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Abstract In many cases, users are not familiar with their exact information needs
while searching complicated data sources. This lack of understanding may cause
the users to feel dissatisfaction when the system retrieves insufficient results after
they issue queries. However, using their original query results, we may recommend
additional queries which are highly relevant to the original query. This paper
presents XPloreRank to recommend top-l highly relevant keyword queries called
“You May Also Like” (YMAL) queries to the users in XML keyword search. To
generate such queries, we firstly analyze the original keyword query results con-
tent and construct a weighted co-occurring keyword graph. Then, we generate the
YMAL queries by traversing the co-occurring keyword graph and rank them based
on the following correlation aspects: (a) external correlation, which measures the
similarity of the YMAL query to the original query and (b) internal correlation,
which measures the capability of the YMAL query keywords in producing mean-
ingful results with respect to the data source. Due to the complexity of generating
YMAL queries, we propose a novel A* search-based technique to generate top-l
YMAL queries efficiently. We also present a greedy-based approximation for it to
improve the performance further. Extensive experiments verify the effectiveness
and efficiency of our approach.
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Fig. 1: A part of IMDB dataset

Table 1: Drama movies directed by Coppola and acted by Al Pacino

Actor1 Director Genre1 Writer1 Writer2 Title Genre2 Actor1 Actor2

alpacino coppola drama
francis
coppola

mario
puzo

the
godfather

crime
marlon
brando

richard
castellano

alpacino coppola drama
francis
coppola

mario
puzo

the
godfather II

crime
robert
duvall

robert
de niro

Actor1 Director Genre1 Kw1 Kw2 Kw3 Kw4 Kw5 Kw6

alpacino coppola drama mafia wedding lawyer violence
organized

crime
patriarch

alpacino coppola drama cuba new york business nevada escape shotgun

1 Introduction

Keyword search provides a convenient tool for the users to search complex databases
without being familiar with the underlying data source structure. Although key-
word search capability provides an easy environment for searching the databases,
the users should use exact keywords to retrieve their desired results. However,
users may not always be fully familiar with the underlying data source content or
they may have a very vague idea about their information needs. The users may
issue queries which are insufficient to produce the desired results. This could lead
the users to feel dissatisfaction over the system. In this case, a keyword search
system equipped with exploratory option for assisting the users to explore addi-
tional information via “You May Also Like” (YMAL) queries may become useful
and improve the system’s overall usability [13], [14].

Motivation. Consider a user keyword query q0 = {alpacino, coppola, drama} issued
in the Internet Movie Database (IMDB) as shown in Fig. 1. If we carefully check
the IMDB schema, we can infer that alpacino is the name of an “actor”, coppola is
the name of a “director” or “writer”, and drama is a movie “genre”. This implies
that the user’s search intention is to retrieve all drama movies directed or written
by coppola in which alpacino is an actor. From Fig. 1, we see that the result for q0
is the “Godfather” movie. However, the user may also be interested in other drama

movies directed or written by coppola in which alpacino is not an actor but others
like marlon brando or james caan, or crime movies directed or written by coppola

in which alpacino is an actor, etc. Currently, these movies such as “Apocalypse

Now” and “Gardens of Stone” (see Fig. 1) are not a part of the original results
but they are highly relevant. These additional results can be explored via YMAL
queries.

There is a wide range of research conducted on the user query refinement to
assist the users when their original queries do not retrieve expected or quality
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results. When the original query retrieves insufficient or empty results, query re-
laxation techniques modify or remove some constraints in the original query to
produce additional or non-empty results [7], [12]. Conversely, when the original
query retrieves many results, query reformulation techniques restrict the results
by tightening or introducing new constraints on the original query [20], [15]. The
above works focus on modifying the query to restrict or relax the original results.
However, sometimes users need to be guided about the similar contents to their
original results in terms of exploratory search in the data source. Drosou and Pi-
toura [8] studied data exploration via recommending additional items in relational
databases with structured queries (SQL). However, the problem of exploration in
semi-structured data like XML with keyword queries has not been studied in the
literature yet.

In connection with XML keyword search, we argue that the co-occurring key-
words in the original result content provide a good hint for the YMAL queries
since these keywords are highly correlated to the original query results. Therefore,
to generate the YMAL queries, we can first analyze the original results content
to discover the co-occurring keywords in the original result set and put them into
a keyword pool. Then, we can generate YMAL queries by selecting the keywords
from this keyword pool. Since we can select any subset of the keywords from the
keyword pool, there will be an exponential number of queries.

For example, consider the keyword query q0 = {alpacino, coppola, drama}
again. Table 1 shows the co-occurring keywords within the result content of q0. We
can construct the co-occurring keyword pool for q0 as follows: {alpacino, coppola,
drama, crime, puzo, english, italian, latin, corleone, brando, caan, deniro,mafia, wedding,

lawyer, violence}. A straightforward approach would generate (216 − 1) YMAL
queries from the above keyword pool. Some of these queries are as follows: q1 =
{brando, coppola, drama}, q2 = {caan, coppola, drama}, q3 = {deniro, coppola,

drama}, etc. However, not all the keywords in the co-occurring keyword pool
are similar to the original query keywords to the same degree. Furthermore, the
selected keywords should be relevant to each other to produce meaningful results
with respect to the data source. To score the YMAL queries, we propose two
kind of correlation degrees: (a) external correlation degree which is the correlation
degree between the original keyword query and the YMAL keyword query, (b)
internal correlation degree which is the correlation degree between the keywords
of the YMAL query with respect to data source. The external correlation degree
guarantees that the YMAL query is highly relevant to the original query while
the internal correlation degree guarantees that the YMAL query will generate
meaningful results in the data source. As there are exponential number of queries
and we have to optimize their correlation scores, the straightforward approach is
inefficient.

As the straightforward approach is computationally expensive, we propose to
construct a weighted co-occurring keyword graph from the strongly correlated key-
words in the co-occurring keyword pool. Then, we propose a novel A∗ search-based
technique to traverse the graph and generate the optimal top-l YMAL queries with
maximum correlation scores efficiently. We also propose a greedy-based approxima-
tion for the A* search-based technique with an error guarantee to quickly extract
the suboptimal top-l YMAL queries. We implement these algorithms into a system
called XML Exploration via Ranked YMAL Queries (XPloreRank) for recommend-
ing top-l YMAL queries to the users to explore some interesting and relevant
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results in addition to their original keyword query results. To be specific, our main
contributions are as follows:

1. we propose YMAL queries in XML keyword search and formulate this problem
using two correlation scores;

2. we propose a novel technique to extract the optimal top-l YMAL queries from
the co-occurring keyword pool by conducting A∗ search on the corresponding
co-occurring keyword graph;

3. we also propose a greedy-based approximation for the A* search-based tech-
nique to quickly extract the suboptimal top-l YMAL queries with an error
guarantee, which improves the performance substantially; and

4. finally, we conduct extensive experiments to verify the effectiveness and effi-
ciency of our approach.

The rest of the paper is organized as follows: Section 2 discusses XML keyword
search and presents the top-l YMAL queries problem; Section 3 presents our A*
search-based technique for generating the optimal top-l YMAL queries based on
co-occurring keyword graph; Section 4 presents our greedy-based approximation;
In Section 5, we discuss some adaptation for our proposed techniques to vary the
YMAL queries size. Section 6 validates our approach experimentally; Section 7
reviews the related work and finally, Section 8 concludes the paper.

2 Background

2.1 Preliminaries

An XML document is modeled as a tree T that contains labeled nodes and a
designated root. Each node in the tree T is indexed by a unique identifier called
Dewey code, which consists the path from the root to the corresponding node.
From Fig. 1, the Dewey code 0.0 refers to a node in the data source that contain
information about the Godfather movie. A node mi in the tree T that contains
keyword ki is a match node for ki. E.g, the match node of the keyword ki = mafia

is mi = [0.0.5.0.0].

Keyword Query and Subtree Result. In XML data, a keyword query q consists
of a set of keywords {k1, k2, ..., kn}. A result r = (vslca, {m1,m2, ...,mn}) for q is
a subtree in T which contains all keywords ki ∈ q. The node vslca is the smallest
lowest common ancestor (SLCA) of the nodes {m1,m2, ...,mn} denoted by vslca ≼a

{mi, ∀i ∈ [1−n]} because they contain the Dewey Code of the vslca in their prefixes.
Here, we used the popular SLCA semantics [22,21] to retrieve the XML keyword
search results; however, our solutions are independent of this semantics and other
LCA-based semantics [11,23,24,4] can be used instead.

Subtree Result Leaf Nodes: For a result r, a result leaf node m′ is a node in T

that have no child nodes and vslca ≼a m′. E.g. for r = ([0.0], {[0.0.1.0.0], [0.0.2.1.0],
[0.0.4.0.0]}) in Fig. 1, some of the subtree result leaf nodes are as follows: m′

1 =
[0.0.4.1.0], m′

2 = [0.0.4.2.0] and m′
3 = [0.0.5.0.0].
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2.2 Problem Statement

In order to explore the data source via YMAL queries to retrieve additional results
which are meaningful to the user, we have to generate queries that are highly
correlated to the original query and the data source. The YMAL queries produce
results that may not be a part of original query results; however, they are highly
correlated to the original query results. To generate such queries, we propose to
extract the co-occurring keywords within the original query result content and to
use them as the possible interesting keywords to generate the YMAL queries.

Definition 1 Co-occurring Keyword. Given the original query result r = (vslca,
{m1, ...,mn}) and a set of result leaf nodes {m′

1,m
′
2, ... ,m

′
l} in T , the co-occurring

keywords K include the corresponding keywords of the result leaf nodes.

After finding the co-occurring keywords, we have to generate YMAL queries,
denoted by Q, from them. Assume K is the co-occurring keyword pool. We define
a YMAL query q ∈ Q as:

Definition 2 YMAL Query. Given a co-occurring keyword pool K, a YMAL
query q = {k1, k2, ..., ki} is a subset of K, where i ∈ {1, 2, ..., |K|}.

However when generating the YMAL queries Q from K, we face combinatorial
explosion since the number of such YMAL queries is exponential to the cardinality
of K. Therefore, we have to limit the number of these queries to the most promis-
ing ones. We propose a scoring scheme that takes two correlation parameters into
account: (a) internal correlation to ensure that the selected keywords ki ∈ q will
produce meaningful results with respect to the data source, and (b) external cor-

relation to ensure that the YMAL queries are highly similar to the original query
q0.

Assume λin(q, T ) and λex(q, q0, T ) denote the internal and external correlation
degrees of a YMAL query q ∈ Q, respectively. Then, we score the YMAL query q

as follows:

λ(q, T ) = α× λin(q, T ) + (1− α)× λex(q, q0, T ) (1)

where α is a tuning parameter to tradeoff between the internal and external
correlations.

Definition 3 Top-l YMAL Queries. Given a keyword query q0 on T and its
result set R, the top-l YMAL queries Q∗ is a subset of Q which maximize the
scoring function given in Eq. 1.

Note that, we do not specifically focus on diversifying the YMAL queries.
We can enforce diversity by considering the dissimilarities between selected top-l
YMAL queries. However, a better diversification will require estimating the query
results and discovering a good result coverage that is out of the scope of this paper.
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3 Our Approach

To generate top-l YMAL queries from K, a straightforward approach would firstly
generate all the subsets from the co-occurring keyword pool K. Then, it would
score these queries in terms of their correlation degrees and retrieves the top-l
highly correlated YMAL queries Q∗. However, the complexity of this approach
is O(2|K|), which is inefficient. Moreover, not all the subsets are appropriate for
presenting to the user as YMAL queries. For instance, some YMAL queries may
produce many results that are not relevant because the size of query is small and
it generates loose results. Conversely, when the size of the query is big, it may
tighten the results and cause non-answer query problem. That’s because if we add
more keywords to a YMAL query, it may decrease its correlation score. Therefore,
to avoid selecting the queries which produce loose results or the queries which
produce non-answers, we propose to generate the YMAL queries limited to a fixed
size which can be set adaptively which is described in Section 5. Let the limit be
the original query size |q0| for now. To retrieve the top-l YMAL queries in XML,
we propose to construct a co-occurring keyword graph G and traverse this graph
to measure the correlation score of the promising YMAL queries only instead of
generating all possible queries from K. The general framework of our approach is
depicted in Fig. 2.

3.1 Co-occurring Keyword Graph

The co-occurring keywords k ∈ K has a correlation degree to each other and
to the original keywords. Thus, these keywords are connected together via these
correlation degrees and they build the co-occurring keywords graph G as follows:

Definition 4 Co-occurring Keyword Graph. Given the co-occurring keywords
K = {k1, k2, ..., k|K|} and the correlation between keywords cor(ki, kj), then the
co-occurring keyword graph G(V, E) is an undirected weighted graph which:

– V = K and each ki ∈ V has a correlation feature vector ki.vect = {f1, f2, ..., fn}
that reflects its correlation degree to the original keywords.

– E is a set of edges that connect the keywords in G. There is a weight on each
connecting edge such that edge.weight = {cor(ki, kj), ki, kj ∈ V}. Two keywords
in G have connecting edge if cor(ki, kj) ≥ η.

3.1.1 Keyword Pairwise Correlation

After building the co-occur- ring keyword pool K, we measure the correlation
degree of each keyword pair ki, kj ∈ K. The pairwise correlation measure deter-
mines how two keywords are relevant to each other and may generate a YMAL
query with meaningful results. We use the semantic metric Normalized Google Dis-

tance [6] NGD(ki, kj) = max{log |R(ki)|, log |R(kj)|}− log |R (ki, kj)|/ logN −min

{log |R(ki)|, log |R(kj)|} to compute the correlation degree between two keywords
ki and kj using the Web data source W as follows:

cor(ki, kj ,W ) = e−2NGD(ki,kj) (2)



Exploring XML Data via You May Also Like Queries 7

DIL Index

Keyword Query

Co-occurring Keywords 

Computation (within the 

Results)

Results

Score the Queries 

based on Internal 

Correlation Degree

Generate YMAL queries

Index Generation

Database

Top-k YMAL 

Queries

Offline Phase Online Phase

Score the Queries 

based on External 

Correlation Degree

Fig. 2: XPloreRank approach architecture

where N is the total number of web documents, R(ki) and R(kj) return the results
in W which contain ki and kj , respectively, and R(ki, kj) returns the results which
contain both ki and kj . However, this metric computes the correlation degree based
on the cardinality of the results that are retrieved by a particular search engine
on an external data source. To measure the correlation degree w.r.t. the local data
source, we use the Jaccard coefficient as:

cor(ki, kj , T ) =
|R(ki) ∩R(kj)|
|R(ki) ∪R(kj)|

(3)

where R(ki) and R(kj) return the results in T which contain ki and kj respec-
tively. Note that in XML data, we use the number of SLCA nodes that contain
ki and kj for the numerator and the sum of the inverted list sizes of ki and kj for
the denominator. Finally, we combine the above equations to compute the final
correlation degree between ki and kj as follows:

cor(ki, kj) = γ × cor(ki, kj ,W ) + (1− γ)× cor(ki, kj , T ) (4)

where γ is a tuning parameter for trading off between the correlation measures of
the Web W and the local data source T . However, our method for top-l YMAL
queries is independent from the keywords correlation computation. Thus, any kind
of correlation metrics can be used instead.

3.1.2 Keyword Correlation to the Original Query

To generate similar YMAL queries from the original query results, the co-occurring
keywords should be as close as possible to the original query keywords. Therefore,
we have to measure the relevance degree of the co-occurring keywords to the
original query keywords. Since a keyword query consists of several keywords, we
measure the correlation of each keyword k ∈ K with all the original keywords
∀ki ∈ q0, i ∈ [1, n] using the Eq. 4. Therefore each keyword k ∈ K, has a set of
correlation scores to the original query keywords like a vector as given as follows:

Definition 5 Correlation Feature Vector. Given a co-occurring keyword k ∈ K,
the correlation feature vector k.vect = (f1, f2, ..., fn) is a set of entries such that:
fi = cor(k, ki ∈ q0), 1 ≤ i ≤ n.
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Fig. 3: Co-occurring keyword graph

Example 1 Consider the keyword caan and the following correlation degrees: cor(caan,
alpacino) = 0.74, cor(caan, copp ola) = 0.367, cor(caan, drama) = 0.319. Then
caan.vect = (0.74, 0.367, 0.319).

Example 2 Consider the original keyword query q0 = {alpacino, coppola, drama}
and the given co-occurring keyword pool K = {alpacino, coppola, drama, italian, brando,

caan,mafia, deniro}. The co-occurring keyword graph G with η ≥ 0.2 is presented
in Fig. 3.

3.2 Scoring

After constructing the co-occurring graph G, we generate the YMAL queries by
traversing G. However, the number of generated queries is enormous. Furthermore,
not all the queries from traversing G would produce meaningful results in the data
source. Also, not all the queries are similar to the original query to the same
degree. Therefore, we have to score the queries based on their ability to produce
meaningful results with respect to data source and their similarity degree to the
original query. We use the query internal correlation to measure the YMAL queries
ability to produce meaningful results and the query external correlation to measure
their similarity degree to the original query.

3.2.1 Internal Correlation

To compute the internal correlation degree of a YMAL query q ∈ Q, we have to
find the correlation degree between its constituent keywords. Therefore, all the
pairwise correlation between the keywords should be measured as:

λin(q, T ) =


0, if |q| = 1
n−1∑
i=1

n∑
j=i+1

cor(ki,kj∈q)

|q| , if |q| ≥ 2

(5)
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Consider there are n keywords in the YMAL query q. Thus, there are C(n, 2)
keyword pairs in q. Each pair has a correlation degree; therefore, we use the nor-
malized summation of the keyword pairs correlation degrees to measure the YMAL
query internal correlation.

3.2.2 External Correlation

Since a YMAL query q ∈ Q is a set of co-occurring keywords, the query correlation
vector is produced by getting the average value for each vector entry of each
keyword ki ∈ q as follows: q.vect = {avg((f1

1 , f
2
1 , ..., f

n
1 ), ..., (f

1
n, f

2
n, ..., f

n
n ))} where

fji denotes the jth entry for ki ∈ q in the correlation feature vector. In order to
measure the correlation of a YMAL query q to the original query q0, we use the
summation of the YMAL query correlation vector elements to compute the total
value. Thus, for the YMAL query q, the external correlation degree λex(q, q0, T ) is
measured as follows:

λex(q, q0, T ) =

∑n
i=1 q.vect.fi

|q| (6)

Finally, both λin(q, T ) and λex(q, q0, T ) contribute to the λ(q, T ) that is presented
in Eq. 1.

Example 3 Assume α = 0.5. Then the internal and external correlation degrees of
the YMAL query q1 = {brando, coppola, drama} generated from K of Example 2 are
as follows: cor(brando, coppola) = 0.32, cor(brando, drama) = 0.25, cor(coppola, drama)
= 0.385, According to Eq. 5, λin(q1, T ) = 0.32+0.25+0.385

3 = 0.318, q1.vect =
avg((0.259, 0.32, 0.25), (0.314, 1, 0.385), (0.28, 0.385, 1)), q1.vect = ( 0.284, 0.568, 0.532).
Then according to Eq. 6, λex(q1, q0, T ) =

0.284+0.568+0.532
3 = 0.461. Finally, from

Eq. 1 the total correlation degree is λ(q1, T ) = 0.5× 0.318 + 0.5× 0.461 = 0.39.

Theorem 1 Generating the YMAL query q ∈ Q from the co-occurring keyword graph

G with the maximum λ(q, T ) and with the constraint |q| = |q0| is an NP-hard problem.

Proof We reduce the well-known NP-hard problem of n Densest Subgraph to our
problem. Given a graph G(V, E) and number n, the n Densest Subgraph problem
finds a subgraph Gs(Vs, Es) with n vertices such that |Vs| = n and the density∑

u,v∈Es
w(u,v)

|Vs| is maximized. From this, we construct an instance of our problem,

consisting of graph G, parameters |q0| = n and α = 1. We show that the instance of
the Densest Subgraph problem is a YES-instance iff the corresponding instance of
our problem is a YES-instance. Given a solution q for our problem, q must contain
|q0| keywords. Since λin(q, T ) should be the maximum, q is a subgraph of size |q0|
from G that has the best density.

3.3 Query Processing: A* Search

The brute force approach finds the optimal solution Q∗; however, it generates all
the possible queries that makes it impractically expensive. Therefore to improve
the performance and not to generate all queries Q, we provide an efficient approach
using A* search to generate the top-l YMAL queries. In this approach, we tra-
verse the co-occurring keywords graph G to find the keywords that could generate
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Fig. 4: A part of A* search process

promising results. To traverse G, we use an upper bound estimation to predict the
score of a YMAL query during the search process. This upper bound is updated
and becomes tighter in each step. We exploit this upper bound to prune many
non-promising computations that would accelerate the search process. To gener-
ate the top-l YMAL queries, we use a max heap H to store the partial results and
perform the search on co-occurring keywords G.V space, and finally, find YMAL
queries with maximum scores.

Assume that qp is a partial YMAL query (i.e., |qp| < |q0|), qu is the unseen

part of the YMAL query q such that q = qp ∪ qu and |qu| = |q| − |qp|, λ
in

=
max{cor(ki, kj),∀ki, kj ∈ K \ qp} and d = C(|q0|, 2) − C(|qp|, 2). Then, the upper

bound of the internal correlation degree of q, denoted by λ
in
(q, T ), becomes as

follows:

λ
in
(q, T ) =


|q0|×λ

in

|q| , if |qp| = 1

λin(qp,T )+d×λ
in

|q| , if |qp| > 1
(7)

Again, assume that qu.vect = max{ki.vect, ∀ki ∈ K \ qp}. Then, the upper
bound of the correlation feature vector of the YMAL query q becomes: q.vect =
avg(qp.vect, (|q0| − |qp|)× qu.vect). We get the upper bound of the external corre-
lation degree of q, denoted by λ

ex
(q, q0, T ), as given as follows:

λ
ex
(q, q0, T ) =

∑n
i=1 q.vect.fi

|q| (8)

Lemma 1 The upper bound of the correlation score of q λ(q, T ), denoted by λ(q, T ),
is as follows:

λ(q, T ) = α× λ
in
(q, T ) + (1− α)× λ

ex
(q, q0, T ) (9)

The upper bound estimation of the score of q never underestimates the real
score of q; therefore, it is admissible.

Lemma 2 Given λ(q∗, T ), λ(q1, T ) such that ∀q2 ∈ Q, λ(q1, T ) ≥ λ(q2, T ) where

|q∗|, |q1|, |q2| = |q0|. The stop condition λ(q∗, T ) ≥ λ(q1, T ) retrieves the optimal q∗ if

λ(q1, T ) is admissible.

Proof Since our estimation of λ(q1, T ) is admissible, we have λ(q1, T ) ≥ λ(q1, T ).
We know that λ(q1, T ) is the maximum value among other estimations. Therefore
using the admissibility, ∀q2 ∈ Q, λ(q2, T ) ≤ λ(q1, T ) ≤ λ(q∗, T ); therefore, q∗ is the
optimal YMAL query. Hence, the lemma.
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Algorithm 1: A* Search-based Technique

Input : q0, S, α, l
Output: Top-l YMAL Queries Q∗

1 Q∗ ← ∅;H← ∅; // initialization
2 K ← findKeywords(q0,S); // co-occurring keywords
3 G ← generateGraph(K); // keyword graph
4 V ′ ← sort(G.V, λex); E ′ ← sort(∀ki, kj ∈ G.V, cor(ki, kj));
5 while ki = getNext(G.V) ̸= ∅ do
6 e.q ← ki; e.λ← (1− α)× λex(ki, q0, T );

7 e.λ← measureUpperBound(e, q0,G,V ′, E ′); // Eq. 9
8 H.push(e); // insert e into H
9 λmin ← 0; Q∗ ← ∅; // initialization

10 while H ̸= ∅ do
11 e← generateQuery(q0,H,G, λmin,V ′, E ′);
12 if e ̸= null then
13 if |Q∗| = l then
14 Q∗ ← update(Q∗, e.q); // update top-l with e.q

15 λmin ← minScore(Q∗); // update λmin

16 else
17 Q∗ ← Q∗ ∪ e.q; // add query to top-l

18 else
19 break; // top-l YMAL queries computed

20 return Q∗;

The core of the A* search-based technique is the search procedure that carries
out an informed search on the co-occurring keyword graph G to find the optimal
YMAL query q∗. Since the informed search is costly and impractical, we can
reuse some computations for generating top-l YMAL queries during the search
on G. For computing top-l YMAL queries Q∗ = {q1, q2, ..., ql}, the partial YMAL
queries computations in the max heap H for computing qi ∈ Q∗ can be reused
when computing qi+1.

Example 4 Consider the original query q0 = {alpacino, coppola, drama} and the
keyword pool K presented in Example 2 and α = 0.5. A part of the A* search
process is shown in Fig. 4. At first, the top entry (∅, 0,∞) is popped from the
heap H, and 8 new entries are pushed (|K| = 8). The entry with the partial query
qp1 = {coppola} is expanded first because it has the best upper bound λ(q1, T ) =
0.472. After that, the entry with the partial query qp2 = {alpacino} is expanded
with the upper bound λ(q2, T ) = 0.47. Note that the score of a parent partial
query may be larger than the score of its child partial query because the score
function is not monotone and adding some less correlated keywords may decrease
the partial query score. For example, in the partial query qpy = {coppola,mafia}
the score decreased from 0.282 to 0.217. In the expanded entry with the partial

query qp1 = {coppola, drama}, the upper bound score is produced as follows: λ
in

=
0.385+2×0.37

3 = 0.375, vect = (0.531, 0.567, 0.555), λ
ex

= 0.551, λ(q1, T ) = 0.5 ×
0.375+0.5×0.551 = 0.463. The entry ({caan, coppola, drama}, 0.394, 0.394) contains
the top-1 YMAL query q1. For computing the top-2 YMAL query q2, we can use
the current computations and pop ({brando, coppola, drama}, 0.392, 0.392) from H.

Algorithm 1 presents the framework for A* approach. We initialize a max
heap H to store the A* search information in line 1. In lines 2-3, we construct
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Algorithm 2: generateQuery Procedure for A* Search-based Technique

Input : q0, H, G, λmin, V ′, E ′
Output: e The element containing YMAL Query

1 while H ̸= ∅ do
2 e←H.pop();

3 if e.λ < λmin then
4 return null; // as per Lemma 2
5 if |e.q| < |q0| then
6 while ki = getNext(G.V) ̸= ∅ and ki ∩ e.q = ∅ do
7 e′.q ← e.q ∪ ki; // add keyword ki to the query

8 e′.λ← α× λin(e′.q, T ) + (1− α)× λex(e′.q, q0, T );

9 e′.λ← measureUpperBound(e′, q0,G,V ′, E ′);
10 H.push(e′); // insert e′ into H
11 else
12 λmin ← e.λ;
13 q ← e.q;
14 return e ; // return the YMAL query

Algorithm 3: measureUpperBound

Input : e, q0, G, V ′, E ′
Output: score upper bound λ

1 if |e.q| = |q0| then
2 return e.λ;

3 λ
ex

, λ
in ← 0;

4 mark(V ′, e.q);
5 mark(E ′, e.q);
6 d← C(|q0|, 2)− C(|e.q|, 2);
7 if |e.q| = 1 then

8 λ
in ←

∑
top(E ′.cor, |q0|);

9 else

10 λ
in ← λin(e.q, T ) +

∑
top(E′.cor,d)

d
;

11 vect← avg(top(V ′.vect, |q0| − |e.q|));
12 λ

ex ←
∑n

i=1 avg(e.q.vect,vect).ei
|e.q| ;

13 λ = α× λ
in

+ (1− α)× λ
ex

;

14 return λ

the co-occurring keywords K and build the G. Each entry e ∈ H has the follow-
ing information: (a) e.q which is the partial YMAL query, (b) e.λ which is the
correlation score of e.q, and (c) e.λ which is the upper bound estimation of the
correlation score. In line 4, we sort the vertices and edges of G based on their
correlations respectively and store them into V ′ and E ′ for measuring the upper
bound. In lines 5-8, we initialize the H with the possible elements of G. In line 11,
we invoke the procedure generateQuery to find the current best q. In lines 13-15,
if |Q∗| = l, we update Q∗ with the query e.q and update the threshold score λmin.
Otherwise, we add the query e.q to the top-l YMAL query list Q∗ as pseudocoded
in line 17.

The procedure generateQuery in line 11 of Algorithm 1 is presented in Algo-
rithm 2. In lines 1-2, if H ̸= ∅, we pop the top element of H and store it into e.
In lines 3-4, if e.λ < λmin, we stop our search since the stop condition is satisfied
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according to lemma 2. If |e.q| < |q0|, we start to expand the entry e because we
have to add more keywords to e.q as pseudocoded in line 5. In line 6, we read the
keywords that are not in e.q. Then in line 7, we add a keyword ki ∈ G.V to e.q

and generate the new expanded partial query e′.q. In lines 8-9, we compute the
correlation score of the expanded query e′.λ and its upper bound estimated score
e′.λ. In lines 10, we push the expanded element into H for the next iterations. In
line 14, we return e for procedure generateQuery.

The procedure measureUpperBound is pseudocoded in Algorithm 3. In lines
1-2, if |e.q| = |q0| we return the total score of the entry e.λ as the upper bound
because the entry contains the ultimate YMAL query. In lines 4-5, we mark the
vertices and edges that are a part of the current partial YMAL query e.q (we
mark these vertices and edges in order to ignore them for measuring the upper
bound). In line 6, we compute d which is the number of keyword correlation pairs
difference between the YMAL partial query e.q and the original query q0. In line
7-8, if |e.q| = 1, we compute the summation of top |q0| elements of E ′.cor (the
function top(E ′.cor, |q0|) returns the top |q0| correlation scores). Otherwise in line
10, we add λin to the summation of top d elements of E ′.cor (using the summation
of top elements instead of using only the top element would produce a tighter
upper bound which improves the performance of the A* search). In line 11, we
compute the average of top (|q0| − |e.q|) vectors of V ′.vect. Then in line 12, we
compute λ

ex
. In line 13, we compute the total upper bound score λ.

4 Approximation

The A* search-based technique conducts an informed search on the co-occurring
keyword graph G. To conduct an informed search, A* estimates upper bound for
the queries during their computation. However, it is difficult to estimate this up-
per bound which incurs some computational overheads. Moreover, sometimes this
upper bound estimation may be loose; therefore, affects the performance of the A*
search which makes it highly costly and impractical. Furthermore in exploratory
search, users may not need the optimal solution but they need a fast response
time. Therefore, we propose a greedy-based approximation to quickly extract the
top-l YMAL queries q ∈ Q∗ in this section. In this approach, we only start the
search with the most promising keywords called seed keywords K′. Also, we use
an approximation rate θ and compare the real score of each entry with its par-
ent entry. If the score of e is not increased by our approximation rate, we prune
this entry because it may not be promising. These prunings lead to improving the
performance of the search by ignoring many non-promising computations. Before
presenting our method, we discuss some properties of the correlation score function
(shown in Eq. 1) that are useful to design the approximate greedy method.

Property 1 The score function λ(q, T ) is non-negative, i.e., λ(q, T ) ≥ 0, ∀q ∈ Q.

Property 2 The score function λ(q, T ) is non-monotone since ∃q1 ⊂ q2 ∈ Q such
that λ(q1, T ) ≥ λ(q2, T ) or λ(q1, T ) < λ(q2, T ).

Our greedy-based approximation is based on a local search technique. Since
the score function λ(q, T ) is non-monotone, we have to check whether a keyword
k ∈ q increases or decreases the total score. Thus, in this approach we increase
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the total score of a partial YMAL query qp ⊆ q by adding a keyword ki to qp or
excluding a keyword kj from qp until this addition or exclusion keeps increasing
the total score. The main steps of our greedy-based approximation are as follows.

We start with a set of seed keywords K′ ⊂ G.V with the maximum external
correlation to q0 among other keywords, ∀k ∈ K′ we create an entry e and push e

into the max heap H. Then we repeatedly retrieve e = H.pop() until e.λ < λmin

and do the following: if |e.q| < |q0| then we check if ∃k′ ∈ G.V \ e.q such that
λ(e.q∪k′, T ) > (1+θ)×λ(e.q, T ) then e.q = e.q∪k′ and push e into H. If |e.q| = |q0|
then we check if ∃k′ ∈ e.q such that λ(e.q\k′, T ) > (1+θ)×λ(e.q, T ) then e.q = e.q\k′
and push e into H, else we return e as the entry that contains YMAL query q.
The θ is the approximation rate for our greedy method. We call q is a suboptimal
YMAL query if for any YMAL query q1, q2 such that q1 ⊆ q ⊆ q2, λ(q1, T ) ≤ λ(q, T )
and λ(q2, T ) ≤ λ(q, T ). Here, we define our approximate suboptimal YMAL query.

Definition 6 Approximate Suboptimal YMAL Query. Given the score func-
tion λ(q, T ) and an approximate rate θ, q is an approximate suboptimal YMAL
query, if (a) ∀ki ∈ q, (1+θ)×λ(q, T ) ≥ λ(q\ki, T ), and (b) ∀kj ̸∈ q, (1+θ)×λ(q, T ) ≥
λ(q ∪ kj , T ).

In the greedy-based approximation, we use the approximation rate θ to check
the amount of increase in the total score of a YMAL query and prune those
queries that are not promising. Thus, in the greedy approach, we compute both
the the upper bound score λ and the lower bound score λ of q to compute the

approximation rate as follows: (a) ϵ = λ(q, T )− λ(q, T ), and (b) θ =
ϵ

|K| .

Assume that qp is a partial YMAL query (i.e., |qp| < |q0|), qu is the unseen
part of the YMAL query q such that q = qp ∪ qu and |qu| = |q| − |qp|, λin =
min{cor(ki, kj),∀ki, kj ∈ K \ qp} and d = C(|q0|, 2) − C(|qp|, 2). Then, the lower
bound of the internal correlation degree of q, denoted by λin(q, T ), becomes as
follows:

λin(q, T ) =


|q0|×λin

|q| , if |qp| = 1
λin(qp,T )+d×λin

|q| , if |qp| > 1
(10)

Again, assume that qu.vect = min{ki.vect, ∀ki ∈ K \ qp}. Then, the lower
bound of the correlation feature vector of the YMAL query q becomes: q.vect =
avg(qp.vect, (|q0| − |qp|)× qu.vect). We get the lower bound of the external correla-
tion degree of q, denoted by λex(q, q0, T ), as given as follows:

λex(q, q0, T ) =

∑n
i=1 q.vect.fi

|q| (11)

Lemma 3 The lower bound of the correlation score of q λ(q, T ), denoted by λ(q, T ),
is as follows:

λ(q, T ) = α× λin(q, T ) + (1− α)× λex(q, q0, T ) (12)

Example 5 Assume the partial YMAL query qp = {coppola, drama} presented in
Fig. 4. Then the lower bound estimation computed as follows: λin = 0, λin(q, T ) =
0.328+2×0

3 = 0.127, q.vect = (0.274, 0.347, 0.454), λex(q, q0, T ) = 0.358. Finally,
λ(q, T ) = 0.5× 0.127 + 0.5× 0.358 = 0.243.
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Since our lower bound estimation guarantees that any optimal YMAL query
score will beat it; therefore, the difference between the upper bound λ(q, T ) and
the lower bound λ(q, T ) is the maximum value for the estimation error which we
use it as ϵ for the approximation rate.

Theorem 2 The greedy-based approximation algorithm is a- SUBOPT
(1+θ)|q0| approximation

algorithm for presenting top-l YMAL queries. The algorithm complexity is O(1ϵ |K|2 log |K|).

Proof Assume λ(q, T ) is the score of the approximate suboptimal YMAL query.
Since in each iteration the score increases by the factor (1+θ), then if the algorithm
iterations is i we have the following: (1 + θ)i × λ(q, T ) ≥ SUBOPT , and finally
λ(q, T ) ≥ SUBOPT

(1+θ)i
. We present the YMAL queries with the size |q0|; therefore,

λ(q, T ) ≥ SUBOPT
(1+θ)|q0| . For the complexity analysis, assume λ is the best score for the

queries. Thus, its simple to see |K| × λ ≥ SUBOPT . If the algorithm iteration is
i, then in each iteration the score increases by (1 + ϵ

|K| ). Then, after i iteration

|K| × λ ≥ (1+ ϵ
|K| )

i × λ, |K| ≥ (1+ ϵ
|K| )

i, then i = O(1ϵ |K| log |K|). Since the search

includes |K| the complexity becomes O(1ϵ |K|2 log |K|).

Example 6 Assume |K| = 10, λ(q, T ) is the score of the approximate suboptimal
query q, ϵ = 1, and |q0| = 3. The greedy algorithm finds a solution by the following
rate: λ(q, T ) ≥ SUBOPT

(1+0.1)3 , λ(q, T ) ≥ 0.75 SUBOPT .

4.1 The Algorithm

Algorithm 4 presents the greedy approach. Lines 1-3 is similar to Algorithm 1.
In line 4, we sort the vertices and edges of G based on their correlation score
respectively and store them into V ′ and E ′ for measuring the upper bound. In line
6, we find a seed of the most correlated keywords to the original query keywords
and store them into K′. Then for each k ∈ K′, we store k into e.q and measure
the total score and store it into the e.λ in lines 7-9. In lines 10-11, we measure
the upper bound λ for the entry e and push e into the max heap H. In lines
12-13, we measure the lower bound for the current entry e into λ and compute
the approximation rate θ. In line 16, we invoke the procedure generateQuery and
store the result in e. In lines 18-20, if Q∗ = l, we update the top-l list Q∗ and the
threshold score λmin respectively. Otherwise, we add the query e.q to Q∗ in line
22.

The procedure generateQuery in line 16 of Algorithm 4 is pseudocoded in
Algorithm 5. In lines 1-2, if H ̸= ∅, we pop the top element of H and store it into
e. If e.λ < λmin, we stop the search process according to lemma 2 as pseudocoded
in lines 3-4. In line 5, if |e.q| < |q0| we need to add more keywords to e.q. In line
6 we read the keywords ki ∈ G.V that are not a part of e.q. Then in lines 7, we
add the keyword ki to e.q and generate the new expanded partial query e′.q. In
line 8, we compute the total correlation score for the expanded entry and store
it into e′.λ. In line 9, if the score of the expanded entry e′.λ is better than the
(1 + θ) × e.λ (it means that by adding ki to e.q the score will increase by (1 + θ)
factor), the expanded entry e′ is eligible for the search; therefore, we measure the
upper bound e′.λ and push the expanded element into H for the next iterations
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Algorithm 4: Greedy-based Approximation

Input : q0, G, S, α, l
Output: Top-l YMAL Queries Q∗

1 Q∗ ← ∅;H← ∅; // initialization
2 K ← findKeywords(q0,S) ; // co-occurring keywords
3 G ← generateGraph(K) ; // keyword graph
4 V ′ ← sort(G.V, λex); E ′ ← sort(∀ki, kj ∈ G.V, cor(ki, kj));
5 k = findMaxScoreKeyword(G.V); e.q ← k; e.q ← k;
6 K′ = findMaxScoreSeeds(G.V); // seed keywords
7 for each k ∈ K′ do
8 e.q ← k; // access the keywords in K′ in ascending order based on λex

9 e.λ← (1− α)× λex(k, q0, T );

10 e.λ← measureUpperBound(e, q0,G,V ′, E ′); // Eq. 9
11 H.push(e); // insert e into H
12 e.λ← measureLowerBound(e, q0,G,V ′, E ′); // Eq. 12

13 θ ← e.λ−e.λ
|G.V| ; // approximation rate

14 λmin ← 0; Q∗ ← ∅; // initialization
15 while H ̸= ∅ do
16 e← generateQuery(q0,H,G, θ, λmin,V ′, E ′);
17 if e ̸= null then
18 if |Q∗| = l then
19 Q∗ ← update(Q∗, e.q); // update top-l with e.q

20 λmin ← minScore(Q∗); // update λmin

21 else
22 Q∗ ← Q∗ ∪ e.q; // add query to top-l

23 else
24 break; // top-l YMAL queries computed

25 return Q∗

in lines 10-11. In lines 14-16, we read the keyword ki ∈ e.q and remove it from
the query e.q and generate the new shrunk entry e′, measure the total score e′.λ
to check whether the score increases by removing the keyword. In line 17, if the
score of the shrunk entry e′.λ is better than the (1 + θ) × e.λ (it means that by
removing ki from e.q the score will increase by (1+ θ) factor), the shrunk entry e′

is eligible for the search; therefore, we measure the upper bound e′.λ and push the
shrunk element into H for the next iterations in lines 18-19. In line 21, we return
e for the procedure generateQuery.

5 Discussion

Query Size. When generating a YMAL query q, adding or removing a keyword
may increase its score λ(q, T ). Therefore, the size of the YMAL query q may affect
its score. However, to check all the sizes for a YMAL query, we have to generate
all the subsets from the keyword pool K which is impractical. Moreover, when the
size of the query is extremely small or large, it generates very loose or tight results
which is not appropriate. From our observation, when we set the YMAL query size
to |q0|, we get most of the top-l YMAL queries. It also reflects the user original
search intentions for the query size. However, it is possible to generate some of
the top-l YMAL queries by increasing or decreasing the size of q (from |q0|) by a
small number of keywords. One way to generate the top-l YMAL queries of any
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Algorithm 5: generateProcedure for Greedy-based Approximation

Input : q0, H, G, θ, λmin, V ′, E ′
Output: e element containing YMAL Query

1 while H ̸= ∅ do
2 e←H.pop();

3 if e.λ < λmin then
4 return null; // as per Lemma 2
5 if |e.q| < |q0| then
6 while ki = getNext(G.V) ̸= ∅ and ki ∩ e.q = ∅ do
7 e′.q ← e.q ∪ ki; // add keyword to the query

8 e′.λ← α× λin(e′.q, T ) + (1− α)× λex(e′.q, q0, T );
9 if e′.λ > (1 + θ)× e.λ then

10 e′.λ← measureUpperBound(e′, q0,G,V ′, E ′);
11 H.push(e′);

12 else
13 flag ← true; // boolean flag
14 while ki = getNext(e.q) ̸= ∅ do
15 e′.q ← e.q \ ki; // exclude keyword from e.q

16 e′.λ← α× λin(e′.q, T ) + (1− α)× λex(e′.q, q0, T );
17 if e′.λ > (1 + θ)× e.λ then

18 e′.λ← measureUpperBound(e′, q0,G,V ′, E ′);
19 H.push(e′); flag ← false;

20 if flag then
21 return e;

size is to start from the top-l YMAL queries of size |q0|. From the output of either
of Algorithm 1 (for A* search-based technique) or Algorithm 4 (for greedy-based
approximation), we can select the YMAL query q with the highest score each time,
then add or remove a keyword to see if the score is increased (for Algorithm 1) or
increased by the proportion of the approximation rate (for Algorithm 4). Another
way to generate the top-l YMAL queries of any size is to update Algorithm 1
or Algorithm 4 by removing the cardinality constraint (i.e., fix the size to |q0|).
In other words, for Algorithm 1, a YMAL query candidate q is generated when
adding a keyword would not increase the score λ(q, T ). For Algorithm 4, a YMAL
query candidate q is generated when adding or removing a keyword would not be
increased the score by θ × λ(q, T ).
Effect of Parameters γ and η. γ parameter tunes the correlation value of the
keywords between external and internal sources. If we prefer to use a local data
source correlation estimation, we can set γ to a lower value. Otherwise, we can
set γ to bigger value to reflect the correlation globally. Also η setting can affect
the performance. If we set η to smaller value, the co-occurring graph would be
more connected and this can negatively affect the performance. However, when
we set η to a bigger value, it can improve the performance but it will affect the
effectiveness negatively. In this paper, we find η ≥ 0.2 is fairly good. The effect
of α is discussed in the experiments. Note that our proposed framework for pre-
senting YMAL queries is not XML exclusive. Hence, the proposed framework for
presenting top-l YMAL queries can be easily adapted to work with other types of
data, such as RDF and so on.
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Table 2: Sample queries and their top-1 YMAL queries
Dataset q0 Top− 1 YMAL query

IMDB alpacino,coppola,drama caan,coppola,drama
IMDB drama,2012,crowe action,2012,crowe
IMDB gladiator,action,english,combat braveheart,action,english,revolt
IMDB shrek,animation,myers madagascar,animation,miller
IMDB scream,horror,telephone,killer ring,horror,ghost,killer
DBLP stonebraker,sigmod,2017 stonebraker,pvldb,2017
DBLP web, search, semantic web, search, text
DBLP www, conference, 2016,multimedia www, conference, 2016,exploration
DBLP agrawal,keyword,search matteis,keyword,search
DBLP www,search,entity,2016 www,search,experience,2016

6 Experiments

In this section, we evaluate the effectiveness and efficiency of our proposed meth-
ods for presenting top-l YMAL queries to users. The proposed methods are as
follows: (a) NAIVE method (the brute force method), (b) ASTAR method, and
(c) GREEDY method. The experiments are conducted on two real datasets: (a)
Internet Movie Database (IMDB) 170 MB, and (b) Digital Bibliography and Li-
brary Project (DBLP) 700 MB. All of our algorithms are implemented in C# and
the experiments are carried out using a PC with 3.2 GHz CPU, 8 GB memory
and running on 64-bit windows 7. We conduct our experiments on a wide range
of tested queries. A part of the tested queries is presented in Table 2.

6.1 Effectiveness

This section evaluates the effectiveness of the proposed methods.

6.1.1 User Study

We conducted a comprehensive user study to evaluate the quality of our YMAL
queries. We selected our users among experts and ordinary users and ask them to
score each of our top-l YMAL queries between [0-1] based on their relevance to
the original query (0 means the least relevance and 1 means the most relevance).
Fig. 5(a) presents the precision of YMAL queries based on their size. Clearly when
the size of the queries is small (|q| = 1 or |q| = 2), the precision is low. When the
queries size increases to 3 and 4, the precision increases. Finally, when the queries
size is bigger than 4, the precision deteriorates. That’s probably for the fact that
when we generate queries with small size, the query may not reflect all the original
query properties. Conversely, when we generate a query with a big size, the query
may contain some keywords that are not relevant enough to the original query. Fig.
5(b) presents the precision of YMAL queries for ASTAR and GREEDY methods.
Clearly, when the top-l size increases, the precision of the queries decreases for
both methods which shows that our ranking scheme successfully score the more
relevant YMAL queries with higher scores. The precision in ASTAR is better than
the GREEDY because the ASTAR generates the optimal YMAL queries while the
GREEDY method generates the approximate suboptimal queries. However, the
precision of the GREEDY method is not deteriorated with big margin.
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Fig. 5: Quality of YMAL queries

Table 3: Trading off between correlation scores

Dataset Method α AV G(λin) AV G(λex) AV G(λ)

IMDB ASTAR 0.2 2.819 1.587 1.834
IMDB ASTAR 0.8 2.858 1.546 2.596
IMDB GREEDY 0.2 2.747 1.588 1.82
IMDB GREEDY 0.8 2.753 1.584 2.315
DBLP ASTAR 0.2 2.479 1.563 1.746
DBLP ASTAR 0.8 2.784 1.402 2.507
DBLP GREEDY 0.2 2.423 1.563 1.737
DBLP GREEDY 0.8 2.439 1.559 2.262

6.1.2 Effect of tuning parameter α

We provide a case study to show the effect of the tuning parameter α on the
YMAL query score and how this parameter is a trade-off between the internal and
external correlation scores. Table 3 presents the average internal, external and total
correlation scores for the top-10 YMAL queries retrieved from the results of the
tested queries in IMDB and DBLP. Clearly, the external correlation score is large in
both ASTAR and GREEDY when α = 0.2 for both datasets. That’s because when
we set α to a small number, more emphasis is put on the external correlation and
consequently, more similar keywords to the original query are selected to generate
the YMAL queries. However, when we set α to a big number, we put more priority
on the internal correlation score; therefore, the YMAL queries are generated by
using the keywords with the better internal correlation scores.
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Fig. 6: Score differences between ASTAR and GREEDY

Fig. 6 presents the average score difference ∆ of GREEDY method compared
with ASTAR method for computing top-10 YMAL queries retrieved for the tested
queries in IMDB and DBLP datasets. From the figure, we observe that the ∆ grows
when we set α = 0.2 to 0.9 for both methods on both datasets. That’s because
the GREEDY method starts from the most correlated keyword to the original
keywords; therefore, when we set α to larger numbers the GREEDY method score
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is more affected by its low internal correlation. In IMDB dataset, from α = 0.7 to
0.8, we observe a big jump in ∆ because at this point the GREEDY method fails to
find a suboptimal YMAL query that its internal correlation score is close enough to
the YMAL query which is generated by ASTAR. Therefore, the GREEDY method
score is heavily affected by this difference. However, when the α is balanced (for
instance α = 0.5), the performance of GREEDY method is close to that of ASTAR.
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Fig. 7: Effect of top-l size on the effectiveness

6.1.3 Effect of |l|

Fig. 7 presents the effect of |l| on the proposed methods effectiveness for IMDB
and DBLP. From the figure, we observe that the average total score for the top
YMAL queries generated by the GREEDY method is very close to the ASTAR
method for l ≤ 20 for both datasets. For l > 20, the score difference ∆ between
the GREEDY and ASTAR methods grows bigger. That’s because the GREEDY
method finds the suboptimal YMAL queries that their score is locally maximum
and when the parameter l increases, the average score of these locally maximum
YMAL queries may get smaller than the ASTAR YMAL queries. However, for the
smaller values of l, GREEDY is not much affected.

6.2 Efficiency

In this section, we evaluate the efficiency of our proposed methods from various
perspectives.

6.2.1 Effect of |K|

As our keyword pool size |K| is crucial for the performance of the proposed meth-
ods, we conduct experiments to present the effect of the keyword pool size on the
efficiency of our proposed methods. Fig. 8 presents the execution time for differ-
ent methods by varying the keyword pool size |K| on IMDB and DBLP datasets.
From Fig. 8(a), we observe that the NAIVE method is more sensitive to |K| since
it generates all possible queries from K; however, ASTAR and GREEDY methods
are not that sensitive to |K|. In Fig. 8(b), the execution time for the NAIVE and
ASTAR methods show a jump when 30 ≤ |K| ≤ 50. For |K| ≥ 55, the execution
time for ASTAR increases with a lower rate. That’s because the ASTAR method
estimation overhead affects its performance at first (specially when the estima-
tion is loose) and then it becomes better in performance because the estimation
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Fig. 9: Effect of query size on the efficiency

becomes tighter which improves its performance. In NAIVE method; however, it
finds all the possible queries from K to generate the YMAL queries Q which nega-
tively affects its performance. Therefore, we conclude that NAIVE method is not
scalable while GREEDY method has the best scalability with respect to |K|.

6.2.2 Effect of query size

In this experiment, we analyze the effect of query size on the performance of the
proposed methods. To conduct the experiment, we set the original tested queries
size to 3, 4, 5, and 6 and we measure the average execution time for generating top-
5 YMAL queries. Fig. 9 presents the corresponding results for IMDB and DBLP.
From the figure, NAIVE method execution time exhibits a sharp increase when the
query size increases on both datasets. That’s because the NAIVE method builds
all the combination of K with size |q0| to generate the YMAL queries; therefore, by
increasing the query size we observe an explosion in the execution time. Similarly
in the ASTAR and GREEDY methods, the execution time grows when the query
size increases; however, the growth is slower than the NAIVE method. We conclude
that NAIVE method is highly sensitive to this parameter while GREEDY method
is the least sensitive method w.r.t. to query size.

7 Related Work

A recommendation system usually issues exploratory queries on the data source
to generate recommended items to the user [8,2]. There are two major types of
recommendation methods in the literature: (a) recommendation by exploring sim-
ilar items to those that are visited before [16,19]; and (b) recommendation by
exploring the items that are relevant to those that are liked by the user in the past
[1,18]. In [10], a framework that supports the query-from-examples is presented
for exploration over large datasets. This framework employs active learning to
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construct exploratory queries based on user’s preferences. Some works propose a
multi-objective view recommendation scheme for visual data exploration [9]. Most
of these works focus on relational databases. However, XPloreRank works on semi-
structured data and constructs YMAL queries based on user original query result
content.

The query refinement focuses on modifying the original query to assist the user
to find her desired results. Sometimes the original query retrieves many results that
are less relevant to the user query intentions. Therefore, query refinement methods
add some constraints to the original query to limit the number of results [20].
Conversely, when the user query retrieves no result or insufficient results, the query
refinement methods relax the original query constraints to generate more results for
the user [17,3,12]. Some research works propose the query refinement techniques
to discover and solve the mismatch problem when the original query retrieves
erroneous results [5]. However, XPloreRank analyzes the user original query results
content to generate highly correlated YMAL queries for recommendation.

8 Conclusion

In this paper, we investigate exploratory search on XML keyword search. Our ap-
proach exploits the co-occurring content within the user original query results to
generate YMAL queries. The YMAL queries produce recommended additional re-
sults that may interest the user. These queries are ranked based on their capability
to produce meaningful results with respect to the data source and their similarity
to the user original keyword query. Since the number of YMAL queries is enor-
mous, we propose an A* search-based technique to avoid generating all the YMAL
queries and conduct a search on the co-occurring keywords space. Also, we propose
a greedy-based approximation for the A* search-based technique to improve the
performance of the A* search substantially and return the top-l YMAL queries to
the user. The extensive experiments verify the effectiveness and efficiency of our
approach.
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