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Abstract Users are rarely familiar with the content

of a data source they are querying, and therefore can-

not avoid using keywords that do not exist in the data

source. Traditional systems may respond with an empty

result, causing dissatisfaction, while the data source in

effect holds semantically related content. In this pa-

per we study this no-but-semantic-match problem on

XML keyword search and propose a solution which en-

ables us to present the top-k semantically related re-

sults to the user. Our solution involves two steps: (a)

extracting semantically related candidate queries from

the original query and (b) processing candidate queries

and retrieving the top-k semantically related results.

Candidate queries are generated by replacement of non-

mapped keywords with candidate keywords obtained

from an ontological knowledge base. Candidate results
are scored using their cohesiveness and their similarity

to the original query. Since the number of queries to

process can be large, with each result having to be an-

alyzed, we propose pruning techniques to retrieve the

top-k results efficiently. We develop two query process-

ing algorithms based on our pruning techniques. Fur-

ther, we exploit a property of the candidate queries to

propose a technique for processing multiple queries in

batch, which improves the performance substantially.

Extensive experiments on two real datasets verify the

effectiveness and efficiency of the proposed approaches.
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1 Introduction

Users who query data sources using keyword searches

often are not familiar with the data source schema or

the appropriate query language. For the query to suc-

ceed, the keywords have to have matches in the data

source. Failing this, an empty result is returned even

when semantically related content exists. When key-

words have indirect mappings in a data source that

cannot be found by traditional systems, the user faces

the no-but-semantic-match problem.

Example 1 . Consider a user submitted a keyword query

q0 = {Jack, lecturer, class} on XML database given in

Fig. 1 and would like to find information about the pro-

fessor Jack. Using conjunctive keyword search, tradi-

tional systems will show an empty result because there

is no occurrence for the keywords lecturer and class

in the data source. However, the keyword lecturer has

a semantic connection to academic and full professor

while the keyword class is semantically related to course,

grade and event which exist in the data source and

could generate results that might interest the user.

The XML keyword search has been addressed by re-

searchers before. The concept of Lowest Common An-

cestor (LCA) was first proposed by Guo et al. [13] to

extract XML nodes which contain all query keywords

within the same subtree. Xu and Papakonstantinou [26]

introduced the concept of Smallest Lowest Common

Ancestor (SLCA) to reduce the query result to the

smallest tree that contains all keywords. Sun, Chan and

Goenka [23] extended this work by applying the SLCA

principle to logical OR searches. Hristidis et al. [14]

explored the trees below LCA to provide information

about the proximity of the keywords in the document.

None of the existing studies use the SLCA semantics
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Fig. 1: A part of XML data

to provide a solution when one or more keywords do

not exist in the database. In this paper, we adapt the

widely-accepted SLCA semantics and algorithms to re-

trieve meaningful results when some non-mapped key-

words are submitted to the system.

When a query encounters the no-but-semantic-match

problem, we need to find candidate keywords for the

non-mapped keywords to produce non-empty results.

Even though the non-mapped keywords may be seman-

tically close to some items in data source, traditional

systems do not attempt to discover them. To produce

an answer to the user’s initial query, the candidate key-

words must be semantically close to the non-mapped

keywords. One way of fulfilling this requirement is to

find substitutes for non-mapped keywords in an on-

tological knowledge base. Clearly, only candidate key-

words that have a mapping in the data source can be

selected as substitutes for a new query. Replacing each

of the non-mapped keywords with one or more seman-

tically related words that are known to exist in the

database leads to a list of candidate queries. Depend-

ing on the number of available keywords, the number of

potential queries and results can be impractically large.

Hence the degree of semantic similarity with the origi-

nal query is calculated for each candidate query before

it is executed. Before the results can be presented to

the user, results of poor quality in terms of cohesiveness

must be eliminated to ensure all results are meaningful

answers to the original query. Thus, to solve the no-but-

semantic-match problem, two aspects are considered:

(a) query similarity; and (b) result cohesiveness.

Example 2 . Consider the keyword query q0 = {Jack,

lecturer, class} presented in Example 1 on the database

shown in Fig. 1. Keywords lecturer and class do not

have a mapping in the data source and the traditional

system generates an empty result for it. The ontolog-

ical knowledge base [18] has 44 semantic counterparts

for lecturer and 39 for class. All possible substitutions

and their combinations are considered. In the extreme

case when all candidate keywords are available in the

data source, 44× 39 = 1716 queries are generated and

each query may have several answers that have to be

considered. When a high number of keywords have to be

replaced and these keywords have many semantic coun-

terparts, we may face an unmanageably large number

of combinations that have to be analyzed for semantic

similarity with the original query. Hence, there is a need

to identify and remove less promising candidate queries

early.

In this paper, we present a novel two-step solution to

the no-but-semantic-match problem in XML keyword

search. In the first step, semantically related candidate

queries are created by replacing non-mapped keywords

in the original queries with semantic counterparts and

in the second step, the queries are processed and the

top-k semantically related results retrieved. In order

to present the top-k results to the user for evaluation,

each result retrieved from the queries is separately an-

alyzed in terms of its similarity to the original query

and its cohesiveness in data source. Since there may

be a large number of semantically related results, re-

trieving the top-k results is potentially costly. There-

fore, we propose two pruning techniques, inter-query

and intra-query pruning. Since the candidate queries

are generated by replacing non-mapped keywords, some

keywords are shared between the candidate queries. We

exploit this property to propose a more efficient batch

query processing technique to improve the performance

substantially. The issue of finding semantically related

results for queries with no-but-semantic-match prob-

lem has not been addressed in the context of semi-

structured data before. Our contributions are as fol-

lows:

1. We are the first to formulate the no-but-semantic-

match problem in XML keyword search.

2. We propose two pruning methods and an efficient

approach of processing the no-but-semantic-match

query.
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Fig. 2: SLCA subtree results for query q = {Jack, database} executed on data given in Fig. 1

3. Based on keywords the candidate queries have in

common, we also propose a method to process mul-

tiple queries in a batch which improves the perfor-

mance substantially.

4. We conduct extensive experiments which verify the

effectiveness and efficiency of our solutions on two

real datasets.

The rest of the paper is organized as follows: Sec-

tion 2 discusses XML keyword search and presents the

no-but-semantic-match problem. Section 3 presents the

details of our pruning ideas and the efficient processing

of the no-but-semantic-match query. Section 4 presents

the batch query processing scheme to further improve

the performance. The experiments are presented in Sec-

tion 5. Section 6 reviews the related work. Finally, Sec-

tion 7 concludes our paper.

2 Background

2.1 Preliminaries

An XML document is an ordered tree T with labeled

nodes and a designated root. All XML elements are

treated as nodes containing information in T . There

are parent-child and sibling relationships between the

nodes. The depth of the tree is denoted as d, and the

root node has a depth of 1. Each node v in the tree T is

marked with a unique identifier in Dewey code, which

describes the path from the root to the node v as a

sequence of numbers separated by a dot (“.”). Sibling

nodes have Dewey codes of equal length with a unique

last number.

Example 3 . Fig. 1 shows an XML tree which contains

information about staff and students of a university.

The root node’s Dewey code is 0. Dewey code 0.0.1

refers to a node containing information about a member

of the university and the code prefix 0.0 refers to its

parent node.

Keyword Match Node: A node m in the tree T

is a match node for keyword ki if it contains ki. e.g.,

the match nodes for keyword k1 = database presented

in Fig. 1 are: m1
1 = [0.0.2.0.0], m2

1 = [0.1.2.0.0], m3
1 =

[0.2.3.0.0], and m4
1 = [0.2.4.0.1.0].

Keyword Inverted List: Each keyword ki cor-

responds to a list Si of entries and each entry corre-

sponds to a node m which contains ki in the tree T . e.g.,

the keyword inverted list for keyword k1 = database is

S1 = {[0.0.2.0.0], [0.1.2.0.0], [0.2.3. 0.0], [0.2.4.0.1.0]}.
Smallest Lowest Common Ancestor (SLCA):

Let lca(m1, ...,mn) returns the lowest common ancestor

(LCA) of match nodes m1, ...,mn. Then LCAs of query

q on T are defined as LCA(q) = {v|v = lca(m1, ...,mn),

mi ∈ Si(1 ≤ i ≤ n)}. SLCAs are a subset of LCAs

which do not have other LCAs as child nodes and de-

fined as SLCA(q).

Example 4 . In Fig. 2, for a keyword query q={Jack,

database}, there are 4 LCA nodes which are computed

as: LCA(q) = {lca([0.0.3.0], [0.0.2.0.0]), lca([0.0.3.0], [0.1

.2.0.0]), lca([0.1.1 .0.0], [0.1.2.0.0]), lca([0.2.1.0.0], [0.2.3.0

.0])}={[0], [0, 0], [0.1] , [0.2]}. Since the LCA node [0] is

the ancestor node of [0.0],[0.1] and [0.2], it is not an

SLCA and should be removed. Therefore, SLCA(q) =

{[0.0], [0.1], [0.2]}.

Keyword Query and Subtree Result: In XML

data, a keyword query q consists of a set of keywords

{k1, k2, ..., kn}. A result r = (vslca, {m1,m2, ...,mn})
for q is a subtree in T which contains all keywords ki ∈
q. Here, we consider vslca, the root of the subtree, an

SLCA node, i.e. vslca ∈ SLCA(q).
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Table 1: The list of symbols

Symbol Meaning

λ(q0, q′) Similarity score of q0 to q′

α Tuning parameter
σmin Threshold score
σ(r, q′, T ) Total score of a result
q0 User original query
q′ A candidate query
Q A set of candidate queries
S A set of Keyword Inverted lists
B Candidate query batch
R A set of results
R∗ A set of top-k results
∆(r1, r2) The score difference between r1 and r2
r A result
vslca A subtree result root
m A match node
n Number of keywords in a query
ml Tightest match node
P An execution plan
c(B) Cost of an execution plan
T XML data
d(r, T ) Number of edges in a result r
θ(r, T ) Cohesiveness score of a result r
K A set of candidate keywords
k A query keyword

Tightest SLCA Subtree Result: For an SLCA

node, there may exist several subtree results. This is

because that under an SLCA node vslca, we may find

several match nodes {mj
i} for the keyword ki, (1 ≤ i ≤

n, 1 ≤ j ≤ ni), where ni is the number of match nodes

for ki under vslca. Let mli
i be the closest match node

from {mj
i} to vslca for ki(1 ≤ i ≤ n), then we get the the

tightest subtree result r = (vslca, {ml1
1 , ...,m

li
i , ...,m

ln
n }).

For example, for SLCA(q) = [0.2] in Fig. 2, there

are two subtree results, (c) and (d). The tightest subtree

result is (c) r = ([0.2], {[0.2.1.0.0], [0.2.3.0.0]}).
We argue to return only the tightest SLCA subtree

results to the user as these results match the user’s

search intention better than the results containing the

sparsely distributed keyword match nodes under vslca.

That is, a result is more likely to be meaningful when

the result subtree is more tight and cohesive (for survey

[14], [12]).

2.2 Problem Statement

Definition 1 (No-Match Problem) Given a keyword

query q0 = { k1,k2, ... ,kn } on T , if ∃ ki ∈ q0 such that

Si = ∅, we say that query q0 has a no-match problem

over ki.

If a user submits a keyword query q0 that has a no-

match problem, traditional systems return an empty

result set. However, the missing keyword ki that causes

the no-match problem may have semantic counterparts

in the data source T which may produce results the user

might be interested in, if the candidate keywords are

sufficiently similar to ki ∈ q0. We use Ki to denote the

list of candidate keywords that can be used to replace

ki ∈ q0.

Example 5 . Consider the keyword query q0 = {Jack,

lecturer, class} presented in Example 1. It is easy to

verify that the keywords k2 = lecturer and k3 = class

cause a no-match problem for q0. Candidate keywords

that can be used instead of k2 and k3 for q0 are: K2 =

{academic, full professor } andK3 = {course,grade,event}.

Definition 2 (No-But-Semantic-Match Problem)

Given a keyword query q0 = { k1,k2, ... ,kn } with a

no-match problem on T , i.e., ∃ki ∈ q0 such that Si = ∅,
but Ki 6= ∅, then we say that q0 has a no-but-semantic-

match problem over ki.

The no-but-semantic-match problem is a special case

of the no-match problem. The problem can be addressed

in the following way: (a) find a candidate keyword list

Ki that can be used to replace ki ∈ q0; (b) generate

candidate queries q′ for q0 by replacing ki with k′i ∈ Ki;
(c) execute q′ in the data source T to produce the se-

mantically related results R for q0; (d) score and rank

the results r ∈ R to return only the top quality results

to the user for evaluation.

Example 6 . Consider the keyword query presented in

Example 1. The query q0 has no-but-semantic-match

problem over k2 = lecturer and k3 = class. The se-

mantic counterparts for k2 and k3 are: K2 = {academic,
full professor} andK3 = {course,grade,event}. These

candidate keywords are combined with the rest of the

keywords to generate semantically related candidate

queries for q0. The generated candidate queries are: q1
= {Jack, academic, course}, q2 = {Jack, academic,

grade}, q3 = {Jack, full professor, course}, q4 =

{Jack, full professor, grade}, q5 = {Jack, academic,

event}, and q6 = {Jack, full professor, event}.

We use Q to denote the list of candidate queries. As

mentioned before, the candidate queries q′ ∈ Q need to

be executed against T to produce the semantically re-

lated result set R for q0. We know that these candidate

queries q′ are generated by replacing ki with k′i ∈ Ki.
However, not all candidate keywords k′i ∈ Ki are se-

mantically similar to the user given keyword ki ∈ q0
and also, not all semantically related results r ∈ R are

meaningful to the same degree. Therefore, we need to

score the produced results r ∈ R, denoted by σ(r, q′, T ),

as given as follows:

σ(r, q′, T ) = sim(q0, q
′)× coh(r, T ) (1)
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where, r is a result for the candidate query q′, the

sim(q0, q
′) measures the similarity of q′ with q0 and

coh(r, T ) measures the cohesiveness of r in T . The rank

of a result r ∈ R is calculated as follows:

rank(r, T ) = |{r′|σ(r′, q′′, T ) > σ(r, q′, T )}|+ 1 (2)

Definition 3 Top-k Semantically Related Results.

Given a keyword query q0 = {k1, k2, ..., kn} on T , hav-

ing the no-but-semantic-match problem, we want to dis-

cover k results from R that maximizes the scoring func-

tion given in Eq. 1 or in terms of ranking the results

{r|rank(r, T ) ≤ k}.

3 Our Approach

We propose a two phase approach to solve the no-but-

semantic-match problem in XML data T . The schematic

diagram of our approach is illustrated in Fig. 3. In

the first phase, the semantic counterparts for the non-

mapped keywords of the user query are extracted from

the ontological knowledge base. Next, the candidate

queries are generated by replacing the non-mapped key-

words with their semantic counterparts and the simi-

larities between the candidate queries and the original

query are computed. In the second phase, the candidate

queries are executed against the data source T . The re-

sults are scored based on Eq. 1 and finally, only the

top-k results are presented to the user for evaluation.

The results are scored based on the followings: (a) sim-

ilarity of the candidate queries to the user given query;

and (b) the cohesiveness of the results.

As the candidate queries are generated using the

ontological knowledge base, we use the ontological sim-

ilarity of the candidate query to the user given query as

the measure of similarity for the first parameter. The

details for computing this similarity is presented in sec-

tion 3.1. The details for computing the cohesiveness of

the results is presented in section 3.2. Since there are

a number of candidate queries that should be executed

against the data source T and each candidate query

may have several results that needs to be scored, we

propose efficient pruning techniques to avoid unneces-

sary computations and terminate early. The pruning

ideas and the details of our candidate query processing

technique are presented in Section 3.3. We also propose

a batch query processing technique to speed up the com-

putations further by sharing the computations among

the candidate queries, which is described in Section 4.

Database

Ontology

k1 k2 k3 k11 k21 k31

k12 k22 k32

k13 k23 k33 

Top-k semantically 
related results 

Queries ontological 
similarity calculation

Data coherency 
calculation combined by 

queries similarity

Fig. 3: Schematic diagram of our approach for solving

no-but-semantic-match problem in XML data

3.1 Candidate Queries

This section describes how to generate the candidate

queries Q for the user query q0 and compute their sim-

ilarity to q0.

3.1.1 Generating Candidate Queries

To adhere closely to the user’s intentions, the candi-

date keywords k′i ∈ Ki must be as close as possible to

the non-mapped keywords ki ∈ q0. In this study we

use WordNet, which is widely used in the literature [5]

for finding semantic counterparts for ki ∈ q0. We cat-

egorize our semantic candidate keywords derived from

WordNet into four groups [18]: (a) synonyms denoted

as Syn(ki), (b) coordinate terms denoted as Cot(ki),

(c) hyponyms denoted as Hpo(ki), and (d) hypernyms

denoted as Hpe(ki). The candidate keyword list Ki for

a keyword ki ∈ q0 contains all types of ontological coun-

terparts as shown in Eq. 3.

Ki = Syn(ki) ∪ Cot(ki) ∪Hpo(ki) ∪Hpe(ki) (3)

However, not all candidate keywords extracted from

the ontological knowledge base are available in T . The

keyword list has to be reduced to the candidates which

have direct mapping in the data source. To do this, an

inverted keyword list using hash indices can be queried

in O(1) time. Finally, the candidate queries Q are gen-

erated by replacing the non-mapped keywords ki ∈ q0
with each of their semantic counterparts k′i ∈ Ki in

turn.

3.1.2 Measuring Candidate Query Similarity

In order to measure the similarity between a candi-

date query q′ ∈ Q and the user’s original query q0,

firstly we measure the individual similarity between the

candidate keyword k′i ∈ q′ and the corresponding non-

mapped keyword ki ∈ q0 using Wu and Palmer’s metric
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[25]. This metric establishes the depths of both key-

words and their least common subsumer (LCS) accord-

ing to the WordNet structure and produces the degree

of similarity between these two keywords, SimWP (ki, k
′
i),

as shown in Eq. 4.

SimWP (ki, k
′
i) =

2× dep(LCS)

dep(ki) + dep(k′i)
(4)

where dep(ki) returns the depth of the keyword ki in

the WordNet structure. This metric is symmetric, i.e.,

SimWP (ki, k
′
i) = SimWP (k′i, ki). However, WordNet

has a hierarchical structure. That is, the candidate key-

word k′i ∈ q′ could be a more special type (e.g., hy-

ponyms) or a more general type (e.g., hypernyms) for

the non-mapped keyword ki ∈ q0 in WordNet. There-

fore, we incorporate the specialization/generalization

aspect of ki ∈ q0 into the Wu and Palmer similarity

metric as given as follows:

DSim(ki, k
′
i) =

dep(k′i)

max(dep(ki, k′i))
×SimWP (ki, k

′
i) (5)

where DSim(ki, k
′
i) is the directional similarity of

keyword ki ∈ q0 to keyword k′i ∈ q′. The directional

similarity DSim(ki, k
′
i) penalizes the more general key-

word types of ki ∈ q0 by weighting SimWP (ki, k
′
i) with

dep(k′i)
max(dep(ki,k′i))

. Finally, the similarity of q′ to the origi-

nal query q0 is computed by considering all the replace-

ments in q′ as follows:

λ(q0, q
′) =

n∏
i=1

DSim(ki ∈ q0, k′i ∈ q′) (6)

where n is the number of keywords in q0 that have been

replaced to generate q′ (1 ≤ n ≤ |q|).

Example 7 . Consider the keyword query q0 = {Jack,

lecturer, class} presented in Example 1. Here, the sec-

ond and the third keywords cause the no-match prob-

lem for q0. The candidate keyword list for these two

non-mapped keywords are: K2 = {academic : 0.91,

full professor : 0.84} and K3 = {course : 1, grade :

1, event : 0.35}, where each candidate keyword is la-

beled with their corresponding DSim scores. Now, the

candidate queries are generated by replacing the non-

mapped keywords in q0 with their candidate keywords

and scored as follows:

q1 = {Jack, academic, course},λ(q0, q1)=0.91×1 = 0.91,

q2 = {Jack, academic, grade},λ(q0, q2)=0.91×1 = 0.91,

q3 = {Jack, fullprof, course},λ(q0, q3)=0.84×1 = 0.84,

q4 = {Jack, fullprof, grade},λ(q0, q4)=0.84×1 = 0.84,

q5 = {Jack, academic, event},λ(q0, q5)=0.91 × 0.35 =

0.31 ,and q6 = {Jack, fullprof, event},λ(q0, q6)=0.84×
0.35 = 0.29.

From the above, it is easy to verify that q1 and q2
are the most similar candidate queries to the original

query.

3.2 Cohesiveness of Results

There can be potentially many candidate queries with

a large number of results and not all results r ∈ R are

meaningful to the same degree. In XML, if the match

nodes in the result r are near to each other, the result

is considered to be more cohesive. Intuitively, when a

result subtree is more cohesive, it is more likely to be

relevant and meaningful (for survey [14], [12]). To mea-

sure the cohesiveness of a result r, we firstly compute

the distance between each match node m and the root

vslca of the result subtree r. Then, we compute the over-

all distance of a result r w.r.t. the data source T as given

as follows [12]:

d(r, T ) =
∑

(lm − lvslca) (7)

where r is the result subtree, vslca denotes the root of

the result r, m is the match node, lm is the level of

m, and lvslca is the level of the root in r. Clearly, the

larger this distance is, the lower the cohesiveness score

for the result r should be. Therefore, we compute the

cohesiveness of a result subtree r w.r.t. the data source

T as given as follows [12]:

θ(r, T ) =
1

logα(d(r, T ) + 1) + 1
(8)

where α is the tuning parameter by which the user can

trade off between the similarity of the candidate queries

and the cohesiveness of the results. If we set α to a

larger value, the sensitivity to the cohesiveness of the

results gets smaller. That is, the total score σ of a re-

sult r is more dependent on the similarity of the query

λ(q0, q
′) than its cohesiveness.

Example 8 . Consider the candidate keyword queries

Q in Example 7. The result subtrees of these queries

are illustrated in Fig. 4. Using α = 4, we compute the

cohesiveness of the results as follows:

d(r1, T ) = 7, θ(r1, T ) = 1
2.5 = 0.4,

d(r2, T ) = 10, θ(r2, T ) = 1
2.72 = 0.36,

d(r3, T ) = 8, θ(r3, T ) = 1
2.58 = 0.38,

and d(r4, T ) = 11, θ(r4, T ) = 1
2.79 = 0.35.

3.3 Processing of Candidate Queries

A näıve approach to processing the no-but-semantic-

match query q0 first generates the candidate queries
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Fig. 4: Subtree results for candidate queries Q in Example 7 after executing them against data given in Figure 1.

Q and then computes all semantically related results

r ∈ R by executing the queries q′ ∈ Q against the

data source T . Then it applies Eq. 6 to the results R to

establish the similarity of the corresponding candidate

query q′ to the original query q0 and determines the

cohesiveness in the data source T according to Eq. 8.

The results are then sorted based on their total score σ

(Eq. 1) to obtain the top-k ranked (Eq. 2) semantically

related results.

Assume that the initial query q0 = {k1, ..., kn} has

the no-but-semantic-match problem for all ki ∈ q0, |Q|
is the maximal number of candidate queries produced

for q0, d is the depth of the tree T , |S| and |S1| are the

maximal and minimal sizes of the inverted keyword lists

for the semantic counterparts k′i, respectively and |R| is
the maximal number of semantically related results for

the candidate queries in Q, then the complexity of the

naive approach becomes |Q|×nd|S1| log |S|+|R| log |R|.
However, both |Q| and |R| could be potentially large,

which makes the näıve approach impractical. We pro-

pose two efficient pruning techniques, called the inter-

query pruning and intra-query pruning to significantly

reduce the sizes of Q and R, respectively.

3.3.1 Inter-Query Pruning

Assume the candidate queries Q = {q1, q2, ..., ql, ql+1, ...

q|Q|} are sorted based on their similarities λ(q0, qi) to

the original query q0. We obtain the following lemma.

Lemma 1 Assume R∗ is the k results of Q′ = {q1, q2, ...
, ql} and σmin is the min-score of the results R∗. Then,

we can stop processing the rest of the candidate queries

Q′′ = {ql+1, ...q|Q|} if λ(q0, ql+1) < σmin.

Proof Assume that r is a min-scored result in R∗ for

q′ ∈ Q′, i.e., σmin = σ(r, q′, T ) and r′ is a result of the

candidate query ql+1 whose similarity score is higher

than any result of the queries Q′′ = {ql+1, ...q|Q|}. Now,

assume that σ(r′, ql+1, T ) > σ(r, q′, T ). We prove that

this can not happen if λ(q0, ql+1) < σmin. To be scored

higher than r, r′ must satisfy the following: λ(q0, ql+1) >
σmin

θ(r′,T ) . However, the highest possible value of θ for any

result in T is 1. By putting this into the above, we get

λ(q0, ql+1) > σmin, which contradicts the assumption.

Therefore, R∗ consists of the top-k semantically related

results according to Def. 3 whose ranks are ≤ k.

Example 9 . Consider the candidate queries Q given in

Example 7. If we want to present the top-1 result to

the user, and after processing the candidate queries up

to q4 we get σmin = 0.91× 0.4 = 0.36, then we do not

need to process q5 as λ(q0, q5) = 0.31 < σmin. Thus,

from q5 to the end of the list of Q, no queries can score

higher than σmin and therefore, we can stop processing

them.

3.3.2 Intra-Query Pruning

Although the inter-query pruning technique does not

execute all of the candidate queries q′ ∈ Q against T ,

it employs the pruning technique only in the first phase

of the framework. That is, once we start processing a

candidate query q′, we compute all of its results. Con-

sider the candidate queries Q of q0 given in Example

7 and assume that the user requests only the top-1 re-

sult for q0. Also, assume that the candidate queries in

Q are sorted based on their similarities with q0 and

we have already processed the candidate queries from

q1 to q5. The current top-1 result is r1 (see in Fig. 4)

and σmin is 0.36. Now, while processing the candidate

query q3, we can discard the result r3 of q3 (as shown

in Fig. 4) while generating it. That is, while reading

through the keyword inverted lists SJack, Sfullprofessor
and Scourse for q3, we can partially compute r3 consist-

ing of the keywords {Jack, full professor} for q3 only

(as highlighted in Fig. 4), denoted by rp3 , and compare

the score 0.34 of rp3 with the current σmin, we can decide

that the complete r3 consisting of keywords {Jack, full
professor, course}, denoted by rc3, can never outrank

r1 as θ(rc3, T ) ≤ θ(rp3 , T ). The same occurs while com-

puting r4 of q4 and we can discard r4 before generating

the ultimate result. We call the above query pruning

technique as the intra-query pruning.



8 Mehdi Naseriparsa et al.

Algorithm 1: The Framework

Input : User Query q0, Tuning Parameter α,
Keyword Inverted Lists S

Output: Top-k Semantically Related Results R∗
1 Q ← generateCandidateQueries(q0);
2 while q′ ← Q·getNext()6= null do
3 q′·sim← λ(q0, q′); // according to Eq.6

4 Q ← sortCandidates(Q); // based on q′·sim
5 R∗ ← null ; // R∗ is a min heap

6 σmin ←MAXVAL ; // max value

7 while q′ ← Q·getNext()6= null do
8 if R∗ · getSize() = k and q′ · sim < σmin then
9 break ; // inter-query pruning

10 if R∗ · getSize() = k then
11 root←R∗ · root();σmin ← root · score;
12 S′ ← {};
13 foreach ki ∈ q′ do
14 Si ← retriveKeywordInvertedList(ki,S);
15 S′ ← S′ ∪ Si;
16 R∗ ← processQuery(R∗, σmin, α, q′,S′);
17 return R∗

3.3.3 The Framework

Algorithm 1 presents the framework for processing the

no-but-semantic-match query q0 submitted by the user.

First, it generates the candidate queries Q for q0 as

explained in Section 3.1.1, shown on line 1. The lines 2-

4 compute the similarity between the candidate queries

Q and the user query q0 as explained in Section 3.1.2

and sort them. Then, a min-heap is initialized with R∗
to null and the min-score σmin to MAXV AL in lines 5-

6. In lines 8-9, we stop processing the candidate queries

in Q as soon as we find a query q′ ∈ Q if |R∗| = k and

q′.sim < σmin. Otherwise, if |R∗| = k, we update σmin

by reading the root entry of the heap R∗ and adding

its score root.score to σmin in lines 10-11. Then, for

each keyword ki ∈ q′ we retrieve their corresponding

inverted lists and pass it to the processQuery method

(which is explained in detail in the following section) in

line 16 to retrieve the results of q′ and insert the eligible

results into R∗.

3.3.4 The processQuery Method

In order to process the no-but-semantic-match query

q0, we need to execute each candidate keyword query

q′ ∈ Q against the data source T in the processQuery

method. There are two benchmark algorithms in the lit-

erature to compute the keyword query results on XML

data T as given as follows: (a) scan eager [26] and

(b) anchor based [23] algorithms. However, these two

benchmark algorithms are not readily available to im-

plement our processQuery method. These algorithms

only find the root of the subtree results in T , but ig-

nore the distribution of the keyword match nodes in the

Algorithm 2: SE-QP

Input : R∗, σmin, α, q′,S′
Output: Result Set:R∗

1 sortLists(S′); r ← null; vslca ← null;
2 while m1 ← getNext(S1) 6= null do
3 mi ← closest(m1, Si), ∀i ∈ [2, n];
4 vuslca ← lca(m1, ...,mn);
5 if r 6= null and vslca 6≺a vuslca then
6 for i = 1→ n do
7 mlii ← getT ight(Si, r.cursori);

8 di ← getDist(vslca,mlii ); d← d+ di;

9 r · score← q′ · sim× 1
logα(d+1)+1

;

10 if r · score < σmin then
11 stop reading lists and jump to line 14.

12 r ← (vslca, {mlii , ∀i ∈ [1, n]});
13 update top-k list R∗ with r;

14 r ← null;
15 if vuslca 6≺a vslca then
16 vslca ← vuslca; r.add(Si.cursor,∀i ∈ [1, n]);

17 if vuslca 6≺a vslca then
18 r ← (vuslca, {mlii , ∀i ∈ [1, n]});
19 score r and update R∗ with r if r · score > σmin;

20 return R∗

subtree. To implement our processQuery method with

these benchmark algorithms, we need to address the

following issues which are specific to our problem: (a)

finding the tightest nodes under the confirmed SLCA

root vslca and (b) scoring the result partially based on

its candidate query similarity and cohesiveness to apply

intra-query pruning. We propose two techniques to im-

plement the processQuery method based on the bench-

mark algorithms as follows:

1. Scan Eager based Query Processing (SE-QP) and

2. ANchor based Query Processing (AN-QP).

SE-QP Algorithm. Like scan-eager algorithm[26],

SE-QP firstly sorts the inverted lists of the keywords in

q′. Then, it picks a match node m1 from the shortest

inverted list S1 and then, finds the closest match nodes

to m1 from other lists to compute the result root vslca.

However, the tightest subtree result computation and

result scoring is delayed until we can confirm that this

vslca can be an actual SLCA node. Therefore, the cursor

of each of the inverted list is retained until we decide

that this vslca cannot be an ancestor of any other result

roots. Once we confirm that this vslca is an actual SLCA

node, we compute the tightest subtree result for it and

score the result. While scoring the result, we also apply

intra-query pruning here. Then, we advance the cursors

of all of the lists and continue the above steps until we

access all nodes in the list S1.

The SE-QP query processing technique is pseudocoded

in Algorithm 2. In line 1, we sort the inverted list of all

keywords in q′ and do the initialization. In lines 2-3,
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it finds the match node m1 from the shortest list S1

and the match nodes mi from other lists. In line 4, we

find the potential root result vuslca which then should be

confirmed as an actual SLCA node. In line 5, we check

vuslca with the previous result root vslca. If vslca is not

an ancestor for vuslca, denoted as vslca 6≺a vuslca, vslca
is confirmed as the SLCA result root. Then, the corre-

sponding tightest subtree result for vslca is retrieved. To

do so, we scan each list Si by moving its cursor r.cursori
backward and forward to find the closest match nodes

under vslca, which is implemented in function getT ight

of line 7. For each closest match node mli
i , the distance

of mli
i with vslca is computed by getDist function in

line 8 and the score of the result r.score is computed

partially in lines 8-9. We stop scanning other lists if

the partial score cannot beat σmin (intra-query prun-

ing) and jump to line 14, which is given in lines 10-11.

Otherwise, we keep scanning all lists to compute the

tightest subtree result and the ultimate score of r for

the vslca. We update the min heap R∗ by this result r

in line 13. Now, we update vslca with the current result

root vuslca if vuslca 6≺a vslca in lines 15-16. In lines 17-

19, if the last result root node is an actual SLCA, the

similar steps are conducted to score its tightest subtree

result and if promising, is used to update R∗.
AN-QP Algorithm. Like scan-eager algorithm[26],

SE-QP performs worse when the inverted lists have sim-

ilar sizes (e.g., match node distribution). Also, it incurs

many redundant computations when the data distribu-

tion is skewed in T . For example, if the match nodes are

mostly distributed in one part of the XML tree in an

inverted list, SE-QP reads all the nodes in S1 and com-

putes their LCAs to finalize the corresponding SLCAs.

However, lots of these nodes can be skipped because

they are far from the nodes in other inverted lists and

cannot create SLCA nodes.

In order to skip the non-promising match nodes, like

[23], AN-QP considers only the anchor match nodes for

computing SLCA nodes. A set of match nodes M =

{m1, ...mn} for q′ is said to be anchored by a match

node ma ∈ M if for each mi ∈ M \ {ma}, mi =

closest(ma, Si), where closest(ma, Si) returns the match

nodes in the list Si which is closest to the node ma[23].

Unlike SE-QP, the anchor match node ma is picked

from among inverted lists (not necessarily from the short-

est one) so that it can maximize the skipping of redun-

dant computations. Similar to SE-QP, AN-QP first ex-

tracts the SLCA result root vslca and thereafter, finds

the tightest subtree result under vslca and partially

score the result to apply intra-query pruning.

The AN-QP technique is pseudocoded in Algorithm

3. Line 2 finds the anchor node ma from the the in-

verted lists {S1, ..., Sn}, which is implemented in func-

Algorithm 3: AN-QP

Input : R∗, σmin, α, q′,S′
Output: Result Set:R∗

1 r ← null; vslca ← null;
2 ma ← getAnchor({getNext(Si), ∀i ∈ [1, n]});
3 while ma 6= null do
4 mi ← closest(ma, Si),∀i ∈ [1, n]&i 6= a;
5 vuslca ← lca(m1, ...,mn);
6 if r 6= null and vslca 6≺a vuslca then
7 for i = 1→ n do
8 mlii ← getT ight(Si, r.cursori);

9 di ← getDist(vslca,mlii ); d← d+ di
10 r · score← q′ · sim× 1

logα(d+1)+1
;

11 if r · score < σmin then
12 stop reading lists and jump to line 15.

13 r ← (vslca, {mlii , ∀i ∈ [1, n]});
14 update top-k list R∗ with r;

15 r ← null;
16 if vuslca 6≺a vslca then
17 vslca ← vuslca; r.add(Si.cursor), ∀i ∈ [1, n];
18 ma ← getAnchor({getNext(Si), ∀i ∈ [1, n]});
19 if vuslca 6≺a vslca then
20 r ← (vuslca, {mlii , ∀i ∈ [1, n]});
21 score r and update R∗ with r if r · score > σmin;

22 return R∗

tion getAnchor. The potential result root vuslca is com-

puted after finding the closest nodes mi ∈ Si to ma,

∀i ∈ [1, n] and i 6= a in lines 4-5. Here, if vslca 6≺a vuslca,

vslca is confirmed as the SLCA result root as given in

line 6. Therefore, we retrieve the closest match nodes
mli
i ,∀i ∈ [1, n] under vslca. Similar to SE-QP, the func-

tion getT ight of line 8, scans each list Si by moving

its cursor r.cursori backward and forward to compute

the tightest subtree result for vslca. Then, we find the

distance of each mli
i with vslca by the function getDist

and add it to the total distance of r in line 9. Then,

we compute the score of the result r.score partially in

line 10. Here, we apply intra-query pruning if the par-

tial score cannot beat σmin and jump to line 15, which

is given in lines 11-12. Otherwise, we compute the ulti-

mate score of the result by scanning all lists to retrieve

the tightest subtree result under vslca and update r with

its corresponding data in line 13. In line 14, the promis-

ing result r is inserted into R∗. The current result root

vuslca is saved into vslca, if vuslca 6≺a vslca in lines 16-17.

We update the anchor node ma in line 18 for the next

iteration. We check the last result root node and re-

trieve its tightest subtree result if it is an actual SLCA

node in lines 19-20. Finally, we score it and update R∗
with it if r · score > σmin in line 21.
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Fig. 5: A part of the possible execution plans for processing the candidate queries in Q.

4 Batch Processing

This section investigates a more efficient method for

processing the candidate queries Q obtained from the

initial query q0 with the no-but-semantic-match prob-

lem. As the candidate queries in Q are generated by

replacing the keywords of the initial query, they usu-

ally share a subset of keywords. It is possible to com-

pute the results of these shared subsets of keywords

among the queries in Q and then merge the results of

the shared part with the exclusive part of each query

q′ ∈ Q [28]. However, two challenges arise here: (a) find-

ing the groups of queries, called batches, which share a

subset of keywords among them and can be executed

efficiently; and (b) finding the tightest SLCA results for

the shared part which can be ultimately merged with

the exclusive part of each candidate query in a batch.

4.1 Constructing the Candidate Query Batch

Given two candidate queries q1, q2 ∈ Q, assume that

Ks(q1, q2) denotes the set of keywords shared by them,

i.e., Ks(q1, q2) ⊆ q1, q2. We can achieve the best perfor-

mance by putting q1 and q2 in a batch if they share the

maximal set of keywords, i.e., |Ks(q1, q2)| = |q1| − 1 =

|q2|−1 [28]. A candidate query batch is defined as given

below:

Definition 4 A candidate query batch, denoted by B,

is a subset of Q such that the following conditions

hold: (a) ∀q1, q2 ∈ B, |Ks(q1, q2)| = |q1| − 1 = |q2| − 1;

(b) ∀q1, q2, q3 ∈ B, Ks(q1, q2) = Ks(q2, q3) = Ks(q1, q3);

and (c) 1 ≤ |B| ≤ |Q|.

To execute the candidate queries in Q, we have to

construct the set of batches that can cover all queries in

Q. We call the set of candidate query batches that cover

the queries in Q an execution plan, which is defined

below:

Definition 5 An execution plan, denoted by P, is a set

of candidate query batches such that: (a)Q =
⋃|P|
i=1 Bi ∈

P and (b) ∀B1,B2 ∈ P, B1 ∩ B2 = ∅.

An execution plan P has its evaluation cost which is

the summation of the execution costs of its constituent

batches. The execution cost of a batch B directly de-

pends on the inverted keyword lists which have to be

accessed. Assume that Ku is the set of keywords of all

candidate queries in a batch B that has not been cov-

ered by Ks, i.e.,
⋃
∀q1∈B q1 \ K

s. We estimate the cost

of executing B, denoted by c(B) as:

c(B) =
∑
k1∈Ks

|Sk1 |+
∑
k2∈Ku

(|min(SKs)|+ |Sk2 |) (9)

where min(SKs) returns the shortest inverted keyword

list size among the keywords in Ks. However, there exist

many plans for Q as shown in Fig. 5. The optimal plan

has the least cost. Discovering this optimal plan is a

combinatorial optimization problem as there are many

ways of constructing the candidate query batches from

Q. Here, we propose a greedy approach for discovering a

sub-optimal plan which consists of the following steps:

(a) retrieve the topmost similar query q1 ∈ Q to q0;

(b) construct all plausible batches for q1 as follows: (i)

remove a keyword k1 ∈ q1 and construct Ks as q1 \ k1;

(ii) retrieve all q2 ∈ Q such that Ks ⊂ q2; (iii) insert
q1 and all q2 into a plausible batch B1; (c) make the

batch B1 as the actual batch that has the least unit

cost c(B1)
|B1| ; (d) remove all queries B1 from Q; and (e)

repeat the above steps until Q is empty.

Example 10 . Consider the candidate queries Q pre-

sented in Example 7 and the sizes of the inverted lists as

follows: |SJack| = 3, |Sacademic| = 1, |Sfullprofessor| =

1, |Scourse| = 6, |Sgrade| = 2, |Sevent| = 2.

We start with the topmost query q1 ∈ Q and remove

one keyword at a time from q1 to create the plausible

candidate query batches as follows:

B1.1 (Ks = {Jack, academic},Ku={course, grade, event})
B1.2 (Ks = {Jack, course},Ku={academic, fullprofessor})
B1.3 (Ks = {academic, course}, Ku = {Jack})
We estimate the costs of the candidate query batches

as follows: c(B1.1)
|B1.1| = 5.6, c(B1.2)

|B1.2| = 8.5, c(B1.3)
|B1.3| = 11

Therefore, B1.1 is the initial candidate query batch. Af-

ter excluding the queries in B1.1 from Q, the next top-

most similar candidate query q3 is considered and the
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Fig. 6: Shared part processing for query batch B1 of P3.

following plausible batches are constructed:

B2.1 (Ks = {Jack, fullprofessor},Ku={course, grade, event})
B2.2(Ks = {Jack, course},Ku = {fullprofessor})
B2.3(Ks = {fullprofessor, course},Ku = {Jack})
The costs of the above plausible batches are as follows:
c(B2.1)
|B2.1| = 5.6, c(B2.2)

|B2.2| = 13, c(B2.3)
|B2.3| = 11

Hence, B2.1 is the next candidate query batch. Now, if

we exclude all queries in B2.1 from Q, Q becomes empty

and the process stops. Finally, plan P3 is our execution

plan as shown in Fig. 5(c), which is sub-optimal.

4.2 Processing the Candidate Query Batch

To process a candidate query batch B, we need to com-

pute the results of the shared part Ks first. Then, we

need to merge these shared part results with the non-

shared keywords Ku for q′′ ∈ B. However, computing

the shared part results that can be merged with the

unshared part is a non-trivial problem. This is because,

the SLCA result roots of the shared part Ks do not

guarantee to be the SLCA result roots for q′′ ∈ B. The

result roots of q′′ may ascend to higher levels in the

tree T when the shared part results are merged with

the unshared part q′′ \ Ks.
Consider the potential shared part results of {Jack,

academic} for the batch B1 of plan P3 as presented

in Fig. 6. Now, when we merge these results with the

keyword course for q1 ∈ B1, rs1 contributes to the final

SLCA result root, which is vr1slca = [0.2] (see in Fig. 4).

However, when we merge these potential shared part

results with the keyword grade for q2 ∈ B1, rs3 con-

tributes to the final SLCA result and the result root

ascends to vr3slca = [0] (see in Fig. 4). This indicates

that we need to retain rs1 as well as rs3 as the actual

shared part results, though the root of rs3 is not the

SLCA result root of the shared part {Jack, academic},
but the root of rs1 is. Here, we do not need to retain rs2
as d(rs2, T ) = 7 > d(rs3, T ) = 6 and both rs2 and rs3 share

the same root.

Lemma 2 Assume q′′ ∈ B and vsslca is the SLCA result

root of the shared part of B. Then, the tightest match

nodes of the final result of q′′ are under vsslca or under

one of the ancestors of vsslca.

Therefore, to process a candidate query batch shared

part Ks, we find the closest match nodes under the

shared part result root vsslca as well as under all of its

ancestors.

4.2.1 Inter and Intra-Batch Pruning

Assume the candidate queries in a batch Bi are sorted

based on their similarities to q0 as follows: {q1, q2, ..., ql−1
, ql, ..., q|Bi|}. Also, RsBi is the set of shared part re-

sults for Bi. Then, the lower bound of the overall dis-

tances of the results RBi of Bi, denoted by d(RBi , T ),

is min{d(rs ∈ RsBi , T )}. Now, the upper bound of the

cohesiveness of RBi , denoted by θ(RBi , T ) is computed

using d(RBi , T ) in Eq. 8. The upper bound of the σ of

a result rl of query ql ∈ Bi is:

σ(rl, ql, T ) = λ(q0, ql)× θ(RBi , T ) (10)

Assume B′i = {q1, q2, ..., ql−1} andR∗ is the k results

of Q′ = {B1, ...,Bi−1,B′i}. Also, σmin is the min-score

for R∗. Then, we can stop processing the candidate

queries {ql, ..., q|Bi|} ∈ Bi if σ(rl, ql, T ) < σmin. We call

the above pruning technique as intra-batch pruning if

l > 1, otherwise, we call it inter-batch pruning (prune

the entire batch).

4.2.2 The Framework

Algorithm 4 presents the framework for batch query

processing technique (BA-QP) of the no-but-semantic-

match problem. Similar to first 6 lines of Algorithm

1, it generates the candidate queries, measures their

similarity, sorts them and does the initializations in line

1 to apply inter-query pruning first. That is, at each

step of iteration, we take the topmost similar query q′ ∈
Q in line 2 and stop processing the candidate queries in

Q as soon as we find a query q′ ∈ Q such that |R∗| = k

and q′.sim < σmin as given in lines 3-4.

Otherwise, we construct the sub-optimal candidate

query batch B∗ for q′ as given in lines 5-10. In line 12,

the shared part Ks of the candidate query batch B∗ is

processed and its results are stored in Rs. Then, for

each query q′′ ∈ B∗, the upper bound of its actual re-

sults’ score r.score is computed in line 14. In lines 15-16,

we apply inter and intra-batch pruning where we stop

processing the candidate query batch B∗ if |R∗| = k and

r.score < σmin. Otherwise, if |R∗| = k, we update σmin
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Algorithm 4: BA-QP

Input : User Query q0, Tuning Parameter α,
Keyword Inverted Lists S

Output: Top-k Semantically Related Result R∗
1 Repeat Lines 1-6 of Algorithm 1.
2 while q′ ← getNext(Q) 6= null do
3 if R∗ · getSize() = k and q′ · sim < σmin then
4 break ; // inter-query pruning

5 for i = 1 → n do
6 Ks ← q′ \ ki
7 B ← getBatch(Q,Ks)
8 Ku ← getUnique(B,Ks)
9 B.add(Bi, c(Ks,Ku))

10 B∗ ← getMinCost(B); S′ ← {};
11 retrieve Inverted Lists ∀ki ∈ B∗.Ks into S′;
12 Rs ← sharedPartComputation(σmin, α, q′′,S′)
13 while q′′ ← getNext(B∗) 6= null do

14 r · score← q′′ · sim× coh(Rs, T );
15 if R∗ · getSize() = k and r · score<σmin

then
16 break; // inter and intra-batch pruning

17 if R∗ · getSize() = k then
18 root←R∗ · root();σmin ← root · score;
19 ku ← q′′ \ B∗.Ks;
20 S1 ← retrieveKeywordInvertedList(ku,S);
21 R∗ ← mergeResults(R∗,Rs, σmin, α, q′′, S1);

22 Q ← Q \ B∗
23 return R∗

by reading the root entry of the heap R∗ in lines 17-

18. In lines 19-20, the unshared keyword part ku of the

batch query q′′ and the corresponding inverted list S1

are retrieved. The procedure mergeResults in line 21

generates the final results for q′′ by merging shared part

results Rs with the unshared part ku and inserts the

promising results into R∗. Finally, the queries q′′ ∈ B∗
are excluded from the Q as pseudocoded in line 22. The

above steps continue until Q becomes empty.

The details of the sharedPartComputation method

in line 12 of Algorithm 4 is presented in Algorithm 5.

In lines 2-5, we compute the result root vslca. Then, we

compute all the ancestors of vslca which is implemented

in the function getAncestors and put them in the po-

tential result roots A in line 6. For each potential result

root vsslca ∈ A, we check if it is already processed and is

in memoryRs in line 8. If vsslca 6∈ Rs, this result has not

been processed and thus, we compute the closest nodes

under vsslca in the inverted lists Si,∀i ∈ [1, n− 1], their

distance to vslca, and their score (lines 9-12). In lines

13-14, we check if the score can beat σmin (intra-query

pruning). In lines 15-16, r is updated and inserted into

Rs because it is promising. In line 17, we update the

anchor match node ma for the next iteration.

The details of the mergeResults method in line 21

of Algorithm 4 is presented in Algorithm 6. In lines 2-

5, we compute the potential result root vuslca which is

yet to be confirmed. If the previous result root vslca is

Algorithm 5: BA-QP (sharedPartComputation)

Input : σmin, α, q′,S′
Output: Shared Result Rs

1 Rs ←null;
2 ma ← getAnchor({getNext(Si), ∀i ∈ [1, n− 1]});
3 while ma 6= null do
4 mi ← closest(ma, Si),∀i ∈ [1, n− 1] and i 6= a;
5 vslca ← lca(m1, ...,mn−1);
6 A ← vslca ∪ getAncestors(vslca);
7 while vsslca ← getNext(A) 6= null do
8 if vsslca /∈ Rs then
9 for i = 1→ n− 1 do

10 mlii ← getT ight(Si, Si.cursor);

11 di ← getDist(vsslca,m
li
i ); r.d← r.d+ di;

12 r · score← q′ · sim× 1
logα(r.d+1)+1

;

13 if r · score < σmin then
14 stop reading lists, jump to line 6.

15 r ← (vsslca, {mlii , ∀i ∈ [1, n]});
16 Rs · insert(r);
17 ma ← getAnchor({getNext(Si), ∀i ∈ [1, n− 1]});
18 return Rs

not an ancestor of vuslca, then vslca is confirmed as the

SLCA result root in line 6. Thus, from Rs, we retrieve

the precomputed closest match nodes mli
i ,∀i ∈ [1, n−1]

of the shared part which is implemented in function

retrieveNode in line 8 and the distance of the shared

part which is implemented in the function retrieveDist

in line 9. Then, in lines 10-11 we compute the closest

match node mln
n for the unshared part and its distance

to vslca and finally, add this distance to the total dis-

tance of r. In lines 13-15, we compute r.score and if

r.score > σmin, the result is added to R∗. We update

vslca with the current result root vuslca if vuslca 6≺a vslca
in lines 16-17. Then, the anchor match node ma is up-

dated in line 18. In lines 19-21, if the last result root

is SLCA and is not considered, similar steps are taken

and the corresponding result is inserted into R∗ if it is

promising.

5 Experiments

This section evaluates the effectiveness and the effi-

ciency of our approach for solving no-but-semantic-match

problem in XML keyword search. To compare our re-

sults, we adapt and implement the closely related ex-

isting XOntoRank method [34] which uses ontology to

enhance the XML keyword search on medical datasets.

The adaptation is achieved as follows. We create a hash

map for the ontologically relevant keywords to the origi-

nal keywords by using ontological knowledge base. Then

for each keyword ki ∈ q0 we look up the hash map and

find the candidates and put them in the set of candi-

date keywords K. Then we create Onto-DIL for each
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Algorithm 6: BA-QP (mergeResults)

Input : R∗,Rs, σmin, α, q′′, S1

Output: Top-k Result R∗
1 r ← null;vslca ← null;
2 ma ← getAnchor({getNext(S1), getNext(S2)});
3 while ma 6= null do
4 mi ← closest(ma, Si), ∀i ∈ [1, 2] and i 6= a;
5 vuslca ← lca(m1,m2);
6 if r 6= null and vslca 6≺a vuslca then
7 if vslca ∈ Rs then
8 mlii ← retrieveNode(r,Rs), ∀i ∈ [1, n− 1];
9 d← retrieveDist(r,Rs);

10 mlnn ← getT ight(S1, r.cursor1);

11 d← d+ getDist(vslca,mlnn );

12 r ← (vslca, {mlii , ∀i ∈ [1, n]});
13 r · score← q′′ · sim× 1

logα(d+1)+1
;

14 if r · score > σmin then
15 update top-k list R∗ with r;

16 else if vuslca 6≺a vslca then
17 vslca ← vuslca; r.add(S1.cursor);

18 ma ← getAnchor({getNext(Si), ∀i ∈ [1, 2]});
19 if vuslca 6≺a vslca then
20 make r by repeating lines 8-12;
21 score r and insert to R∗ if promising;

22 return Rs

Algorithm 7: XO-QP

Input : User Query q0, Data T , Ontology O
Output: Top-k Semantically Related Results R∗

1 H ← createHashMap(q0, O);
2 σmin ← 0;
3 foreach ki ∈ q0 do
4 K ← findRelevant(ki, H);
5 S′ ← createDIL(ki ∪ K, T );
6 S′.add(NS(ki, k)), ∀k ∈ K;
7 Sonto ← Sonto ∪ S′;
8 while inverted lists in Sonto 6= null do
9 r ← computeLCA(Sonto);

10 r.score←
∑
m.NS, ∀m ∈ r;

11 if r.score > σmin then
12 update top-k list R∗ with r;
13 update(σmin);

14 return R∗

keyword ki ∈ q0 and all of its associated candidates

in K. Afterward, we compute the node score for each

entry based on the relevance degree of the original key-

word ki to the candidate keywords in K. Finally, the

inverted list is added to Onto-DIL Sonto. After creating

Sonto, we compute LCAs by using Onto-DIL index and

for each result r, the score is computed using the node

score of its matched nodes. If the result score r.score is

better than the threshold σmin, the result is added to

top-k list R∗. The above is pseudocoded in Algorithm

7. We term this method as XO-QP in this paper.

5.1 Settings

Datasets and Queries: We evaluate our algorithms

on two real datasets: (a) IMDB 170MB, that includes

around 150,000 recent movies and TV series. (b) DBLP

650MB, which contains publications in major journals

and proceedings. We use a wide range of queries to test

the efficiency of our proposed methods for each dataset.

For each test query, we choose keywords which satisfy

the followings: (a) a keyword should be used often by

the users and (b) a non-exiting keyword should have

some semantic counterparts, which have direct map-

ping in the data source. The test queries have no-but-

semantic-match problem. Table 2 presents a part of the

test queries called sample queries for detailed analysis

of efficiency and effectiveness of our methods.

Environment: All algorithms are implemented in C#

and the experiments are conducted on a PC with 3.2

GHz CPU, 8 GB memory running 64-bit windows 7.

5.2 Effectiveness

This section evaluates the effectiveness of our approach

from different perspectives.

5.2.1 Our Approach versus Intuitive Solution

When a user issues a query and faces an empty re-

sult, she might try to change the initial query to obtain

some results. However, being unfamiliar with the data

source, the user is likely to think of a few synonyms of

the keywords of the initial query. Assume the user is a
kind of expert and succeeds in constructing the 10 top-

most similar queries when changing the initial query.

These queries may not produce good results but we

consider this intuitive solution as a benchmark to gauge

the effectiveness of the technique we propose. Here, we

compare the top-10 results retrieved by our approach

which processes all possible candidate queries with the

intuitive solution which processes only the 10 topmost

similar queries for all test queries given in Table 1. In

Fig. 7 (a) and Fig. 8 (a), the average candidate query

similarity of the top-10 results for the two approaches

are presented for each dataset. Clearly for all the test

queries, the average similarity of the results retrieved

by our approach is very close to the average candidate

query similarity of the results of the intuitive solution.

Fig. 7 (b) and Fig. 8 (b) show, on average, smaller num-

ber of edges (indicate better cohesiveness) for the top-

10 results retrieved from our approach compared to the

intuitive solution. This shows that an ad-hoc approach,

even if it is suggested by an expert, is unlikely to find
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Table 2: A Sample of test queries for IMDB and DBLP datasets

Test Query Set
# IMDB |Q| # DBLP |Q|
q0.1 ghost, badgering, movie 12 q0.1 exigency, analysis, system 252
q0.2 battler, spanish, drama 272 q0.2 academic, fraudulence, threat 4500
q0.3 slump, federal, reserve, harshness, documentary 285 q0.3 information, ordination, track 360
q0.4 reproach, trespasser, fight, drama 357 q0.4 involvement, neuroscience, indicant, information 350
q0.5 treasonist, zombie, shiver 1295 q0.5 mutter, alarm, analysis 2079
q0.6 research, outlander, universe 3528 q0.6 deceit, type, analysis 8190
q0.7 mass murder, horror, perfidy 11900 q0.7 online, trust, selling 276
q0.8 victory, exaltation, drama 851 q0.8 aftermath, type, analysis, system 225
q0.9 partiality, perfidy, fear, english 442 q0.9 psychopathy, symptom, visualization, science 3276
q0.10 criminal, overcharge, loneliness 12240 q0.10 interloper, search , analysis, system 352
q0.11 criminal, fear, spanish 1152 q0.11 trace, audit , system 238
q0.12 victory, exuberance, drama, fight 437 q0.12 trace, type, analysis 255
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Fig. 7: (a) Average similarity of the candidate queries and (b) average distance of top-10 results for our approach

and intuitive solution on IMDB; (c) Average query similarity versus average result distance with varying α.
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Fig. 8: (a) Average similarity of the candidate queries and (b) average distance of top-10 results for our approach

and intuitive solution on DBLP; (c) Average query similarity versus average result distance with varying α.

results that are superior to those provided by the sys-

tematic method suggested in this study. In compari-

son with the intuitive solution, our approach also does

not retrieve results from the candidate queries that are

far from the user given initial query in terms of can-

didate query similarity. In addition of it, our approach

provides the flexibility of trading of the above two as-

pects, e.g., sometimes users may prioritize cohesive re-

sults over similarity to the original query. The tuning

parameter α in our approach can be used to balance

the weight of these two aspects. Fig. 7(c) and Fig. 8(c),

show that as α becomes smaller, the similarity of the

results decreases because more priority is given to re-

sult cohesiveness and therefore, the cohesiveness score

of the results improves. That is, by setting α to smaller

value, our approach effectively retrieves more cohesive

results while the similarities of their contributing can-

didate queries are not very far from the initial query.

5.2.2 Effect of Tuning Parameter

Now, we provide two fine-grained case studies as fol-

lows: (1) the influence of the tuning parameter α on

the ranking of the retrieved results and (2) trading off

between query similarity and result cohesiveness in the

final top-k results based on α.
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Table 3: Ranking of r1 is tolerant to α as it is better than r4 in terms of both query similarity and result cohesiveness

α d(r1, T ) λ(q0, q1)× θ(r1, T ) σ(r1, q1, T ) d(r4, T ) λ(q0, q4)× θ(r4, T ) σ(r4, q4, T ) ∆(r1, r4)

2 7 0.9167× 0.25 0.2291 8 0.8462× 0.2398 0.2029 0.0262
3 7 0.9167× 0.3456 0.3168 8 0.8462× 0.3333 0.282 0.0348
4 7 0.9167× 0.4 0.3666 8 0.8462× 0.3868 0.3273 0.0393
8 7 0.9167× 0.5 0.4583 8 0.8462× 0.4862 0.4114 0.0469
16 7 0.9167× 0.5714 0.5238 8 0.8462× 0.5578 0.472 0.0518

Table 4: Trading off candidate query similarity and result cohesiveness in r2 and r7

α d(r2, T ) λ(q0, q2)× θ(r2, T ) σ(r2, q2, T ) d(r7, T ) λ(q0, q7)× θ(r7, T ) σ(r7, q7, T ) ∆(r2, r7)

2 11 0.8462× 0.2181 0.1845 7 0.7549× 0.25 0.1887 -0.0042
3 11 0.8462× 0.3065 0.2593 7 0.7549× 0.3456 0.2608 -0.0015
4 11 0.8462× 0.3581 0.303 7 0.7549× 0.4 0.3019 0.0011
8 11 0.8462× 0.4555 0.3854 7 0.7549× 0.5 0.3774 0.008
16 11 0.8462× 0.5273 0.4462 7 0.7549× 0.5714 0.4313 0.0149

Case Study-1: This case study demonstrates that

our approach is tolerant to the settings of α if one re-

sult beats another one in terms of both query similar-

ity and result cohesiveness. This is also expected as the

user might explore the top cohesive results with better

similarity first. Consider the queries given in Example

7. Here, we extract r1 from q1 and r4 from q4 as shown

in Fig. 4. From Table 3, we see that r1 will always be

ranked better than r4 as r1 has the higher overall score

σ than r4 for all settings of α.

Case Study-2: This case study demonstrates how

the user can trade off between query similarity and the

result cohesiveness based on α. Assume a user would

like to explore the results with better cohesiveness first

than those with higher similarity. Consider a candidate

query q7 = {Jack, academic, position} with λ(q0, q7) =

0.7549 and a result r7 from q7 with d(r7, T ) = 7. Now,

we compare it with r2 with d(r2, T ) = 11 from q2 with

λ(q0, q2) = 0.8462 as given in Example 7. From Table

4, we observe that r7 outranks r2 for α = [2, 3]. Now,

a user needs to set α > 3 to explore r2 before r7 in the

result list by putting more emphasis on query similarity

than result cohesiveness.

5.2.3 Our Approach versus XO-QP

In this section, we provide a detailed study of the top

candidate query obtained from the top-10 results for

different methods. The methods include our proposed

method using the tuning parameter α = 2 and α = 16,

intuitive solution (which only executes the top simi-

lar queries), XO-QP (which takes the result distance

fixed), and XO-QP (which apply the result distance

into ranking). In fact, the top-1 query, is the candi-

date query which has the biggest number of results

among top-10 results. The number of results from a

candidate query to the total number of top-k results

is defined as η(R∗, q′). Therefore, we provide in Table

5 and Table 6 the top-1 candidate queries on IMDB

and DBLP datasets respectively. These queries have the

maximum η(R∗, q′) among the candidate queries which

contribute to top-k results. Clearly, our method that set

α to 2 has the minimum d(r,D) among other methods

in both datasets. That’s because if we set α to a lower

number, we put more emphasis on result cohesiveness

and therefore, the results with better cohesiveness are

ranked higher. However, when we look at our method

using α = 16, the similarity of the top query in most

cases is better comparing to our method using α = 2. In

the intuitive solution, the top candidate query has the

maximum similarity in most cases. Since the intuitive

solution only generates top similar queries to retrieve

the semantically related results, the similarity of the

top candidate query is the maximum in most cases. The

XO-QP using fixed distance for ranking the results have

the worst cohesiveness score in most cases. That’s be-

cause XO-QP uses XRank[13] for retrieving results and

therefore, does not limit the results to SLCAs. More-

over, when we do not reflect the distance of the results

into the ranking, more sparse results may be ranked

higher and inserted to Top-k list. However, when we

reflect the distance into ranking of XRank, then the

cohesiveness of the results improves.

5.3 Evaluation of Quality

In this section, we evaluate the quality of our approach

and compare it with XO-QP. Here, we select some sam-

ple queries with no-but-semantic-match problem for both

datasets to conduct a comprehensive user study and

thereafter, evaluate the overall quality of our approach.

In order to carry out a fair user study, we select the

users among both experts who have worked in XML
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Table 5: Top candidate queries for different methods in IMDB

Original Query Method Top-1 Candidate Query η(R∗, q′) λ(q0, q′) d(r ∈ q′, T )

q0.4 Our Approach(α = 2) blame, fight, drama, intruder 0.1 0.94 8
q0.4 Our Approach(α = 16) blame, fight, drama, intruder 0.1 0.94 8
q0.4 Intuitive Solution blame, fight, drama, intruder 0.1 0.94 8
q0.4 XO-QP (No Dist) blame, fight, drama, squatter 0.5 0.92 12
q0.4 XO-QP (Dist) blame, fight, drama, intruder 0.3 0.94 11
q0.7 Our Approach(α = 2) massacre, panic, betrayal 0.2 0.87 3
q0.7 Our Approach(α = 16) slaughter, treachery, revulsion 0.1 1 6
q0.7 Intuitive Solution slaughter, treachery, revulsion 0.1 1 6
q0.7 XO-QP (No Dist) uxoricide, apprehension, betrayal 0.1 0.8 8
q0.7 XO-QP (Dist) hit, panic, betrayal 0.3 0.8 3
q0.9 Our Approach(α = 2) call, betrayal, fear, english 0.1 0.85 4
q0.9 Our Approach(α = 16) fancy, treachery, fear, english 0.1 1 8
q0.9 Intuitive Solution fancy, treachery, fear, english 0.1 1 8
q0.9 XO-QP (No Dist) bias, treachery, fear, english 0.5 0.93 12
q0.9 XO-QP (Dist) tilt, betrayal, fear, english 0.4 0.93 11
q0.10 Our Approach(α = 2) murderer, extortion, blood 0.3 0.76 3
q0.10 Our Approach(α = 16) crook, extortion, desolation 0.1 0.94 7
q0.10 Intuitive Solution crook, extortion, desolation 0.1 0.94 7
q0.10 XO-QP (No Dist) outlaw, extortion, desolation 0.3 0.94 9
q0.10 XO-QP (Dist) outlaw, extortion, desolation 0.3 0.94 9
q0.12 Our Approach(α = 2) enthusiasm, drama, fight, triumph 0.1 1 8
q0.12 Our Approach(α = 16) enthusiasm, drama, fight, triumph 0.1 1 8
q0.12 Intuitive Solution enthusiasm, drama, fight, triumph 0.1 1 8
q0.12 XO-QP (No Dist) madness, drama, fight, triumph 0.6 0.94 12
q0.12 XO-QP (Dist) madness, drama, fight, win 0.4 0.87 10

Table 6: Top candidate queries for different methods in DBLP

Original Query Method Top-1 Candidate Query η(R∗, q′) λ(q0, q′) d(r ∈ q′, T )

q0.1 Our Approach(α = 2) emergency, research, system 0.4 0.88 3
q0.1 Our Approach(α = 16) emergency, research, system 0.4 0.88 3
q0.1 Intuitive Solution emergency, research, system 0.4 0.88 3
q0.1 XO-QP (No Dist) pinch, breakdown, system 0.6 0.94 6
q0.1 XO-QP (Dist) pinch, breakdown, system 0.6 0.94 6
q0.7 Our Approach(α = 2) online, content, exchange 0.1 0.52 0
q0.7 Our Approach(α = 16) online, faith, merchandising 0.1 1 6
q0.7 Intuitive Solution online, faith, merchandising 0.1 1 6
q0.7 XO-QP (No Dist) online, faith, trading 1 1 6
q0.7 XO-QP (Dist) online, faith, trading 1 1 6
q0.8 Our Approach(α = 2) impact, order, analysis, system 0.1 0.69 0
q0.8 Our Approach(α = 16) impact, order, analysis, system 0.1 0.69 0
q0.8 Intuitive Solution wake, variety, analysis, system 0.1 0.94 8
q0.8 XO-QP (No Dist) wake, variety, analysis, system 1 0.94 8
q0.8 XO-QP (Dist) wake, variety, analysis, system 1 0.94 8
q0.10 Our Approach(α = 2) whole, study, analysis, system 0.1 0.24 0
q0.10 Our Approach(α = 16) intruder, hunt, analysis, system 0.1 1 8
q0.10 Intuitive Solution intruder, hunt, analysis, system 0.1 1 8
q0.10 XO-QP (No Dist) intruder, lookup, analysis, system 0.3 1 8
q0.10 XO-QP (Dist) intruder, lookup, analysis, system 0.3 1 8
q0.11 Our Approach(α = 2) gesture, testing, system 0.1 0.72 0
q0.11 Our Approach(α = 16) gesture, testing, system 0.1 0.72 0
q0.11 Intuitive Solution hint, testing, system 0.1 0.9 6
q0.11 XO-QP (No Dist) hint, search, system 0.7 0.9 6
q0.11 XO-QP (Dist) hint, search, system 0.7 0.9 6
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keyword search areas and naive users who are graduate

computer science students. To do the study, we present

to the users with the original queries and their top-10

candidate queries/results retrieved from the top result

listR∗. After that, we ask the users to assess the quality

of each candidate query with regards to their semantic

similarity to the original query by scoring the candidate

queries/results using Cumulated Gain metric [39]. They

score each candidate query/result from 0 to 5 points (5

means the best and 0 means the worst).

5.3.1 Ranking Scheme Comparison

The average quality scores of the top-5 and top-10 queries

/results for our approach and the existing counterpart

XO-QP are presented in Fig. 9 and Fig.10 respectively.

From Fig. 9, we observe that our proposed method sug-

gests reasonable results for the no-match query for both

top-5 and top-10 results. Also, we see that the average

quality of top-5 results are always better than the av-

erage quality of top-10 results which indicates that our

ranking function successfully ranks more similar and

meaningful results higher than the rest of the results.

However, we observe that in many cases for the ex-

isting method XO-QP, the average quality of results

for top-10 is higher than top-5 results (for instance for

q0.2, q0.4, q0.11 in IMDB and for q0.3, q0.7, q0.10 in DBLP)

as shown in Fig. 10. This indicates that XO-QP some-

times ranks some less similar and meaningful results

higher. This is probably because of adapting XRank

scheme into XO-QP. We conclude that our approach ad-

dresses the no-but-semantic-match problem better than

the existing XO-QP method.

5.3.2 Precision

In this section, we compare the precision of our pro-

posed method with the XO-QP method. In order to

make a comparison, we count the number of meaningful

results in top-10 results. A result is regarded as mean-

ingful if the average quality score of the assessors is not

less than 3. We see that the precision of our approach

and XO-QP is presented on both IMDB and DBLP as

shown in Fig. 11. In IMDB, we see that the precision

of our proposed method is better than XO-QP. This is

because we use both semantic similarity and cohesive-

ness scores to rank the results and retrieve the tightest

SLCA results with the maximum similarity to the orig-

inal query keywords. Also in DBLP, we observe that

the precision of our method is better than XO-QP in

many cases specially in q0.1, q0.3 and q0.8. That’s be-

cause our method can effectively retrieve the most sim-

ilar results that are cohesive and make a meaningful

combination in terms of data cohesiveness. However, in

some cases like q0.11 and q0.12, we see that the precision

of our method is smaller than XO-QP because it uses

less similar keywords in the candidate query to retrieve

more cohesive results. But the precision is not largely

deteriorated as we see in XO-QP in many cases.

5.4 Efficiency

To demonstrate the efficiency of our approach, we use

a baseline method which applies inter query pruning

only, and uses scan eager for query processing. We call

this baseline query processing as BL-QP. The purpose

of this baseline is to demonstrate the efficiency of the

intra-query pruning scheme in our proposed methods.

Overall, we compare the performance of the following

methods: (a)BL-QP, (b) SE-QP, (c) AN-QP, and (d)

BA-QP, and (e) XO-QP.

5.4.1 Processing Time

Fig. 12 shows the response time of computing the top-10

semantically related results for the sample queries (pre-

sented in Table 2) on the IMDB and DBLP datasets.

According to the results, BA-QP achieves the best per-

formance. The reason behind this is that we apply in-

ter and intra batch prunings in BA-QP in addition of

inter and intra-query prunings. Also, we share the par-

tial results of the shared keywords among the candi-

date queries in a batch. On average, BA-QP consumed

30 percent time of the time needed by the SE-QP and

AN-QP methods. The difference, however, depends on

the number of candidate queries. In Fig. 12 (a), the

response time for processing the test query q0.1 in BA-

QP is very close to those of SE-QP and AN-QP due to

the small number of candidate queries for q0.1 which

is 12 and insufficient number of batches (in this case

we have only one batch) to apply inter-batch pruning.

Moreover, if the cost of merging the shared part Ks with

the unshared part Ku is relatively high in most of the

batches, BA-QP may not outperform the other meth-

ods as we see in q0.5 on DBLP. In IMDB q0.5, however,

AN-QP outperforms SE-QP by a large margin because

the data distributions in most of the inverted lists are

skewed. In such case, many nodes are skipped in AN-

QP, which improves the performance. Clearly, BL-QP

has the worst performance on most cases because it

does not apply the intra query pruning, therefore, in-

curs unnecessary computations. The XO-QP, however,

is comparable to BA-QP in many cases because we set

the node score threshold to 0.9 which means that only

the relevant nodes to the keywords with the similarity

degree bigger than 0.9 are selected. If we set this value
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Fig. 9: Average quality of results in our approach: top-5 vs. top-10.
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Fig. 10: Average quality of results in XO-QP: top-5 vs. top-10.
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Fig. 11: Precision comparison for computing top-10 results.

to a smaller number, XO-QP performance deteriorates

and gets closer to AN-QP and SE-QP. Moreover, XO-

QP builds a special inverted list called XOnto-DIL for

the keywords which takes additional time and space for

its creation while our proposed methods do not use such

indexing and use the normal DIL for query processing.

In Fig.13, the average processing time of different

methods for all test queries are presented. Clearly the

baseline method which does not use intra query prun-

ing spends the maximum time for processing on both

datasets. The SE-QP and AN-QP spend less time com-

paring to BL-QP because we apply inter and intra query

pruning and therefore, the processing terminates early

when we reach to the global σmin. Moreover, there

is a narrow improvement in the AN-QP over SE-QP

due to using the anchor node processing which skips
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many redundant computations and expedites the ef-

ficiency. The BA-QP processing improves sharply on

both datasets because in BA-QP, we execute queries in

batch and share the computations among the queries in

the batch and thereafter, we reach to the global σmin

before SE-QP and AN-QP can do. Also, we can apply

inter and intra-batch pruning which expedite its effi-

ciency. In XO-QP, however, the performance is close to

BA-QP on both datasets because we build the XOnto-

DIL on the nodes with the relevance degree no less than

0.9. In such condition, only the highly relevant nodes

are selected to replace the keywords, therefore, the pro-

cessing time does not grow considerably due to small

number of candidate keywords. In contrast, by setting

the threshold to lower numbers, the processing time will

grow exponentially and gets closer to SE-QP. Further-

more, our methods do not need to build special index-

ing, therefore, avoid using additional space and offline

processing time for building such indexing.

5.4.2 Effect of Query Length

In this experiment, we choose test queries that have at

least 100 candidate queries. At each step, we set their

length to a number of settings ({3, 4, 5, 6}) and compute

the average response time of all queries when process-

ing 100 candidate queries while setting k to 10. In each

step, for the test queries that have smaller number of
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Fig. 14: Average processing time of the test queries with

varying query length (i.e., number of keywords).

keywords, we add additional keywords to increase their

length. We also use the same queries to conduct experi-

ments and compare the results with XO-QP method. In

Fig. 14 the effect of growing the length of queries on the

response time is analyzed. The response time of BA-QP

is almost fixed compared to XO-QP, BL-QP, SE-QP,

and AN-QP on IMDB. Similarly in DBLP, BA-QP has

the slowest growth in response time when the number

of keywords increases while BL-QP, SE-QP and AN-

QP show a big jump in processing times. Also, XO-QP

shows a jump in the processing time when the query

length increases. Thus, the performance of XO-QP is

sensitive to the query length parameter. The sharpest

increase in the processing time is related to BL-QP be-

cause it does not apply intra-query pruning, therefore,

all the inverted lists are accessed during the processing

and this incurs many useless computations specifically

when the query length increases.

In summary, we can conclude that BA-QP method

is not sensitive to the number of keywords due to shar-

ing the computations while the performance of SE-QP

and AN-QP is highly sensitive to the query length.
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Fig. 15: Average processing time of the test queries with

varying k in top-k list.

5.4.3 Effect of Top-k List Size k

In this experiment, we vary the top-k size k and com-

pute the average processing time. In Fig. 15, we observe

the effect of top-k size k on the average processing time

for different methods. Clearly, the BA-QP and XO-QP

methods are not that sensitive to the value of k. By in-

creasing the value of k, processing times of BA-QP and

XO-QP show only a small increase or almost fixed. On

the other hand, for SE-QP and AN-QP methods, any

increase on k, leads to a considerable jump on the av-

erage processing time. However, this increase is not big

when we change k from 10 to 20. When k is selected as

a bigger number, σmin will be smaller and this causes

the inter query pruning in SE-QP and AN-QP to be less

effective. That is, the application of inter-query prun-

ing is delayed in SE-QP and AN-QP for big k. How-

ever in BA-QP, we execute a candidate query batch by

sharing the computations among the queries in it and

thereafter, we reach to the global σmin before SE-QP

and AN-QP can do. Also, we can apply inter and intra-

batch pruning with this early found global σmin which

helps BA-QP to expedite its efficiency.

5.4.4 Effect of Tuning Parameter α

In this experiment, we vary α between a number of set-

tings ({2, 4, 8, 16}) and compute the average processing

time of the test queries when k = 10. Fig. 16 presents

the effect of choosing different values for α. Larger val-

ues of α reduce the sensitivity to data cohesiveness.

This usually leads to a more effective intra-query prun-

ing and decreases the processing time. On the contrary,

as α decreases, the possibility for the partial results

scores to be smaller than the σmin also decreases. In

this case, the intra-query pruning becomes less effec-

tive and therefore, the processing time increases, specif-

ically, in SE-QP and AN-QP. In BL-QP, however, there

is no significant difference in the processing time when

α changes to smaller number. This is because BL-QP
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Fig. 16: Average processing time of the test queries with

varying tuning parameter α.
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Fig. 17: Processing time with varying number of candi-

date queries |Q|.

does not apply intra query pruning and therefore, the

processing time is not affected that much by α.

5.4.5 Effect of Candidate Queries Number |Q|

For this experiment, we choose test queries which have

at least 200 candidate queries. At each step we pro-

cess a certain number ({40, 80, 120, 160, 200}) of their

candidate queries and compute the average processing

time when k = 10. In Fig. 17, the effect of growing the

number of candidate queries |Q| on the response time is

analyzed. The response time of BA-QP method grows

slowly compared to BL-QP, SE-QP, and AN-QP which

show a sharp rise in each step. In BL-QP, the growth in

the query processing time is the maximum among the

methods because it does not apply intra query prun-

ing, therefore, it incurs many unnecessary computations

during execution of the candidate queries. We can con-

clude that BA-QP is not that sensitive to |Q|. This

is because BA-QP not only shares the computations

among the candidate query batch but also applies in-

ter and intra batch pruning with the early-found global

σmin to expedite its performance.

5.4.6 Pruning Improvement

In this section, we show the pruning effect on the pro-

cessing time. From Fig. 18, the sample queries process-

ing time are shown for 3 scenarios: (a) when there is no

pruning for processing the queries, (b) when only the
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inter query pruning is implemented, and (c) when both

inter and intra pruning methods are implemented. The

processing time are measured using SE-QP method.

Clearly, the inter query pruning shows the most effec-

tive method to cut the processing time on most of the

sample queries. If the number of candidate queries is

large and the breaking point occurs when most of the

queries are not executed, then inter query has the best

performance. e.g., in the sample queries q0.9 and q0.10
on IMDB, the number of executed queries are 225

442 and
4918
12240 respectively and in the sample queries q0.6 and

q0.9 on DBLP, the number of executed queries are 912
8190

and 1287
3276 respectively. Therefore in these cases, most of

the queries are not executed by using inter query prun-

ing and the processing time reduced sharply. The intra

query pruning is more effective when the number of

query keywords is bigger or the inverted list that is not

accessed due to pruning is big sized. In such condition,

some inverted lists are not accessed when the result is

not able to beat the σmin and this expedites the pro-

cessing time. For example, in the sample queries q0.8
and q0.9 on IMDB and q0.4 and q0.9 on DBLP, the query

keywords are from 4 to 5 keywords and include some

big sized inverted lists that are not accessed, therefore

the processing time reduced considerably.

Fig. 19 presents the average processing time for the

set of test queries for 3 scenarios: (a) no pruning is

implemented, (b) only inter query pruning is imple-

mented, and (c) both pruning techniques are imple-

mented. Clearly, the processing time for the case with

no pruning is maximum on both datasets. This shows

that inter query pruning has the most tangible effect on

the processing time by avoiding to execute the queries

that cannot contribute to the R∗. The efficiency im-

provement on IMDB and DBLP is 2 and 3 times re-

spectively. After that, intra query pruning expedites the

efficiency by avoiding to access all inverted lists when

the result cannot beat σmin.

Fig. 20 presents the sample queries processing time

for BA-QP in 2 scenarios: (a) when no batch pruning is

implemented, (b) when batch pruning is implemented.

In most cases, the processing time for the method which

uses pruning has decreased. The batch pruning becomes

more effective when the query length increases as shown

in q0.3 and q0.12 on IMDB or in q0.4 and q0.8 on DBLP.

Moreover, when the candidate queries contain some big

inverted lists and we reach to the global σmin early, the

improvement is more considerable as in q0.1 and q0.2

on IMDB and in q0.1 and q0.7 on DBLP.

Fig. 21 shows the average processing time of the

test queries for BA-QP on 2 cases: (a) when no batch

pruning is implemented, (b) when batch pruning is im-

plemented. We observe from the picture that the batch

pruning improved the processing time on both datasets,

however, the improvement on DBLP is more consider-

able. The improvement is achieved because we reach

to the global σmin earlier by applying batch pruning,

therefore it expedites the performance.
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Fig. 20: Batch Pruning Improvement on Sample Queries.
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Fig. 21: Average Batch Pruning Improvement.

6 Related Work

Failed Queries. When a user queries a data source, the

result may be empty or otherwise below expectation.

This problem known as failed queries has inspired a

broad range of research in the database community (e.g.

[30],[31],[32]). In the context of relational databases,

the problem has been studied by Nambiar and Kamb-

hampati [21], Muslea [19] as well as Muslea and Lee

[20]. Nambiar and Kambhampati [21] presented approx-

imate functional dependencies to relax the user original

query and find tuples similar to the user query. Muslea

[19], as well as Muslea and Lee [20] used machine learn-

ing techniques to infer rules for generating replacement

queries. Amer-Yahia, Cho and Srivastava [3], Brodian-

skiy and Cohen [6] as well as Cohen and Brodianskiy

[9] studied query relaxation for XML data. The stud-

ies proposed to discover the constraints in the queries

that prevent results from being generated and remove

them so that a result can be produced. All these inves-

tigations focus on the modification of the user original

query constraints on the content level rather than the

semantic analysis of the original query constraints. Hill

et al. [29], used the ontology information to relax struc-

tured XML queries. Farfan et al. [34], proposed XOn-

toRank system to address the ontology-aware XML key-

word search of electronic medical records. Unlike their

work which uses SNOMED ontology for enhancing the

search on medical records, we address the general no-

match problem on XML data and use a general onto-

logical knowledge base like a thesaurus or dictionary to

solve the problem for general documents.

Query Expansion. Query expansion has widely

studied in many works such as [35],[36],[37],[38]. Schenkel,

Theobald, and Weikum [36] proposed XXL which com-

bines the keyword search with structural conditions and

semantic similarity to increase the quality of results.

Kim and Kong [37] suggested a query expansion tech-

nique that uses an ontology algorithm to map a target

DTD to ontology. This scheme is successful for expand-

ing the queries minimally. Kim, Kong, and Jeon [38]

developed a web XML document search engine that ap-

plies ontology-DTD match algorithm for remote docu-
ments. However, in all of the above works, the focus is

on structured queries. In our work, we find some seman-

tic counterparts for specific non-mapped keywords for

replacement, therefore, query expansion is not useful in

our case.

Recommendation Systems. Users are often in-

terested in items similar to those they have visited be-

fore or to content that has been looked up by similar

users. These items are presented by the recommenda-

tion systems. Akbarnejad et al. [1] and Chatzopoulou,

Eirinaki and [8] proposed query recommendation based

on a prediction of the items that user is interested in.

Yao et al. [27] proposed to exploit structural seman-

tics for query reformulation. Meng, Cao and Shao [17]

used the semantic relationships between keywords and

keyword queries to suggest a set of keyword queries

from the query log. However, the semantic relation-

ship is interpreted as the co-occurrence of the keywords

and no ontological analysis is carried out. Moreover,

the work focuses on extracting similar queries from the
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query log using data mining techniques without pro-

cessing the results. Drosou and Pitoura [11] presented

a database exploration framework which recommends

additional items called “You May Also Like” results.

However, the recommended results are compiled based

on the results of the original query and there is no focus

on semantic connection between the original query and

recommended results.

Mismatch Problem. Sometimes the system shows

erroneous mismatch results for a user query which is

called mismatch problem. Bao et al. [4] proposed a

framework to detect the keyword queries that lead to

a list of irrelevant results on XML data. They detect

a mismatch problem by analyzing the results of a user

query and inferring the user’s intended node type result

based on data structure. Based on this, they are able

to suggest queries with relevant results to the user. Un-

like the current study, Bao et al. investigate ways of

producing relevant results instead of finding results for

no-match queries.

Query Cleaning. Sometimes the empty result is

caused by typographical errors. Pu and Yu [22] and Lu

et al. [16] investigated a way of suggesting queries that

have been cleaned of typing errors. Unlike our study,

these authors do not tackle the problem of non-mapped

keywords.

Ontology-based Querying. Many studies have

used ontology information for searching the semantic

web [10], [15], [33]. Studies by Aleman-Meza [2], Cak-

mak and Özsoyoglu [7] as well as Wu, Yang and Yan

[24] used ontology information to find frequent patterns

in graphs. Wu, Yang and Yan [24] proposed an im-

proved subgraph querying technique by ontology infor-

mation. They revised subgraph isomorphism by map-

ping a query to semantically related subgraphs in terms

of a given ontology graph. Our work generates substi-

tute queries for the user given keyword query by ex-

tracting the semantically related keywords from the

ontological knowledge base and thereafter, produce se-

mantically related results to the user query instead of

returning an empty result set to the user.

7 Conclusion

This paper investigates ways of efficiently building sub-

stitute queries against XML data sources when the user

given keyword query fails to produce any result as one

or more of its keywords do not exist in the data source.

Our approach depends on an ontological knowledge base

for a discovery of semantically related keywords to gen-

erate the substitute queries, which can be executed against

the data source to produce the semantically related re-

sults for the user’s original query. As the number of

substitute queries can be potentially large and also, not

all semantically related results are meaningful to the

same degree, we propose efficient pruning techniques

to reduce the number of substitute queries and return

only the top-k semantically related results. We develop

two query processing algorithms to evaluate the sub-

stitute queries against the data source based on our

pruning techniques. We also develop a batch process-

ing technique that exploits the shared keywords among

the substitute queries to expedite the performance fur-

ther. The extensive experiments with two real datasets

validate the effectiveness and efficiency of our approach.
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39. K. Järvelin, J. Kekäläinen Cumulated Gain-based Eval-
uation of IR Techniques. In ACM Trans. Inf. Syst., pages

20(4):422–446, 2002.


	NoButSemanticCopyright
	Federation University ResearchOnline
	https://researchonline.federation.edu.au


	NoButSemanticAccepted
	1 Introduction
	2 Background
	3 Our Approach
	4 Batch Processing
	5 Experiments
	6 Related Work
	7 Conclusion
	8 Acknowledgment


