B Federation
. University

Federation University ResearchOnline

https:/Iresearchonline.federation.edu.au
Copyright Notice

This is the post-peer-review, pre-copyedit version of an article published in World Wide
Web. The final authenticated version is available online at:

https://doi.org/10.1007/s11280-017-0503-8

Copyright © 2017, Springer Science+Business Media, LLC

Use of the Acccepted Manuscript is subject to AM terms of use, which permit users to view,
print, copy, download and text and data-mine the content, for the purposes of academic
research, subject always to the full conditions of use. Under no circumstances may the AM
be shared or distributed under a Creative Commons, or other form of open access license,
nor may it be reformatted or enhanced.

See this record in Federation ResearchOnline at:
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/182317

CRICOS 00103D RTO 4909 Page 1 of 1

https://researchonline.federation.edu.au/
https://doi.org/10.1007/s11280-017-0503-8
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

1703.02212v1 [cs.DB] 7 Mar 2017

arxXiv

Noname manuscript No.
(will be inserted by the editor)

No-But-Semantic-Match: Computing Semantically Matched

XML Keyword Search Results

Mehdi Naseriparsa - Md. Saiful Islam .- Chengfei Liu - Irene Moser

Received: date / Accepted: date

Abstract Users are rarely familiar with the content
of a data source they are querying, and therefore can-
not avoid using keywords that do not exist in the data
source. Traditional systems may respond with an empty
result, causing dissatisfaction, while the data source in
effect holds semantically related content. In this pa-
per we study this no-but-semantic-match problem on
XML keyword search and propose a solution which en-
ables us to present the top-k semantically related re-
sults to the user. Our solution involves two steps: (a)
extracting semantically related candidate queries from
the original query and (b) processing candidate queries
and retrieving the top-k semantically related results.
Candidate queries are generated by replacement of non-
mapped keywords with candidate keywords obtained
from an ontological knowledge base. Candidate results
are scored using their cohesiveness and their similarity
to the original query. Since the number of queries to
process can be large, with each result having to be an-
alyzed, we propose pruning techniques to retrieve the
top-k results efficiently. We develop two query process-
ing algorithms based on our pruning techniques. Fur-
ther, we exploit a property of the candidate queries to
propose a technique for processing multiple queries in
batch, which improves the performance substantially.
Extensive experiments on two real datasets verify the
effectiveness and efficiency of the proposed approaches.

Keywords XML Keyword Query - No-Match -
Semantics - Ontology

M. Naseriparsa - Md. Saiful Islam - C. Liu - I. Moser

E-mail: {mnaseriparsa,mdsaifulislam,cliu,imoser }@swin.edu.au

Swinburne University of Technology

1 Introduction

Users who query data sources using keyword searches
often are not familiar with the data source schema or
the appropriate query language. For the query to suc-
ceed, the keywords have to have matches in the data
source. Failing this, an empty result is returned even
when semantically related content exists. When key-
words have indirect mappings in a data source that
cannot be found by traditional systems, the user faces
the no-but-semantic-match problem.

Ezample 1 . Consider a user submitted a keyword query
qo = {Jack, lecturer, class} on XML database given in
Fig.[l]and would like to find information about the pro-
fessor Jack. Using conjunctive keyword search, tradi-
tional systems will show an empty result because there
is no occurrence for the keywords lecturer and class
in the data source. However, the keyword lecturer has
a semantic connection to academic and full professor
while the keyword class is semantically related to course,
grade and event which exist in the data source and
could generate results that might interest the user.

The XML keyword search has been addressed by re-
searchers before. The concept of Lowest Common An-
cestor (LCA) was first proposed by Guo et al. [I3] to
extract XML nodes which contain all query keywords
within the same subtree. Xu and Papakonstantinou [26]
introduced the concept of Smallest Lowest Common
Ancestor (SLCA) to reduce the query result to the
smallest tree that contains all keywords. Sun, Chan and
Goenka [23] extended this work by applying the SLCA
principle to logical OR searches. Hristidis et al. [14]
explored the trees below LCA to provide information
about the proximity of the keywords in the document.
None of the existing studies use the SLCA semantics

2 Mehdi Naseriparsa et al.
university
0
T
—
member member member
00 0.1 02
-0 . ‘//_//f—/:'/\‘\. <, =
. S is e” info inati . achi -
type info courses supervisor g’lpo nic coordinating type info posts teaching organizing
0.0.0 0.0.1 0.02 0.03 1 1. 012 020 N 023 024
2. 02.1 022 a
—
7 SN A N M |
student name course course Jack staff name course course gacademic name position course course event event

0.0.2.0 0.0.2.1 0.0.3.0 0.1.0.0 0.1.1.0 0.1.2.0 0.1.2.1

N N [

John database grade software grade
0.0.1.0.0 0.0.2.0.0 0.02.0.1 0.0.2.1.0 0.0.2.1.1

0.0.0.0 0.0.1.0

Jack database software
0.1.1.0.0 0.1.2.0.0 0.1.2.1.0

78 83

0.0.2.0.1.0 0.0.2.1.1.0

0.2.3.0 0.23.1 0.2.4.0 0.2.4.1

| | N\ o

Jack full professor database algorithm type title type title
02100 02200 0.23.0.0 02310 02400 02401 024.1.0 024.1.1

0.2.0.0 0.2.1.0 0220

seminar database conference software
024000 024010 024100 024.1.1.0

Fig. 1: A part of XML data

to provide a solution when one or more keywords do
not exist in the database. In this paper, we adapt the
widely-accepted SLCA semantics and algorithms to re-
trieve meaningful results when some non-mapped key-
words are submitted to the system.

When a query encounters the no-but-semantic-match
problem, we need to find candidate keywords for the
non-mapped keywords to produce non-empty results.
Even though the non-mapped keywords may be seman-
tically close to some items in data source, traditional
systems do not attempt to discover them. To produce
an answer to the user’s initial query, the candidate key-
words must be semantically close to the non-mapped
keywords. One way of fulfilling this requirement is to
find substitutes for non-mapped keywords in an on-
tological knowledge base. Clearly, only candidate key-
words that have a mapping in the data source can be
selected as substitutes for a new query. Replacing each
of the non-mapped keywords with one or more seman-
tically related words that are known to exist in the
database leads to a list of candidate queries. Depend-
ing on the number of available keywords, the number of
potential queries and results can be impractically large.
Hence the degree of semantic similarity with the origi-
nal query is calculated for each candidate query before
it is executed. Before the results can be presented to
the user, results of poor quality in terms of cohesiveness
must be eliminated to ensure all results are meaningful
answers to the original query. Thus, to solve the no-but-
semantic-match problem, two aspects are considered:
(a) query similarity; and (b) result cohesiveness.

Ezample 2 . Consider the keyword query qo = {Jack,
lecturer, class} presented in Example 1 on the database
shown in Fig. [} Keywords lecturer and class do not
have a mapping in the data source and the traditional
system generates an empty result for it. The ontolog-
ical knowledge base [18] has 44 semantic counterparts
for lecturer and 39 for class. All possible substitutions
and their combinations are considered. In the extreme

case when all candidate keywords are available in the
data source, 44 x 39 = 1716 queries are generated and
each query may have several answers that have to be
considered. When a high number of keywords have to be
replaced and these keywords have many semantic coun-
terparts, we may face an unmanageably large number
of combinations that have to be analyzed for semantic
similarity with the original query. Hence, there is a need
to identify and remove less promising candidate queries
early.

In this paper, we present a novel two-step solution to
the no-but-semantic-match problem in XML keyword
search. In the first step, semantically related candidate
queries are created by replacing non-mapped keywords
in the original queries with semantic counterparts and
in the second step, the queries are processed and the
top-k semantically related results retrieved. In order
to present the top-k results to the user for evaluation,
each result retrieved from the queries is separately an-
alyzed in terms of its similarity to the original query
and its cohesiveness in data source. Since there may
be a large number of semantically related results, re-
trieving the top-k results is potentially costly. There-
fore, we propose two pruning techniques, inter-query
and intra-query pruning. Since the candidate queries
are generated by replacing non-mapped keywords, some
keywords are shared between the candidate queries. We
exploit this property to propose a more efficient batch
query processing technique to improve the performance
substantially. The issue of finding semantically related
results for queries with no-but-semantic-match prob-
lem has not been addressed in the context of semi-
structured data before. Our contributions are as fol-
lows:

1. We are the first to formulate the no-but-semantic-
match problem in XML keyword search.

2. We propose two pruning methods and an efficient
approach of processing the no-but-semantic-match

query.

No-But-Semantic-Match: Computing Semantically Matched XML Keyword Search Results 3

member member
0.0 0.1
T . - A/\A - -
coursés/ supervisor info" coordinating
0.0.2 0.0.3 O.Jl.l 0.1.2
course Ja%ck name course
0.0.2.0 0.0.3.0 0.1i1,0 0.1.2.0
database Jack database
0.0.2.0.0 0.1.1.00 0.1.2.0.0

(a) SLCA(q)=[0.0] (b) SLCA(q)=[0.1]

member member
0.2 0.2
- - - /\ - -
info"” t2aching info*" organizing
0.2.1 0.2.3 0.2.1 0.24
name course name event
0.2.1.0 0.2.3.0 0.2.1.0 0.2.4.0
Jack database Jack title
0.2.1.0.0 0.2.3.0.0 0.2.1.0.0 0.24.01
database
0.2.4.0.1.0

(c) SLCA(g)=[0.2] (d) SLCA(g)=[0.2]

Fig. 2: SLCA subtree results for query ¢ = {Jack, database} executed on data given in Fig.

3. Based on keywords the candidate queries have in
common, we also propose a method to process mul-
tiple queries in a batch which improves the perfor-
mance substantially.

4. We conduct extensive experiments which verify the
effectiveness and efficiency of our solutions on two
real datasets.

The rest of the paper is organized as follows: Sec-
tion 2 discusses XML keyword search and presents the
no-but-semantic-match problem. Section 3 presents the
details of our pruning ideas and the efficient processing
of the no-but-semantic-match query. Section 4 presents
the batch query processing scheme to further improve
the performance. The experiments are presented in Sec-
tion 5. Section 6 reviews the related work. Finally, Sec-
tion 7 concludes our paper.

2 Background
2.1 Preliminaries

An XML document is an ordered tree T' with labeled
nodes and a designated root. All XML elements are
treated as nodes containing information in 7'. There
are parent-child and sibling relationships between the
nodes. The depth of the tree is denoted as d, and the
root node has a depth of 1. Each node v in the tree T is
marked with a unique identifier in Dewey code, which
describes the path from the root to the node v as a
sequence of numbers separated by a dot (“.”). Sibling
nodes have Dewey codes of equal length with a unique
last number.

Ezample 3 . Fig. 1] shows an XML tree which contains
information about staff and students of a university.
The root node’s Dewey code is 0. Dewey code 0.0.1

refers to a node containing information about a member
of the university and the code prefix 0.0 refers to its
parent node.

Keyword Match Node: A node m in the tree T'
is a match node for keyword k; if it contains k;. e.g.,
the match nodes for keyword k; = database presented
in Fig. [[] are: m} = [0.0.2.0.0], m? = [0.1.2.0.0], m} =
[0.2.3.0.0], and m{ = [0.2.4.0.1.0].

Keyword Inverted List: Each keyword k; cor-
responds to a list S; of entries and each entry corre-
sponds to a node m which contains k; in the tree T'. e.g.,
the keyword inverted list for keyword k1 = database is
Sy = {[0.0.2.0.0],[0.1.2.0.0], [0.2.3. 0.0],[0.2.4.0.1.0]}.

Smallest Lowest Common Ancestor (SLCA):
Let lca(myq, ..., my,) returns the lowest common ancestor
(LCA) of match nodes my, ..., m,. Then LCAs of query
gon T are defined as LCA(q) = {v|v = lca(my, ..., my),
m; € Si(1 < i < n)}. SLCAs are a subset of LCAs
which do not have other LCAs as child nodes and de-
fined as SLC A(q).

Ezample 4 . In Fig. |2| for a keyword query g={Jack,

database}, there are 4 LCA nodes which are computed

as: LC'A(q) = {lca([0.0.3.0], [0.0.2.0.0]), lca([0.0.3.0], [0.1
2.0.0]), lca([0.1.1..0.0], [0.1.2.0.0]), lca(]0.2.1.0.0], [0.2.3.0
.0])}={[0],10,0],[0.1] ,[0.2]}. Since the LCA node [0] is

the ancestor node of [0.0],[0.1] and [0.2], it is not an

SLCA and should be removed. Therefore, SLC'A(q) =

{[0.0],[0.1],]0.2]}.

Keyword Query and Subtree Result: In XML
data, a keyword query ¢ consists of a set of keywords
{k1,ka,....kn}. A result r = (vsica, {m1, ma,...,mp})
for q is a subtree in T" which contains all keywords k; €
q. Here, we consider vgj.q, the root of the subtree, an

SLCA node, i.e. vgeq € SLCA(q).

Mehdi Naseriparsa et al.

Table 1: The list of symbols

Symbol
Aqgo,q’) Similarity score of go to ¢’

a Tuning parameter

gmm Threshold score

o(r,q’,T) | Total score of a result

qo0 User original query

A candidate query

A set of candidate queries

A set of Keyword Inverted lists
Candidate query batch

A set of results

R* A set of top-k results

[Meaning]

| & 9|10

A(ry1,7m2) | The score difference between r; and r2
r A result

Vslea A subtree result root

m A match node

n Number of keywords in a query
m! Tightest match node

P An execution plan

c(B) Cost of an execution plan

T XML data

d(r,T) Number of edges in a result r
0(r,T) Cohesiveness score of a result r
K A set of candidate keywords

k A query keyword

Tightest SLCA Subtree Result: For an SLCA
node, there may exist several subtree results. This is
because that under an SLCA node vy, we may find
several match nodes {m?} for the keyword k;, (1 <4 <
n,1 < j < n;), where n; is the number of match nodes
for k; under wvg.,. Let méi be the closest match node
from {mf} 10 Vsieq for k; (1 < i < n), then we get the the
tightest subtree result r = (vgjcq, {mll1 s mél; ymin).

For example, for SLC'A(q) = [0.2] in Fig. [2 there
are two subtree results, (c¢) and (d). The tightest subtree
result is (¢) r = ([0.2], {[0.2.1.0.0],[0.2.3.0.0]}).

We argue to return only the tightest SLCA subtree
results to the user as these results match the user’s
search intention better than the results containing the
sparsely distributed keyword match nodes under vgjqq.
That is, a result is more likely to be meaningful when
the result subtree is more tight and cohesive (for survey
(141, [12).

2.2 Problem Statement

Definition 1 (No-Match Problem) Given a keyword
query qo = { k1,ka, ... ,kn }on T, if 3 k; € qo such that
S; = (), we say that query ¢o has a no-match problem
over k;.

If a user submits a keyword query ¢o that has a no-
match problem, traditional systems return an empty
result set. However, the missing keyword k; that causes

the no-match problem may have semantic counterparts
in the data source T" which may produce results the user
might be interested in, if the candidate keywords are
sufficiently similar to k; € gg. We use IC; to denote the
list of candidate keywords that can be used to replace
k; € qo.

Ezample 5 . Consider the keyword query gy = {Jack,
lecturer, class} presented in Example 1. It is easy to
verify that the keywords ko = lecturer and k3 = class
cause a no-match problem for gg. Candidate keywords
that can be used instead of ky and k3 for gg are: Ko =

{academic, full professor } and K3 = {course,grade,event}.

Definition 2 (No-But-Semantic-Match Problem)
Given a keyword query qo = { k1,k2, ... ,k, } with a
no-match problem on T, i.e., 3k; € qg such that S; =),
but K; # @, then we say that gg has a no-but-semantic-
match problem over k;.

The no-but-semantic-match problem is a special case
of the no-match problem. The problem can be addressed
in the following way: (a) find a candidate keyword list
K; that can be used to replace k; € qo; (b) generate
candidate queries ¢’ for gy by replacing k; with k&, € K;;
(c) execute ¢’ in the data source T to produce the se-
mantically related results R for go; (d) score and rank
the results r € R to return only the top quality results
to the user for evaluation.

Ezxample 6 . Consider the keyword query presented in
Example 1. The query ¢o has no-but-semantic-match
problem over ko = lecturer and k3 = class. The se-
mantic counterparts for ko and k3 are: Ko = {academic,
full professor} and K3 = {course,grade,event}. These
candidate keywords are combined with the rest of the
keywords to generate semantically related candidate
queries for gg. The generated candidate queries are: ¢
= {Jack, academic, course}, qo = {Jack, academic,
grade}, g3 = {Jack, full professor, course}, q4 =
{Jack, full professor, grade}, qs = {Jack, academic,
event}, and g = {Jack, full professor, event}.

We use Q to denote the list of candidate queries. As
mentioned before, the candidate queries ¢’ € Q need to
be executed against T' to produce the semantically re-
lated result set R for go. We know that these candidate
queries ¢' are generated by replacing k; with k; € K.
However, not all candidate keywords k; € K; are se-
mantically similar to the user given keyword k; € qo
and also, not all semantically related results r € R are
meaningful to the same degree. Therefore, we need to
score the produced results r € R, denoted by o(r, ¢, T),
as given as follows:

o(r,q',T) = sim(qo,q") x coh(r,T) (1)

No-But-Semantic-Match: Computing Semantically Matched XML Keyword Search Results 5

where, r is a result for the candidate query ¢’, the
sim(qo, q’') measures the similarity of ¢’ with go and
coh(r,T') measures the cohesiveness of r in T'. The rank
of a result r € R is calculated as follows:

rank(r,T) = {r'|lo(r',¢",T) > o(r,¢', T)} +1 (2)

Definition 3 Top-k Semantically Related Results.

Given a keyword query go = {k1, k2, ..., k,} on T, hav-
ing the no-but-semantic-match problem, we want to dis-
cover k results from R that maximizes the scoring func-
tion given in Eq. [I] or in terms of ranking the results
{rlrank(r,T) < k}.

3 Our Approach

We propose a two phase approach to solve the no-but-
semantic-match problem in XML data T'. The schematic
diagram of our approach is illustrated in Fig. In
the first phase, the semantic counterparts for the non-
mapped keywords of the user query are extracted from
the ontological knowledge base. Next, the candidate
queries are generated by replacing the non-mapped key-
words with their semantic counterparts and the simi-
larities between the candidate queries and the original
query are computed. In the second phase, the candidate
queries are executed against the data source T'. The re-
sults are scored based on Eq. [I] and finally, only the
top-k results are presented to the user for evaluation.
The results are scored based on the followings: (a) sim-
ilarity of the candidate queries to the user given query;
and (b) the cohesiveness of the results.

As the candidate queries are generated using the
ontological knowledge base, we use the ontological sim-
tlarity of the candidate query to the user given query as
the measure of similarity for the first parameter. The
details for computing this similarity is presented in sec-
tion 3.1] The details for computing the cohesiveness of
the results is presented in section Since there are
a number of candidate queries that should be executed
against the data source T and each candidate query
may have several results that needs to be scored, we
propose efficient pruning techniques to avoid unneces-
sary computations and terminate early. The pruning
ideas and the details of our candidate query processing
technique are presented in Section [3.3] We also propose
a batch query processing technique to speed up the com-
putations further by sharing the computations among
the candidate queries, which is described in Section [4]

Q= k= :> ke Kk Ko
& kiz ka2 ka2
Ontology kis K2z Kas

Top-k semantically
related results

-

Database

Queries ontological
similarity calculation

Fig. 3: Schematic diagram of our approach for solving
no-but-semantic-match problem in XML data

Data coherency
calculation combined by
queries similarity

3.1 Candidate Queries

This section describes how to generate the candidate
queries Q for the user query gy and compute their sim-
ilarity to qo.

3.1.1 Generating Candidate Queries

To adhere closely to the user’s intentions, the candi-
date keywords k; € K; must be as close as possible to
the non-mapped keywords k; € qg. In this study we
use WordNet, which is widely used in the literature [5]
for finding semantic counterparts for k; € qo. We cat-
egorize our semantic candidate keywords derived from
WordNet into four groups [I§]: (a) synonyms denoted
as Syn(k;), (b) coordinate terms denoted as Cot(k;),
(¢) hyponyms denoted as Hpo(k;), and (d) hypernyms
denoted as Hpe(k;). The candidate keyword list &C; for
a keyword k; € qo contains all types of ontological coun-
terparts as shown in Eq.

K; = Syn(k;) U Cot(k;) U Hpo(k;) U Hpe(k;) (3)

However, not all candidate keywords extracted from
the ontological knowledge base are available in T'. The
keyword list has to be reduced to the candidates which
have direct mapping in the data source. To do this, an
inverted keyword list using hash indices can be queried
in O(1) time. Finally, the candidate queries Q are gen-
erated by replacing the non-mapped keywords k; € qo
with each of their semantic counterparts kj € K; in
turn.

3.1.2 Measuring Candidate Query Similarity

In order to measure the similarity between a candi-
date query ¢’ € Q and the user’s original query qo,
firstly we measure the individual similarity between the
candidate keyword k] € ¢’ and the corresponding non-
mapped keyword k; € gp using Wu and Palmer’s metric

Mehdi Naseriparsa et al.

[25]. This metric establishes the depths of both key-
words and their least common subsumer (LCS) accord-
ing to the WordNet structure and produces the degree
of similarity between these two keywords, SimW P(k;, k)
as shown in Eq.

2 x dep(LCS)
dep(k;) + dep(k)

where dep(k;) returns the depth of the keyword k; in
the WordNet structure. This metric is symmetric, i.e.,
SimW P (k;, ki) = SimW P(ki, k;). However, WordNet
has a hierarchical structure. That is, the candidate key-
word k] € ¢ could be a more special type (e.g., hy-
ponyms) or a more general type (e.g., hypernyms) for
the non-mapped keyword k; € qp in WordNet. There-
fore, we incorporate the specialization/generalization
aspect of k; € qo into the Wu and Palmer similarity
metric as given as follows:

dep(k;)
max(dep(ki, k}))

SimW P(k;, k;) =

(4)

DSim(k;, k) = x SimW P (k;, ki) (5)

where DSim(k;, k}) is the directional similarity of

(ZRA)

keyword k; € qo to keyword k. € ¢'. The directional
similarity DSim(k;, k}) penalizes the more general key-

(3] 2
word types of k; € qo by weighting SimW P(k;, k}) with
dep(k;)
max(dep(k;,k})) "
nal query qq is computed by considering all the replace-

ments in ¢’ as follows:

Finally, the similarity of ¢’ to the origi-

=[] DSim(k; € qo. K € ¢')
=1

Ago.4") (6)
where n is the number of keywords in ¢y that have been
replaced to generate ¢’ (1 <n <|q|).

Ezample 7 . Consider the keyword query go = {Jack,

lecturer, class} presented in Example 1. Here, the sec-

ond and the third keywords cause the no-match prob-

lem for gyg. The candidate keyword list for these two

non-mapped keywords are: o = {academic : 0.91,

full professor : 0.84} and K3 = {course : 1, grade :

1, event : 0.35}, where each candidate keyword is la-

beled with their corresponding DSim scores. Now, the

candidate queries are generated by replacing the non-

mapped keywords in gg with their candidate keywords

and scored as follows:

q¢1 = {Jack, academic, course},\(qo, q1)=0.91x1 = 0.91,
g2 = {Jack, academic, grade},\(qo, g2)=0.91x1 = 0.91,

qs = {Jack, fullprof, course},A(qo, q3)=0.84x1 = 0.84,
qa = {Jack, fullprof, grade},A\(qo,q4)=0.84 x 1 = 0.84,

g5 = {Jack, academic, event},\(qo, q5)=0.91 x 0.35 =

0.31 ,and gg = {Jack, fullprof,event},A(qo, g6)=0.84 x

0.35 = 0.29.

)

From the above, it is easy to verify that ¢; and go
are the most similar candidate queries to the original

query.

3.2 Cohesiveness of Results

There can be potentially many candidate queries with
a large number of results and not all results » € R are
meaningful to the same degree. In XML, if the match
nodes in the result r are near to each other, the result
is considered to be more cohesive. Intuitively, when a
result subtree is more cohesive, it is more likely to be
relevant and meaningful (for survey [14], [12]). To mea-
sure the cohesiveness of a result r, we firstly compute
the distance between each match node m and the root
Vsicq Of the result subtree r. Then, we compute the over-
all distance of a result r w.r.t. the data source T" as given
as follows [12]:

=Y (n =) (7)

where 7 is the result subtree, v4., denotes the root of
the result r, m is the match node, [,, is the level of
m, and [, is the level of the root in r. Clearly, the
larger this distance is, the lower the cohesiveness score
for the result r should be. Therefore, we compute the
cohesiveness of a result subtree r w.r.t. the data source
T as given as follows [12]:

d(r,T)

1

O(r,T) = log, (d(r,T)+1)+1

(8)

where « is the tuning parameter by which the user can
trade off between the similarity of the candidate queries
and the cohesiveness of the results. If we set a to a
larger value, the sensitivity to the cohesiveness of the
results gets smaller. That is, the total score o of a re-
sult 7 is more dependent on the similarity of the query
A(go,¢q’) than its cohesiveness.

Example 8 . Consider the candidate keyword queries
Q in Example 7. The result subtrees of these queries
are illustrated in Fig. @] Using o = 4, we compute the
cohesiveness of the results as follows:

d(’/‘l,T):7,9(T1,T) ?—04
d(r2,T) = 10,0(r2, T) = 755 = 0.36,
d(r3,T) = 8,0(r3,T) = #5 = 0.38,

and d(ry, T) = 11,0(r4,T) = 555 = 0.35.

3.3 Processing of Candidate Queries

A nailve approach to processing the no-but-semantic-
match query qq first generates the candidate queries

No-But-Semantic-Match: Computing Semantically Matched XML Keyword Search Results 7

member university
o2 :
—— —,
type info teaching member member
0.2

020 0.2.1 0.2.3 00

crs type info

course 0.0.2 0.2.0 021

0.2.3.0

academic name
0.2.0.0 0.2.1.0

course academic name
0.0.2.0 0.2.0.0 0.2.1.0
!
Jack
0.2.1.0.0

Jack

0.2.1.00
grade

0.0.20.1

member university
= o
info posts teaching member member
021 022 023 Of ‘/0-2\
Ta
. courses info posts
name position course 002 021 022
0.2.1.0 0.2.2.0 0.2.3.0 L L l
course name position
Jack full professor 0020 0210 0220
0.2.1.0.0 0.2.2.0.0 L
grade
00201 Jack full professor

0.2.1.00 02200

Fig. 4: Subtree results for candidate queries Q in Example 7 after executing them against data given in Figure

Q and then computes all semantically related results
r € R by executing the queries ¢’ € Q against the
data source T Then it applies Eq.[6] to the results R to
establish the similarity of the corresponding candidate
query ¢’ to the original query ¢o and determines the
cohesiveness in the data source T' according to Eq.
The results are then sorted based on their total score o
(Eq. 1) to obtain the top-k ranked (Eq. [2)) semantically
related results.

Assume that the initial query g9 = {k1, ..., k,} has
the no-but-semantic-match problem for all k; € qq, |Q)|
is the maximal number of candidate queries produced
for qo, d is the depth of the tree T, | S| and |S;| are the
maximal and minimal sizes of the inverted keyword lists
for the semantic counterparts kj, respectively and |R| is
the maximal number of semantically related results for
the candidate queries in Q, then the complexity of the
naive approach becomes |Q|xnd|S1|log |S|+|R|log |R]|.
However, both |Q| and |R| could be potentially large,
which makes the naive approach impractical. We pro-
pose two efficient pruning techniques, called the inter-
query pruning and intra-query pruning to significantly
reduce the sizes of Q and R, respectively.

8.8.1 Inter-Query Pruning
Assume the candidate queries Q = {q1, G2, .-+, qi, Qi+1, ---

q)o|} are sorted based on their similarities A(qo, q;) to
the original query go. We obtain the following lemma.

Lemma 1 Assume R* is the k results of Q' = {q1, g2, ..

,q1} and c™™ is the min-score of the results R*. Then,
we can stop processing the rest of the candidate queries

Q" ={qs1,--q0} if Mao, q11) < ™™,

Proof Assume that r is a min-scored result in R* for
q € Q,ie., ™" =og(r,q,T) and r’ is a result of the
candidate query ¢;+1 whose similarity score is higher
than any result of the queries Q" = {qi41,...q|g|}. Now,
assume that o(r', q+1,7) > o(r,q¢',T). We prove that
this can not happen if A(qo, ¢111) < ™. To be scored
higher than r, ' must satisfy the following: A(qo, ¢1+1) >

W However, the highest possible value of 8 for any

result in 7" is 1. By putting this into the above, we get
Mqo, qir1) > o™, which contradicts the assumption.
Therefore, R* consists of the top-k semantically related
results according to Def. 3] whose ranks are < k.

Ezxample 9 . Consider the candidate queries Q given in
Example 7. If we want to present the top-1 result to
the user, and after processing the candidate queries up
to g4 we get 0™ = 0.91 x 0.4 = 0.36, then we do not
need to process g5 as A(qo,q5) = 0.31 < ™. Thus,
from g5 to the end of the list of Q, no queries can score
higher than o™ and therefore, we can stop processing
them.

8.8.2 Intra-Query Pruning

Although the inter-query pruning technique does not
execute all of the candidate queries ¢’ € Q against T,
it employs the pruning technique only in the first phase
of the framework. That is, once we start processing a
candidate query ¢, we compute all of its results. Con-
sider the candidate queries Q of ¢y given in Example
7 and assume that the user requests only the top-1 re-
sult for gg. Also, assume that the candidate queries in
Q are sorted based on their similarities with gy and
we have already processed the candidate queries from
q1 to g5. The current top-1 result is r; (see in Fig. |4
min i5 ().36. Now, while processing the candidate
query g3, we can discard the result r5 of g3 (as shown
in Fig. while generating it. That is, while reading
through the keyword inverted lists Sjack, Sfuliprofessor
and Scourse for gz, we can partially compute r3 consist-
ing of the keywords {Jack, full professor} for q3 only
(as highlighted in Fig. , denoted by %, and compare
the score 0.34 of r{ with the current ™", we can decide
that the complete r3 consisting of keywords {Jack, full
professor, course}, denoted by r§, can never outrank
r1 as 0(r§,T) < 6(rk,T). The same occurs while com-
puting r4 of g4 and we can discard r4 before generating
the ultimate result. We call the above query pruning
technique as the intra-query pruning.

and o

Mehdi Naseriparsa et al.

Algorithm 1: The Framework

Algorithm 2: SE-QP

: User Query qo, Tuning Parameter «,
Keyword Inverted Lists S
Output: Top-k Semantically Related Results R*

Input

1 Q « generateCandidateQueries(qo);

2 while ¢’ < Q-getNext()# null do

3 | ¢ -sim« Aqo,q'); // according to Eq.|§|
a4 Q « sortCandidates(Q); // based on ¢’-sim
5 R* < null ; // R* is a min heap
6 o™ «+ MAXVAL ; // max value
7 while ¢’ + Q-getNezt()# null do

8 if R* - getSize() = k and ¢’ - sim < ¢™'" then

9 | break ; // inter-query pruning
10 if R* - getSize() = k then
11 | root <— R* -root(); c™™ < root - score;
12 S+ {};
13 foreach k; € ¢’ do
14 S; < retriveKeywordInvertedList(k;,S);
15 S+ S8'US;;
16 R* + processQuery(R*,a™" «a,q',S");
17 return R*

3.3.8 The Framework

Algorithm [1] presents the framework for processing the
no-but-semantic-match query ¢y submitted by the user.
First, it generates the candidate queries Q for qo as
explained in Section [3.1.1} shown on line 1. The lines 2-
4 compute the similarity between the candidate queries
Q and the user query ¢o as explained in Section |3.1.2
and sort them. Then, a min-heap is initialized with R*
to null and the min-score ™" to M AXV AL in lines 5-
6. In lines 8-9, we stop processing the candidate queries
in Q as soon as we find a query ¢’ € Q if |R*| = k and
q'.sim < o™, Otherwise, if |R*| = k, we update o
by reading the root entry of the heap R* and adding
its score root.score to ¢™" in lines 10-11. Then, for
each keyword k; € ¢’ we retrieve their corresponding
inverted lists and pass it to the processQuery method
(which is explained in detail in the following section) in
line 16 to retrieve the results of ¢’ and insert the eligible
results into R*.

3.8.4 The processQuery Method

In order to process the no-but-semantic-match query
qo, we need to execute each candidate keyword query
q' € Q against the data source T' in the processQuery
method. There are two benchmark algorithms in the lit-
erature to compute the keyword query results on XML
data T as given as follows: (a) scan eager [26] and
(b) anchor based [23] algorithms. However, these two
benchmark algorithms are not readily available to im-
plement our processQuery method. These algorithms
only find the root of the subtree results in 7', but ig-
nore the distribution of the keyword match nodes in the

Input :R*, ™" a,q,S’
Output: Result Set:R*

1 sortLists(S8');r < null;vsicq < null;

2 while m; < getNext(S1) # null do

3 m; < closest(m1,S;),Vi € [2,n];

4 VY, < lea(ma, ...,mn);

5 if r # null and vsica Aa VY., then

6 fori=1—ndo

7 mlt < getTight(S;,r.cursor;);

8 d; < getDist(vsica, mtt); d < d + d;;

9 r-scoreEq’-simxm;
10 if r - score < o™i then
11 ‘ stop reading lists and jump to line 14.
12 7 < (Vsica, {méi,Vi € [1,n]});
13 update top-k list R* with r;
14 r < null;
15 if v¥,., Aa Vsica then
16 | Vsica ¢ VY q;T-add(Si.cursor,Vi € [1,n]);
17 if v¥_ , Aa Vsica then
18 | (02, {mli, Vi € (L]} |
19 score r and update R* with r if r - score > o™*";

20 return R*

subtree. To implement our processQuery method with
these benchmark algorithms, we need to address the
following issues which are specific to our problem: (a)
finding the tightest nodes under the confirmed SLCA
root vgeq and (b) scoring the result partially based on
its candidate query similarity and cohesiveness to apply
intra-query pruning. We propose two techniques to im-
plement the processQuery method based on the bench-
mark algorithms as follows:

1. Scan Eager based Query Processing (SE-QP) and
2. ANchor based Query Processing (AN-QP).

SE-QP Algorithm. Like scan-eager algorithm[26],
SE-QP firstly sorts the inverted lists of the keywords in
q'. Then, it picks a match node m; from the shortest
inverted list S7 and then, finds the closest match nodes
to my from other lists to compute the result root vgjeq.
However, the tightest subtree result computation and
result scoring is delayed until we can confirm that this
Vsica can be an actual SLCA node. Therefore, the cursor
of each of the inverted list is retained until we decide
that this vg., cannot be an ancestor of any other result
roots. Once we confirm that this v, is an actual SLCA
node, we compute the tightest subtree result for it and
score the result. While scoring the result, we also apply
intra-query pruning here. Then, we advance the cursors
of all of the lists and continue the above steps until we
access all nodes in the list 5.

The SE-QP query processing technique is pseudocoded

in Algorithm [2| In line 1, we sort the inverted list of all
keywords in ¢’ and do the initialization. In lines 2-3,

No-But-Semantic-Match: Computing Semantically Matched XML Keyword Search Results 9

it finds the match node m; from the shortest list S
and the match nodes m; from other lists. In line 4, we
find the potential root result v}, ., which then should be
confirmed as an actual SLCA node. In line 5, we check
VY., With the previous result root vsicq. If vgieq is not
an ancestor for v¥, ., denoted as Vsica Ao Vijeqs Usica
is confirmed as the SLCA result root. Then, the corre-
sponding tightest subtree result for vy, is retrieved. To
do so, we scan each list S; by moving its cursor r.cursor;
backward and forward to find the closest match nodes
under vgjcq, which is implemented in function getTight
of line 7. For each closest match node m!?, the distance
of mi® with vy, is computed by getDist function in
line 8 and the score of the result r.score is computed
partially in lines 8-9. We stop scanning other lists if
the partial score cannot beat o™ (intra-query prun-
ing) and jump to line 14, which is given in lines 10-11.
Otherwise, we keep scanning all lists to compute the
tightest subtree result and the ultimate score of r for
the vgjeq. We update the min heap R* by this result r
in line 13. Now, we update vg., with the current result
root v, if v¥.. Aa Vsica in lines 15-16. In lines 17-
19, if the last result root node is an actual SLCA, the
similar steps are conducted to score its tightest subtree
result and if promising, is used to update R*.

AN-QP Algorithm. Like scan-eager algorithm 2],
SE-QP performs worse when the inverted lists have sim-
ilar sizes (e.g., match node distribution). Also, it incurs
many redundant computations when the data distribu-
tion is skewed in T'. For example, if the match nodes are
mostly distributed in one part of the XML tree in an
inverted list, SE-QP reads all the nodes in S; and com-
putes their LCAs to finalize the corresponding SLCAs.
However, lots of these nodes can be skipped because
they are far from the nodes in other inverted lists and
cannot create SLCA nodes.

In order to skip the non-promising match nodes, like
[23], AN-QP considers only the anchor match nodes for
computing SLCA nodes. A set of match nodes M =
{mi,..m,} for ¢’ is said to be anchored by a match
node m, € M if for each m; € M \ {m,}, m; =
closest(mg, S;), where closest(mg, S;) returns the match
nodes in the list .S; which is closest to the node m, [23].
Unlike SE-QP, the anchor match node m, is picked
from among inverted lists (not necessarily from the short-
est one) so that it can maximize the skipping of redun-
dant computations. Similar to SE-QP, AN-QP first ex-
tracts the SLCA result root vy, and thereafter, finds
the tightest subtree result under vy, and partially
score the result to apply intra-query pruning.

The AN-QP technique is pseudocoded in Algorithm
Line 2 finds the anchor node m, from the the in-
verted lists {51, ..., Sp }, which is implemented in func-

Algorithm 3: AN-QP

Input :R*, ™" a,q,S’
Output: Result Set:R*

1 7 null;vsicq <+ null;

2 mg < getAnchor({getNext(S;),Vi € [1,n]});

3 while mg, # null do

4 m; < closest(ma, Si), Vi € [1,n|&i # q;

5 VY o lea(ma, ... ,mn);

6 if r # null and vsica Aa VY., then

7 fori=1—ndo

8 mff « getTight(S;,r.cursor;);

9 d; < getDist(vsica, mt?); d <+ d + d;
10 r~score<—q’-simxm;
11 if r - score < o™ then
12 ‘ stop reading lists and jump to line 15.
13 r < (Vsiea, {mi, Vi € [1,n]});
14 update top-k list R* with r;
15 r <+ null;
16 if v¥_ ., Aa Vsica then
17 ‘ Vslca — VY .q; T-add(Si.cursor),Vi € [1,n];
18 mq < getAnchor({getNext(S;),Vi € [1,n]});
19 if v¥_, Aa Vsica then
20 | 16 (02, {mli, Vi € [1,n]}); |
21 score r and update R* with r if r - score > o™*";

22 return R*

tion get Anchor. The potential result root vy, is com-
puted after finding the closest nodes m; € S; to mg,
Vi € [1,n] and ¢ # a in lines 4-5. Here, if v5cq Aa Veq
Vsicq 18 confirmed as the SLCA result root as given in
line 6. Therefore, we retrieve the closest match nodes
mli Vi € [1,n] under vg,. Similar to SE-QP, the func-
tion getTight of line 8, scans each list S; by moving
its cursor r.cursor; backward and forward to compute
the tightest subtree result for vg.,. Then, we find the
distance of each méi with vgeq by the function getDist
and add it to the total distance of r in l