)

dx(t)
dt

dy(t)
dt

+

(nT)2

2
× d2x(t)

dt2

(nT)2

2
× d2y(t)

dt2

nT × d2x(t)
dt2

nT × d2y(t)
dt2

(5.2)

where:

x(t)
def
= position in x direction

y(t)
def
= position in y direction

T
def
= sample period

n
def
= sample number

Fig. 5.4 The Input and Outputs of the Dynamic Obstacle Path Prediction Module

95

5.3.4 Current Global Map Generation Module

The CGM generation module generates a map of the robot’s environment with respect

to the world axis system. This module takes three main inputs (see Fig. 5.5):

1. the locations of SOs with respect to the robot’s axis system from the sensory

system

2. the current locations of MOs from the MO tracking module

3. the current location of the robot from the sensory system

The CGM generation module processes these three inputs and creates a map of

the environment with respect to the global axis system. This map is called the CGM.

Consequently, this CGM is fed into the FSA module.

Fig. 5.5 The Inputs and Output of the Current Global Map Generation Module

5.3.5 Future Global Map Generation Module

The main tasks of the FGM generation module are to forecast the robot’s future loca-

tions, to forecast future environment set-ups and to generate a set of maps called FGMs.

This module takes three main inputs (see Fig. 5.6):

96

1. the current location of the robot (taken from the sensory system)

2. sets of future locations of MOs (taken from the obstacle path prediction module)

3. a map of the locations of SOs with respect to the global axis system.

The FGM at iteration ‘N’ is generated by combining the estimated location of the

robot at nth iteration with forecasted locations of MOs, SOs and the goal at the nth

iteration. If the FGM generation module develops predicted maps until t + n iteration,

there will be n – 1 FGMs. The FGMs are updated at each iteration with corrections

made to position estimations.

The robot’s future locations are derived by Eq. 5.3 (equation is defined in the global

fram). These FGMs are used for future FSH creation.

x(k + 1)

y(k + 1)

θ(k + 1)

 =

1 0 0

0 1 0

0 0 1

xk

yk

θk

+

ẋk

ẏk

θ̇k

n× T (5.3)

where:

(x, y) : the actual position coordinates.

θ : orientation of the robot.

97

Fig. 5.6 The Inputs and Output of the Future Global Map Generation Module

5.3.6 Free Space Attraction Module

The FSA module used in the ANADE II is slightly different from that used in the

ANADE I. The FSH generation module, FSF generation module and the force-shaping

module used in the ANADE II are identical to those used in the ANADE I. However, the

force simulation module used in the ANADE I is replaced by the new IDFC generation

module.

5.3.7 Instantaneous Driving Force Component Generation Module

The IDFC generation module takes a set of shaped FSFs as its input and generates an

IDFC (Fc) as its output (see Fig. 5.7). The IDFC is the maximum shaped FSF in the set

of shaped FSFs. This keeps the upper bound of Fc to 1, which is expected by the IDFC

weighting module.

Fig. 5.7 The Input and Output of the Instantaneous Driving Force Component Genera-
tion Module

98

5.3.8 Instantaneous Driving Force Component Weighing Module and Final Robot’s

Driving Force

This module takes all the IDFCs (Fc1 to FcN) as its input (see Fig. 5.8). A fixed liner

weighting system is used in this module to scale the Fcs. The weighing is done ac-

cording to the accuracy of the predicted FGM (Fc derived for the CGM gets the highest

weight, as there is no prediction involved in CGM; Fc derived for the (n – 1)th FGM

gets the lowest weight). The weighted average of the instantaneous driving forces is

taken as the final driving force (Fd) of the current iteration, which drives the robot.

Fig. 5.8 The Input and Output of the Instantaneous Driving Force Component Weighing
Module

5.3.9 Robot’s Motion Command Generation Module

In each iteration, the ANADE II provides a single accretive force, which is capable

of pulling the robot through current free space towards the future growing free space

leading to the goal. However, this force is generated assuming the robot is a particle

in the space. Therefore, when a real robot is used, the final driving force needs to be

converted to linear and rotational velocities of the robot (see Fig. 5.9). This convention

depends on the kinematic model of the robot platform used.

In this research work, the TurtleBot3 Waffle Pi (TB3 Waffle Pi) research platform

was used. The developed kinematic model for the TB3 Waffle Pi is shown in Eq. 5.4.

99

Fig. 5.9 The Input and Output of the Robot’s Motion Command Generation Module

The robot’s location and orientation are given by (X, Y) coordinates and θ (see Fig.

5.10).

The following variables are defined as:

VR
def
= linear velocity of the right wheel

VL
def
= linear velocity of the left wheel

w
def
= angular velocity of the mobile robot

(x, y)
def
= the actual position coordinates

θ
def
= orientation of the robot

The kinematic model is given by Eq. 5.4:

ẋ =ẋr × cos(θ)

ẏ =ẋr × sin(θ)

(5.4)

where:

ẋr =
vL + vR

2

θ̇ =
vL − vR

d

100

and where (X, Y and θ) are the robot’s actual position and orientation angle relative

to the world reference frame. In the prediction module, this model is used to estimate

the robot’s states. To drive the TB3 Waffle Pi, the ANADE provides ẋr and for each

iteration (see Equations 5.5 and 5.6).

ẋr = vi × Fd × cos(θ)

(5.5)

θ̇ = θi × Fd × sin(θ)

(5.6)

where:

Fd
def
= Final driving force from the ANADE II

Vi
def
= Learner velocity tuning parameter

5.4 Experimental Testing and Analysis of Results

Two simulation experiments and four real experiments are discussed in this section.

These experiments were designed to test the algorithm and verify the importance of the

new prediction module.

101

Fig. 5.10 Robot model
Note. Yr = robot’s Y axis; VL = linear velocity of the left wheel; Xr = robot’s X axis; VR = linear

velocity of the right wheel; = orientation of the robot; d = width of the robot.

5.4.1 Simulation Test

Experiments 1 and 2 was conducted with prediction and without prediction under ex-

actly the same dynamic environments. The simulation platform discussed in Section 4.4

was used to conduct the simulation experiments. The developed simulation platform al-

lows the user to create and locate SOs, the goal and MOs in a desired two-dimensional

environment. The velocities and accelerations of MOs can be adjusted as needed. Fur-

ther, users can add random noises to the acceleration of MOs. The developed simulation

platform also modelled a sensory system to identify the locations of obstacles. The user

can vary the noise level of the sensory system. Therefore, the developed simulation

platform was capable of generating random dynamic environments.

102

5.4.1.1 Experiment 1: Navigation in Dynamic Environment with Three Moving Ob-

stacles

This experiment was conducted under dynamic environment with three MOs and three

SOs. In this experiment, MOs challenged the robot independently. The experimental

conditions are summarised in Table 5.1.

Fig. 5.11 shows the robot’s path under those conditions with the ANADE I and the

ANADE II. Results are presented with a comparison to the ANADE I.

Tab. 5.1 Experimental Conditions of Experiment 1

Object Initial position (x,y) (cm) Initial velocity (x,y) (cm/s)
Goal (-200,950) (0,0) stationary

Robot (-250,-700) (0,0)
Moving obstacle1 (-500,-200) (1.0, 0.6)
Moving obstacle2 (-550,100) (1.9, 0.4)

%hline Moving obstacle3 (250,200) (-5.0,1.9)

Experiment with ANADE I: In Area3 2, the robot has engaged with MO2, which moved

towards the x-direction. Initially, the robot moved further to the (+x, +y) direction

because the instantaneous free space in this direction was larger. As a result, the

robot moved close to MO2. The robot had to stop (see Figure 9) and take a sharp

turn to avoid the collision.

Experiment with ANADE II: In contrast to the above, the algorithm with the prediction

of MO positions initially manoeuvred the robot towards the (–x, +y) direction. As

a result, the robot could pass MO2 without stopping and performing sharp turns.

In Area3 3, the robot with prediction went towards the goal while increasing

speed without changing direction, as it has knowledge of the future free space.

103

Fig. 5.11 Effect of Prediction on Mobile Robot Path with Three Moving Obstacles

During this task, the robot with prediction took 165 s and travelled around 1666 cm.

Conversely, the robot without prediction took 185 s and travelled 2456 cm.

The key findings of this experiment are as follows:

• The algorithm developed for prediction has allowed the robot to reach the goal

by maintaining smooth speed variations (see Fig. 5.12) and taking shorter paths

more quickly than the algorithm without prediction.

• The algorithm developed for prediction allowed the robot to make prior decisions

when it engages with MOs.

• The algorithm developed for prediction stopped the robot from making sharp

104

turns.

• The algorithm developed to predict MOs’ position reduced the path length of the

ANADE significantly.

From the comparative results shown in Table 5.2, the ANADE with the prediction

module reached the goal 10% earlier using a 32% shorter path than did the ANADE

without prediction. During the experiment, the ANADE with prediction never stopped

the robot, whereas the ANADE without prediction did.

Fig. 5.12 Effect of Prediction on the Robot’s Speed Variations in Dynamic Environment
with Multiple Moving Obstacles

Tab. 5.2 Comparative Results of Experiment 1

Parameters With the ANADE I With the ANADE II
Path length (cm) 2456 1666
Time taken (s) 185 165

Avg. speed (cm/s) 13 10
Min. speed (cm/s) 0 5.7
Max. speed (cm/s) 23.5 23.5

105

5.4.1.2 Experiment 2: Dynamic Environment with Cluttered Moving Obstacles

This experiment was conducted under the conditions outlined in Table 5.3, with three

SOs. The aim of the experiment was to test the behaviour of the ANADE II under

dynamically cluttered complex environments with many MOs challenging the robot at

the same time (see Fig. 5.13). In this experiment, the results are presented with a

comparison to the ANADE I. The experimental conditions are similar to those in the

experiment presented in Section 3.3.3.

Tab. 5.3 Experimental Conditions of Experiment 2

Object Initial position (x,y) (cm) Initial velocity (x,y) (cm/s)
Goal (-200,950) (0,0) stationary

Robot (-150,-1000) (0,0)
Moving obstacle1 (-500,-200) (1.5, 1.5)
Moving obstacle2 (-550,100) (4.3,0.4)
Moving obstacle3 (250,350) (-2.0,-0.8)

During this experiment, it was observed that at around the seventy-fifth iteration,

two passages (i.e., Passage 1 and Passage 2) were created by MOs.

Key observations at the seventy-fifth iteration (t = 75 s) are as follows:

• Observation 1: Passage 1 has more free space compared to Passage 2

• Observation 2: The free space of Passage 1 is increasing, and the free space of

Passage 2 is decreasing (see Fig. 5.14)

At around the seventy-fifth iteration, the algorithms with and without prediction

pulled the robot towards Passage 1. The algorithm without prediction chose this option

because of Observation 1, as outlined above. Conversely, the algorithm with prediction

chose this option because of Observation 2.

106

Fig. 5.13 Effect of Prediction on Mobile Robot Path with Three Moving Obstacles
Challenging the Robot at the Same Time

At around the one hundred and tenth iteration (t = 110 s), states of Passage 1 and

Passage 2 changed.

Key observations at the one hundred and tenth iteration (t = 110 s) are as follows:

• Observation 3: Passage 1 has more free space compared to Passage 2

• Observation 4: The free space of Passage 1 is decreasing, and the free space of

Passage 2 is increasing (Fig. 5.15)

At the one hundred and tenth iteration, the algorithm without prediction kept pulling

the robot towards Passage 1 because of Observation 3, as outlined above. However,

the algorithm with prediction chose to change the robot’s direction and move towards

107

Passage 2, although it had less free space at that moment. This decision was made

because of the future position prediction of the MO (Observation 4). As a result, the

robot that was controlled without prediction became trapped in Passage 1 and collided

with MO3. Conversely, due to the decision made at the one hundred and tenth iteration,

the robot with prediction could navigate safely through Passage 2 to the goal.

The key findings of this experiment are as follows:

• Prediction helps the robot to identify future free spaces.

• In dynamic cluttered environments the prediction methodology guides the robot

away from traps.

Fig. 5.14 The Robot’s Surroundings at around t = 75 s with Dynamically Cluttered
Environment

5.4.2 Real World Experiments

The experimental work was conducted to demonstrate and validate the performance of

the new algorithm. The experimental platform included a TB3Waffle Pi research robot.

The TB3 Waffle Pi uses the Robot Operating System standard platform. It comprises

a 360° LiDAR sensor, a signal board computer (robot’s PC) that runs with Ubuntu, an

108

Fig. 5.15 The Robot’s Surroundings at around t = 110 s with Dynamically Cluttered
Environmentt

OpenCR 32-bit ARM controller, a Bluetooth module and a Raspberry Pi Camera (see

Table 5.4). The LiDAR sensor was used to capture the robot’s environment. The sensor

data were passed to a remote PC (main PC) via the robot’s PC using a wi-fi network

(Fig. 5.16). The main ANADE algorithm runs in the main PC. Furthermore, a “Re-

alsense” depth camera was attached to the TB3 waffle pi to identify moving obstacles

(Fig. 5.17) using a separate PC.

There is a number of different types of object detection methods and object location

measuring systems however, the main research area of this thesis is local path planning

in dynamic environments. Therefore, a simple colour-based object detection method

was developed to identify obstacles. The same method was used to identify the moving

goal used in the experiments presented in Chapter 8. An image processing algorithm

was used to fulfill this need. The used sensor for this take was the depth camera (Re-

alsense camera) which provided two main sets of data.

• Real-time 2D RGB data of the robot’s environment

• Real-time 3D point cloud of the robot’s environment

109

Firstly, the image proccing algorithm detects the obstacles based on their colour.

Once the obstacle’s location is found in the 2D plane using the RGB data (Fig. 5.17), the

linked point to this location in the 3D point cloud is identified. The obstacle coordinate

is extracted from the 3D point cloud . The location information is fed to the main PC

via TCP/IP communication protocol.

The TB3 waffle pi research robot platform has its own sensory system and a soft-

ware to identify the robot’s motion status. This sensory data is processed in the robot’s

PC. The robot’s instantaneous location is then provided with respect to the global axis

system (localisation of the robot). Furthermore, this sensory system and the built-in

robot’s software provided the robot’s instantaneous linear velocity, orientation and an-

gular velocity. This information is used to localise the obstacles captured by the LiDAR

senor and depth camera through the SDP module.

Five experiments were conducted to test the new algorithm’s performance under

different dynamic conditions (see Fig. 5.18):

1. an MO coming towards the robot

2. an MO crosses the robot’s path

3. an MO crosses the robot’s path at different speeds

4. an MO challenging the robot in a trapped environment with random motion

5. multiple MOs randomly challenging the robot in a dynamic environment

5.4.2.1 Experiment 1: A Moving Obstacle Coming towards the Robot

The main purpose of this experiment was to identify the robot’s behaviour when an MO

continuously challenges the robot. The MO continuously moved towards the robot from

110

Fig. 5.16 Experimental Setup

the direction of the goal (i.e., the MO moved in the opposite direction of the robot).

The robot and the MO started moving at the instant labelled T1 (see Fig. 5.19).

Initially, the robot was placed towards the x-direction. However, under the influence

of the FSF-shaping module, the robot immediately changed its orientation towards the

goal.

At the instant labelled T2, the robot predicted the path of the MO. The robot iden-

tified that the free space in its current moving direction was decreasing. Consequently,

the robot started changing its direction even before it moved close to the obstacle. The

dynamic objects prediction module and the tracking module is responsible for this be-

111

Fig. 5.17 RGB and Depth Images Captured from Real SenseTM Camera

haviour.

At the instant labelled T3, the robot was passing the obstacle safely without any

collision. After passing the MO, the robot again changed its direction directly towards

the goal. This was due to the influence of the force-shaping module. Consequently, the

robot succeeded in reaching its goal without collision at the instant labelled T4 (see Fig.

5.19). In this experiment, the robot travelled 385.0 cm in 91 s at an average speed of

4.2 cm/s.

The process of achieving the instantaneous driving force at time instant T2 is as

follows:

112

Tab. 5.4 Hardware Specifications of TurtleBot3 Waffle Pi

Items Specification

Max. translational velocity 0.26m/s

Max. rotational velocity 104.27deg/s

Size (L x W x H) 281 mm x 306 mm x 141 mm

Single board computer Raspberry Pi 3 Model B+

(robot’s PC)

MCU of OpenCR 32-bit ARM Cortex®-M7 with

FPU (216 MHz, 462 DMIPS)

IMU Gyroscope 3 Axis

Accelerometer 3 Axis

Magnetometer 3 Axis

Laser Distance Sensor 360 Laser Distance Sensor

LDS-01

1. Based on sensory data, the tracking module estimates the position (225.0, -118.5)cm

and velocity (2.1cm/s) of the MO (Pseudocode-Step3).

2. Based on the position information of the tracking module, CGM is generated

(Pseudocode-Step4; see Fig. 5.20 [a]).

3. Based on the position and velocity information, FGMs are generated (only one

FGM is shown in the example; Pseudocode-Step5; see Fig. 5.20 [d]).

4. The FSHs for all the global maps are generated.

5. The FSFs for all the global maps are generated (see Fig. 5.20 [b] and [e]).

6. All the sets of FSFs are shaped towards the goal (see Fig.5.20 [e] and [f]).

7. IDFCs are generated (Fc1,Fc2,...,FcN), Fig.5.20 [e] and [f].

8. The final instantaneous driving force is generated for the T2 time instant (see

Fig.5.21).

113

x

Y

Start
(0,0)

Robot

S1

S2

S3

MO1

MO2

Goal
(300,-200)

P1

P2

Fig. 5.18 The Experimental Environment—Locations of the Robot, Moving Obstacles
and Static Obstacles in Experiment 5 at Time Instant 1

This process occurred in each time instant to generate the instantaneous driving

force for the current iteration.

The key findings of this experiment are as follows:

1. In this experiment, the robot avoided the obstacle by changing its direction of

motion (not by changing its speed).

2. The robot was placed initially in the x-direction. Although there was free space

in the x-direction, the robot succeeded in changing its direction immediately to-

wards the goal (300, –300; instant labelled T1). This was due to the influence of

the force-shaping module.

3. The object tracking and the dynamic objects prediction modules have allowed

the algorithm to know about the future growing or diminishing free space in the

environment (instant labelled T2).

114

Fig. 5.19 The Robot’s and Obstacle’s Path Observed in Experiment 1 with their Loca-
tions Shown at Time Instants T1 to T4

4. Once the robot passed the obstacle, it changed its direction back towards the goal

(instant labelled T3). This was also due to the force-shaping module.

5.4.2.2 Experiment 2: One Moving Object Crosses the Robot’s Path (Robot Changes

its Moving Direction to Avoid the Collision

The main purpose of this experiment was to identify the robot’s behaviour when an

obstacle challenges the robot by crossing its path. The obstacle moved towards the

negative y-direction. The MO intersected the robot’s path at (170, –140).

At the instant labelled T2 (see Fig. 5.22), the robot succeeded in predicting the

path of the MO. The robot identified that the MO would intersect its path around (107,

–140). The robot changed its direction towards the y-direction (towards the direction

of the moving object) with the intention of passing the obstacle before it intersected the

robot’s path.

At the instant labelled T3 (see Fig. 5.22), the robot passed the obstacle safely with-

out any collision before the obstacle crossed the robot’s path. After passing the MO,

115

(a) CGM
(b) Low-resolution FSFs for
a CGM

(c) Low-resolution shaped
FSFs and Fc1.

(d) Example for a FGM.
(e) Low-resolution FSFs for
a FGM.

(f) Low resolution shaped
FSFs and Fc4.

Fig. 5.20 Instantaneous driving force component generation process for a particular
time instance (T2).

the robot moved towards the goal. Finally, the robot reached its goal safely through the

free space passages leading to the goal, labelled T4 (see Fig. 5.22). In this experiment,

the robot travelled 370.4 cm in 84 s at an average speed of 4.4 cm/s.

The key findings of this experiment are as follows:

1. In this experiment, the robot avoided the obstacle by changing its direction of

motion (not by changing its speed).

2. Initially, the robot changed its orientation towards the goal, as discussed in Ex-

periment 1. (The force-shaping module is responsible for this decision.)

3. The algorithm predicted MO’s velocity and its future locations with respect to the

robot’s future locations.

4. The free space concept influenced the robot to follow the free space leading to

the goal.

116

Fig. 5.21 Instantaneous Driving Force Components and the Final Instantaneous Driving
Force at Time Instant T2 (FT2)

5.4.2.3 Experiment 3: One Moving Object Crosses the Robot’s Path with Different

Speeds (Robot Changes Its Speed to Avoid Collision).

The main purpose of this experiment was to identify the robot’s driving force (magni-

tude) variation to avoid MOs. In this experiment, two tests were conducted. In both

tests, the MO challenged the robot by crossing its path. However, the speed of the MO

was different in each test. One experiment was conducted with a slow-moving obstacle

that had an average speed of 2 cm/s. The second test was conducted with an object

moving at an average speed of 3 cm/s. The robot’s path and the driving forces were

plotted for the experiment in Fig. 5.23 and Fig. 5.24, respectively.

In the conducted experiments, both the robot and the object started their motion at

the instant labelled T1 (see Fig. 5.23). In both experiments, the robot started with a

higher driving force (98% of the maximum driving force; see Fig. 5.24 [a] and [b]).

Initially, the robot was placed facing the x-direction. However, the robot immediately

changed its orientation towards the goal in both cases (see the second key finding in

117

Fig. 5.22 Robot’s and Obstacle’s Path Observed in Experiment 2 with their Locations
Shown at Time Instants T1 to T4

Experiment 1, Section 5.4.2.1).

At the instant labelled T2, the robot predicted the path and the velocity of the MO.

In the test with the slow-moving obstacle, the robot changed its direction towards the

negative y-direction with a higher driving force (see Figure 5.23 [a]; the intention was

for the robot to pass the obstacle before it intersects the robot’s path). Conversely, the

robot in the test with the fast-moving object kept moving towards the goal (and towards

the intersection point). However, the robot significantly reduced its driving force (see

Fig. 5.24 [b]).

At the instant labelled T3, the robot in the test with the slow-moving obstacle passed

the obstacle safely without any collision before the obstacle crossed the robot’s path.

After passing the MO, the robot moved towards the goal. During this process, the driv-

ing force did not vary significantly. In contrast, the robot in the test with the fast-moving

obstacle reduced its speed and let the MO pass. Subsequently, the robot increased its

driving force (Iterations 18–30) and moved towards the goal. Finally, the robot reached

the goal safely in both cases (see Fig. 5.23, T4). A summary of the experimental results

118

Tab. 5.5 Summarised Information of Experiment 3

Parameter With slow moving With fast moving

obstacle obstacle

Path length 370.4cm 365.4cm

Avg. speed 4.4cm/s 3.9cm/s

Travel time 84s 93s

is shown in Table 5.5.

The key findings of this experiment are as follows:

1. It was verified that the robot used the direction changes as well as the speed

variations to avoid the obstacle.

2. At the beginning, the robot immediately changed its direction towards the goal,

as discussed in Experiment 1. (The force-shaping module is responsible for this

decision).

3. The driving force variation plots show that the algorithm follows the FSF gen-

eration and the force-shaping concept as expected (the bigger the available free

space, the bigger the robot’s driving force).

4. The dynamic objects path prediction module allowed the robot to make prior

decisions. (The robot can change its direction or speed even before the MO comes

close to the robot).

5. The algorithm predicted the MO’s velocity and its future locations with respect

to the robot’s future locations.

6. The free space concept allowed the robot to follow the free space leading to the

goal.

119

(a) Slow moving obstacle. (b) Fast moving obstacle.

Fig. 5.23 The Robot’s Path with Slow-Moving and Fast-Moving Objects with Their
Locations Shown at Time Instants T1 to T4

(a) Slow moving obstacle. (b) Fast moving obstacle.

Fig. 5.24 The Robot’s Normalised Driving Force Variation over Fifty Iterations

120

5.4.2.4 Experiment 4: One Moving Object Challenging the Robot in a Trap with Ran-

dom Motion

The main purpose of this experiment was to identify the robot’s behaviour in a trapped

situation. In this experiment, two SOs were placed to obstruct the robot’s direct path to

the goal. However, a new passage had been created in between these two obstacles (the

new shortest path to the goal was through this passage). A MO was derived into this

passage (to collide with the robot in the passage).

The robot and the MO started moving at the instant labelled T1. The robot imme-

diately turned towards the goal (see the second key finding in Experiment 1, Section

5.4.2.1). At the instant labelled T2 (see Fig. 5.25), the robot successfully predicted the

path and the speed of the obstacle and started moving away from the passage. Further,

the robot decreased its speed (because the new direction was heading towards the mov-

ing object). From instants labelled T2 to T3, the robot moved with a slower speed, as

shown in Fig. 5.25. This allowed the MO to pass the robot. After passing the obstacle,

the robot started changing its direction towards the goal while increasing its speed (see

the third key finding in Experiment 3, Section 5.4.2.3).

At the instant labelled T4, the MO changed its direction and started moving towards

the robot to challenge it again. The robot kept its speed at a higher value and slightly

changed its path with the intention of passing the obstacle before it crossed the robot’s

path (see the first key finding in Experiment 1, Section 5.4.2.1). Finally, the robot

changed its direction slightly towards the goal and reached its goal safely (see Fig.

5.25, T5). In this experiment, the robot travelled 412.4 cm in 100 s at an average speed

of 4.1 cm/s.

The key findings of this experiment are as follows:

121

1. It was verified that the dynamic objects prediction module helps the robot to avoid

traps.

2. At the beginning, the robot immediately changed its orientation towards the goal,

as discussed in Experiment 1. (The force-shaping module is responsible for this

decision.)

3. The algorithm succeeded in predicting the MO’s velocity and its future locations

with respect to the robot’s future locations.

4. The robot used a speed variation as well as a direction change at the same time to

avoid collisions.

5. The free space concept allowed the robot to follow the future growing free space

leading to the goal.

Fig. 5.25 The Robot’s and Obstacle’s Path Observed in Experiment 4 with their Loca-
tions Shown at Time Instants T1 to T5

122

5.4.2.5 Experiment 5: Multiple Moving Objects Challenging the Robot in a Random

Environment (with Static Obstacles)

The main purpose of this experiment was to identify the robot’s behaviour in a random

environment with multiple MOs and SOs. In this experiment, multiple SOs were placed

randomly. Two MOs were used to challenge the robot.

At the instant labelled T1 (see Fig. 5.26), the robot and MO1 started moving. The

robot immediately turned towards the goal (see the second key finding in Experiment 1,

Section 5.4.2.1).

At the instant labelled T2, the robot successfully predicted the path and the speed of

the obstacle (MO1 was crossing the robot’s path, see Fig. 5.26). However, the robot did

not change its direction but decreased its speed (see the first key finding in Experiment

3, Section 5.4.2.3). From instants labelled T2 to T3, the robot moved at a slower speed.

This allowed the MO to pass in front of the robot. At the same time, MO2 started

moving towards the goal. After passing MO1, the robot slightly changed its direction

towards the free space passage in between the two SOs. The robot did not choose

P2—although it had more free space compared to P1—because P2 did not lead to the

goal (the force-shaping module was the reason behind this decision). At the instant

labelled T4, the robot changed its direction because of the influence of MO2. The robot

passed the obstacle before it intersected the robot’s path and the robot reached the goal

safely (see Fig. 5.26, T5). In this experiment, the robot travelled 375.7 cm in 89 s at an

average speed of 4.2 cm/s.

The key findings of this experiment are as follows:

1. The algorithm predicted the MO’s velocity and future locations with respect to

the robot’s future locations.

123

2. The robot used speed variations as well as direction changes at the same time to

avoid collisions.

3. The proposed algorithm successfully navigated the robot in an unknown dynamic

environment with multiple moving objects.

Fig. 5.26 The Robot’s and Obstacle’s Path Observed in Experiment 5 with their Loca-
tions Shown at Time Instants T1 to T5

5.4.2.6 Summarised Findings of Experimental Testing

The following summarises the findings of the experimental testing:

1. The chosen five experiments confirmed the importance of FSF generation and the

force-shaping modules (see the first key finding in Experiments 1–5). This also

verified the FSF concept.

2. The environment prediction module allowed the robot to make prior decisions.

This was also proven by all the experiments.

124

3. The two basic experiments (i.e., Experiments 1 and 2) showed that the robot

uses directional changes to avoid simple challenges created by one slow-moving

object. The decisions made in those two experiments helped the robot to reach

the goal safely and efficiently.

4. The results observed in Experiment 3 confirmed that the robot makes human-like

intelligent decisions.

When the slow-moving obstacle crossed the robot’s path, the robot maintained a

higher speed and passed the obstacle by changing its direction. When the fast-

moving obstacle crossed the robot’s path, the robot almost stopped and allowed

the obstacle to pass the robot. This behaviour is similar to human decision-

making. The robot gained this ability because of the dynamic object tracking

and prediction modules.

5. Experiment 4 demonstrated a trapped situation for the robot. The robot could

easily avoid the trap because of its early detection of the trap using the dynamic

object prediction module. This mimics human-like behaviour and enforces the

importance of the dynamic object prediction module.

6. Experiment 5 demonstrated the robot’s behaviour in a random environment with

multiple MOs. The robot successfully reached the goal in the unknown environ-

ment with multiple MOs.

5.5 Summary

The ANADE II is a local path planner to navigate mobile robots in unknown static and

dynamic environments. The new algorithm takes an optimistic approach to solving the

125

navigation problem. It does not look for obstacles to avoid but for free space solutions

to follow. Compared to the ANADE I, the algorithm discussed in this chapter uses a dy-

namic objects path prediction methodology to identify the robot’s future environments.

The ANADE II pulls the robot through the future growing free space passages leading

to the goal, whereas the ANADE I discussed in Chapter 4 only considers the current

free space. This new methodology has successfully eliminated some of the drawbacks

of the ANADE I, which is limited to simple dynamic environments (multiple obstacles

do not challenge the robot at the same time). The optimistic approach of the new al-

gorithm combined with future dynamic objects path prediction makes the ANADE II

superior to the ANADE I.

The primary aim of this chapter was to introduce the ANADE II and verify its suc-

cess in dynamic environments. Therefore, two simulation tests and five real-world ex-

periments were carefully designed and executed to demonstrate the algorithm’s capa-

bilities. The experimental test results clearly demonstrated that the ANADE II allows

the robot to successfully negotiate its path among moving obstacles by changing its

direction and speed. The robot can reach its goal even in challenging environments

containing traps by using the object tracking and the dynamic objects path prediction

modules. The objects path prediction helped the robot to make prior decisions, which

was confirmed by the observed results. Further, the new algorithm showed its human-

like behaviours in the real-world experiments.

However, the ANADE II uses a numerical weighting system to quantify the shaping

factors by considering the angle difference between the sector angle and the robot-to-

goal angle. Although the ANADE II performs well in dynamic environments, the al-

gorithm’s performance can be further improved by considering other parameters, such

126

as sector distances and the speeds of moving obstacles, when shaping the free space

forces. Further, having increased flexibility in shaping forces yields advantages in re-

fined decision-making. Therefore, an fuzzy logic controller-based force-shaping mod-

ule was developed and embedded in the force-shaping module to further optimise the

algorithm’s decision-making. Chapter 6 discusses the development of this new con-

troller and provides experimental validations of the further enhanced algorithm, the

ANADE III.

127

6

Chapter 6: Artificial Intelligence Based-Agoraphilic Navigation

Algorithm in Dynamic Environment (ANADE III)

6.1 Introduction

Dynamic environments are characterised by high levels of uncertainty, thereby pre-

senting significant challenges to navigational algorithms [35]. Navigational techniques

based on AI are frequently used to address this problem. Among these, FL is commonly

used to overcome uncertainties at a low computational cost. Most alternative naviga-

tion algorithms fail to use the velocities of MOs as an input for decision-making. This

is due to the difficulty of estimating the velocity vectors of MOs [36]. Consequently,

most existing navigation algorithms are unable to navigate in uncertain dynamic envi-

ronments, leading to suboptimal performance or system failure in complex situations

[36]. However, as mentioned in Chapter 5, the tracking module used in the ANADE

II estimates the velocities of MOs (used as an input for the DOPP module). The novel

ANADE III algorithm presented in this chapter uses the estimated velocity vectors as

an input for the new force-shaping module. Further, the ANADE III uses all advantages

of the ANADE II and strengthens the algorithm further by introducing a new FL-based

controller to the force-shaping module. This new AI-based component, along with the

other modules discussed in Chapters 4 and 5, helps the algorithm to successfully over-

come the aforementioned common weakness of other navigation algorithms at a low

computational cost.

6.2 The Architecture of the ANADE III

Additionally, in the ANADE III, a modular-based architecture was used. This archi-

tecture increases the adaptability and simplicity of the algorithm. The ANADE III

comprises eight main modules:

1. Sensory Data Processing (SDP) module

2. Dynamic Obstacle Tracking (DOT) module

3. Dynamic Obstacle Position Prediction (DOPP) module

4. Current Global Map (CGM) generation module.

5. Future Global Map (FGM) generation module.

6. Free Space Attraction (FSA) module.

(a) current and future FSH generation module

(b) FSF generation module

(c) force-shaping module

(d) Instantaneous Driving Force Component (IDFC) generation module

7. IDFC weighting module.

8. Rvobot’s Motion Command (RMC) generation module

The SDP module collects sensory data from the sensors mounted on the robot

(RealSenseTM Camera and LiDAR, encoders and associated equipment) and transforms

129

all robot-centric data to a world reference frame (global positioning system). The track-

ing module then generates two outputs—a set of locations of moving obstacles and a set

of velocity values of moving obstacles—within the map using the globalised sensory

data. Subsequently, the algorithm is divided into two sections, as follows:

1. the IDFC (Fc) generation for the CGM (CGM-Fc1)

2. the IDFC (Fc) generation for the FGMs (FGM-Fc2, -Fc3, . . . , -FcN ; Prediction).

The IDFC generation for the CGM-Fc1 section of the algorithm uses the current

environment of the robot (the CGM) and generates the component force (Fc1) based on

the current surroundings of the robot. In this process, the CGM becomes the input for

the FSH generation module. The generated FSH is then converted to a set of FSFs by

the FSF generation module. Subsequently, the force-shaping module regulates the FSFs

such that the robot will move towards the goal. Finally, the IDFC generation module

generates the final driving force component (Fc1) for the CGM using the shaped FSFs

(see Fig. 6.1).

The second output of the tracking module (the current states of MOs) is used as the

input for the DOPP module (see Fig. 6.1). This returns N-1 FGMs, where N is the final

prediction of the DOPP module. Each FGM is input into the FSH generation module.

The generated FSH is then converted to a set of predictive FSFs by the FSF generation

module. Subsequently, the force-shaping module shapes the FSFs such that the robot

will move towards the goal. Unlike in previous ANADEs, the new force-shaping mod-

ule considers not only the sector angel but also the sector distance and sector velocity

when shaping the forces (a detailed discussion is provided in Section 6.3.2). Finally,

the IDFC generation module generates the final Fc1 for the corresponding FGM. This

process occurs for each FGM.

130

Finally, all the IDFCs (Fc1, Fc2, ..., FcN) related to the CGMs and FGMs are in-

put into the IDFC weighing module. This module generates the final driving force

the robot’s actual driving force for the current iteration. This process repeats for each

iteration.

In the ANADE III, all the modules are mostly similar to the ANADE II’s main

modules except for the force-shaping module in the FSA module. The force-shaping

module can be defined as the most powerful component in the FSA module (see Fig.

6.1). The force-shaping module has a direct influence on manipulating the FSFs. The

development of these submodules is discussed in the following sections.

Fig. 6.1 Block diagram of ANADE III

131

6.3 New Main Modules Used in ANADE III to Optimise the Performance

6.3.1 Force-Shaping Module

A set of FSFs is taken as the input of the force-shaping module. The sets of FSFs gen-

erated for each global map need to be directed towards the goal. A weighing technique

is used to perform this task. The force-shaping module is considered to be one of the

most important parts of the algorithm, as it has a direct influence on selecting the robot’s

driving direction in the corresponding iteration.

To perform this task, a numerical weighing system and a FLC are used.

6.3.1.1 Numerical Function

During this process, FSFs pointing towards the goal are assigned a higher weighing

factor compared to FSFs pointing away from the goal. Each of the sector forces (Fk) is

modified by a numerical force-shaping coefficient (δN). The numerical force-shaping

coefficients are determined by Eq. 6.1. If Fk points directly towards the goal, the

corresponding numerical force-shaping coefficient is set at its maximum value of 1.

δ(θ) =

1
90
θ + 1, if −90 ≤ θ ≤ 0;

−1
90
θ + 1, if 0 ≤ θ ≤ 90;

1
90
θ − 3, if 270 ≤ θ ≤ 360;

−1
90
θ − 3, if −270 ≤ θ ≤ 360;

0, otherwise.

(6.1)

132

6.3.1.2 Fuzzy Logic Controller

The numerical weighing system quantifies the shaping factors by only considering the

angle difference between the sector angle and robot-to-goal angle. In a cluttered dy-

namic environment, this single factor does not have sufficient spatial or temporal reso-

lution. To perform more effectively, the system must consider other parameters such as

sector distances and speeds of moving obstacles. Further, having increased flexibility in

shaping forces yields advantages in refined decision-making. Therefore, a FLC-based

force-shaping module is also embedded in the force-shaping module. The rest of this

sub-section discusses this controller.

A linguistic fuzzy model, known as the ‘Mandani Approach’, was used to develop

the fuzzy logic controller. Its basic components are shown in Fig. 6.2 and comprise

four main modules:

1. a fuzzification module

2. a fuzzy rule bases

3. a fuzzy inference engine

4. a defuzzification module.

To develop the fuzzification module, four databases were designed. Three databases

were used for the three inputs (θdiff ,dk,n and vk,n) (Fig. 6.4) and one for the output, the

fuzzy shaping factor (δf) (Fig. 6.5).

The three input databases were modelled using multiple fuzzy data sets. For all

membership functions over a given universe of discourse, the membership function of

a fuzzy set S, denoted by µs, maps elements x ∈ X into a numerical value in the closed

unit interval, for example:

133

Fig. 6.2 A Block Diagram of the Fuzzy Logic Controller

µs (x) : → [0, 1]

The database for the first input θdiff consists of nine fuzzy membership functions

derived from Eq. 6.2. The corresponding linguistics are LRR: Left Rear, LR: Left Rear,

SL: Side Left, LF: Left Front, F: Front, RF: Right Front, SR: Right Side, RR: Right

Rear and RRR: Right Rear (Fig. 6.3).

134

Fig. 6.3 FSH Used to Derive the Membership Function for Input θdiff

µLRR(θ) = max{min
(
−90− θ

90
, 1

)
, 0}

µLR(θ) = max{min
(
θ + 180

90
,
−60− θ

30

)
, 0}

µSL(θ) = max{min
(
θ + 90

30
,
−30− θ

30

)
, 0}

µLF (θ) = max{min
(
θ + 60

30
,
−θ
30

)
, 0}

µF (θ) = max{min
(
θ + 30

30
,
30− θ

30

)
, 0}

µRF (θ) = max{min
(
θ

30
,
60− θ

30

)
, 0}

µSF (θ) = max{min
(
θ − 30

30
,
180− θ

90

)
, 0}

µRR(θ) = max{min
(
θ − 60

30
,
180− θ

90

)
, 0}

µRRR(θ) = max{min
(
θ − 90

90
, 1

)
, 0}

(6.2)135

Where: θ ∈ {-180,180}

The database for the second input, the normalised sector distance (dk,n), consists of

five fuzzy membership functions as shown in Eq. 8.7. The corresponding linguistics

are VC: Very Close, C: Close, N: Near, F: Far, VF: Very Far.

µV C(dk,n) = max{min
(
−dk,n − 0.3

0.2
, 1

)
, 0}

µC(dk,n) = max{min
(
dk,n − 0.1

0.2
,
0.5− dk,n

0.2

)
, 0}

µN(dk,n) = max{min
(
dk,n − 0.3

0.2
,
0.7− dk,n

0.2

)
, 0}

µF (dk,n) = max{min
(
dk,n − 0.5

0.2
,
0.9− dk,n

0.2

)
, 0}

µV F (dk,n) = max{min
(
dk,n − 0.7

0.2
, 1

)
, 0}

(6.3)

The database for the third input, the normalised sector velocity (vk,n), consists of

seven fuzzy membership functions as shown in Eq. 8.8. The variable vk,n is positive

if the moving obstacle is approaching the robot. The corresponding linguistics are NF:

Negative Fast, NM: Negative Medium, NS: Negative Slow, Z: Zero, PS: Positive Slow,

PM: Positive Medium and PF: Positive Fast.

136

µNF (vk,n) = max{min
(
−vk,n − 0.77

0.33
, 1

)
, 0}

µNM(vk,n) = max{min
(
vk,n + 1

0.33
,
−0.33− vk,n

0.33

)
, 0}

µNS(vk,n) = max{min
(
vk,n + 0.77

0.33
,
−vk,n
0.33

)
, 0}

µZ(vk,n) = max{min
(
vk,n + 0.33

0.33
,
−0.33− vk,n

0.33

)
, 0}

µPS(vk,n) = max{min
(
vk,n
0.33

,
0.77− vk,n

0.33

)
, 0}

µPM(vk,n) = max{min
(
vk,n − 0.33

0.33
,
1− vk,n

0.33

)
, 0}

µPF (vk,n) = max{min
(
vk,n − 1

0.33
, 1

)
, 0}

(6.4)

The simple output database is represented by eight fuzzy sets, as shown in Fig. 6.5.

The fuzzy rule base was developed with 315 rules, Table 6.1. The following struc-

ture was used to develop the rules.

if (condition1 is Lingustic1,i)AND (condition2 is Lingustic2,j) AND (condition3 is

Linguistic3,k) THEN Rule base output is ROuti,j,k

Ex: if (angDif is F)AND (dk,n is VF) AND (Vk,n is NF) THEN out is Z

Tab. 6.1 Structure of the Fuzzy Rule Bases.

NF VC C N F VF

LRR Z Z Z Z Z

LR Z Z Z L MH

SL Z Z Z HVH HVH

LF Z MH MH VH VH

137

F Z HVH HVH VH VH

RF Z MH MH VH VH

SR Z Z Z HVH HVH

RR Z Z Z Z MH

RRR Z Z Z Z Z

NM VC C N F VF

LRR Z Z Z Z Z

LR Z Z Z Z M

SL Z Z Z H H

LF Z M M VH VH

F Z H H VH VH

RF Z M M VH VH

SR Z Z Z H H

RR Z Z Z Z M

RRR Z Z Z Z Z

NS VC C N F VF

LRR Z Z Z Z Z

LR Z Z Z Z LM

SL Z Z Z MH MH

LF Z LM LM HVH VH

F Z MH MH VH VH

RF Z LM LM HVH VH

SR Z Z Z MH MH

138

RR Z Z Z Z LH

RRR Z Z Z Z Z

Z VC C N F VF

LRR Z Z Z Z Z

LR Z Z Z Z L

SL Z Z Z M M

LF Z L L H VH

F Z M M VH VH

RF Z L L H VH

SR Z Z Z M M

RR Z Z Z Z L

RRR Z Z Z Z Z

PS VC C N F VF

LRR Z Z Z Z Z

LR Z Z Z Z ZL

SL Z Z Z LM LM

LF Z ZL ZL MH HVH

F Z LM LM HVH HVH

RF Z ZL ZL LM LM

SR Z Z Z LM LM

RR Z Z Z Z ZL

RRR Z Z Z Z Z

PM VC C N F VF

139

LRR Z Z Z Z Z

LR Z Z Z Z Z

SL Z Z Z L L

LF Z Z Z M H

F Z L L H H

RF Z Z Z M H

SR Z Z Z L L

RR Z Z Z Z Z

RRR Z Z Z Z Z

PF VC C N F VF

LRR Z Z Z Z Z

LR Z Z Z Z Z

SL Z Z Z ZL ZL

LF Z Z Z LM MH

F Z ZL ZL MH MH

RF Z Z Z LM MH

SR Z Z Z ZL ZL

RR Z Z Z Z Z

RRR Z Z Z Z Z

Z-Zero, ZL-Zero Low, L-Low, LM-Low Medium,

M-Medium, MH-Medium High, H-High,

HVH-High Very High, VH-Very High

Based on the given inputs, the fuzzy inference engine chooses eight firing rules out

140

Fig. 6.4 Input Membership Functions of the Fuzzy Controller

Fig. 6.5 Output Membership Functions of the Fuzzy Controller

141

of 315 from the rule base. It then calculates the firing power of each selected rule (αi),

Eq. 6.5

αi = min{µL1(θ), µL2(dk,n), µL3(vk,n)} (6.5)

Where;

i=1,2,3,4

L1 ∈ {LRR, LR, SL, LF, F, RF, SR, RR, RRR}

L2 ∈ {VC, C, N, F, VF}

L3 ∈ {NF, NM, NS, Z, PS, PM, PF}

The defuzzification module uses the fuzzy rule with the maximum firing strength to

find the final fuzzy shaping factor for the corresponding sector (δf,k).

6.4 Results and Discussion

The experimental work was conducted to demonstrate and validate the performance of

the new algorithm. The experiments were also designed to test the performance of the

new fuzzy logic controller as well as the DOPP module. From the range of investiga-

tions performed, a series of three basic experiments and one random experiment were

specifically selected for presentation in this chapter:

1. an obstacle moving towards the goal from the start point

2. an obstacle moving towards the start point from the goal

3. an obstacle moving perpendicularly across the robot’s path

142

4. three moving obstacles simultaneously challenging the robot and pushing the

robot towards a trap.

As mentioned in Chapter 5, the TB3 waffle pi research platform and developed ex-

perimental setup was used to conduct the real-world experiments precent in this section.

6.4.1 Experiment 1: An Obstacle Moving Towards the Goal from the Start Point

The primary purpose of this experiment was to identify the robot’s behaviour when a

MO moved in front of the robot towards the goal (the MO’s speed being greater than

the maximum speed of the robot). This experiment also showed the improvements of

the algorithm after introducing the FLC. In this experiment, two tests were conducted.

In both tests, the robot’s environment and allowed maximum speed were kept constant.

However, in one experiment, the FLC was disabled.

For both tests the robot’s starting point was recorded as (0,0), the goal location was

(300,0), the MO’s start point was (27,0) and the MO’s velocity was maintained at 6.3

cm/s. The robot’s maximum allowed velocity was limited to 4.5 cm/s.

Case1: Basic force shaping module without the FLC

Referring to Fig. 6.6, the robot and the moving obstacle started moving at the instant

labelled ‘T1’. At this moment, the distance between the robot and the MO was recorded

as 27 cm (the MO was close to the robot). As the MO was in close proximity to the

robot, the robot immediately started moving away from the MO.

At the instant labelled ‘T2’, the robot kept moving away from the MO and followed

a long path, outlined in red and blue, to reach the goal.

At the instant labelled ‘T3’, the robot changed its direction back towards the goal.

Once the MO passed the goal, the robot reached its destination safely without any col-

143

Tab. 6.2 Summarised Test Results of Experiment 1

Parameter Without FLC With FLC 20cm Performance comparison with

respect to case 2

Travel time 85s 74s 14%

Path length 368cm 318cm 14%

Avg Speed 4.3cm/s 4.3cm/s 0%

lision at the instant label ‘T4’. In this experiment, the robot travelled 368 cm in 85.6 s

with an average speed of 4.3 cm/s.

Case2: New force-shaping module with the FLC

Referring to Fig. 6.7, the robot and the moving obstacle started moving at the instant

labelled ’T1’. At this moment, the distance between the robot and the MO was recorded

as 27 cm (the MO being close to the robot). However, the FLC considers the speed and

the direction of the MO’s motions. Consequently, the algorithm allowed the robot to

move towards the goal without changing its direction.

At the instant labelled ’T2’, the robot kept moving in the same direction towards the

goal behind the MO. With the influence of the new FLC, the robot did not change its

direction unnecessarily.

At the instant labelled ’T3’, the robot showed a slight deviation from the shortest

path. However, the robot redirected its path towards the goal and successfully reached

the goal, at the instant label ’T4’, without collision. In this experiment, the robot trav-

elled 318 cm in 73.9 s with an average speed of 4.3 cm/s.

Table 6.2 provides a numerical summary of these data.

Key findings of this experiment:

1. The MO was moving in front of the robot towards the goal, but the MO had a

higher speed. In an optimised system, the robot would have identified that the MO

144

Fig. 6.6 Robot’s Path Observed in Experiment 1 without the New FLC. The Locations
of the Robot and Moving Obstacle are Shown at Four Different Time Instants (T1-T4)

did not impede its pathway towards the goal. However, in the absence of the FLC,

the basic force-shaping module gave unnecessarily more weight to existing free

space and directed the robot away from the MO. Conversely, the force-shaping

module directed by the new FLC allowed the robot to move towards the goal

behind the MO while maintaining a safe distance.

2. The basic force-shaping module had not considered the velocity of the moving

object when it was shaping the FSFs. (which led to a path similar to that when

avoiding a static obstacle, see Fig. 6.8).

3. The FLC optimised the efficiency of the algorithm by reducing the time taken to

reach the goal in addition to reducing the path length.

4. Initially, the robot avoided the obstacle by changing its direction of motion (the

basic force-shaping module). Subsequently, the force-shaping module with the

FLC enabled correctly identified that the MO was not a challenge to the robot.

5. The object tracking module allowed the algorithm to accurately determine the

states (position and velocity) of the MO. This optimised the efficiency of the

algorithm in successfully completing the navigation task.

145

Fig. 6.7 The Robot’s Path Observed in Experiment 1 with the New FLC Operating. The
Locations of the Robot and Moving Obstacle are Shown at Four Different Time Instants
(T1-T4)

Fig. 6.8 The Robot’s Path Observed in Experiment 1 with a Static Obstacle (This Con-
figuration Creates a Local Minimum for the APF Method). The robot’s Locations at
Three Different Time Instances are Shown as T1-T3

6.4.2 Experiment 2: An Obstacle Moving Towards the Start Point from the Goal

The main purpose of this experiment was to identify the robot’s behaviour when a fast-

moving obstacle continuously challenges the robot by moving towards the robot from

the goal. This experiment also demonstrated the improvements of the algorithm after

introducing the new FLC. The robot’s behaviour was tested with and without the new

FLC within the same environment. The speed of the MO was increased to the point of

collision with the robot. In all cases, the robot could reach the goal without any collision

when the MO’s speed was less than 10 cm/s. When the MO’s speed was more than 10

cm/s the algorithm without the new FLC failed to avoid the collision. The MO’s speed

was maintained at 10 cm/s in the two tests presented in this chapter.

146

In this experiment, the robot’s starting point was recorded as (0,0), the goal’s lo-

cation was (300,0), the MO’s starting point was (370,0) and the MO’s velocity was

maintained at 10 cm/s.

Case 1: Basic force-shaping module without the FLC

Referring to Fig. 6.9,the robot and the moving obstacle started moving at the instant

labelled ‘T1’. At this moment, the distance between the robot and the MO was recorded

as 295cm. As the MO is far from the robot, the robot started moving towards the goal

with its maximum speed.

At the instant labelled ‘T2’, the robot identified that the MO is approaching the robot

and started changing its direction. However, the decision was taken too late, because

of the MO’s higher speed (more than twice the robot’s maximum speed). As a result

of this delayed decision-making, the robot collided with the MO at the instant labelled

‘T3’ In this test, the robot did not successfully reach the goal.

Case2: New force-shaping module with the FLC

Referring to Fig. 6.10, the robot and the moving obstacle started moving at the

instant labelled ‘T1’. At this moment, the distance between the robot and the MO was

recorded as 295 cm. Albeit at a distance, the MO was approaching the robot with

a relatively high velocity, requiring the FLC to identify and quantify the speed and

direction of the MO’s movement. In response, the robot started moving away from the

MO at time ‘T1’ as it identified the challenge from the MO.

At the instant labelled ‘T2’ the robot kept moving along the same trajectory, main-

taining a distance from the MO. The robot’s prior decision allowed the robot to success-

fully avoid the MO at the instant labelled ‘T3’. The robot redirected its path towards

the goal and reached the goal successfully without any collision at the instant labelled

147

Tab. 6.3 Summarised test results of experiment 2

Parameter Without FLC With FLC

Travel time Did not reach the goal 52s

Path length Did not reach the goal 367cm

Avg Speed 4.3cm/s 7.0cm/s

‘T5’. In this experiment the robot travelled 367 cm in 52 s with an average speed of 7

cm/s, Table 6.3 presents the summarised results of these data.

Key findings of this experiment:

1. The MO was approaching the robot from the goal at high speed. Consequently,

the robot was challenged by the MO, although it was not close to the robot. While

the basic force-shaping module allowed the robot to move towards the goal, im-

plementation of the new FLC immediately changed the robot’s direction allowing

it to deviate and avoid the path of the MO.

2. The basic force-shaping module did not consider the object’s velocity in calcu-

lating the FSFs. Consequently, the challenge from the fast-moving MO was not

identified sufficiently early to avoid a collision.

3. The FLC took the velocity of the MO into account, thereby allowing the robot to

refine its decision-making and to avoid a collision.

4. The importance of the FLC is clearly demonstrated in assisting the robot to opti-

mise its decisions and avoid collisions when faced with obstacles moving at high

speed.

148

Fig. 6.9 The robot’s path observed in experiment 2 without the new FCL. The locations
of the robot and moving obstacle (MO) are shown at three different time-instants (T1-
T3)

Fig. 6.10 The robot’s path observed in experiment 2 with the new FLC. The locations of
the robot and moving obstacle (MO) are shown at five different time-instants (T1-T5)

6.4.3 Experiment 3: An Obstacle Moving Perpendicularly Across the Robot’s Path

The focus of this experiment was to identify the robot’s behaviour when a moving

obstacle challenged the robot by bisecting the robot’s direct path in a perpendicular (-y)

direction, as shown in Fig. 6.11. This experiment also showed the importance of the

prediction module. The robot’s behaviour was tested with and without the prediction

module operating, but with all other variables held constant.

Case1: Navigation without the prediction module

Referring to Fig. 6.11, the robot and the moving obstacle started moving at the

instant labelled ‘T1’. At this moment, the MO was moving in the –y direction. Si-

multaneously the robot immediately started moving towards the goal with its maximum

speed.

149

Fig. 6.11 The Robot’s Path Observed in Experiment 3 without either the New FLC or
the DOPP Module Operating. The Locations of the Robot and Moving Obstacle are
shown at Three Different Time Instants (T1-T3)

Fig. 6.12 The Robot’s Path Observed in Experiment 3 with the New FLC but without
the DOPP Module Operating. The Locations of the Robot and Moving Obstacle are
shown at Three Sifferent Time Instants (T1-T3)

At the instant labelled ‘T2’ the algorithm identified that the MO was in close prox-

imity to the robot, forcing the robot to change its direction. However, the alteration was

not made early enough, which, combined with the speed of the MO, lead to a collision

at the time labelled ‘T3’. In this test, the robot could not reach the goal safely. This was

repeated even when the new FLC was operational, as shown in Fig. 6.12.

Case2: Navigation with the prediction module

The robot and the moving obstacle started moving at the instant labelled ‘T1’ (Fig.

6.13). At T1, the MO was moving in the –y direction. Although the MO was far from

150

Fig. 6.13 The Robot’s Path Observed in Experiment 3 with Both the New FLC and the
DOPP Modules Enabled. The Locations of the Robot and the Moving Obstacle are
shown at Four different Time-Instants (T1-T4)

the robot and had zero velocity component towards the robot’s direction, the prediction

module identified that the free space in the robot-to-goal direction was diminishing.

The DOPP module, constantly checking future growing and diminishing free spaces,

assisted the algorithm in optimising its decisions. Under the influence of the DOPP

module, the robot started moving away from the robot to the goal path soon after starting

the journey.

At the instant labelled ‘T2’, the robot started moving further in the –y direction as

the prediction module influenced the robot with an increased weighing. The navigation

system’s prediction of the future environment allowed the robot to successfully avoid

the MO at the instant labelled ‘T3’. The robot redirected its path towards the goal and

reached the goal successfully without collision (moment ‘T4’). In this experiment, the

robot travelled 372 cm in 88 s with an average speed of 4.2 cm/s, as shown in Table 6.4.

Key findings of this experiment:

151

Tab. 6.4 Summarised tTest Results of Experiment 3

Parameter Without FLC and DOPP With FLC and without DOPP 20cm With FCL and DOPP

Travel time Did not reach the goal Did not reach the goal 88s

Path length Did not reach the goal Did not reach the goal 372cm

Avg Speed 4.3cm/s 4.3cm/s 4.2cm/s

1. The MO was moving fast in a direction perpendicular to the robot’s initial motion

(the direct start-to-goal direction). Therefore, the force-shaping module identified

neither any conflicting sector velocity component from the MO (as the velocity

was perpendicular to the robot’s initial direction) nor any obstacle between the

robot and its destination.

2. Without the prediction module, the algorithm made decisions based only on the

existing circumstances of the robot’s surroundings. Consequently, the robot could

not change its direction and kept moving towards the goal as identified at the be-

ginning of the journey, not accounting for the spatial changes soon to be imposed

by the MO. This failure ultimately led to a collision.

3. When enhanced by the prediction module, the algorithm made more accurate de-

cisions based not only on the robot’s current surroundings but also on predicted

future environments. This allowed the robot to identify future growing and dimin-

ishing free-space, thereby optimising its path-making decisions and minimising

the risk of collision.

4. The importance of the prediction module was confirmed, and its performance

verified. It enabled the robot to make early decisions when the robot deals with

increasingly challenging cases.

152

6.4.4 Experiment 4: Three Moving Obstacles Simultaneously Challenging the Robot

and Pushing the Robot Towards a Trap

The main purpose of this experiment was to characterise the robot’s behaviour when

placed in a random environment with multiple moving and static obstacles incorpo-

rating traps. The experimental scenario included one static obstacle and three moving

obstacles designed to challenge the robot. The first moving obstacle, MO1, changed its

speed and direction rapidly to test the algorithm’s dynamic capabilities. The second,

MO2, was programmed to maintain a constant velocity during the experiment. The

third, MO3, slightly changed its speed and direction during the experiment. For this

test, the maximally functional algorithm, including prediction and FLC, was used.

Fig. 6.14 illustrates the trajectories that resulted from this scenario. The robot, MO1

and MO2 started moving at the instant labelled ‘T1’. Moving Object 3 started moving

3s before the time instant T1. At this moment, MO1 and MO3 were coming towards

the robot. The robot moved in the +x direction to avoid any collision with MO1 and

MO3.

At the time instant T2, the robot had four possible choices:

1. Move in the (+x, -y) direction to pass in front of MO2 and reach the goal in the

shortest path.

2. Reduce its speed and wait for MO2 to pass.

3. Go forward towards the goal.

4. Move in the (+x, +y) direction (towards the converging MO1 and MO2).

The new force-shaping module with the FLC operating identified the challenge from

MO3 (although it was distant from the robot it was rapidly approaching the robot in the

153

Tab. 6.5 Summarised Test Results of Experiment 4

Parameter Results

Travel time 133s

Path length 557cm

Avg Speed 4.2cm/s

(+x, –y) direction) and stopped the robot from moving towards the (+x, –y) direction.

The prediction module also supported this decision. The second option was eliminated

by the prediction module as it identified that the robot would be hit by MO1 and MO2

if the robot slowed down. The force-shaping module did not choose the third option as

there remained a static obstacle between the robot and the goal. The new Agoraphilic

algorithm picked the 4th option, although it is a more complicated solution. The algo-

rithm successfully manoeuvred the robot through the time-varying free-space passage

in between MO1 and MO2 during time interval T2–T4. During this time interval, the

force-shaping module gave accurate directions and avoided any incorrect decisions that

may have driven the robot to a trap or resulted in a collision.

At time instant T4, the robot avoided the major challenges from MO1 and MO2

and started changing its direction towards the goal. However, MO1 started crossing

the robot’s path again between T4 and T6. The robot slightly changed its path at time

instant T5 as a result of this influence from MO1. Finally, the robot reached the goal

safely at time instant T6.

In this experiment, the robot travelled 557.0 cm in 133 s with an average speed of

4.2 cm/s (Table 6.5).

Key findings of this experiment:

1. The importance of the new FLC, even in the presence of the prediction module,

154

Fig. 6.14 The Robot’s Observed Path in Experiment 4. The Locations of the Robot and
Moving Obstacles (MO1-MO3) are shown at Six Different Time instants (T1-T6)

was clearly shown in this experiment.

2. The algorithm was able to identify and implement successful decisions in com-

plex environments.

3. The force-shaping module could select the robot’s pathway precisely to navigate

through narrow time-varying free-space corridors.

4. The new Agoraphilic algorithm could successfully navigate robots in unknown

dynamic environments with traps.

6.4.5 Experimental Comparison of the ANADE III with Other Recent Approaches

This subsection presents three experiments which were conducted to compare the ANADE

III with three other recent navigation algorithms.

155

6.4.5.1 Comparison of ANADE III with Matrix-Binary Codes-Based Genetic Algo-

rithm (MBCGA)

In this experiment, the environmental setup was developed to match the environment

that was used in [57]. This is to compare the results under the same conditions. Three

moving obstacles were used in this setup. By comparing the results of ANADE and

MBCGA we notice that there are two deferent decisions at time instant T1 (Fig. 6.15):

1. ANADE III - Slowed down the robot and MO1 was enabled to pass the robot.

2. MBCGA - Changed the robot’s moving direction and pass the MO1.

In this case, ANADE III reduced the robot’s speed; enabling the MO1 to pass as

the free space was diminishing, which was enabled through the embedded prediction

algorithm. Consequently, the robot with ANADE easily avoided the challenge from

MO2 at time instant T2. On the other hand, the robot with the MBCGA method had

to move further in x-direction to avoid MO2. In addition, the two algorithms made

different decisions at time instant T3 as well, Fig. 6.15. Overall, the decisions made by

ANADE allowed the robot to use a shorter path with 66% fewer direction changes to

reach the goal compared to MBCGA, Fig. 6.15.

6.4.5.2 Comparison of ANADE III with Fuzzy-Wind Driven Optimization Algorithm

(FWDOP)

In this experiment, the environmental setup was developed to match the experimental

setup used in [117]. Hence the experiment was conducted with two moving obstacles

under similar conditions. It can be seen in this experiment that the robot with ANADE

and the robot with FWDOA have taken two deferent decisions at time instant T2 (Fig.

156

(a) The Robot’s Path with ANADE III (b) The Robot’s Path with MBCGA [57]

Fig. 6.15 ANADE III and MBCGA. The Robot’s and Obstacles’ Locations at Four
Different Time-Instants, T1-T4.

6.16):

1. ANADE III - Increased the speed of the robot and passed MO2 at its front.

2. FWDOA -Turned towards (+x, -y) direction.

In this case, ANADE III increased the robot’s speed; enabling the robot to pass the

MO2, as the robot’s free space on robot’s left side was not stationary and DO2 is moving

slowly compared to the robot. Therefore, the robot with ANADE algorithm managed

to easily avoid the challenge imposed by MO2 at time instant T3, without any direction

change. On the other hand, the robot with FWDOA [117] had to change its direction

towards +x direction to avoid DO2. Also, at time instant T3, the two algorithms made

different decisions.Overall the decisions made by the ANADE allowed the robot to use

a shorter path with 25% fewer direction changes to reach the goal compared to the

FWDOA, Fig. 6.16.

157

(a) The Robot’s Path with ANADE III (b) The Robot’s Path with FWDOA [117]

Fig. 6.16 ANADE and FWDOA. The Robot’s and Obstacles’ Locations at Four Differ-
ent Time-Instants, T1-T4.

6.4.5.3 Comparison of ANADE III with an Improved APF Algorithm Developed

Based on Transferable Belief Model (APF-TBM)

In this experiment, the environmental setup was developed according to an experimental

setup that was used in [39] to compare the results under the same conditions. Two

moving obstacles and five static obstacles were used in this experiment. It was observed

from this benchmarking that the ANADE algorithm used a shorter path and 33% fewer

direction changes to reach the goal compared to the improved APF algorithm (APF-

TBM), Fig. 6.17.

6.4.6 A Qualitative Comparison Between ANADE III with Recent Navigation Ap-

proaches

A qualitative comparison between some of the recently published methods is shown in

the Table 6.6. Six fundamentally important parameters for mobile robot navigation in

dynamic environment were used for this comparison.

158

(a) The Robot’s Path with ANADE III (b) The Robot’s Path with APF-TBM [39]

Fig. 6.17 ANADE III and APF-TBM. The Robot’s and Obstacles’ Locations at Four
Different Time-Instants T1-T4

Tab. 6.6 A Qualitative Comparison Between ANADE III with Other Approaches

Algorithm [Ref.] Base-Concept Tracking Prediction Velocity for Unknown Dynamic Experimental
decision making Environments Validation

[57] Genetic Algorithm No No No Yes Yes
[117] Fuzzy Logic No No No Yes Yes
[39] APF Yes No Yes Yes Yes
[76] Bacterial Foraging No No No Yes No
[118] Dynamic Window Approach No No No Yes Yes
[52] APF No No No Yes No
[54] APF No Yes Yes Yes No
[55] APF No Yes Yes Yes No

ANADE III Agoraphlic (Free-Space Attraction) Yes Yes Yes Yes Yes

6.5 Summary

A novel controller based on fuzzy logic was developed to enhance the performances

of the force-shaping module. The effectiveness of the algorithm was further improved

by incorporating the velocity vectors of MOs in the decision-making. The tracking

module was able to estimate the position and velocities of unknown moving obstacles

accurately. Further, the algorithm uses a dynamic objects position prediction method-

ology to describe the robot’s future environments accurately.

Four experiments and three simulations were designed and executed to demonstrate

the effectiveness of the algorithm and benchmark the algorithm against other recently

published methods. The experimental test results clearly demonstrated the effective-

159

ness of the novel fuzzy-based force-shaping module. The experiments also showed that

the robot could reach its goal even in challenging environments that may include traps

by means of the object tracking and dynamic object prediction modules. The inclu-

sion of moving obstacle velocity vectors within the force-shaping methodology refined

the algorithm and significantly improved its effectiveness in dynamic environments.

The comparison tests of ANADE III with other methods proved ANADE III makes

human-like decisions to keep minimal direction changes and shorter path to reach the

goal. Further, the ANADE III, enhanced by the novel fuzzy logic controller, showed

human-like intelligent decision-making behaviour in real-world experiments. The new

algorithm demonstrates enhanced capabilities to successfully navigate through compli-

cated dynamic environments without collisions and at a level of performance superior

to that of the ANADE II.

However, the performances of the algorithm can be further improved in static and

dynamic environments if the fuzzy logic controller can be tuned according to the chang-

ing environmental conditions. Chapter 7 introduces a self-tuning methodology for the

fuzzy logic controller used in the ANADE III. This improvement has the potential to

further increase the flexibility of the decision-making of the ANADE III. Further, this

allows the algorithm to effectively enhance the flexibility of the robot’s motion com-

mand generation module discussed in Chapter 5.

160

7

Chapter 7: Self-Tuning Artificial Intelligence–Based Agoraphilic

Navigation Algorithm in Dynamic Environment (ANADE IV)

7.1 Introduction

The FL-based ANADE III discussed in Chapter 6 uses a fuzzy knowledge–based con-

troller with general and unchanging membership functions. This gives a fixed Fuzzy

Logic Controller (FLC) with limited flexibility to the algorithm when making naviga-

tion decisions. In mobile robot navigation in dynamic environments, robots face new

or different circumstances regularly. Therefore, if the navigation algorithm can iden-

tify new circumstances and change the decision-making behaviour, the robot can adapt

to new situations effectively. This adaptation increases the competence and safety of

the navigation process. Therefore, a new self-tuning FLC has been introduced to fur-

ther improve the performances of the algorithm and to maximise its decision-making

capacity.

Based on the changed controller parameters, the adaptation methods are classified.

Gain scheduling is one such adaptation method, and it is generally used to change the

controller parameters (e.g., fuzzy membership functions). There are three types of gain

scheduling [119, 120].

1. Changing operating conditions are used to tune the control parameters.

2. Control parameters are changed based on the control error.

3. Sugeno type rule-based controllers are used to change the controller parameters

[121].

The self-tuning FLC proposed in this chapter changes the controller parameters of

the FLC discussed in Chapter 6. The controller parameters are changed based on the

robot’s operating conditions, which are highly dependent on the robot’s surrounding

environment. The identified different types of the robot’s environments and suitable

Agoraphilic behaviours are discussed in Section 7.2.

7.2 Different Types of Agoraphilic Behaviours-Needed to Optimise the

Navigation Algorithm

7.2.1 Goal Seeking

During the navigation process, there will always be situations in which the goal is in the

robot’s line of sight (see Fig. 7.1). In these cases, there are no obstacles between the

robot and the goal. Also, there are no obstacles close to the robot and the goal line. In

this kind of situation, the algorithm can give less consideration to the free space around

the robot and focus more on reaching the goal quickly. However, to achieve this, the

weighing system in the force-shaping module should be changed accordingly. The best

possible option is changing the knowledge base of the FLC by changing the database

for the first input diff discussed in Chapter 6. The proposed new θdiff input database

specially developed for ‘goal seeking’ behaviour consists of nine fuzzy membership

functions (see Fig. 7.2) derived from Equation 7.1. This compresses the membership

162

functions and focuses the robot more towards the goal. Further, as the robot’s path is

clear, the algorithm can maximise the robot’s speed.

Fig. 7.1 Goal Seeking

µLRR(θ) = max{min
(
−θ − 60

120
, 1

)
, 0}

µLR(θ) = max{min
(
θ + 180

120
,
−45− θ

15

)
, 0}

µSL(θ) = max{min
(
θ + 60

15
,
−θ − 15

30

)
, 0}

µLF (θ) = max{min
(
θ + 45

45
,
−θ
30

)
, 0}

µF (θ) = max{min
(
θ + 15

15
,
15− θ

15

)
, 0}

µRF (θ) = max{min
(
θ

15
,
45− θ

30

)
, 0}

µSF (θ) = max{min
(
θ − 15

15
,
60− θ

15

)
, 0}

µRR(θ) = max{min
(
θ − 45

15
,
180− θ

120

)
, 0}

µRRR(θ) = max{min
(
θ − 60

120
, 1

)
, 0}

(7.1)

where: θ ∈ {-180,180}

The characteristics of goal-seeking behaviour are as follows:

1. The robot has less ability to change its moving direction away from the goal.

163

Fig. 7.2 Input Membership Function for the First Input θdiff of the Fuzzy Controller for
Goal-Seeking Behaviour

2. The robot has fewer direction changes

3. The robot moves faster

7.2.2 Safe Travel

During the navigation process, there will be situations in which the robot is in a clut-

tered environment with very limited free space (see Fig. 7.3). In this kind of situation,

the algorithm can give less priority in heading towards the goal and give more impor-

tance to free spaces around the robot. This allows the robot to focus more on free space

passages to move from within the cluttered area safely. However, the weighing sys-

tem in the force-shaping module should be changed accordingly to achieve this. As

mentioned previously, the database for the first input diff is changed. The proposed

new θdiff input database specially designed for ‘safe travel’ behaviour comprises nine

fuzzy membership functions (see Fig. 7.4) derived from Eq. 7.2. This expands the

membership functions and gives more freedom to find free space.

164

Fig. 7.3 Safe Travel

µLRR(θ) = max{min
(
−θ − 135

45
, 1

)
, 0}

µLR(θ) = max{min
(
θ + 180

45
,
−90− θ

45

)
, 0}

µSL(θ) = max{min
(
θ + 135

45
,
−θ − 45

45

)
, 0}

µLF (θ) = max{min
(
θ + 90

45
,
−θ
45

)
, 0}

µF (θ) = max{min
(
θ + 45

45
,
45− θ

45

)
, 0}

µRF (θ) = max{min
(
θ

45
,
90− θ

45

)
, 0}

µSF (θ) = max{min
(
θ − 45

45
,
135− θ

45

)
, 0}

µRR(θ) = max{min
(
θ − 90

45
,
180− θ

45

)
, 0}

µRRR(θ) = max{min
(
θ − 135

45
, 1

)
, 0}

(7.2)

165

where: θ ∈ {-180,180}

Fig. 7.4 Input Membership Function for the First Input θdiff of the Fuzzy Controller for
Safe Travel Behaviour

The characteristics of safe travel behaviour are as follows:

1. The robot has maximum ability to change its moving direction based on the avail-

able free space (this increases safety).

2. The robot has sudden directional changes. This may increase oscillations

3. The robot has a low linear velocity

4. The robot has a high rotational velocity

7.2.3 Normal Travel

During the navigation process, there will be situations in which the robot is in an envi-

ronment with dynamic and static obstacles with a reasonable amount of free space (see

Fig. 7.5). In this kind of situation, the algorithm should still consider heading towards

the goal but also consider free spaces around the robot at the same time. This allows the

robot to focus more on free space passages leading to the goal safely. The weighing sys-

tem in the force-shaping module is changed accordingly to achieve this. The database

for the first input θdiff in the FLC discussed in Chapter 6 is changed accordingly. The

166

proposed new θdiff input database specially dedicated for ‘normal travel’ behaviour

comprises nine fuzzy membership functions (see Fig. 7.6) derived from Eq. 7.3.

Fig. 7.5 Normal Travel

167

µLRR(θ) = max{min
(
−90− θ

90
, 1

)
, 0}

µLR(θ) = max{min
(
θ + 180

90
,
−60− θ

30

)
, 0}

µSL(θ) = max{min
(
θ + 90

30
,
−30− θ

30

)
, 0}

µLF (θ) = max{min
(
θ + 60

30
,
−θ
30

)
, 0}

µF (θ) = max{min
(
θ + 30

30
,
30− θ

30

)
, 0}

µRF (θ) = max{min
(
θ

30
,
60− θ

30

)
, 0}

µSF (θ) = max{min
(
θ − 30

30
,
180− θ

90

)
, 0}

µRR(θ) = max{min
(
θ − 60

30
,
180− θ

90

)
, 0}

µRRR(θ) = max{min
(
θ − 90

90
, 1

)
, 0}

(7.3)

Where: θ ∈ {-180,180}

Fig. 7.6 Input Membership Function for the First Input θdiff of the Fuzzy Controller for
Normal Travel Behaviour

The characteristics of normal travel behaviour are as follows:

1. The robot has a medium ability to change its moving direction based on the avail-

168

able free space.

2. The robot has a medium linear velocity

3. The robot has a medium angular velocity

7.2.4 Safe Right Side

During the navigation process, there will be situations in which the robot is in a cluttered

environment with limited free space on its left side (see Fig. 7.7). In this kind of

situation, the algorithm can give less consideration to the limited free space passages

on the robot’s left side (as the robot may become stuck in the cluttered environment)

and focus more on the free spaces around the robot’s right side. This approach tends

to create fewer challenging situations in future iterations. This can also be achieved

by changing the knowledge base of the FLC by altering database of the input θdiff

discussed in Chapter 6. The proposed new θdiff input database specially dedicated for

‘Safe Right-Side’ behaviour comprises nine fuzzy membership functions (see Fig. 7.8)

derived from Eq. 7.4. This expands the right side of the membership functions and

gives more freedom to find free space on the right side.

169

Fig. 7.7 Safe Right Side

µLRR(θ) = max{min
(
−60− θ

120
, 1

)
, 0}

µLR(θ) = max{min
(
θ + 180

120
,
−45− θ

15

)
, 0}

µSL(θ) = max{min
(
θ + 60

15
,
−15− θ

30

)
, 0}

µLF (θ) = max{min
(
θ + 45

45
,
−θ
30

)
, 0}

µF (θ) = max{min
(
θ + 15

15
,
45− θ

45

)
, 0}

µRF (θ) = max{min
(
θ

45
,
90− θ

45

)
, 0}

µSF (θ) = max{min
(
θ − 45

45
,
135− θ

45

)
, 0}

µRR(θ) = max{min
(
θ − 90

45
,
180− θ

45

)
, 0}

µRRR(θ) = max{min
(
θ − 135

45
, 1

)
, 0}

(7.4)

170

where: θ ∈ {-180,180}

Fig. 7.8 Input Membership Function for the First Input θdiff of the Fuzzy Controller for
Safe Right Side Behaviour

The characteristics of safe right side behaviour are as follows:

1. The robot has maximum ability to change its moving direction based on the avail-

able free space on its right side.

2. The robot can have sudden directional changes.

3. The robot has a low linear velocity

4. The robot has a high rotational velocity

7.2.5 Safe Left Side

During the navigation process, there will be situations in which the robot is in a cluttered

environment with limited free space on its right side (see Fig. 7.9). In this kind of

situation, the algorithm can give less consideration to the limited free space passages

on the right side (as the robot may become stuck in the cluttered environment) and

focus more on the free spaces around the robot’s left side. This approach tends to create

fewer challenging situations in future iterations. The database of input θdiff discussed

in Chapter 6 is altered accordingly. The proposed new θdiff input database specially

171

dedicated for ‘safe left side’ behaviour comprises nine fuzzy membership functions

(see Fig. 7.10) derived from Eq. 7.5. This expands the left side of the membership

functions and gives more freedom to find free space on the left side of the robot.

Fig. 7.9 Safe Left Side

172

µLRR(θ) = max{min
(
−135− θ

45
, 1

)
, 0}

µLR(θ) = max{min
(
θ + 180

45
,
−90− θ

45

)
, 0}

µSL(θ) = max{min
(
θ + 135

45
,
−45− θ

45

)
, 0}

µLF (θ) = max{min
(
θ + 90

45
,
−θ
45

)
, 0}

µF (θ) = max{min
(
θ + 45

45
,
15− θ

15

)
, 0}

µRF (θ) = max{min
(
θ

15
,
45− θ

30

)
, 0}

µSF (θ) = max{min
(
θ − 15

15
,
60− θ

15

)
, 0}

µRR(θ) = max{min
(
θ − 40

15
,
180− θ

120

)
, 0}

µRRR(θ) = max{min
(
θ − 60

120
, 1

)
, 0}

(7.5)

where: θ ∈ {-180,180}

Fig. 7.10 Input Membership Function for the First Input θdiff of the Fuzzy Controller
for Safe Left Side Behaviour

The characteristics of safe lift side behaviour are as follows:

1. The robot has maximum ability to change its moving direction based on the avail-

173

able free space on its left side.

2. The robot can have sudden directional changes.

3. The robot has a low linear velocity

4. The robot has a high rotational velocity

7.3 Supervisory Controller

As discussed in Section 7.2, the robot’s behaviour should be altered according to differ-

ent environmental conditions. A new supervisory controller was developed to achieve

this. The supervisory controller comprises three main modules:

1. Low-Resolution Space and Velocity Histogram generation module

2. Sector States Generation Fuzzy Logic Controller (SSGFLC) module

3. Motion Behaviour Selection (MBS) module

7.3.1 Low Resolution Space and Velocity Histogram

A robot-centred global map (a CGM or FGM) and estimated velocities of moving ob-

jects are taken as the inputs to this module. The robot-centred global map is divided

into four sectors, as shown in Fig. 7.11. For each sector, an average sector distance

(dLRH,k) and a sector velocity vLRH,k are generated.

7.3.2 Sector States Generation Fuzzy Logic Controller

The SSGFLC is used to generate the sector status for all four sectors in the low-

resolution histogram (see Fig. 7.12). The SSGFLC takes two sets of main inputs:

174

Fig. 7.11 Low Resolution Histogram

1. average sector distance (dLRH,k where, k={1,2,3,4})

2. sector velocity (vLRH,k where, k={1,2,3,4})

Three databases were designed to develop the fuzzification module. Two databases

were used for the two inputs (dLRH,k and vLRH,k; see Figures 7.13 and 7.14) and one

for the output (the sector status SSk; see Fig. 7.16).

The database for the first input dLRH,k comprises three fuzzy membership functions

derived from Eq. 7.6. The corresponding linguistics are C = close, M = medium and F

= far.

175

Fig. 7.12 The Block Diagram of the Sector States Generation Fuzzy Logic Controller

µC(dLRH,k) = max{min
(
−dLRH,k + 129

106
, 1

)
, 0}

µM(dLRH,k) = max{min
(
dLRH,k − 23

106
,
232− dLRH,k

103

)
, 0}

µF (dLRH,k) = max{min
(
dLRH,k − 129

103
, 1

)
, 0}

(7.6)

The database for the second input—the normalised low-resolution sector velocity

(vLRH,k)—comprises three fuzzy membership functions, as shown in Eq. 7.7. The vari-

able vLRH,k is positive if the closest MO is approaching the robot. The corresponding

linguistics are N = negative, Z = zero, P = positive. The simple output database is

represented by three fuzzy sets, as shown in Fig. 7.15.

176

µN(vLRH,k) = max{min (−vLRH,k, 1) , 0}

µZ(vLRH,k) = max{min (vLRH,k + 1, 1− vLRH,k) , 0}

µP (vLRH,k) = max{min (vLRH,k, 1) , 0}

(7.7)

Fig. 7.13 Membership Functions of dLRH,k

Fig. 7.14 Membership Functions of vLRHk

The fuzzy rule base was developed with nine rules (see Table 7.1). The following

177

Fig. 7.15 Output Membership Functions of the Fuzzy Controller

Tab. 7.1 Structure of the Fuzzy Rule Bases Used in the Supervisory Controller

SS C M F
P Block Block Safe
Z Block Safe Clear
N Safe Clear Clear

structure was used to develop the rules.

Based on the given inputs, the fuzzy inference engine chooses four out of nine firing

rules from the rule base. Then the firing power of each selected rule (αi) is calculated

via Eq. 7.8:

αi = min{µL1(dLRH,k), µL2(vLRH,k)} (7.8)

The defuzzification module uses the fuzzy rule with the maximum firing strength to

178

find the final sector status.

The generated sector statuses are fed into the MBS module to select the most suit-

able behaviour for the robot.

7.4 Motion Behaviour Selection Module

The MBS module takes the four sector status as its input and decides the robot’s motion

behaviour according to the robot’s surroundings. Five different cases are defined in this

module.

Case 1- Goal seeking: In Case 1, the main FLC is organised according to the parame-

ters discussed in Section 7.2.1 to optimise the robot’s behaviour when the goal is

in the robot’s line of sight.

Case 2- Safe travel: In Case 2, the main FLC is organised according to the parameters

discussed in Section 7.2.2 to fully use the available free space in highly cluttered

environments.

Case 3- Normal travel: In Case 3, the main FLC is organised according to the parame-

ters discussed in Section 7.2.3 to navigate robots in an environment with dynamic

and static obstacles with a reasonable amount of free space

Case 4- Right side safe: In Case 4, the main FLC is organised according to the param-

eters discussed in Section 7.2.4 to drive the robot more towards the right side

to avoid future possibilities of becoming trapped in the cluttered left side of the

robot.

Case 5- Left side safe: In Case 5, the main FLC is organised according to the param-

eters discussed in Section 7.2.5 to drive the robot more towards the left side to

179

avoid future possibilities of becoming trapped in the cluttered right side of the

robot.

The appropriate case is selected according to the flowchart shown in Fig. 7.16. Case

1 is triggered if the sector status of Sector 1 (SS1) is ‘clear’. If SS1 is ‘safe’, Case 3 is

triggered.

If SS1 is ‘block’, then the algorithm checks SS2 and SS4. If SS2 is ‘clear’, Case 4

is triggered. If SS2 is ‘safe’ and SS4 is either ‘safe’ or ‘block’, Case 4 is triggered. If

SS2 is not ‘block’ and SS4 is ‘clear’ or ‘safe’, Case 5 is triggered. However, when SS2

and SS4 are the same but not ‘block’, and if the algorithm has triggered Case 4 or 5 in

previous iteration, the same case is triggered for the next iteration (see Fig. 7.16).

If SS1, SS2 and SS4 are ‘block’, then Case 2 is triggered.

Fig. 7.16 Flowchart of the Algorithm Used in the Motion Behaviour Selection Module
Note. MBS = Motion Behaviour Selection; SS1 = sector status of Sector 1; SS2 = sector status of Sector

2; SS4 = sector status of Sector 4; PC = previous case.

7.5 Force-Shaping Module with Self-Tuning Fuzzy Logic Controller

A set of FSFs, the velocities of obstacles and a global map are taken as the inputs of the

new force-shaping module. As mentioned in previous chapters, the task of the force-

180

shaping module is to focus the FSFs towards the goal. However, this module also has a

direct influence on selecting the robot’s driving direction in the corresponding iteration.

Therefore, the force-shaping module is considered one of the most important parts of

the algorithm.

The new force-shaping module introduced in this section also has the numerical

weighing system discussed in Chapter 6. The FLC used in Chapter 6 was updated

by the new self-tuning FLC, which comprises two main modules (see Fig. 7.17), as

follows:

1. Main FLC: The main FLC used in the new adaptive FLC is mostly similar to the

FLC discussed in Chapter 6. However, the knowledge base of the FLC is altered

by changing the database for the first input (θdiff) discussed in Chapter 6. The

fuzzy membership functions representing the database of θdiff is replaced by one

of the fuzzy membership functions discussed in Section 7.2. The most suitable

fuzzy membership function is chosen according to the command given by the

supervisory controller.

2. Supervisory controller: The supervisory controller discussed in Section 7.3 is used

as the supervisory controller of the new self-tuning FLC. The supervisory con-

troller assesses the robot’s surrounding environment and chooses the most suit-

able motion behaviour for the robot’s navigation. Further, this module provides

scaling parameters (vi, wi)) to scale up and down the robot’s linear and angular

velocities according to the selected motion behaviour.

The blocked diagram of the new force shaping module is shown in Fig. 7.17.

The following section shows some selected test results related to the theoretical

improvements discussed in this chapter.

181

Fig. 7.17 Block Diagram of the New Force-Shaping Module
Note. FSF = Free Space Force; MO V = velocity of moving obstacle; GM = Global Map; LRH = ;

SSGFLC = Sector States Generation Fuzzy Logic Controller; SS1 = sector status of Sector 1; SS2 =
sector status of Sector 2; SS3 = sector status of Sector 3; SS4 = sector status of Sector 4; MBS = Motion

Behaviour Selection.

7.6 Results and Discussion

The experimental work was conducted to demonstrate and validate the performance of

the algorithm with the new force-shaping module. The experiments were also designed

to test the performance of the new adaptive FLC. From the range of investigations per-

formed, a series of six basic experiments with different set-ups of FLC are presented to

show the importance of the self-tuning FLC. Further, a random experiment was specifi-

cally selected to present in this chapter to validate the algorithm with the proposed new

force-shaping module in this chapter:

1. experiment to show the effects of different knowledge bases in navigation

2. one MO in a cluttered environment with normal FLC and with self-tuning FLC

A safety index (SI) was introduced to quantitatively compare the safety of naviga-

182

tion under different knowledge bases (see Eq. 7.9).

SI =
dRO

rR + Safety
(7.9)

where:

dRO = robot to obstacle distance when passing

rR = radius of the robot

Safety = 0.5 ×rR

if,

SI = 0; Collision

SI <1; unsafe

SI ≤ 0.7; high danger

SI ≥ 1; safe

SI = 1; ideal

7.6.1 Effects of Different Knowledge Bases in Navigation

7.6.1.1 Experiment 1

The primary purpose of this experiment was to identify the robot’s behaviour when an

MO moved in front of the robot towards the goal (the MO’s speed being less than the

maximum speed of the robot). This experiment also showed the importance of the new

adaptive FLC. In this experiment, four tests were conducted. In all the tests, the robot’s

environment was kept constant. However, in the first three experiments, the knowledge

base of the main FLC was tuned to three different modes, as discussed in Section 7.2:

1. goal seeking

183

2. safe travel

3. normal travel

The fourth experiment shows the robot’s behaviour with the new adaptive FLC.

For all the tests, the robot’s starting point was recorded as (0, 0), the goal location

was (300, 0), the MO’s starting point was (25, 0), and the MO’s velocity was maintained

at 2 cm/s towards the positive x-axis.

Case 1: Navigation with ‘Goal Seeking’ Knowledge Base Setup

The robot started moving 10 iteration after the MO started moving (see Figure 7.18).

The locations of the robot and the MO when the robot began is shown by the instant

labelled T1 (see Fig. 7.18). At that moment, the distance between the robot and the

MO was recorded as 47 cm (i.e., the MO was not very close to the robot). Therefore,

the robot kept moving towards the goal without changing its direction.

At the instant labelled T2 (Fig. 7.18), the robot kept moving away from the MO and

started overtaking the MO. At that instant, the robot’s deviation from its original path

was recorded as 15°. This deviation is the needed minimum deviation to overtake the

MO without a collision (SI = 0.96).

At the instant labelled T3 (see Fig. 7.18), the robot successfully passed the MO and

changed its direction back towards the goal. The robot kept moving towards the goal

while increasing its speed (see Fig. 7.19) with maximum focus on the goal (generally, a

longer distance between red dots indicates a higher velocity of the robot; see Fig. 7.18).

The robot reached its destination at the instant label T4 without any collisions. In this

experiment, the robot travelled 308 cm in 75 s at an average speed of 4.1 cm/s.

In this experiment, the robot did not present any oscillation. Also, the robot had

minimal direction changes.

184

Fig. 7.18 The Robot’s Path Observed in Experiment 1, Case1
Note. The locations of the robot and moving obstacle are shown at four different time instants (T1–T4).

Fig. 7.19 The Robot’s Speed Observed in Experiment 1, Case1

Case 2: Navigation with ‘Safe Travel’ Knowledge Base Setup

The robot started moving under conditions similar to those discussed in Case 1 (see

Fig. 7.20). The locations of the robot and the MO when the robot began is shown

by the instant labelled T1 (see Fig. 7.20). At that moment, the distance between the

robot and the MO was recorded as 47 cm (i.e., the MO was not very close to the robot).

However, with ‘safe travel’ mode, the robot immediately started moving away from the

MO while reducing its speed. At that instant, the robot’s deviation from its original path

185

Fig. 7.20 The Robot’s Path Observed in Experiment 1, Case 2
Note. The locations of the robot and moving obstacle are shown at five different time instants (T1–T5).

was recorded as 360.

At the instant labelled T2 (see Fig. 7.20), the robot unnecessarily kept moving away

from both the MO and the goal. As discussed in Section 7.2, with ‘safe travel’ mode,

the algorithm’s focus towards the goal is minimal. The robot gets pointless freedom to

go towards the free space.

At the instant labelled T3 (see Fig. 7.20), the robot changed its direction towards

the goal. However, this is an overcorrection. The algorithm gave unnecessary weight to

the challenge from the MO (although the MO was far away from the robot).

At the time instant T5 (see Fig. 7.20), the robot reached its destination safely with-

out any collisions. In this experiment, the robot travelled 324 cm in 216 s at an average

speed of 1.5 cm/s. In this experiment, the robot presented oscillation. Also, the robot

had maximal direction changes. Also, the robot always maintained a very safe speed

(see Fig. 7.21).

Case3: Navigation with ‘Normal Travel’ Knowledge Base setup

The initial conditions were kept the same as before (see Fig. 7.22). The start location

of the robot and the corresponding location of the MO is shown by the instant labelled

186

Fig. 7.21 The Robot’s Speed Observed in Experiment 1, Case 2

T1. At that moment, the distance between the robot and the MO was recorded as 47 cm

(i.e., the MO was not very close to the robot). In this case, the robot did not immediately

change its direction but also did not wait long to change its direction away from the MO,

as in Case 1 (see Fig. 7.23).

At the instant labelled T2 (see Fig. 7.22), the robot kept moving away from the MO.

At that instant, the robot’s deviation from its original path was recorded as 20o. This

extra 5o was compromised to ensure that the robot overtook the MO safely.

At the instant labelled T3, the robot successfully overtook the MO and then changed

its direction back towards the goal. The robot reached its destination safely at the instant

label T4 without any collisions. In this experiment, the robot travelled 324 cm in 183 s

at an average speed of 1.77 cm/s.

In this experiment, the robot did not present any oscillation. Also, the robot did not

have unnecessary direction changes.

187

Fig. 7.22 The Robot’s Path Observed in Experiment 1, Case 3
Note. The locations of the robot and moving obstacle are shown at four different time instants (T1–T4).

Fig. 7.23 The Robot’s Speed Observed in Experiment 1, Case 3

Case 4: Navigation with Adaptive Fuzzy Logic Controller

Under the same conditions, the locations of the robot and the MO when the robot

began is shown by the instant labelled T1 (see Fig. 7.24). At that moment, the distance

between the robot and the MO was recorded as 47 cm (i.e., the MO was not very close

to the robot). In this case, the robot did not immediately change its direction but also

did not wait as long as it did in Experiment 1 to change its direction away from the MO.

188

Fig. 7.24 The Robot’s Path Observed in Experiment 1, Case 4
Note. The locations of the robot and moving obstacle are shown at four different time instants (T1–T4).

At the instant labelled T2 (see Fig. 7.24), the robot kept moving away from the MO.

At that instant, the robot’s deviation from its original path was recorded as 20o. In this

case, the algorithm compromised an extra 5o to ensure the robot’s safety.

At the instant labelled T3, the robot successfully overtook the MO and then changed

its direction back towards the goal. From the start to the time instant T3, the robot

mostly followed ‘normal travel’ behaviour.

The robot reached its destination safely at the instant T4 without any collisions.

During T3 to T4, the robot followed the ‘goal-seeking’ behaviour with extra speed

(Fig. 7.25). In this experiment, the robot travelled 314 cm in 92 s at an average speed

of 3.4 cm/s.

In this experiment, the robot did not present any oscillation. Also, the robot reached

the goal safely.

A summary of the experimental test results is shown in Table 7.2

The key findings of this experiment are as follows:

1. The goal-seeking mode gave the closest path, and it took the minimum time to

reach the goal. However, the SI of the goal-seeking mode was less than 1 (unsafe).

189

Fig. 7.25 Figure 7.25: The Robot’s Speed Observed in Experiment 1, Case 4

Tab. 7.2 Summarised test results of experiment 1.

Parameter Goal Seeking Safe travel Normal
travel

With self-
tunning
FLC

Travel time 75s 216s 183s 92s
Path length 308cm 324cm 323cm 314cm
Avg. speed 4.1cm/s 1.5cm/s 1.8cm/s 3.4cm/s
Safety index 0.96 N/A (did not pass

the obstacle)
1.41 1.30

2. In Case 1, it was identified that the goal-seeking mode is ideal during the period

from T3 to T4.

3. The safe travel mode was the most ineffective mode in this experiment. This

mode did not allow the robot to pass the slow-moving object. Also, this mode

recorded the longest path and the highest time to reach the goal.

4. The safe travel mode showed oscillatory movements. The robot kept moving

unnecessarily away from the MO and the goal. As discussed in Section 7.2,

190

with safe travel mode, the algorithm’s focus towards the goal is minimal. In this

experimental set-up, the robot gets pointless freedom to go towards the free space.

5. However, the safety was high with the safe travel mode.

6. The performance of the normal travel mode was between the goal-seeking and

safe travel modes.

7. The five discussed behaviours were used according to the situation by the self-

tuning FLC to give the best navigation path. The new self-tuning fuzzy controller

balanced the safety and efficiency well to achieve the best performance.

7.6.1.2 Experiment 2

The primary purpose of this experiment was to identify the robot’s behaviour when

an MO moves towards the robot from the direction of the goal. This experiment also

showed the importance of the new adaptive FLC. In this experiment, four tests were

conducted. In all the tests, the robot’s environment was kept constant. However, in

the first three cases, the knowledge base of the main FLC was tuned to three different

modes, as discussed in Section 7.2:

1. goal seeking

2. safe travel

3. normal travel

The fourth case shows the robot’s behaviour with the new adaptive FLC.

For all the tests, the robot’s starting point was recorded as (0, 0), the goal location

was (300, 0), the MO’s starting point was (25, 0), and the MO’s velocity was maintained

at 2 cm/s towards the negative x-direction.

191

Fig. 7.26 The Robot’s Path Observed in Experiment 2, Case 1
Note. The locations of the robot and moving obstacle are shown at three different time instants (T1–T3).

Case1: Navigation with Goal-Seeking Knowledge Base Setup

The robot started moving 10 iteration after the MO started moving (see Fig. 7.26).

The locations of the robot and the MO when the robot began is shown by the instant

labelled T1.

At the instant labelled T2, the robot started changing its direction (12o of deviation).

However, the robot did not make this decision early enough and did not turn enough to

avoid the MO. The robot collided with the MO at time instant T3.

From T1 to T2, the robot kept moving unnecessarily quickly towards both the goal

and the MO. This increased the relative velocity of the MO. As discussed in Section

7.2, with goal-seeking mode, the robot’s driving force towards the goal is maximal.

The robot gets minimal freedom to go towards the free space. This experiment proves

goal-seeking behaviour is not suitable in this challenging situation.

Case 2: Navigation with Safe Travel Knowledge Base Setup

The initial environmental conditions were kept the same as they were in Case 1 (see

Fig. 7.27). The locations of the robot and the MO when the robot began is shown by

the instant labelled T1. At that moment, the distance between the robot and the MO

192

Fig. 7.27 The Robot’s Path Observed in Experiment 2, Case 1
Note. The locations of the robot and moving obstacle are shown at three different time instants (T1–T3).

was recorded as 263 cm (i.e., the MO was very far from the robot). However, with safe

travel mode, the robot started moving slowly.

At the instant labelled T2, the robot started moving away from the MO with a high

deviation from its original path, recorded as 23o. This allowed the robot to pass the MO

at time instant T3 without any collisions (SI = 0.85).

After time instant T3, the robot did not have any obstacle in front of it. Therefore, it

started moving towards the goal using the shortest path. However, safe travel behaviour

limited the robot’s velocity unnecessarily.

The robot kept moving unnecessarily away from both the MO and the goal. As

discussed in Section 7.2, with safe travel mode, the algorithm’s forces towards the goal

are minimal. The robot gets pointless freedom to go towards the free space.

At the time instant T4, the robot reached its destination safely without any collisions.

In this experiment, the robot travelled 308 cm in 162 s at an average speed of 1.9 cm/s.

In this experiment, the robot behaved well according to the situation from time instant

T1 to T3. However, during this period, the robot was driven unreasonably slowly.

Case 3: Navigation with Normal Travel Knowledge Base Setup

193

Fig. 7.28 The Robot’s Path Observed in Experiment 2, Case 3
Note. The locations of the robot and moving obstacle are shown at four different time instants (T1–T4).

Under similar environmental conditions, the starting location of the robot and the

corresponding MO’s location is shown by the instant labelled T1 (see Fig. 7.28). In this

case, the robot did not immediately change its direction but also did not wait to change

its direction away from the MO for as long as it did in Case 1.

At the instant labelled T2, the robot started moving away from the MO with a high

deviation from its original path, recorded as 13o. This allowed the robot to pass the MO

safely at time instant T3. In this case, the robot reached the goal safely at time instant

T4. The robot travelled 311 cm in 124 s at an average speed of 2.5 cm/s.

Case 4: Navigation with Adaptive Fuzzy Logic Controller

The robot started moving 10 iteration after the MO started moving (see Fig. 7.29).

The locations of the robot and the MO when the robot began is shown by the instant

labelled T1. At this moment, the distance between the robot and the MO was recorded

as 263 cm (i.e., the MO was very far from the robot). However, the MO was moving di-

rectly towards the robot; therefore, the adaptive fuzzy controller changed the behaviour

mode to safe travel. Consequently, with safe travel mode, the robot started moving

slowly.

194

Fig. 7.29 The Robot’s Path Observed in Experiment 2, Case 4
Note. The locations of the robot and moving obstacle are shown at four different time instants (T1–T4).

At the instant labelled T2, the robot kept moving away from the MO. At that instant,

the robot’s deviation from its original path was recorded as 23o. This deviation and

acceleration from T2 to T3 allowed the robot to pass the MO with an SI of 1.25 (safe).

At the instant labelled T3, the robot successfully passed the MO and then changed its

direction back towards the goal. From T2 to T3, the robot mostly followed normal

travel behaviour.

The robot reached its destination safely at the instant label T4 without any collisions.

From T3 to T4, the robot followed the goal-seeking behaviour. In this experiment, the

robot travelled 315 cm in 90 s at an average speed of 3.5 cm/s.

In this experiment, the robot did not present any oscillation. Also, the robot had

minimal direction changes.

A summary of the test results is shown in Table 7.3

The key findings of this experiment are as follows:

1. In Case 2, from T1 to T2, it was identified that the safe travel mode was ideal

during that period.

2. The goal-seeking mode was the most ineffective mode in this experiment. This

195

Tab. 7.3 Summarised Test Results of Experiment 2

Parameter Goal Seeking Safe travel Normal
travel

With
the self-
tunning
FLC

Travel time Did not reach
the gaol

162s 124s 90s

Path length Did not reach
the gaol

308cm 311cm 315cm

Avg. Speed 4cm/s 1.9cm/s 2.5cm/s 3.5cm/s
Safety Index
(SI)

0 0.85 0.67 1.25

mode did not allow the robot to reach the goal.

3. In goal-seeking mode, the algorithm’s focus towards the goal is maximal. The

robot gets minimal freedom to go towards the free space. This experiment proves

goal-seeking behaviour is not suitable in this type of challenging situation.

4. The performance of the normal travel mode was between that of the goal-seeking

and safe travel modes.

5. The five discussed behaviours were used according to the situation by the self-

tuning FLC to give the best navigation path. The new adaptive fuzzy controller

balanced the safety and efficiency well to achieve the best performance.

6. The new self-tuning system also allowed the algorithm to control the robot’s

speed more effectively. At time instant T2, the FLC with safe travel mode and

the self-tuning FLC influenced the algorithm to make the same decision to devi-

ate the robot 220 away from the original path. However, the algorithm with the

self-tuning FLC increased the robot’s speed after time instant T2. This allowed

the robot to move away from the MO quickly and pass the MO with a better SI.

196

7.6.1.3 Experiment 3: One Moving Obstacle in a Cluttered Environment with a Nor-

mal Fuzzy Logic Controller and with an Adaptive Fuzzy Logic Controller

The main purpose of this experiment was to characterise the robot’s behaviour when

placed in a cluttered environment with multiple obstacles and traps created by the ob-

stacles. The experimental scenario included multiple SOs and one MO designed to

challenge the robot. The robot’s starting location was an extreme condition where the

robot had to be guided carefully to move from the trapped environment. In this experi-

ment, two tests were conducted:

1. In the first test, the algorithm used the force-shaping module with only the FLC

(i.e., the force-shaping module discussed in Chapter 6).

2. In the second test, the algorithm used the force-shaping module with an adaptive

FLC (i.e., the force-shaping module discussed in Chapter 7).

The robot and the MO started moving at the time instant labelled T1 (see Fig. 7.30).

At that moment, the robot was in a trapped situation. At that time instant, the algorithm

with only the FLC had to stick with the single behaviour mode it had. This mode did

not give the extra freedom that the robot needed to avoid this trap safely. As a result,

the robot ended up going further into the trap and colliding with the obstacle at time

instant T3.

Conversely, the algorithm with the new self-tuning FLC had the privilege to choose

a behavioural mode suitable for this situation from the following modes:

1. goal seeking

2. safe travel

197

3. normal travel

4. safe right side

5. safe left side

The self-tuning FLC selected the safe left side mode at the time instant T1 based

on the algorithm discussed in Section 7.3. This allowed the robot to take a big safe

turn towards the robot’s left side, which had more free space. This allowed the robot to

move to a much better place at the time instant T2.

From T2 to T4, the robot changed its behaviour to normal travel mode. However,

the prediction module identified that the MO would cross the robot’s path. Therefore, it

did not allow the robot to move with its maximum speed from T2 to T3 (see Fig. 7.31).

At time instant T3, the robot allowed the MO to cross its path. Then it started increasing

its speed (see Fig. 7.31). At time instant T4, the robot changed its behaviour mode to

goal seeking, as there were no obstacles in between the robot and the goal. The robot

increased its velocity to its maximum and reached the goal safely at the time instant T5.

7.7 Summary

This chapter demonstrates the efficacious application of the self-tuning fuzzy logic con-

trol system for the ANADE III. The new control system allows the algorithm to identify

the robot’s different contexts and tune the algorithm’s control parameters accordingly.

This allows the algorithm to change its decision-making behaviour effectively. The

new self-tuning fuzzy logic controller has a direct influence on the force-shaping mod-

ule. The improved force-shaping module comprises a supervisory controller, a force-

shaping fuzzy logic controller and a numerical force-shaping module. The newly added

198

Fig. 7.30 The Robot’s Path Observed in Experiment 3 with the Self-Tuning Fuzzy Logic
Controller and the Normal Fuzzy Logic Controller, Discussed in Chapter 6
Note. The locations of the robot and moving obstacle are shown at five different time instants (T1–T5).

supervisory controller has its low-resolution histogram generation module, sector states

generation fuzzy logic controller and motion behaviour selection module.

Three main experiments were designed and executed to demonstrate the importance

of the new self-tuning fuzzy logic control system in the algorithm. In the first exper-

iment set, four tests were conducted. In all four tests, the robot’s environment was

kept constant. However, in the first three cases, the knowledge base of the main fuzzy

logic controller was tuned to three different modes (i.e., goal seeking, safe travel and

normal travel). The fourth experiment was conducted with the self-tuning fuzzy logic

controller . In the second experiment, the MO’s moving direction was reversed. Finally,

a random experiment was conducted with the ANADE III (as discussed in Chapter 6)

199

Fig. 7.31 The Robot’s Speed Observed in Experiment 3 with the Self-Tuning Fuzzy
Logic Controller

and the ANADE IV. The experimental test results clearly demonstrate the effectiveness

of the novel self-tuning fuzzy logic controller-based force-shaping module. The ex-

periments also showed that the new system has successfully improved the efficiency

of the algorithm while increasing the robot’s safety. The inclusion of the supervi-

sory controller within the force-shaping methodology refined the algorithm and sig-

nificantly improved its effectiveness under static and dynamic environments. Further,

the ANADE IV algorithm, enhanced by the novel self-tuning fuzzy logic controller,

showed intelligent decision-making behaviour in real-world experiments. The new al-

200

gorithm demonstrated enhanced capabilities to successfully navigate through compli-

cated environments without collisions and at a level of performance superior to that of

the ANADE III.

As mentioned in Chapter 2, most navigation algorithms are incapable of navigating

robots in dynamic environments with a moving target. The new free space attraction

-based ANADEs discussed in this and previous chapters also suffer from this problem.

However, this is an important problem to address. Therefore, the ANADE IV was im-

proved further and used to hunt moving targets under dynamic environments. Chapter

8 demonstrates the development and application of the free space attraction concept in

dynamic environments with a moving goal.

201

8

Chapter 8: Agoraphilic Navigation Algorithm in Dynamic

Environment with a Moving Goal (ANADE V)

8.1 Introduction

As mentioned in Chapter 2, only a few navigation algorithms can track and hunt a mov-

ing goal in an unknown dynamic environment. However, there is practical application

where the robot has to follow or hunt a moving goal. Therefore, in this research, we

further improved the ANADE to address this issue. This chapter presents the improved

algorithm (ANADE V), which incorporates the FSA concept to track and hunt a mov-

ing goal in an unknown dynamic environment. It is essential to track and estimate the

location of the moving goal to successfully follow and hunt it. Further, having a short-

term path prediction of the moving goal will increase the efficiency of the task. Also,

involving the velocity of the moving goal in the force-shaping module will increase the

smart decision-making ability. However, adding another input parameter to the FLCs

discussed in previous chapters will increase the size of the rule base by 500%. Also, this

will reduce the flexibility and increase the computational cost of the FLC. An ML-based

force-shaping module was developed to address all these issues while incorporating the

velocity of the moving goal for decision-making.

8.2 The Architecture of the ANADE V

The architecture of the ANADE V is an advanced version of the architecture of the

ANADE III and IV. This is also a modular-based architecture that gives the freedom to

alter the module individually without altering the algorithm. The structure of this archi-

tecture increases the adaptability of the algorithm in future applications. The improved

algorithm (ANADE V) comprises nine main modules:

1. Sensory Data Processing (SDP) module

2. Dynamic Obstacle Tracking (DOT) module

3. Dynamic Obstacle Position Prediction (DOPP) module

4. moving goal tracking module

5. moving goal path prediction module

6. Current Global Map (CGM) generation module

7. Future Global Map (FGM) generation module

8. Free Space Attraction (FSA) module

(a) FSH generation module

(b) FSFs generation module

(c) force shaping module

(d) Instantaneous Driving Force Component (IDFC) generation module

9. IDFC weighting module

10. Rvobot’s Motion Commands (RMC) weighting module

203

These modules are iteratively used in the proposed algorithm to navigate the robot

towards a moving goal in a dynamic environment (see Fig. 8.1). In this improved

algorithm, two new modules are introduced, and a major modification was made to the

force-shaping module:

1. moving goal tracking module

2. moving goal path prediction module

Some slight changes were also made to the CGM and the FGM generation modules.

All the other modules are similar to those used in the ANADE IV. The development of

those modules was discussed in Chapters 4–7.

The development of the ML-based force-shaping module and the two new modules

and the changes made to the CGM and FGM generation modules are discussed in the

following sections.

8.3 The New Modules Used in the ANADE V to Track and Hunt a Mov-

ing Goal

8.3.1 Moving Goal Tracking Module

The main task of this module is to track the moving target and goal and estimate its

velocity and location. The goal tracking module takes the data from the sensory system

as its input (see Fig. 8.2). This module also runs a KF-based algorithm to produce its

outputs (i.e., the positions and velocity of the moving goal).

These outputs are fed into the CGM generation module and the goal path prediction

module. In the tracking module, the kinematic model of the moving goal or target is

defined in Eq. 8.1.

204

Fig. 8.1 Block Diagram of the ANADE V
Note. SDP = Sensory Data Processing; MO = moving obstacle; CGM = current global map; DOPP =

Dynamic Obstacle Position Prediction; FGM = future global map; IDFCs = instantaneous driving force
components; FSH = Free Space Histogram; FSF = Free Space Force; RMC = robot’s motion command;
ML = machine learning; GM = ; LRH = ; SSGFLC = Sector States Generation Fuzzy Logic Controller;
SS1 = sector status of Sector 1; SS2 = sector status of Sector 2; SS3 = sector status of Sector 3; SS4 =

sector status of Sector 4; MBS = Motion Behaviour Selection.

xk

yk

ẋk

ẏk

 =

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

xk−1

yk−1

ẋk−1

ẏk−1

+

ax × dt2

2

ay × dt2

2

ax × dt

ay × dt

× u(t) + wk (8.1)

205

 xk

yk

 =

 1 0 0 0

0 1 0 0

+ vk

The prior estimation (state estimation based on the previous state estimation) and

globalised sensory data (measurements (xk,m,yk,m) are combined using the filter shown

in Eq. 8.2 to derive the optimal state estimations for the moving goal in each iteration.

xk

yk

ẋk

ẏk

 =

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

xk−1

yk−1

ẋk−1

ẏk−1

+

ax × dt2

2

ay × dt2

2

ax × dt

ay × dt

+ kk

 xk,m

yk,m

−

1 0

0 1

0 0

0 0

T

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

xk−1

yk−1

ẋk−1

ẏk−1

+

ax × dt2

2

ay × dt2

2

ax × dt

ay × dt

)}

(8.2)

In this expression kk (Kalman Gain) is found by using Eq. 8.3;

206

kk = pk

1 0

0 1

0 0

0 0

T

1 0

0 1

0 0

0 0

T

pk

1 0

0 1

0 0

0 0

−1

(8.3)

Where:

pk =

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

 pk−1

1 0 0 0

0 1 0 0

dt 0 1 0

0 dt 0 1

+Q

(8.4)

At each iteration following the optimal state estimation of every moving goal, pk is

updated as shown in Eq.8.5.

pk =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

− kk

1 0 dt 0

0 1 0 dt

dt 0 1 0

0 dt 0 1

×

pk−1

1 0 dt 0

0 1 0 dt

dt 0 1 0

0 dt 0 1

+Q (8.5)

The updated pk is used as p(k−1) in Eq.8.4 to re-calculate the new pk in the next

iteration.

where:

207

vk ∼ N(0,R) (R=measurement error covariance)

wk ∼ N(0,Q) (Q=process noise)

p
def
= error covariance

(xk,yk) def
= estimated position of the moving goal

(xkm,ykm) def
= measured position of the moving goal

(ax,ay) def
= acceleration of the moving obstacle

Fig. 8.2 The input and outputs of the goal tracking module.

8.3.2 Moving Goal Path Prediction Module

The main functionality of the goal path prediction module is to estimate the future

locations of the moving target/ goal. This helps the algorithms to adjust the robot’s

trajectory to reach the moving goal effectively.

The goal path prediction module takes the current estimated states (position and

velocity) of the moving goal from the goal tracking module. This creates a set of future

locations of the moving goal (see Fig. 8.3). These forecasted locations are used to

generate the FGMs.

Fig. 8.3 The Inputs and Output of the Goal Path Prediction Module

Future states (positions and velocities) of the moving goal are predicted using the

208

prediction model described in Eq. 8.6. The predictions are updated at each iteration,

and new predictions are made according to the updated state data.

x(t+ n)

y(t+ n)

dx(t+ n)/dt

dy(t+ n)/dt

 =

1 0 nT 0

0 1 0 nT

0 0 1 0

0 0 0 1

x(t)

y(t)

dx(t)/dt

dy(t)/dt

+

(nT)2

2
× d2x(t)

dt2

(nT)2

2
× d2y(t)

dt2

nT × d2x(t)
dt2

nT × d2y(t)
dt2

 (8.6)

where:

x(t)
def
= position in x direction

y(t)
def
= position in y direction

T
def
= sample period

n
def
= sample number

8.3.2.1 Current Global Map Generation Module

The CGM generation module generates a map of the robot’s environment with respect

to the world axis system. This modified module takes four main inputs:

1. locations of SO with respect to the robot’s axis system from the sensory system

2. current locations of MO from the MO tracking module

3. current location of the goal/target estimated from the goal tracking module

4. current location of the robot from the sensory system

The CGM generation module processes these four inputs and creates a map of the

209

Fig. 8.4 The Inputs and Output of the Current Global Map Generation Module

environment with respect to the global axis system (see Fig. 8.4). This map (i.e., the

CGM) is fed into the FSA module, as discussed in Chapter 5.

8.3.2.2 Future Global Map Generation Module

As discussed in previous chapters, the main task of the FGM generation module is to

forecast the robot’s future environment set-ups and generate a set of maps called FGMs.

This module takes three main inputs (see Fig. 8.5),

1. the current location of the robot (taken from the sensory system)

2. sets of future locations of MOs (taken from the obstacle path prediction module)

3. a set of future locations of the goal (taken from the goal path prediction module)

The FGM at iteration ‘N’ is generated by combining the estimated location of the

robot at the nth iteration with forecasted locations of MOs and SOs and the goal at

the nth iteration. If the FGM generation module develops predicted maps until the t

+ n iteration, there will be n-1 FGMs. The FGMs are updated at each iteration, with

corrections made to position estimations.

210

Fig. 8.5 The Inputs and Output of the Future Global Map Generation Module

8.3.3 Machine Learning–Based Force-Shaping Module

The force-shaping modules used in Chapters 6 and 7 do not consider the velocity of the

moving goal when shaping the FSFs. The novel ML-based force-shaping module was

developed to address this problem.

A set of FSFs, the velocity of the moving goal and of the obstacles, and a global

map are taken as the inputs of the new ML-based force-shaping module. As mentioned

in previous chapters, the task of the force-shaping module is to focus the FSFs towards

the goal. However, this module also has a direct influence on selecting the robot’s

driving direction in the corresponding iteration. Therefore, the force-shaping module is

considered one of the most important parts of the algorithm. The new ML-based force-

shaping module introduced in this chapter replaces the main FLC in the self-tuning

force-shaping module discussed in Chapter 7 by an ML-based controller. The new self-

tuning ML-based force-shaping module comprises two main modules (see Fig. 8.6).

1. supervisory controller: The supervisory controller discussed in Section 7.3 is

used as the supervisory controller of the new self-tuning ML-based force-shaping

module. The supervisory controller assesses the robot’s surrounding environment

and chooses the most suitable motion behaviour for the robot’s navigation. This

211

module works similarly to the supervisory controller discussed in Chapter 7.

2. ML-based controller: The ML-based controller used in the new self-tuning force-

shaping module is developed to improve the performance of the force-shaping

module while incorporating the velocity of the moving goal. This module com-

prises five ML-based submodules. The development process of the ML-based

controller is discussed in the following section.

Fig. 8.6 Block Diagram of the New Machine Learning–Based Force-Shaping Module
Note. ML = machine learning; GM = ; LRH = ; SSGFLC = Sector States Generation Fuzzy Logic

Controller; SS1 = sector status of Sector 1; SS2 = sector status of Sector 2; SS3 = sector status of Sector
3; SS4 = sector status of Sector 4; MBS = Motion Behaviour Selection.

8.4 Machine Learning–Based Controller for Force-Shaping Module

The main challenge associated with ML was generating good training and testing datasets.

The trained module with the predetermined datasets should be able to successfully re-

place the FLC in the force-shaping module while incorporating the velocity of the mov-

ing goal for force shaping. Training and testing datasets were developed for the five

main Agoraphilic behaviours discussed in Chapter 7:

1. goal seeking

212

2. normal travel

3. safe travel

4. right side safe

5. left side safe

The development process of these datasets is discussed in the following sections.

8.4.1 Training and Test Data Generation

Five dataset generation engines were developed for the training and testing dataset gen-

eration process. These datasets cover the five main Agoraphilic behaviours. The results

received from the dataset generation engines were modified based on the domain knowl-

edge to obtain the final training and testing datasets (see Fig. 8.7). The FLCs discussed

in Chapters 6 and 7 were used to develop the dataset generation engines.

Fig. 8.7 Dataset Generation Procedure.

8.4.1.1 Datasets for Different Agoraphilic Behaviours

Five dataset generation engines were developed using five different FLCs to generate

datasets. Those are also linguistic FLCs like the FLC discussed in Chapter 6. Four

213

databases were designed to develop the fuzzification module. Three databases were

used for the three inputs:

1. angle difference between sector forces and the goal (θk))—five different databases

were used for the five engines

2. normalised sector distance (dk)—this is common for all five engines (databases

are developed according to Eq. 8.7)

3. normalised sector velocity (vk)—this is common for all five engines (databases

are developed according to Eq. 8.8)

One database was used for the output:

1. the fuzzy shaping factor (δk) (see Fig. 8.9).

Similar to the database suggested to θk in Chapter 6, the database for θk also com-

prises nine fuzzy membership functions. The corresponding linguistics are LRR = left

rear rear, LR = left rear, SL = side left, LF = left front, F = front, RF = right front, SR

= side right, RR = right rear and RRR = right rear rear. As discussed in Chapter 7, five

different databases were used for θk in five dataset generation engines:

1. for goal seeking Eq. 7.1

2. for normal travel Eq. 7.3

3. for safe travel Eq. 7.2

4. for right side safe Eq.7.4

5. for left side safe Eq. 7.5

214

Similar to the fuzzification module used in Chapter 6, the database for dk,n also

comprises five fuzzy membership functions, as shown in Eq. 8.7. The corresponding

linguistics are VC = very close, C = close, N = near, F = far, VF = very far (see Fig.

8.8).

µV C(dk,n) = max{min
(
−dk,n − 0.3

0.2
, 1

)
, 0}

µC(dk,n) = max{min
(
dk,n − 0.1

0.2
,
0.5− dk,n

0.2

)
, 0}

µN(dk,n) = max{min
(
dk,n − 0.3

0.2
,
0.7− dk,n

0.2

)
, 0}

µF (dk,n) = max{min
(
dk,n − 0.5

0.2
,
0.9− dk,n

0.2

)
, 0}

µV F (dk,n) = max{min
(
dk,n − 0.7

0.2
, 1

)
, 0}

(8.7)

Similar to the fuzzification module discussed in Chapter 6, the database for vk,n also

comprises seven fuzzy membership functions, as shown in Eq. 8.8. The variable vk,n

is positive if the MO is approaching the robot. The corresponding linguistics are NF

= negative fast, NM = negative medium, NS = negative slow, Z = zero, PS = positive

slow, PM = positive medium and PF = positive fast (see Fig. 8.8)

215

Fig. 8.8 Input Membership Functions of the Fuzzy Controller

µNF (vk,n) = max{min
(
−vk,n − 0.77

0.33
, 1

)
, 0}

µNM(vk,n) = max{min
(
vk,n + 1

0.33
,
−0.33− vk,n

0.33

)
, 0}

µNS(vk,n) = max{min
(
vk,n + 0.77

0.33
,
−vk,n
0.33

)
, 0}

µZ(vk,n) = max{min
(
vk,n + 0.33

0.33
,
−0.33− vk,n

0.33

)
, 0}

µPS(vk,n) = max{min
(
vk,n
0.33

,
0.77− vk,n

0.33

)
, 0}

µPM(vk,n) = max{min
(
vk,n − 0.33

0.33
,
1− vk,n

0.33

)
, 0}

µPF (vk,n) = max{min
(
vk,n − 1

0.33
, 1

)
, 0}

(8.8)

The simple output database is represented by eight fuzzy sets, as shown in Fig. 8.9.

The fuzzy rule bases used for these data set generation engines consists of 189 rules.

In the initial dataset generation process (see Fig. 8.7), different combinations of

input data (θk, dk and vk) are fed into the five dataset generation engines, and corre-

sponding fuzzy shaping factors (δk) were recorded. This information is tabulated to

produce five different initial datasets for different Agoraphilic behaviours.

However, in these initial datasets, there is no involvement of the velocity of the

216

Fig. 8.9 Output Membership Functions of the Fuzzy Controller

moving goal. Therefore, these initial datasets were manually modified according to the

domain knowledge to integrate the velocity of the moving goal into the dataset. Of

the data from the new modified datasets, 60% was used to train the five new ML-based

modules (see Fig. 8.7). These modules mimic the five different Agoraphilic behaviours:

1. ML module for goal seeking behaviour

2. ML module for goal normal travel behaviour

3. ML module for goal safe travel behaviour

4. ML module for goal right side safe behaviour

5. ML module for goal left side safe behaviour

The k-nearest [122–124] neighbours algorithm was used to build the ML-based

modules.

Of the data from each modified dataset, 40% was used to evaluate the corresponding

trained module. In the evaluation, it was identified that the mismatch of each module

was as follows:

217

1. ML module for goal seeking behaviour, 23%

2. ML module for normal travel behaviour, 7%

3. ML module for safe travel behaviour, 8%

4. ML module for right side safe behaviour, 9%

5. ML module for left side safe behaviour, 10%.

8.5 Results and Discussion

8.5.1 Simulation Results

8.5.1.1 Experiment 1: The Robot Tries to Chase a Moving Goal in the Open Space

This experiment was conducted to test the algorithm’s capability of following and reach-

ing a moving goal in an open space. Start locations of the moving goal and the robot

were (5, 20) m and (–20, –10) m, respectively. The goal kept moving towards the

positive x-direction with a speed of 20 cm/s (see Fig. 8.10).

The observations of this experiment are as follows:

1. At time instant T1, the goal was 30m away from the robot. The robot started

moving directly towards the goal.

2. The algorithm identified that the goal was moving towards the positive x-direction.

Consequently, the robot increased its velocity component in the positive x-direction.

3. During the instants labelled T1 to T2, the robot could successfully chase the goal

while reducing the distance between the goal and the robot.

4. At time instant T2, the distance between the robot and the goal was recorded as

24 m. (The robot had reduced the distance to the goal by 20%.)

218

Tab. 8.1 Experimental Conditions of Experiment 2.

Parameter Value
Robot’s path length 41.28m
Goal’s path length 24m
Robot’s avg. speed 34.4cm/s
Avg. speed of the goal 20cm/s
Total time 120s

5. At time instant T3, the robot changed its direction to the positive x-direction and

reached the goal at (0, 10) m.

6. During this test, the robot kept increasing its velocity towards the goal until it

hunted the target.

The robot took 120 s to finish the task successfully with a path length of 41.28 m.

During the process, the algorithm pulled the robot towards the goal with the highest

force magnitude. This allowed the robot to maintain its highest velocity. The sum-

marised test results are shown in Table 8.1.

8.5.1.2 Experiment 2: The Robot Tries to Reach a Moving Goal in the Presence of a

Static Obstacle

This experiment was conducted to test the algorithm’s capability of reaching and fol-

lowing a moving goal in an open space. Start locations of the moving goal and the

robot were (20, 20) m and (–20, –20) m, respectively. The goal kept moving towards

the positive x-direction with a speed of 20 cm/s (see Fig. 8.11).

This experiment was conducted to test the algorithm’s capability of reaching a mov-

ing goal under a special condition (local minima problem for the APF method). In

this experiment, the robot, the goal and an SO were placed on a straight line. The

219

Fig. 8.10 The Robot’s Path Observed in Simulation Experiment 1
Note. Locations of the robot and the goal in three different time instants are shown from T1 to T3.

goal was continuously moved directly towards the obstacle with a velocity of 14.14

∠(−1350)cm/s. This set-up creates a local minima problem for general APF-based al-

gorithms [125]. Start locations of the moving goal and the robot were (20, 20) m and

(–20, –20) m, respectively. The SO was placed at (0, 0) m (see Fig. Fig. 8.11). At the

time instant T1, the goal was 56.56 m away from the robot.

The observations of this experiment are as follows (see Fig. 8.11):

1. The robot initially started moving directly towards the goal.

2. Once the robot started getting close to the SO, it started to deviate slightly from

its original path to safely avoid the obstacle (time instant T2; see Fig. 8.11).

3. After successfully avoiding the obstacle, the robot changed its path towards the

220

Tab. 8.2 Test Results Summary of Simulation Experiment 2

Parameter Value
Robot’s path length 36.11m
Goal’s path length 15.97m
Robot’s avg. speed 32.8cm/s
Avg. speed of the goal 14.1cm/s
Total time 111s

moving goal.

4. The robot reached the goal at time instant T3.

During the whole process, the robot kept reducing its distance from the goal. The

robot took 111 s to finish the task successfully with a path length of 36.11 m. During

the process, the robot maintained an average speed of 32.8 cm/s. The robot reached the

moving goal in the most efficient way. The summarised test results are shown in Table

8.2.

8.5.1.3 Experiment 3: The Robot Tries to Reach a Moving Goal in the Presence of a

Moving Obstacle Challenging the Robot Continuously

This experiment was conducted to test the algorithm’s capability of reaching a moving

goal under a special condition with a moving goal and an MO (local minima problem

for the APF method). In this experiment, the robot, the goal and an MO were placed

on a straight line. The goal was continuously moved directly towards the obstacle with

a velocity of 14.14∠(−1350) cm/s. The MO was challenging the robot by moving to-

wards the robot at a velocity of 7.07∠(−1350) cm/s. This set-up creates a local minima

problem for general APF-based algorithms [125]. Start locations of the moving goal,

the robot and the MO were (20, 20) m, (–20, –20) m and (0, 0), respectively (see Fig.

221

Fig. 8.11 The Robot’s Path Observed in Simulation Experiment 2
Note. Locations of the robot and the goal in three different time instants are shown from T1 to T3.

8.12). At time instant T1, the goal was 56.56 m away from the robot.

The observations of this experiment are as follows (see 8.12):

1. The robot initially started moving towards the (+x, +y) direction (towards the

goal).

2. At time instant T2, the robot started deviating from its original path as it identified

the challenge from the MO.

3. The robot safely avoided the MO at time instant T3.

4. The robot changed its moving direction directly towards the goal after passing the

MO and reached the goal at time instant T4.

During the whole process, the robot kept reducing its distance from the goal. The

robot took 108 s to finish the task successfully with a path length of 36.19 m. During

222

Tab. 8.3 Test Results Summary of Simulation Experiment 3

Parameter Value
Robot’s path length 36.19 m
Goal’s path length 15.47 m
Robot’s avg. speed 33.5 cm/s
Avg. speed of the goal 14.3 cm/s
Total time 108 s

the process, the robot maintained an average speed of 33.5 cm/s. The summarised test

results are shown in Table 8.3.

Fig. 8.12 The Robot’s Path Observed in Simulation Experiment 3
Note. Locations of the robot, the goal and the moving obstacle (MO) in four different time instants are

shown from T1 to T4.

8.5.1.4 Experiment 4: The Robot Tries to Reach a Moving Goal in the Presence of a

Moving Obstacle Challenging the Robot by Crossing the Robot’s Path

This experiment was conducted to test the algorithm’s capability of reaching a moving

goal with an MO crossing the robot’s path in the middle. In this experiment, the robot,

223

the goal and the MO were placed at (–2.5, –6) m, (6.85, 20) m and (6, 5) m, respectively

(see Fig. 8.13). The goal was continuously moved towards the negative x-direction

with a speed of 5 cm/s. The MO challenged the robot by crossing the robot’s path at a

velocity of 10∠(1800)cm/s.

The observations of this experiment are as follows (see Fig. 8.13):

1. At time instant T1, the goal was located directly in the (+x, +y) direction of the

robot with a distance of 45.8 m.

2. The robot started moving directly towards the goal at the beginning.

3. The path prediction module identified that the MO would cross the robot’s path

at time instant T3.

4. As a result of Observation 3, at time instant T2

(a) the robot started deviating from its original path

(b) the algorithm reduced the magnitude of the robot’s driving force by 56%

(see Fig. 8.14).

5. At time instant T3, the robot could safely avoid the obstacle.

6. After safely passing the obstacle, the robot changed its path directly towards the

moving goal (as in Experiments 1–3) and reached the goal at time instant T4.

7. In this experiment, the algorithm showed a human-like behaviour by reducing the

robot’s speed and allowing the MO to pass the robot.

During the whole process, the robot kept reducing its distance from the goal. The

robot took 84 s to finish the task successfully with a path length of 24.75 m. During

224

Tab. 8.4 Test Results Summary of Simulation Experiment 4

Parameter Value
Robot’s path length 24.75m
Goal’s path length 4.05m
Robot’s avg. speed 14.3cm/s
Avg. speed of the goal 4.9cm/s
Total time 84s

the process, the robot maintained an average speed of 14.3 cm/s. The summarised test

results are shown in Table 8.4.

Fig. 8.13 TThe Robot’s Path Observed in Simulation Experiment 4
Note. Locations of the robot, the goal and the moving obstacle (MO) in four different time instants are

shown from T1 to T4.

8.5.1.5 Experiment 5: The Robot Tries to Reach a Moving Goal in a Complex Dy-

namic Environment in the Presence of Multiple Moving Obstacles

This experiment was conducted to test the algorithm’s capability of reaching a moving

goal in a dynamically cluttered environment with multiple MOs. In this experiment,

225

Fig. 8.14 The Robot’s Normalised Driving Force Magnitude Variation over Experiment
4

the goal and some of the MOs rapidly changed their velocities. This created a rapidly

changing environment with high uncertainties for the robot. The starting conditions of

the experiment are shown in Table 8.5.

The observations of this experiment are as follows (see Fig. 8.15):

1. At time instant T1, the goal was located directly in the (+x, +y) direction with

respect to the robot with a distance of 41.23m.

Tab. 8.5 Initial Conditions of Experiment 5

Object Starting Location(m) Starting Velocity(cm/s)
Robot (-20, -20) (0, 0)
Goal (20, -10) 22.360∠(153.430)
Moving Obstacle 1 (-5, -20) 10∠(900)
Moving Obstacle 2 (-20, -5) 25∠(00)
Moving Obstacle 3 (20, -10) 22.36∠(153.430)

226

2. The robot moved directly towards the goal at the beginning.

3. The algorithm identified that MO1 would cross the robot’s path at (-43.7, -14.3)

m.

4. As a result of Observation 3, the robot reduced its driving force by 66% at time

instant T2 and allowed MO1 to pass the robot (see Fig. 8.16).

5. The robot was again challenged by MO2 and MO3 at time instants T3 and T4,

respectively.

(a) At time instant T3, the algorithm reduced the robot’s driving force by 30%

and allowed MO2 to pass the robot.

(b) Immediately after passing MO2, the algorithm increased the robot’s driving

force by 30%, sped up the robot during T3 to T4 and passed the MO3 safely

before it crossed the robot’s path.

6. After passing MO3, the robot moved directly towards the moving goal and hunted

it at time instant T5.

During the whole process, the robot kept reducing its distance from the goal. The

robot took 129 s to finish the task successfully with a path length of 36.04 m. During

the process, the robot maintained an average speed of 27.9 cm/s. The summarised test

results are shown in Table 8.6.

8.5.2 Experiment Test Results

This experiment was conducted to test the algorithm’s capability of reaching a mov-

ing goal under a dynamically cluttered environment with multiple MOs in real-world

circumstances. The TB3 Waffle Pi research robot platform discussed in Chapter 4 was

227

Tab. 8.6 Test Results Summary of Simulation Experiment 5

Parameter Value
Robot’s path length 36.04m
Goal’s path length 17.44m
Robot’s avg. speed 27.9cm/s
Avg. speed of the goal 13.52cm/s
Total time 129s

Fig. 8.15 The Robot’s Path Observed in Simulation Experiment 5
Note. Locations of the robot, the goal and the moving obstacles (MOs) in four different time instants are

shown from T1 to T4.

used in this experiment. In this experiment, two MOs were used with some SOs. The

moving goal performed a major direction change in this experiment. The starting con-

ditions of the experiment are shown in Table 8.7.

The goal, the robot and MOs started moving at time instant T1 (see Fig. 8.17). At

this time instant, the goal was located directly in the (+x, –y) direction of the robot with

a distance of 447.8 cm. During T1 to T2, MO1 and MO2 developed their movements

on the robot’s left-hand side with the intention of challenging the robot in the future

iterations. At time instant T2, the robot had to change its direction because of the SO in

front of it. In this situation, the robot had two options:

228

Fig. 8.16 The Robot’s Normalised Driving Force Magnitude Variation over Experiment
5

Tab. 8.7 Initial Conditions of the Experiment

Object Starting Location(cm) Starting Velocity(cm/s)
Robot (0, -0) 0
Goal (306, -327) 3.20∠(−141.340)
Moving Obstacle 1 (150, 100) 2.5∠(−71.570)
Moving Obstacle 2 (350, 0) 0.81∠(178.720)

1. move to the left (towards MO1 and MO2)

2. move to the right (towards more free space)

The robot picked the first option, although there was more challenge from the MOs.

The new moving direction of the goal was the main reason for this decision. At time

instant T2, the goal had changed its velocity towards the positive y-direction. During

time instants T2 to T3, the robot moved with a low speed and allowed MO1 to pass

the robot. During time instants T3 to T4, the robot moved towards the goal through

229

Fig. 8.17 The Robot’s Path Observed in Experiment
Note. Locations of the robot, the goal and the moving obstacles (MOs) in four different time instants are

shown from T1 to T4.

the free space passage between MO1, MO2 and the SO. At time instant T4, the robot

successfully reached the moving goal.

The robot took 89 s to finish the task successfully with a path length of 275 cm.

During the process, the robot maintained an average speed of 3 cm/s. The summarised

test results are shown in Table 8.8.

8.5.2.1 Comparative Test between the Fuzzy Logic Controller–Based ANADE V and

the Machine Learning–Based ANADE V

The experimental work presented in this section was conducted to demonstrate and val-

idate the performance of the ANADE V with a novel ML-based force-shaping module.

230

Tab. 8.8 Test Results Summary of the Experimental Test

Parameter Value
Robot’s path length 275m
Goal’s path length 301m
Robot’s avg. speed 3cm/s
Avg. speed of the goal 3.4cm/s
Total time 89s

Tab. 8.9 Initial Conditions of Comparison Test 1

Object Starting Location(cm) Starting Velocity(cm/s)

Robot (0,0) 0

Goal (900, 0) 2∠(90o)

Moving obstacle (150, 100) 2∠(180o)

The experiments were designed to test the performance of the new ML-based ANADE

V with respect to FLC-based ANADE V. From the range of investigations performed,

one simulation test and an experimental test is presented in this section.

Comparison 1: Simulation Test

This simulation test was conducted to test the algorithm’s capability of reaching a

moving goal in a dynamic environment with an MO and SO. In this simulation, two

tests were conducted:

1. with the ML based force-shaping module

2. with FLC based force-shaping module

In both tests, all other parameters were kept the same. The initial conditions of the

tests are shown in Table 8.9.

The goal, the robot and the MO started moving at time instant T1 (see Figure 8.18).

At this time instant, the goal was located directly in the (+x, –y) direction of the robot

231

Fig. 8.18 The Robot’s Paths Observed in the Simulation Test (Comparison 1)
Note. Locations of the robot, the goal and the moving obstacle in six different time instants are shown

from T1 to T6. ML = machine learning; FLC = Fuzzy Logic Controller.

with a distance of 900 cm. During T1 to T2, MO1 developed its movements on the

robot’s right-hand side with the intention of challenging the robot. At time instant T2,

both the robot with ML and the one with FLC successfully passed MO1. From T1

to T3, both robots followed exactly the same path. The speed variations were also

almost the same during T1 to T3 (see Figure 8.19). However, the robot with ML started

increasing its speed as soon as it passed the SO (at T3; see Figure 8.19). Also, it started

moving towards the moving direction of the goal. Conversely, the robot with FLC

started increasing its speed 50 iterations later. As a result, the robot with ML reached

the goal using a path 10% shorter and in a time 13.78% quicker than those of the robot

with FLC. Further, the robot with ML had a 4.3% higher average speed than did the

robot with FLC. The summarised test results are shown in Table 8.10.

8.5.2.2 Comparison 2: Experimental Test

This experimental test was conducted to test the algorithm’s capability of reaching a

moving goal in a dynamic environment with multiple MOs and SOs in a real-world

232

Fig. 8.19 The Robot’s Normalised Driving Force Variations Observed in the Simulation
Test (Comparison 1)

Tab. 8.10 Summarised Test Results of Comparison Test 1

Parameter With ML With FLC 20cm Performance comparison with

respect to case 2

Robot’s path length 1749cm 1943cm 10%

Goal’s path length 1303cm 1512cm 13.78%

Robot’s avg. speed 2.68cm/s 2.57cm/s 4.3%

Speed of the goal 2cm/s 2cm/s N/A

Total time 651.8s 756s 13.78%

setting. Similar to Comparison 1, two tests were also conducted in this experiment:

1. with the ML-based force-shaping module

2. with FLC-based force-shaping module

In both tests, all other parameters were kept the same. The initial conditions of the tests

are shown in Table 8.11.

The goal, the robot and the MO started moving at time instant T1 (see Fig. 8.20).

233

Tab. 8.11 Initial Conditions of Comparison Test 2 (Experimental Test)

Object Starting Location(cm) Starting Velocity(cm/s)

Robot (0,0) 0∠(0o)

Goal (0, -250) 2∠(0o)

Moving obstacle 1 (150, -100) 1.50∠(177o)

Moving obstacle 2 (150, -100) 1.58∠(179o)

At this time instant, the goal was located directly in the negative y-direction of the

robot at a distance of 250 cm. During T1 to T2, MO1 developed its movements with

the intention of challenging the robot. At time instant T2, both the robot with ML

and the one with FLC successfully passed MO1. From T1 to T3, both robots followed

slightly different paths. The speed variations show that both robots reduced speed at the

challenge from MO2 (see Fig. 8.21). The robot with FLC started changing its direction

to avoid MO2. Conversely, the robot with ML, without changing its path, allowed MO2

to pass the robot. The robot with ML increased its speed as soon as MO2 passed the

robot (at T3; see Fig. 8.21). Also, it started moving towards the moving direction of the

goal. Conversely, the robot with FLC started increasing its speed 35 iterations later. As

a result, the robot with ML reached the goal with a path 19% shorter and in a time 35%

quicker than did the robot with FLC. However, the robot with FLC had an 8% higher

average speed than did the robot with FLC. The summarised test results are shown in

Table 8.12.

Fig. 8.22 shows a video of two experiments that ANADE V navigates the TB3

waffle-pi robot in a dynamic environment. In the first experiment goal is static and in

the second experiment goal in dynamic.

234

Fig. 8.20 The Robot’s Paths Observed in the Experimental Test (Comparison 2)
Note. Locations of the robot, the goal and the moving obstacles (MOs) in six different time instants are

shown from T1 to T6. ML = machine learning; FLC = Fuzzy Logic Controller.

Fig. 8.21 The Robot’s Speed Variations Observed in the Experimental Test (Comparison
2)

235

Tab. 8.12 Summarised test results of the comparison test 2 (Experimental test)

Parameter Without ML With FLC Performance comparison with

respect to case 2

Robot’s path length 376cm 467cm 19%

Goal’s path length 252cm 379cm 33%

Robot’s avg. speed 2.1cm/s 2.3cm/s 8%(low)

Avg. Speed of the goal 1.54cm/s 1.52cm/s N/A

Total time 132s 202s 35%

Avg. sample time 1.9s 2.0s 5%

Fig. 8.22 A Video of ANADE V Navigating a Robot in a Dynamic Environment (GIF
video playback speed ∼ 9×)
https://drive.google.com/file/d/1zRa8PnyMAdGmL9Ulb4HfWNmhhWNEq0Vf/

view?usp=sharing

8.6 Summary

The ANADE V is successful in navigating robots under unknown, static and dynamic

environments with a moving goal. The algorithm uses a single attractive force to pull

the robot towards the moving goal via current free space leading to future free space

passages. The presented goal tracking module, goal path prediction modules, new cur-

rent global map generation module and improved future global map generation module

combined with other main modules discussed in Chapters 3–7 allow the algorithm to

236

https://drive.google.com/file/d/1zRa8PnyMAdGmL9Ulb4HfWNmhhWNEq0Vf/view?usp=sharing
https://drive.google.com/file/d/1zRa8PnyMAdGmL9Ulb4HfWNmhhWNEq0Vf/view?usp=sharing

incorporate the rapid changes that occur in unknown dynamic environments with high

uncertainties.

In this chapter, five simulation experiments and one real-world experiment were

presented to prove the effectiveness of the novel algorithm in navigating a robot with

a moving goal. The conducted first experiment showed that the robot could reach a

moving goal in an open environment without any issue. The second and third exper-

iments showed that the algorithm has no problems with common local minima issues

with the presence of static or dynamic obstacles with a moving goal. A moving obsta-

cle challenged the robot by crossing the robot’s path while it was chasing the moving

goal in the fourth experiment. In this experiment, the algorithm made human-like de-

cisions to reach the moving goal safely. The final simulation experiment showed that

the algorithm could successfully reach a moving target even in a dynamically cluttered

environment with multiple moving obstacles. The real-world experiment validates the

algorithm’s performance in real-world applications.

Further, two comparison experiments were conducted to show the importance of the

machine learning technique. The comparison experiments proved that the novel ma-

chine learning-based method improved the algorithm’s performance by reducing path

length, the time to hunt the moving goal and the sample time. Comparison Experiment

1 showed that the algorithm with machine learning reached the goal with a path 10%

shorter and in a time 13.8% quicker than did the robot with fuzzy logic controller. Fur-

ther, in this experiment, the robot with machine learning had a 4.3% higher average

speed than did the robot with fuzzy logic controller. The second comparison exper-

iment showed that the algorithm with machine learning reached the goal with a path

19% shorter and in a time 35% quicker than did the robot with fuzzy logic controller.

237

Also, the algorithm with ML had a 5% lesser average sampling time than did the robot

with fuzzy logic controller. These comparative and experimental results demonstrate

the improvements of the algorithm after introducing the machine learning technique.

The presented improved ANADE demonstrated the enhanced capability to successfully

navigate mobile robots in dynamically cluttered environments to hunt a moving target.

238

9

Chapter 9: Conclusion

This research introduced a novel navigation algorithm based on the free space attraction

concept. This new navigation algorithm is capable of navigating robots not only in

static environments but also in unknown dynamic environments with moving targets. In

this thesis, we showed the step-by-step development of the novel free space attraction-

based navigation algorithm while addressing the identified general weaknesses of other

algorithms.

Chapter 4 introduced the Agoraphilic Navigation Algorithm in Dynamic Environ-

ment I (ANADE I), which is a free space attraction-based navigation algorithm. It uses

only attractive forces created by the current free space in the robot’s surrounding en-

vironment to create the robot’s driving force. The ANADE I uses an object tracking

method to accurately estimate the locations of moving obstacles. The new algorithm

drives the robot through the current free spaces leading to the goal. This proposed

methodology was able to overcome the main limitation of the original Agoraphilic al-

gorithm—which was limited to static environments—while keeping the original algo-

rithm’s advantages in static environments. The simulation test results demonstrated the

success of the ANADE I.

The ANADE II is also a local path planner to navigate mobile robots in unknown

static and dynamic environments. It does not look for obstacles to avoid but for space

solutions to follow. Compared to the ANADE I, the ANADE II uses a dynamic obstacle

path prediction methodology to identify the robot’s future environments. The ANADE

II pulls the robot through the current free space towards the future growing free space

passages leading to the goal. The ANADE I only considers the current free space. This

new methodology has successfully improved the ANADE I, which has some limitations

under cluttered dynamic environments. The free space attraction approach of the new

algorithm combined with future dynamic obstacle path prediction makes the ANADE II

superior to the ANADE I. The advantages of the ANADE II were proven by a compar-

ative study. Further, the experimental and simulation results demonstrated the success

of the ANADE II in dynamically cluttered environments.

Chapter 6 introduced an improved version of the ANADE II: the ANADE III. In

the ANADE III, a novel controller based on fuzzy logic was developed and combined

with the new free space attraction concept to provide optimal navigational solutions at

a low computational cost. The effectiveness of the ANADE II was improved further by

incorporating the velocity vectors of moving obstacles into decision-making.

In the ANADE IV, a self-tuning system was successfully applied to the ANADE III

to further improve the algorithm’s decision-making capability under high uncertainties.

The new self-tuning fuzzy logic controller maximised the decision-making flexibility

of the algorithm. A new supervisory controller was integrated into the new self-tuning

fuzzy logic controller to tune the parameters of the main fuzzy logic controller. Those

parameters are tuned according to the robot’s environment. The enhancement of the

new self-tuning fuzzy logic controller was verified by the experimental tests.

ANADE IV was further improved in Chapter 8 to make it capable of hunting a mov-

240

ing target in an unknown, dynamically cluttered environment. This resulted in ANADE

V. This algorithm has all the advantages of the ANADE IV combined with the new ma-

chine learning-based moving goal hunting feature. According to the literature review,

there is only a handful of navigation algorithms capable of hunting a moving goal or

target in an unknown, dynamic environment. Further, the simulation and experimental

test results in Chapter 8 validated the algorithm.

In future research, the new machine-learning-based force-shaping module discussed

in Chapter 8 can be further improved by using different machine-learning techniques.

These improvements will potentially further enhance the algorithm’s human like deci-

sion making ability, overall efficiency and also the computational cost. Furthermore,

in future research, the ANDE V algorithm can be advanced for navigating robots in a

3-dimensional space.

This thesis presents a new approach to the virtual force–based mobile robot naviga-

tion methodologies. As highlighted earlier, the developed novel free space attraction-

based navigation algorithm has several primary contributions to mobile robot navigation

in unknown dynamic environments. The concept presented in this thesis provides the

foundation for a new generation of local path planning algorithms that can be used in

dynamic environment.

241

REFERENCES

[1] W. Liu, Z. Li, S. Sun, M. K. Gupta, H. Du, R. Malekian, M. A. Sotelo, and W. Li,
“Design a novel target to improve positioning accuracy of autonomous vehicular
navigation system in gps denied environments,” IEEE Transactions on Industrial

Informatics, pp. 1–1, 2021.

[2] Y. Gao and S. Chien, “Review on space robotics: Toward top-level science
through space exploration,” Science Robotics, vol. 2, no. 7, 2017.

[3] I. Rangapur, B. S. Prasad, and R. Suresh, “Design and development of spherical
spy robot for surveillance operation,” Procedia Computer Science, vol. 171, pp.
1212 – 1220, 2020, third International Conference on Computing and Network
Communications (CoCoNet’19).

[4] D. Patil, M. Ansari, D. Tendulkar, R. Bhatlekar, V. N. Pawar, and S. Aswale, “A
survey on autonomous military service robot,” in 2020 International Conference

on Emerging Trends in Information Technology and Engineering (ic-ETITE),
2020, pp. 1–7.

[5] X. Huang, Q. Cao, and X. Zhu, “Mixed path planning for multi-robots in struc-
tured hospital environment,” The Journal of Engineering, vol. 2019, no. 14, pp.
512–516, 2019.

[6] E. Kayacan, E. Kayacan, H. Ramon, O. Kaynak, and W. Saeys, “Towards
agrobots: Trajectory control of an autonomous tractor using type-2 fuzzy logic
controllers,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 1, pp. 287–
298, 2015.

[7] G. Sawadwuthikul, T. Tothong, T. Lodkaew, P. Soisudarat, S. Nutanong,
P. Manoonpong, and N. Dilokthanakul, “Visual goal human-robot communica-
tion framework with few-shot learning: a case study in robot waiter system,”
IEEE Transactions on Industrial Informatics, pp. 1–1, 2021.

[8] A. Toyama, K. Mitsugi, K. Matsuo, and L. Barolli, “Optimal number of moap
robots for wmns using silhouette theory,” in Advances in Intelligent Networking

and Collaborative Systems, L. Barolli, K. F. Li, and H. Miwa, Eds. Cham:
Springer International Publishing, 2021, pp. 281–290.

[9] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic approaches in
robot path planning: A survey,” Robotics and Autonomous Systems, vol. 86, pp.
13 – 28, 2016.

[10] B. B. K. Ayawli, X. Mei, M. Shen, A. Y. Appiah, and F. Kyeremeh, “Mobile robot
path planning in dynamic environment using voronoi diagram and computation
geometry technique,” IEEE Access, vol. 7, pp. 86 026–86 040, 2019.

[11] B. Oommen, S. Iyengar, N. Rao, and R. Kashyap, “Robot navigation in unknown
terrains using learned visibility graphs. part i: The disjoint convex obstacle case,”
IEEE Journal on Robotics and Automation, vol. 3, no. 6, pp. 672–681, 1987.

[12] F. Samaniego, J. Sanchis, S. Garcı́a-Nieto, and R. Simarro, “Uav motion plan-
ning and obstacle avoidance based on adaptive 3d cell decomposition: Continu-
ous space vs discrete space,” in 2017 IEEE Second Ecuador Technical Chapters

Meeting (ETCM), 2017, pp. 1–6.

[13] N. Malone, H. T. Chiang, K. Lesser, M. Oishi, and L. Tapia, “Hybrid dynamic
moving obstacle avoidance using a stochastic reachable set-based potential field,”
IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1124–1138, 2017.

[14] D. H. Lee, S. S. Lee, C. K. Ahn, P. Shi, and C. Lim, “Finite distribution
estimation-based dynamic window approach to reliable obstacle avoidance of
mobile robot,” IEEE Transactions on Industrial Electronics, pp. 1–1, 2020.

[15] J. . Kim and P. K. Khosla, “Real-time obstacle avoidance using harmonic poten-
tial functions,” IEEE Transactions on Robotics and Automation, vol. 8, no. 3, pp.
338–349, June 1992.

[16] P. Szulczyński, D. Pazderski, and K. Kozłowski, “Real-time obstacle avoidance
using harmonic potential functions,” Journal of Automation Mobile Robotics and

Intelligent Systems, vol. Vol. 5, No. 3, pp. 59–66, 2011.

[17] C. I. Connolly, J. B. Burns, and R. Weiss, “Path planning using laplace’s equa-
tion,” in Proceedings., IEEE International Conference on Robotics and Automa-

tion, May 1990, pp. 2102–2106 vol.3.

[18] J. Guldner and V. I. Utkin, “Sliding mode control for gradient tracking and robot
navigation using artificial potential fields,” IEEE Transactions on Robotics and

Automation, vol. 11, no. 2, pp. 247–254, April 1995.

243

[19] R. Iraji and M. T. Manzuri-Shalmani, “A new fuzzy-based spatial model for robot
navigation among dynamic obstacles,” in 2007 IEEE International Conference

on Control and Automation, May 2007, pp. 1323–1328.

[20] Min Cheol Lee and Min Gyu Park, “Artificial potential field based path plan-
ning for mobile robots using a virtual obstacle concept,” in Proceedings 2003

IEEE/ASME International Conference on Advanced Intelligent Mechatronics

(AIM 2003), vol. 2, July 2003, pp. 735–740 vol.2.

[21] G. Li, A. Yamashita, H. Asama, and Y. Tamura, “An efficient improved artificial
potential field based regression search method for robot path planning,” in 2012

IEEE International Conference on Mechatronics and Automation. IEEE, 2012,
pp. 1227–1232.

[22] L. Tang, S. Dian, G. Gu, K. Zhou, S. Wang, and X. Feng, “A novel potential
field method for obstacle avoidance and path planning of mobile robot,” in 2010

3rd international conference on computer science and information technology,
vol. 9. IEEE, 2010, pp. 633–637.

[23] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,”
IEEE Transactions on robotics and automation, vol. 16, no. 5, pp. 615–620,
2000.

[24] J. Ren, K. A. McIsaac, and R. V. Patel, “Modified newton’s method applied to po-
tential field-based navigation for mobile robots,” IEEE Transactions on Robotics,
vol. 22, no. 2, pp. 384–391, 2006.

[25] J. Ren, K. A. McIsaac, and R. Patel, “Modified newton’s method applied to
potential field-based navigation for nonholonomic robots in dynamic environ-
ments,” Robotica, vol. 26, no. 1, pp. 117–127, 2008.

[26] J. Sfeir, M. Saad, and H. Saliah-Hassane, “An improved artificial potential field
approach to real-time mobile robot path planning in an unknown environment,”
in 2011 IEEE International Symposium on Robotic and Sensors Environments

(ROSE), Sep. 2011, pp. 208–213.

[27] O. Montiel, U. Orozco-Rosas, and R. Sepúlveda, “Path planning for mobile
robots using bacterial potential field for avoiding static and dynamic obstacles,”
Expert Systems with Applications, vol. 42, no. 12, pp. 5177 – 5191, 2015.

[28] W. Siming, Z. Tiantian, and L. Weijie, “Mobile robot path planning based on im-
proved artificial potential field method,” in 2018 IEEE International Conference

of Intelligent Robotic and Control Engineering (IRCE), Aug 2018, pp. 29–33.

244

[29] M. A. K. Jaradat, M. H. Garibeh, and E. A. Feilat, “Autonomous mobile
robot dynamic motion planning using hybrid fuzzy potential field,” Soft

Computing, vol. 16, no. 1, pp. 153–164, Jan 2012. [Online]. Available:
https://doi.org/10.1007/s00500-011-0742-z

[30] B. Kovács, G. Szayer, F. Tajti, M. Burdelis, and P. Korondi, “A novel poten-
tial field method for path planning of mobile robots by adapting animal motion
attributes,” Robotics and Autonomous Systems, vol. 82, pp. 24 – 34, 2016.

[31] R. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal

on Robotics and Automation, vol. 2, no. 1, pp. 14–23, March 1986.

[32] L. McFetridge and M. Ibrahim, “A new methodology of mobile robot
navigation: The agoraphilic algorithm,” Robotics and Computer-Integrated

Manufacturing, vol. 25, no. 3, pp. 545 – 551, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0736584508000495

[33] M. Y. Ibrahim and L. McFetridge, “The agoraphilic algorithm: a new opti-
mistic approach for mobile robot navigation,” in 2001 IEEE/ASME Interna-

tional Conference on Advanced Intelligent Mechatronics. Proceedings (Cat.

No.01TH8556), vol. 2, July 2001, pp. 1334–1339 vol.2.

[34] L. McFetridge and M. Y. Ibrahim, “Behavior fusion via free-space force shap-
ing,” in IEEE International Conference on Industrial Technology, 2003, vol. 2,
Dec 2003, pp. 818–823 Vol.2.

[35] B. Patle, G. Babu L, A. Pandey, D. Parhi, and A. Jagadeesh, “A review:
On path planning strategies for navigation of mobile robot,” Defence

Technology, vol. 15, no. 4, pp. 582 – 606, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2214914718305130

[36] F. Kamil, T. S. Hong, W. Khaksar, M. Y. Moghrabiah, N. Zulkifli, and
S. A. Ahmad, “New robot navigation algorithm for arbitrary unknown
dynamic environments based on future prediction and priority behavior,” Expert

Systems with Applications, vol. 86, pp. 274 – 291, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417417303809

[37] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous

mobile robots. MIT press, 2011.

[38] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic approaches in
robot path planning: A survey,” Robotics and Autonomous Systems, vol. 86, pp.
13–28, 2016.

245

https://doi.org/10.1007/s00500-011-0742-z
http://www.sciencedirect.com/science/article/pii/S0736584508000495
http://www.sciencedirect.com/science/article/pii/S2214914718305130
http://www.sciencedirect.com/science/article/pii/S0957417417303809

[39] W. Yaonan, Y. Yimin, Y. Xiaofang, Z. Yi, Z. Yuanli, Y. Feng, and T. Lei, “Au-
tonomous mobile robot navigation system designed in dynamic environment
based on transferable belief model,” Measurement, vol. 44, no. 8, pp. 1389–1405,
2011.

[40] N. Y. Ko and B. H. Lee, “Avoidability measure in moving obstacle avoidance
problem and its use for robot motion planning,” in Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems. IROS’96, vol. 3.
IEEE, 1996, pp. 1296–1303.

[41] N. Leena and K. Saju, “A survey on path planning techniques for autonomous
mobile robots,” IOSR Journal of Mechanical and Civil Engineering (IOSR-

JMCE), vol. 8, pp. 76–79, 2014.

[42] T. S. Hong, D. Nakhaeinia, and B. Karasfi, “Application of fuzzy logic in mobile
robot navigation,” Fuzzy Logic-Controls, Concepts, Theories and Applications,
pp. 21–36, 2012.

[43] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[44] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

[45] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine

and Human Science. Ieee, 1995, pp. 39–43.

[46] V. Sharma, S. Pattnaik, and T. Garg, “A review of bacterial foraging optimiza-
tion and its applications,” in National Conference on Future Aspects of Artificial

intelligence in Industrial Automation, NCFAAIIA, 2012, pp. 9–12.

[47] L. Tan, H. Wang, C. Yang, and B. Niu, “A multi-objective optimization method
based on discrete bacterial algorithm for environmental/economic power dis-
patch,” Natural Computing, vol. 16, no. 4, pp. 549–565, 2017.

[48] B. Patle, A. Pandey, D. Parhi, A. Jagadeesh et al., “A review: On path planning
strategies for navigation of mobile robot,” Defence Technology, vol. 15, no. 4,
pp. 582–606, 2019.

[49] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning
approach to the traveling salesman problem,” IEEE Transactions on evolutionary

computation, vol. 1, no. 1, pp. 53–66, 1997.

246

[50] F. Kamil, T. S. Hong, W. Khaksar, M. Y. Moghrabiah, N. Zulkifli, and
S. A. Ahmad, “New robot navigation algorithm for arbitrary unknown
dynamic environments based on future prediction and priority behavior,” Expert

Systems with Applications, vol. 86, pp. 274–291, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417417303809

[51] H. Hewawasam, M. Y. Ibrahim, G. Kahandawa, and T. A. Choudhury, “Ago-
raphilic navigation algorithm in dynamic environment with and without predic-
tion of moving objects location,” in IECON 2019 - 45th Annual Conference of

the IEEE Industrial Electronics Society, vol. 1, 2019, pp. 5179–5185.

[52] D. Bodhale, N. Afzulpurkar, and N. T. Thanh, “Path planning for a mobile robot
in a dynamic environment,” in 2008 IEEE International Conference on Robotics

and Biomimetics. IEEE, 2009, pp. 2115–2120.

[53] P. Wang, S. Gao, L. Li, B. Sun, and S. Cheng, “Obstacle avoidance path planning
design for autonomous driving vehicles based on an improved artificial potential
field algorithm,” Energies, vol. 12, no. 12, p. 2342, 2019.

[54] L. Huang, “Velocity planning for a mobile robot to track a moving target —
a potential field approach,” Robotics and Autonomous Systems, vol. 57, no. 1,
pp. 55–63, 2009. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0921889008000183

[55] M. A. K. Jaradat, M. H. Garibeh, and E. A. Feilat, “Autonomous mobile robot
dynamic motion planning using hybrid fuzzy potential field,” Soft Computing,
vol. 16, no. 1, pp. 153–164, 2012.

[56] O. Montiel, U. Orozco-Rosas, and R. Sepúlveda, “Path planning for mobile
robots using bacterial potential field for avoiding static and dynamic obstacles,”
Expert Systems with Applications, vol. 42, no. 12, pp. 5177–5191, 2015.

[57] B. Patle, D. Parhi, A. Jagadeesh, and S. K. Kashyap, “Matrix-binary codes based
genetic algorithm for path planning of mobile robot,” Computers and Electrical

Engineering, vol. 67, pp. 708–728, 2018.

[58] S. X. Yang, Y. Hu, and M. Q.-h. Meng, “A knowledge based ga for path planning
of multiple mobile robots in dynamic environments,” in 2006 IEEE Conference

on Robotics, Automation and Mechatronics. IEEE, 2006, pp. 1–6.

[59] P. Shi and Y. Cui, “Dynamic path planning for mobile robot based on genetic
algorithm in unknown environment,” in 2010 Chinese control and decision con-

ference. IEEE, 2010, pp. 4325–4329.

247

https://www.sciencedirect.com/science/article/pii/S0957417417303809
https://www.sciencedirect.com/science/article/pii/S0921889008000183
https://www.sciencedirect.com/science/article/pii/S0921889008000183

[60] A. Aouf, L. Boussaid, and A. Sakly, “A pso algorithm applied to a pid controller
for motion mobile robot in a complex dynamic environment,” in 2017 Interna-

tional Conference on Engineering and MIS (ICEMIS). IEEE, 2017, pp. 1–7.

[61] Z. Bi, Y. Yimin, and X. Yisan, “Mobile robot navigation in unknown dynamic
environment based on ant colony algorithm,” in 2009 WRI Global Congress on

Intelligent Systems, vol. 3. IEEE, 2009, pp. 98–102.

[62] M. Faisal, R. Hedjar, M. Al Sulaiman, and K. Al-Mutib, “Fuzzy logic navigation
and obstacle avoidance by a mobile robot in an unknown dynamic environment,”
International Journal of Advanced Robotic Systems, vol. 10, no. 1, p. 37, 2013.

[63] M. Faisal, K. Al-Mutib, R. Hedjar, H. Mathkour, M. Alsulaiman, and E. Mattar,
“Multi modules fuzzy logic for mobile robots navigation and obstacle avoidance
in unknown indoor dynamic environment,” in Proceedings of the 2013 Interna-

tional Conference on Systems, Control and Informatics, 2013, pp. 371–379.

[64] V. M. Peri and D. Simon, “Fuzzy logic control for an autonomous robot,” in
NAFIPS 2005-2005 Annual Meeting of the North American Fuzzy Information

Processing Society. IEEE, 2005, pp. 337–342.

[65] A. Zhu and S. X. Yang, “A fuzzy logic approach to reactive navigation of
behavior-based mobile robots,” in IEEE International Conference on Robotics

and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 5. IEEE, 2004, pp.
5045–5050.

[66] F. Abdessemed, M. Faisal, M. Emmadeddine, R. Hedjar, K. Al-Mutib, M. Alsu-
laiman, and H. Mathkour, “A hierarchical fuzzy control design for indoor mobile
robot,” International Journal of Advanced Robotic Systems, vol. 11, no. 3, p. 33,
2014.

[67] N. H. Singh and K. Thongam, “Mobile robot navigation using mlp-bp ap-
proaches in dynamic environments.” Arabian Journal for Science and Engineer-

ing (Springer Science and Business Media BV), vol. 43, no. 12, 2018.

[68] S. X. Yang and M. Meng, “An efficient neural network approach to dynamic
robot motion planning,” Neural networks, vol. 13, no. 2, pp. 143–148, 2000.

[69] I. Engedy and G. Horváth, “Artificial neural network based mobile robot naviga-
tion,” in 2009 IEEE International Symposium on Intelligent Signal Processing.
IEEE, 2009, pp. 241–246.

248

[70] X. Chen and Y. Li, “Smooth formation navigation of multiple mobile robots for
avoiding moving obstacles,” International Journal of Control, Automation, and

Systems, vol. 4, no. 4, pp. 466–479, 2006.

[71] M. A. K. Jaradat, M. Al-Rousan, and L. Quadan, “Reinforcement based mobile
robot navigation in dynamic environment,” Robotics and Computer-Integrated

Manufacturing, vol. 27, no. 1, pp. 135–149, 2011.

[72] N. ALTUNTAŞ, E. Imal, N. Emanet, and C. N. Öztürk, “Reinforcement learning-
based mobile robot navigation,” Turkish Journal of Electrical Engineering and

Computer Sciences, vol. 24, no. 3, pp. 1747–1767, 2016.

[73] A. Demir and V. Sezer, “Intersection navigation under dynamic constraints using
deep reinforcement learning,” in 2018 6th International Conference on Control

Engineering and Information Technology (CEIT). IEEE, 2018, pp. 1–5.

[74] L. Wang, Y. Liu, H. Deng, and Y. Xu, “Obstacle-avoidance path planning for
soccer robots using particle swarm optimization,” in 2006 IEEE International

Conference on Robotics and Biomimetics. IEEE, 2006, pp. 1233–1238.

[75] M. K. Rath and B. Deepak, “Pso based system architecture for path planning of
mobile robot in dynamic environment,” in 2015 Global Conference on Commu-

nication Technologies (GCCT). IEEE, 2015, pp. 797–801.

[76] M. A. Hossain and I. Ferdous, “Autonomous robot path planning in dynamic
environment using a new optimization technique inspired by bacterial foraging
technique,” Robotics and Autonomous Systems, vol. 64, pp. 137–141, 2015.

[77] F. H. Ajeil, I. K. Ibraheem, A. T. Azar, and A. J. Humaidi, “Grid-based mobile
robot path planning using aging-based ant colony optimization algorithm in static
and dynamic environments,” Sensors, vol. 20, no. 7, p. 1880, 2020.

[78] T. Guan-Zheng, H. Huan, and A. Sloman, “Ant colony system algorithm for real-
time globally optimal path planning of mobile robots,” Acta automatica sinica,
vol. 33, no. 3, pp. 279–285, 2007.

[79] S. Choi, E. Kim, and S. Oh, “Real-time navigation in crowded dynamic envi-
ronments using gaussian process motion control,” in 2014 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2014, pp. 3221–3226.

[80] P. Yao, H. Wang, and Z. Su, “Real-time path planning of unmanned aerial vehicle
for target tracking and obstacle avoidance in complex dynamic environment,”
Aerospace Science and Technology, vol. 47, pp. 269–279, 2015.

249

[81] B. Zhang and H. Duan, “Three-dimensional path planning for uninhabited com-
bat aerial vehicle based on predator-prey pigeon-inspired optimization in dy-
namic environment,” IEEE/ACM transactions on computational biology and

bioinformatics, vol. 14, no. 1, pp. 97–107, 2015.

[82] R. Bis, H. Peng, and A. G. Ulsoy, “Velocity occupancy space: autonomous nav-
igation in an uncertain, dynamic environment,” International Journal of Vehicle

Autonomous Systems, vol. 10, no. 1-2, pp. 41–66, 2012.

[83] H. Naeem, J. Ahmad, and M. Tayyab, “Real-time object detection and tracking,”
in INMIC, 2013, pp. 148–153.

[84] W. Yi, M. R. Morelande, L. Kong, and J. Yang, “An efficient multi-frame track-
before-detect algorithm for multi-target tracking,” IEEE Journal of Selected Top-

ics in Signal Processing, vol. 7, no. 3, pp. 421–434, 2013.

[85] A. H. A. Rahman, H. Zamzuri, S. A. Mazlan, M. A. A. Rahman, and M. A.
Zakaria, “Tracking uncertain moving objects using dynamic track management
in multiple hypothesis tracking,” in 2014 International Conference on Connected

Vehicles and Expo (ICCVE), 2014, pp. 345–350.

[86] T. Chen, R. Wang, B. Dai, D. Liu, and J. Song, “Likelihood-field-model-based
dynamic vehicle detection and tracking for self-driving,” IEEE Transactions on

Intelligent Transportation Systems, vol. 17, no. 11, pp. 3142–3158, 2016.

[87] J. Dey and N. Praveen, “Moving object detection using genetic algorithm for
traffic surveillance,” in 2016 International Conference on Electrical, Electron-

ics, and Optimization Techniques (ICEEOT), 2016, Conference Proceedings, pp.
2289–2293.

[88] D. Crouse, “Basic tracking using nonlinear continuous-time dynamic models [tu-
torial],” IEEE Aerospace and Electronic Systems Magazine, vol. 30, no. 2, pp.
4–41, 2015.

[89] H. Kim and K. Sim, “A particular object tracking in an environment of multiple
moving objects,” in ICCAS 2010, 2010, Conference Proceedings, pp. 1053–1056.

[90] S. R. Balaji and S. Karthikeyan, “A survey on moving object tracking using im-
age processing,” in 2017 11th International Conference on Intelligent Systems

and Control (ISCO), 2017, pp. 469–474.

[91] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, X. Zhao, and T.-K. Kim, Multiple

Object Tracking: A Literature Review, 2017.

250

[92] R. Madhavan and C. I. Schlenoff, “Moving object prediction for off-road au-
tonomous navigation,” in AeroSense 2003, vol. 5083. SPIE, 2003, p. 12.

[93] R. Karima, A. Benabderrahmane, O. Azouaoui, and N. Ouadah, Moving obsta-

cles detection and tracking with laser range finder, 2009.

[94] L. O. Russo, G. A. Farulla, M. Indaco, S. Rosa, D. Rolfo, and B. Bona, “Blurring
prediction in monocular slam,” in 2013 8th IEEE Design and Test Symposium,
2013, pp. 1–6.

[95] J. S. Kulchandani and K. J. Dangarwala, “Moving object detection: Review of re-
cent research trends,” in 2015 International Conference on Pervasive Computing

(ICPC), 2015, pp. 1–5.

[96] S. V. Amarasinghe, H. S. Hewawasam, W. B. D. K. Fernando, J. V. Wijayakula-
sooriya, G. M. R. I. Godaliyadda, and M. P. B. Ekanayake, “Vision based obsta-
cle detection and map generation for reconnaissance,” in 2014 9th International

Conference on Industrial and Information Systems (ICIIS), 2014, pp. 1–6.

[97] c. Jayawardena, “A technical review of motion prediction methods for indoor
robot navigation,” 2015, Book.

[98] Q. Miao and Y. Gu, “Kernel-based online object tracking via gaussian mix-
ture model learning,” in 2016 Sixth International Conference on Instrumenta-

tion Measurement, Computer, Communication and Control (IMCCC), 2016, pp.
522–525.

[99] W. Liang, T. Tieniu, N. Huazhong, and H. Weiming, “Silhouette analysis-based
gait recognition for human identification,” IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, vol. 25, no. 12, pp. 1505–1518, 2003.

[100] M. Keshmiri and M. Keshmiri, “Performance comparison of various navigation
guidance methods in interception of a moving object by a serial manipulator
considering its kinematic and dynamic limits,” in 2010 15th International Con-

ference on Methods and Models in Automation and Robotics, 2010, Conference
Proceedings, pp. 212–217.

[101] A. Elnagar, “Prediction of moving objects in dynamic environments using
kalman filters,” in Proceedings 2001 IEEE International Symposium on Com-

putational Intelligence in Robotics and Automation (Cat. No.01EX515), 2001,
Conference Proceedings, pp. 414–419.

251

[102] D. Vasquez and T. Fraichard, “Motion prediction for moving objects: a statistical
approach,” in IEEE International Conference on Robotics and Automation, 2004.

Proceedings. ICRA ’04. 2004, vol. 4, 2004, pp. 3931–3936 Vol.4.

[103] A. F. Foka and P. E. Trahanias, “Probabilistic autonomous robot navigation in
dynamic environments with human motion prediction,” International Journal

of Social Robotics, vol. 2, no. 1, pp. 79–94, 2010. [Online]. Available:
https://doi.org/10.1007/s12369-009-0037-z

[104] R. Nicholas, N. Paul, and S. Siddhartha, Modeling and Prediction of Pedestrian

Behavior Based on the Sub-Goal Concept. MITP, 2013, p. 1. [Online].
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6578005

[105] C. Hermes, C. Wohler, K. Schenk, and F. Kummert, “Long-term vehicle mo-
tion prediction,” in 2009 IEEE Intelligent Vehicles Symposium, 2009, Conference
Proceedings, pp. 652–657.

[106] U. K. J. H. S. Parekh, D. G. Thakore, “A survey on object detection and tracking
methods,” International Journal of Innovative Research in Computer and Com-

munication Engineering, vol. vol. 2, 2014.

[107] M. Marron, J. C. Garcia, M. A. Sotelo, M. Cabello, D. Pizarro, F. Huerta, and
J. Cerro, “Comparing a kalman filter and a particle filter in a multiple objects
tracking application,” in 2007 IEEE International Symposium on Intelligent Sig-

nal Processing, 2007, pp. 1–6.

[108] A. Elnagar, “Prediction of moving objects in dynamic environments using
kalman filters,” in Proceedings 2001 IEEE International Symposium on Com-

putational Intelligence in Robotics and Automation (Cat. No.01EX515), 2001,
Conference Proceedings, pp. 414–419.

[109] J. Gómez-Ortega, D. R. Ramı́rez, D. Limón-Marruedo, and E. F. Camacho, “Ge-
netic algorithms based predictive control for mobile robot navigation in changing
environments,” in 2001 European Control Conference (ECC), 2001, Conference
Proceedings, pp. 3179–3184.

[110] Q. Li, R. Li, K. Ji, and W. Dai, “Kalman filter and its application,” in 2015 8th In-

ternational Conference on Intelligent Networks and Intelligent Systems (ICINIS),
2015, pp. 74–77.

[111] D. H. Santosh and P. G. K. Mohan, “Multiple objects tracking using extended
kalman filter, gmm and mean shift algorithm - a comparative study,” in 2014

IEEE International Conference on Advanced Communications, Control and

Computing Technologies, 2014, pp. 1484–1488.

252

https://doi.org/10.1007/s12369-009-0037-z
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6578005

[112] J. Almeida, A. Almeida, and R. Araujo, “Tracking multiple moving objects for
mobile robotics navigation,” in 2005 IEEE Conference on Emerging Technolo-

gies and Factory Automation, vol. 1, 2005, pp. 8 pp.–210.

[113] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions

on Signal Processing, vol. 50, no. 2, pp. 174–188, 2002.

[114] J. Almeida and R. Araujo, “Tracking multiple moving objects in a dynamic envi-
ronment for autonomous navigation,” in 2008 10th IEEE International Workshop

on Advanced Motion Control, 2008, pp. 21–26.

[115] L. McFetridge and M. Y. Ibrahim, “Behavior fusion via free-space force shap-
ing,” in IEEE International Conference on Industrial Technology, 2003, vol. 2.
IEEE, 2003, pp. 818–823.

[116] W. Siming, Z. Tiantian, and L. Weijie, “Mobile robot path planning based on im-
proved artificial potential field method,” in 2018 IEEE International Conference

of Intelligent Robotic and Control Engineering (IRCE). IEEE, 2018, pp. 29–33.

[117] A. Pandey and D. R. Parhi, “Optimum path planning of mobile robot in un-
known static and dynamic environments using fuzzy-wind driven optimization
algorithm,” Defence Technology, vol. 13, no. 1, pp. 47–58, 2017.

[118] J. Xin, X. Jiao, Y. Yang, and D. Liu, “Visual navigation for mobile robot with
kinect camera in dynamic environment,” in 2016 35th Chinese Control Confer-

ence (CCC), 2016, pp. 4757–4764.

[119] P. Viljamaa, Fuzzy Gain Scheduling and Tuning of Multivariable Fuzzy Control:

Methods of Fuzzy Computing in Control Systems. Citeseer, 2000.

[120] J. E. Rodrı́guez-Castellanos and V. H. Grisales-Palacio, “A tuning proposal for
fuzzy gain scheduling controllers for industrial continuous processes,” in 2018

IEEE 2nd Colombian Conference on Robotics and Automation (CCRA), 2018,
pp. 1–6.

[121] D.-L. Tsay, H.-Y. Chung, and C.-J. Lee, “The adaptive control of nonlinear sys-
tems using the sugeno-type of fuzzy logic,” IEEE Transactions on fuzzy systems,
vol. 7, no. 2, pp. 225–229, 1999.

[122] J. Arroyo and C. Maté, “Forecasting histogram time series with k-nearest neigh-
bours methods,” International Journal of Forecasting, vol. 25, no. 1, pp. 192–
207, 2009.

253

[123] A. Khamparia, S. K. Singh, A. K. Luhach, and X.-Z. Gao, “Classification and
analysis of users review using different classification techniques in intelligent e-
learning system,” International Journal of Intelligent Information and Database

Systems, vol. 13, no. 2-4, pp. 139–149, 2020.

[124] M. H. Nampoothiri, P. G. Anand, and R. Antony, “Real time terrain identifi-
cation of autonomous robots using machine learning,” International Journal of

Intelligent Robotics and Applications, vol. 4, no. 3, pp. 265–277, 2020.

[125] M. A. K. Jaradat, M. H. Garibeh, and E. A. Feilat, “Autonomous mobile robot
dynamic motion planning using hybrid fuzzy potential field,” Soft Computing,
vol. 16, no. 1, pp. 153–164, 2012.

254

	ABSTRACT
	ACKNOWLEDGEMENT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF TERMS AND ABBREVIATIONS
	 LIST OF PUBLICATIONS
	Chapter 1: Introduction
	Background and Significance
	Expected Outcomes and Contribution of the Research
	Outline of the Thesis

	Chapter 2: Literature Review
	Background and Significances
	Popular Navigation Techniques Capable of Navigating Robots in Dynamic Environments
	Artificial Potential Field (APF)
	Genetic Algorithm
	Fuzzy Logic
	Artificial Neural Networks (ANN)
	Reinforcement Learning
	Particle Swarm Optimisation
	Bacterial Foraging Optimisation
	Ant Colony Optimisation

	Discussion
	Summary

	Chapter 3: Object Tracking
	Introduction
	Physical- and Statistical-Based Obstacle Tracking
	Physical-Based Tracking
	Statistical-Based Tracking
	Comparison of Statistical-Based Tracking and Physical-Based Tracking

	Benchmarking Model
	Simulation Setup
	Point-Based Obstacle Tracking Algorithms
	Kalman Filter–Based Obstacle Tracking Algorithms
	Extended Kalman Filter (KF)-Based Obstacle Tracking Algorithms
	Particle Filter-Based obstacle Tracking Algorithms
	Comparison of Algorithms According to the State Estimator

	Results and Discussion
	Testing Results

	Summary

	Chapter 4: Agoraphilic Navigation Algorithm in Dynamic Environment with Tracking (ANADE I)
	Introduction
	The Architecture of the ANADE I
	Pseudocode

	Main Modules in the ANADE I
	Dynamic Obstacle Tracking module
	Free Space Attraction Module

	Results and Discussion
	Navigation in Dynamic Environment with Two Moving Obstacles
	Benchmarking of the ANADE I
	Limitations of the ANADE I

	Summary

	Chapter 5: Agoraphilic Navigation Algorithm in Dynamic Environment with Tracking and Prediction (ANADE II)
	Introduction
	The Architecture of the ANADE II
	Main Steps of the ANADE II

	Main Modules in the ANADE II
	Sensory Data Processing Module
	Dynamic Obstacle Tracking Module
	Dynamic Obstacle Path Prediction Module
	Current Global Map Generation Module
	Future Global Map Generation Module
	Free Space Attraction Module
	Instantaneous Driving Force Component Generation Module
	Instantaneous Driving Force Component Weighing Module and Final Robot’s Driving Force
	Robot’s Motion Command Generation Module

	Experimental Testing and Analysis of Results
	Simulation Test
	Real World Experiments

	Summary

	Chapter 6: Artificial Intelligence Based-Agoraphilic Navigation Algorithm in Dynamic Environment (ANADE III)
	Introduction
	The Architecture of the ANADE III
	New Main Modules Used in ANADE III to Optimise the Performance
	Force-Shaping Module

	Results and Discussion
	Experiment 1: An Obstacle Moving Towards the Goal from the Start Point
	Experiment 2: An Obstacle Moving Towards the Start Point from the Goal
	Experiment 3: An Obstacle Moving Perpendicularly Across the Robot's Path
	Experiment 4: Three Moving Obstacles Simultaneously Challenging the Robot and Pushing the Robot Towards a Trap
	Experimental Comparison of the ANADE III with Other Recent Approaches
	A Qualitative Comparison Between ANADE III with Recent Navigation Approaches

	Summary

	Chapter 7: Self-Tuning Artificial Intelligence–Based Agoraphilic Navigation Algorithm in Dynamic Environment (ANADE IV)
	Introduction
	Different Types of Agoraphilic Behaviours-Needed to Optimise the Navigation Algorithm
	Goal Seeking
	Safe Travel
	Normal Travel
	Safe Right Side
	Safe Left Side

	Supervisory Controller
	Low Resolution Space and Velocity Histogram
	Sector States Generation Fuzzy Logic Controller

	Motion Behaviour Selection Module
	Force-Shaping Module with Self-Tuning Fuzzy Logic Controller
	Results and Discussion
	Effects of Different Knowledge Bases in Navigation

	Summary

	Chapter 8: Agoraphilic Navigation Algorithm in Dynamic Environment with a Moving Goal (ANADE V)
	Introduction
	The Architecture of the ANADE V
	The New Modules Used in the ANADE V to Track and Hunt a Moving Goal
	Moving Goal Tracking Module
	Moving Goal Path Prediction Module
	Machine Learning–Based Force-Shaping Module

	Machine Learning–Based Controller for Force-Shaping Module
	Training and Test Data Generation

	Results and Discussion
	Simulation Results
	Experiment Test Results

	Summary

	Chapter 9: Conclusion
	 REFERENCES

