
 Page 1 of 1

Federation University ResearchOnline
https://researchonline.federation.edu.au
Copyright Notice

This is the published version of:

Xiong, Zhang, L., Zhang, W., Vasilakos, A. V., & Imran, M. (2017). Design and Analysis of an Efficient
Energy Algorithm in Wireless Social Sensor Networks. Sensors, 17(10), 2166.

Available online: https://doi.org/10.3390/s17102166

Copyright © 2015 John Wiley & Sons Ltd. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY 4.0)
(https://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

CRICOS 00103D RTO 4909

See this record in Federation ResearchOnline at:
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/182341

https://researchonline.federation.edu.au/
https://doi.org/10.3390/s17102166
https://creativecommons.org/licenses/by/4.0/

sensors

Article

Design and Analysis of an Efficient Energy Algorithm
in Wireless Social Sensor Networks

Naixue Xiong 1,2 ID , Longzhen Zhang 1, Wei Zhang 3,*, Athanasios V. Vasilakos 4 and
Muhammad Imran 5

1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,
Shanghai 200093, China; xiongnaixue@gmail.com (N.X.); zlzlmf@163.com (L.Z.)

2 Department of Mathematics and Computer Science, Northeastern State University,
Tahlequah, OK 74464, USA

3 Department of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310037, China
4 Department of Computer Science, Electrical and Space Engineering, Lulea University of Technology,

97187 Lulea, Sweden; athanasios.vasilakos@ltu.se
5 College of Computer and Information Sciences, Almuzahmiyah, King Saud University,

Riyadh 11451, Saudi Arabia; cimran@ksu.edu.sa
* Correspondence: magherozhw@hdu.edu.cn; Tel.: +86-137-5715-8467

Received: 18 July 2017; Accepted: 2 September 2017; Published: 21 September 2017

Abstract: Because mobile ad hoc networks have characteristics such as lack of center nodes, multi-hop
routing and changeable topology, the existing checkpoint technologies for normal mobile networks
cannot be applied well to mobile ad hoc networks. Considering the multi-frequency hierarchy
structure of ad hoc networks, this paper proposes a hybrid checkpointing strategy which combines the
techniques of synchronous checkpointing with asynchronous checkpointing, namely the checkpoints
of mobile terminals in the same cluster remain synchronous, and the checkpoints in different clusters
remain asynchronous. This strategy could not only avoid cascading rollback among the processes in
the same cluster, but also avoid too many message transmissions among the processes in different
clusters. What is more, it can reduce the communication delay. In order to assure the consistency
of the global states, this paper discusses the correctness criteria of hybrid checkpointing, which
includes the criteria of checkpoint taking, rollback recovery and indelibility. Based on the designed
Intra-Cluster Checkpoint Dependence Graph and Inter-Cluster Checkpoint Dependence Graph, the
elimination rules for different kinds of checkpoints are discussed, and the algorithms for the same
cluster checkpoints, different cluster checkpoints, and rollback recovery are also given. Experimental
results demonstrate the proposed hybrid checkpointing strategy is a preferable trade-off method,
which not only synthetically takes all kinds of resource constraints of Ad hoc networks into account,
but also outperforms the existing schemes in terms of the dependence to cluster heads, the recovery
time compared to the pure synchronous, and the pure asynchronous checkpoint advantage.

Keywords: ad hoc network; mobile communication; synchronous checkpointing; asynchronous
checkpointing; hybrid checkpointing

1. Introduction

1.1. Research Motive

As a new kind of network technology in the wireless communication field, the mobile ad hoc
network, which doesn’t depend on fixed infrastructures, has been widely applied to different kinds of
situations such as offices, industries and military, etc., bcause it can not only construct a multi-hops
network with the existing network, but also support wireless transmission of data, voices and images
under bad environmental conditions by temporarily constructing a smart network.

Sensors 2017, 17, 2166; doi:10.3390/s17102166 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0394-4635
http://dx.doi.org/10.3390/s17102166
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 2166 2 of 29

However, mobile ad hoc networks have some limitations such as lack of support of fixed networks,
limited resources and changeable topological structure. Compared to the normal mobile network, its
stability is worse and the failure probability is higher. Thus, it is necessary to research fault tolerance
and reliability technologies for the network.

In distributed systems, in order to ensure global consistency, when failures occur, the related
processes firstly rollback the executed operations and then redo them. Checkpoint technologies are
proposed for avoiding rollback to the initial states of the processes [1,2]. Namely, the processes are
required to store their current states at a regular or unregularly period, so they just need to roll back to
a specific checkpoint instead of the initial state when a failure occurs, to greatly reduce the recovery
time [3,4].

In essence, the mobile ad hoc network is a kind of distributed network, hence the checkpoint
technologies for it not only need to consider the features of distributed systems and regular mobile
networks such as mobility of location and frequent disconnection, but also need take its own unique
characteristics into account [5]:

Multi-hops routing (MH). Without the support of a fixed network, the communication among
MHs in different clusters needs to be transmitted by multiple intermediate nodes. This will
increase the number of wireless communication messages and communication delays for the
checkpointing procedure.

Lack of support for fixed networks. In regular mobile networks, the checkpoint information of MHs

is mostly stored in the Mobile Support Stations (MSSs) dispatching in the fixed network because of the
unreliability of storage in MHs. However, there are no longer fixed hosts like MSSs in mobile ad hoc
networks, hence, the existing checkpointing methods in the mobile computing environment which are
dependent on MSSs are not suitable for the ad hoc network any more.

Changeable topological structure. In ad hoc wireless networks, the MHs usually leave one cluster
and enter another cluster, which will easily cause a change of the network topological structure. The
checkpoint technologies should be able to handle these location changes to ensure the correctness of
recovery when handoff occurs [6–8].

Therefore, the existing checkpoint technologies for fixed networks and regular mobile networks
cannot be applied to mobile ad hoc networks effectively. It is necessary to design new checkpoint
technologies for coping with the upper challenges to improve the fault tolerance and reliability of
mobile ad hoc networks.

1.2. Related Works

Checkpoint technologies were first proposed for improving the fault tolerance ability of
distributed systems. According to the relations between checkpoints, the checkpoint technologies can
be divided to synchronous checkpointing [3,9–12] and asynchronous checkpointing [13,14].

Synchronous checkpointing, also called coordinated checkpointing, is the method where all
processes stay coordinated and store their states in some stable storage. This kind of checkpoints
requires that the processes taking part in checkpointing do the checkpoints synchronously. Its
advantages are a lack of cascade rollback and low recovery overhead, whereas it will require a lot of
coordination messages and its checkpoint time is longer. On the basis of the interruption of the basic
operations of processes, the synchronous checkpointing strategies could be further classified into two
kinds: unblocking [3,9] and blocking checkpointing [10–12]. According to the triggering occasion of
checkpoints, they can be divided to checkpointing based on time [3] and checkpointing induced by
communication [15–18].

Asynchronous checkpointing, or independent checkpointing, is the method where every process
takes its own checkpoint independently. This could avoid sending the coordination messages for
checkpointing, but it has the disadvantages such as cascade rollback, higher storage space and longer
recovery time.

Sensors 2017, 17, 2166 3 of 29

Mobile computing environments are typical wireless network applications. They have features
such as mobility, limited resources and high failure probability, so the traditional distributed
checkpointing algorithms can’t be applied to this environment very well. Neves et al. [19] put
forward an adaptive algorithm which considers the quality of a wireless network. This algorithm
proposed the concept of soft checkpoints and hard checkpoints. Soft checkpoints are stored in the
MHs, while hard checkpoints are stored in the stable storage of fixed network hosts (such as MSSs).
After taking the number of maxSoft soft checkpoints every time, the process takes one hard checkpoint.
The advantage of this method is that the value of maxSoft changes adaptively with the server quality
of the network, but the MHs will store too many soft checkpoints and thus occupy a lot of storage
space when the server quality of network in this method is worse. Some papers [20–22] adopted
mobile agents to partake in the tasks of MSSs, but the existence of agents will cause increments in the
message retransmissions and communication delays. Taking the mobility of wireless terminals into
consideration, George et al. [18,23] proposed a checkpointing algorithm based on movement and logs.
Namely, MHs take checkpoints independently when they pass a certain number of handoffs. However,
this method has longer recovery time when the handoff rate of MHs is low. Cao et al. [18,24] came
up with the mutable checkpoint which is stored in MHs. The shortcoming of this strategy is that the
number of mutable checkpoints induced by messages is large and most of these mutable checkpoints
may become useless checkpoints.

Recently, the related researches for ad hoc network are mainly focused on aspects such as the
technologies of channel switching, network architecture, routing protocols, strategies for assuring
Quality of Service (QoS), multicast protocols, energy conservation and security [22,25–31], but studies
about the fault tolerance and reliability of ad hoc networks are relatively few. Tuli et al. [32] proposed
an asynchronous checkpointing strategy which was applied to an ad hoc network, namely MHs could
take checkpoints independently. In order to reduce the occupation of storage space in MHs, the
cluster heads store the message logs for MHs. The advantage of this strategy is that MHs could take
checkpoints independently and so the communication overhead of the system without failure is small,
but the storage overhead of cluster heads is large. When some process fails, the wireless communication
overhead to determine the dependence relation of rollback will also be large. Meng et al. [33] put
forward a synchronous algorithm for ad hoc networks based on clusters. The basic notion of this
algorithm is that the initialization of the checkpointing procedure and the sending of checkpoint
requests to MHs in clusters are charged by the cluster heads. If MHs achieve the channels assignment
in the first beacon interval, they will take checkpoints in the second beacon interval. Otherwise, they
take checkpoints in the first beacon interval. Though this algorithm makes very good use of the
channels assignment mechanism of mobile ad hoc networks, the taking of checkpoints is too frequent
and the storage overhead is large. Parveen et al. [7] also presented a synchronous checkpointing
strategy for ad hoc networks. This strategy assumes that the executions of processes are deterministic,
namely the same results will be obtained when the same message sequences are executed twice from
the same starting point. Saluja and Kumar [34] proposed a synchronous non-blocking checkpointing
strategy, which was suitable for ad hoc networks. In this strategy, the cluster heads substitute for
processes in the same cluster to execute the checkpointing duties. When the cluster heads receive
the messages, which are sent to the processes in the same cluster, they firstly obtain the dependence
relation carried by messages and then send the messages to processes alone.

Though the above checkpointing algorithms for mobile ad hoc networks take the clustering
structure of the ad hoc network into account, the burden of cluster heads (cluster heads are MHs too
in fact) is too heavy and they consider less the effects caused by the features of the ad hoc network
such as multi-hop routing and dynamic topological structure, hence they cannot be applied to ad hoc
networks very well.

Sensors 2017, 17, 2166 4 of 29

1.3. Work and Organization of This Paper

This paper intends to design a hybrid checkpointing strategy based on a multi-frequency hierarchy
ad hoc network. In this strategy, the MHs in the same cluster use the synchronous checkpointing
strategy, while the MHs in different clusters make use of the asynchronous checkpointing strategy. The
main contributions of this paper include the following:

1. It proposes the hybrid checkpointing model combined the coordinated and uncoordinated
checkpointing after considering the communication features and kinds of resource restraints of
mobile ad hoc networks;

2. It discusses the checkpoint correctness criteria for a hybrid checkpointing model including the
checkpoint taking criteria, rollback criteria and indelibility criteria.

3. It discusses the triggering occasions of checkpoints for processes in the same cluster and different
clusters according to the characteristics and requirements of different types of checkpoints.

4. It designs the intra-cluster and inter-cluster checkpoint dependence graph according to the
dependence relations among checkpoints. Then it discusses the elimination rules of checkpoints
in the same cluster and different clusters based on these graphs. What is more, it provides
the algorithms for checkpoints in the same cluster and different clusters and rollback recovery
algorithm. At the same time, it proves the correctness of the algorithms by theory.

5. By testing the performances of the proposed strategy, this paper verifies that the hybrid
checkpointing strategy is a good trade off method and it has advantages such as less of
dependence on cluster heads, low overhead and shorter recovery times.

The rest of the paper is organized as follows: Section 2 introduces the ad hoc network topological
structure and the model of hybrid checkpointing. The correctness criteria for hybrid checkpointing
model and the triggering occasions of kinds of checkpoints are discussed in Sections 3 and 4.
In Sections 5 and 6, we propose the elimination strategy of checkpoints and related algorithms.
Then we discuss the processing method for handoffs in Section 7. In Section 8, we present the testing of
performance and analysis. The last part gives the conclusions of this paper and proposes future work.

2. Ad Hoc Network Structure and Hybrid Checkpointing Model

2.1. Mobile Ad Hoc Network Topological Structure

The mobile ad hoc network is a kind of wireless self-organizing network which has peer to peer
movement. Its topological structures are mainly classified to two kinds: flat structures and hierarchical
structures [35–38]. In a flat structure, all network nodes are equal, but the entire network in the
hierarchical structure is constituted by subnets which are divided into clusters. Each cluster includes
one cluster head and many cluster members. The cluster heads form a higher-level network. Because
the scale of the hierarchical structure is not limited and the expandability of this structure is good, this
structure has become the favorite development trend of mobile ad hoc networks, therefore, this paper
will discuss the checkpointing algorithm under the multi-frequency hierarchical structure.

Figure 1 is the multi-frequency hierarchical topological structure of an ad hoc network. This
structure consists of multiple clusters. Each cluster includes one cluster head (CH) and a limited
number of cluster members [39–41]. The CHs and cluster members are all regular MHs. The hosts in
one cluster share one frequency to communicate, while the CHs communicate on another frequency.
The members in she ame cluster can communicate with each other directly, while the members in
different clusters have to communicate by the retransmission of CHs.

Sensors 2017, 17, 2166 5 of 29
Sensors 2017, 17, 2166 5 of 28

Figure 1. Multi-frequency hierarchy topological structure.

2.2. Hybrid Checkpointing Model

As we know, the different kinds of resources on MHs are quite limited in mobile ad hoc networks.
These resources include the storage space, processing capacity, battery energy, wireless bandwidth
and so on. If we fully adopt the asynchronous checkpointing algorithm, it will need to transmit a lot
of checkpoint coordination messages. Because the communication among MHs in different clusters
usually needs multi-hop routing before reaching the destination, the number of checkpoint
coordination messages is proportional to the number of hops and the retransmission will occupy
precious wireless bandwidth. Though it will avoid a lot of checkpoint coordination messages if we
completely use the asynchronous checkpointing algorithm, the cascade rollback caused by
asynceshronous checkpointing would waste resources such as precious CPU allocation and power
sourcs of MHs and the storage space for storing checkpoint information is large.

Therefore, this paper plans to adopt the hybrid checkpointing model which combines the
synchronization and asynchronization after considering the kinds of resource limitations in MHs
synthetically. In this model, the hosts in the same cluster use the synchronous checkpointing (because
these hosts could communicate with each other directly without the retransmissions involving cluster
heads), while the hosts in different clusters adopt the asynchronous checkpointing. This will not only
avoid the waste of all kinds of resources for hosts in same cluster because of cascade rollback, but
also avoid too many transmissions of messages among hosts in different clusters. What is more, it
reduces the communication delay of the network and checkpoint operation delay.

Definition 1. A same cluster checkpoint (SC) is a checkpoint which is used for ensuring the consistency of
processes in hosts of the same cluster.

The SC is a synchronous checkpoint. Every time the process use a SC, it needs to remain
synchronous with the related processes in the same cluster. During the synchronization procedure,
if part of processes cannot finish their checkpoints because of their own reasons, then the coordinated
checkpoints become useless checkpoints which need to be eliminated. Hence, in order to reduce the
occupation of precious storage space in wireless terminals, the SCs can be further divided into two
kinds: uncertain checkpoints and certain checkpoints.

Definition 2. An uncertain checkpoint is a SC which is stored in the cache of a MH when the coordination is
not finished.

Definition 3. A certain checkpoint is a SC which is stored on the local disk of a MH when the coordination is
finished.

Figure 1. Multi-frequency hierarchy topological structure.

2.2. Hybrid Checkpointing Model

As we know, the different kinds of resources on MHs are quite limited in mobile ad hoc networks.
These resources include the storage space, processing capacity, battery energy, wireless bandwidth
and so on. If we fully adopt the asynchronous checkpointing algorithm, it will need to transmit
a lot of checkpoint coordination messages. Because the communication among MHs in different
clusters usually needs multi-hop routing before reaching the destination, the number of checkpoint
coordination messages is proportional to the number of hops and the retransmission will occupy
precious wireless bandwidth. Though it will avoid a lot of checkpoint coordination messages
if we completely use the asynchronous checkpointing algorithm, the cascade rollback caused by
asynceshronous checkpointing would waste resources such as precious CPU allocation and power
sourcs of MHs and the storage space for storing checkpoint information is large.

Therefore, this paper plans to adopt the hybrid checkpointing model which combines the
synchronization and asynchronization after considering the kinds of resource limitations in MHs

synthetically. In this model, the hosts in the same cluster use the synchronous checkpointing (because
these hosts could communicate with each other directly without the retransmissions involving cluster
heads), while the hosts in different clusters adopt the asynchronous checkpointing. This will not only
avoid the waste of all kinds of resources for hosts in same cluster because of cascade rollback, but also
avoid too many transmissions of messages among hosts in different clusters. What is more, it reduces
the communication delay of the network and checkpoint operation delay.

Definition 1. A same cluster checkpoint (SC) is a checkpoint which is used for ensuring the consistency of
processes in hosts of the same cluster.

The SC is a synchronous checkpoint. Every time the process use a SC, it needs to remain
synchronous with the related processes in the same cluster. During the synchronization procedure, if
part of processes cannot finish their checkpoints because of their own reasons, then the coordinated
checkpoints become useless checkpoints which need to be eliminated. Hence, in order to reduce the
occupation of precious storage space in wireless terminals, the SCs can be further divided into two
kinds: uncertain checkpoints and certain checkpoints.

Definition 2. An uncertain checkpoint is a SC which is stored in the cache of a MH when the coordination is
not finished.

Definition 3. A certain checkpoint is a SC which is stored on the local disk of a MH when the coordination
is finished.

Sensors 2017, 17, 2166 6 of 29

Therefore, if and only if the coordination of checkpoints succeeds, the uncertain checkpoints could
be turned to certain checkpoints. Otherwise, the uncertain checkpoints become useless checkpoints
which could be eliminated. The elimination of uncertain checkpoints involves releasing the information
stored in the cache.

Definition 4. A different cluster checkpoint (DC) is a checkpoint which is used for assuring the consistency of
processes in MHs of different clusters.

The DC is an asynchronous checkpoint. When a process receives messages from MHs of different
clusters, it finishes the checkpoint operation independently without informing other MHs. The DC is
triggered by the reception of messages from MHs of different clusters and its checkpoint information
is directly stored in the local disk of the MH, so the DC is a certain checkpoint in nature.

Suppose Pi,j,k expresses a process, i is the id of cluster which the mobile terminal stays, j is the
id of mobile terminal and k expresses the id of process. Figure 2 is an example of hybrid checkpoint
model. Pi,k,s, Pi,a,v and Pi,j,t are the processes executing in different terminals of cluster Ci respectively.
While Pm,s,c is the process executing in terminal s of cluster Cm. SCb

i,a,v expresses the SC of Pi,a,v and
b is the sequence number of checkpoint. DCm

i,k,s is the DC of Pi,k,s and m is the id of cluster which the
sender of message from different cluster stays.

Sensors 2017, 17, 2166 6 of 28

Therefore, if and only if the coordination of checkpoints succeeds, the uncertain checkpoints
could be turned to certain checkpoints. Otherwise, the uncertain checkpoints become useless
checkpoints which could be eliminated. The elimination of uncertain checkpoints involves releasing
the information stored in the cache.

Definition 4. A different cluster checkpoint (DC) is a checkpoint which is used for assuring the consistency of
processes in MHs of different clusters.

The DC is an asynchronous checkpoint. When a process receives messages from MHs of different
clusters, it finishes the checkpoint operation independently without informing other MHs. The DC is
triggered by the reception of messages from MHs of different clusters and its checkpoint information
is directly stored in the local disk of the MH, so the DC is a certain checkpoint in nature.

Suppose Pi,j,k expresses a process, i is the id of cluster which the mobile terminal stays, j is the id
of mobile terminal and k expresses the id of process. Figure 2 is an example of hybrid checkpoint
model. Pi,k,s, Pi,a,v and Pi,j,t are the processes executing in different terminals of cluster Ci respectively.
While Pm,s,c is the process executing in terminal s of cluster Cm. , ,

b

i a vSC expresses the SC of Pi,a,v and b is
the sequence number of checkpoint. , ,

m

i k sDC is the DC of Pi,k,s and m is the id of cluster which the sender
of message from different cluster stays.

Figure 2. The model of hybrid checkpointing.

Combined with the Figure 2, the explanation for principles of hybrid checkpointing model can
be expressed as follows:

1. The initialized checkpoint. When each process initializes, it takes an initialization checkpoint
(certain checkpoint). For example, , ,

b

i a vSC , , ,

y

i j tSC , , ,

d

i k sSC and , ,

d

m s cSC in Figure 2 are initialized
checkpoints.

2. The taking of SCs. When a process P receives a fixed number of messages from MHs in same
cluster, it initializes a coordination procedure of checkpoints. P firstly takes an uncertain
checkpoint, and then it sends checkpoint requests to the processes which have dependence
relation with P. When these processes receive the requests, they firstly take uncertain
checkpoints and then reply to P. By the time P receives all replies from processes which take part
in the coordination procedure, it turns the uncertain checkpoint into a certain checkpoint.

b
,, vaiSC

t
,s,m cSC

d
,, skiSC 1d

,,
+
skiSC

1b
,,

+
vaiSC

m
,, skiDC

y
,, tjiSC 1y

,,
+
tjiSC 1y

,,
+
tjiSC

1b
,,

+
vaiSC

1d
,,

+
skiSC

Figure 2. The model of hybrid checkpointing.

Combined with the Figure 2, the explanation for principles of hybrid checkpointing model can be
expressed as follows:

1. The initialized checkpoint. When each process initializes, it takes an initialization checkpoint
(certain checkpoint). For example, SCb

i,a,v, SCy
i,j,t, SCd

i,k,s and SCd
m,s,c in Figure 2 are

initialized checkpoints.
2. The taking of SCs. When a process P receives a fixed number of messages from MHs in same

cluster, it initializes a coordination procedure of checkpoints. P firstly takes an uncertain
checkpoint, and then it sends checkpoint requests to the processes which have dependence
relation with P. When these processes receive the requests, they firstly take uncertain checkpoints
and then reply to P. By the time P receives all replies from processes which take part in the
coordination procedure, it turns the uncertain checkpoint into a certain checkpoint. Otherwise,
P eliminates its own uncertain checkpoint. Finally, P notices related processes to finish the turning
or elimination operations of checkpoints together.

Sensors 2017, 17, 2166 7 of 29

3. The taking of DCs. When a process receives a message from a MH in a different cluster, the DC
is triggered. In order to assure that the receiving event of this message can be cancelled when
the sending event of this message is cancelled, the process has to take the DC firstly and then
receives the message.

In Figure 2, Pi,j,t is the process which initializes the checkpointing. Pi,a,v and Pi,k,s are the participant
processes of checkpointing because of messages M2 and M3. When the checkpointing starts, Pi,j,t firstly

takes a uncertain checkpoint SCy+1
i,j,t and then notices Pi,a,v and Pi,k,s to take uncertain checkpoints

SCb+1
i,a,v and SCd+1

i,k,s respectively. By the time Pi,a,v and Pi,k,s finish each uncertain checkpoint SCb+1
i,a,v and

SCd+1
i,k,s , they send replies to Pi,j,t. After Pi,j,t has received the replies from Pi,a,v and Pi,k,s (not marked in

Figure 2), Pi,j,t turns SCy+1
i,j,t to certain checkpoint. In addition, Pi,j,t notices Pi,a,v and Pi,k,s to turn SCb+1

i,a,v

and SCd+1
i,k,s into certain checkpoints, but their Checkpoint Sequence Number (CSN) does not change.

Otherwise, Pi,j,t eliminates its own uncertain checkpoint and notices Pi,a,v and Pi,k,s. For example, when
process Pi,k,s in cluster Ci receives a message M2 from process Pm,s,c in cluster Cm as Figure 2 shows,
Pi,k,s firstly takes DCm

i,k,s and then receives M2.

2.3. Problem of Hybrid Checkpointing Model to Be Solved

The hybrid checkpoint model takes both of the communication features of hosts in same cluster
and different clusters into consideration, and thus reduces the number of wireless communication
messages greatly and saves the kinds of resources of MHs. What is more, this model has less
dependence on cluster heads (it just records the dependence among checkpoints of processes in
different clusters, and it will be discussed in Part 5). Therefore, this model has better flexibility.

However, in a hybrid checkpointing strategy, the checkpoints of a process cannot be handled
according to the fully synchronous or asynchronous checkpointing algorithm because of the existing
of SCs and DCs. The main problems for checkpoints processing are as follows:

1. What are the correctness criteria? In the hybrid checkpoint model, because there are mutual
dependence relations among checkpoints in the same cluster and different clusters, so it is
necessary to research a brand new global consistency criterion for checkpoints to assure the global
consistency of checkpoints.

2. When is the checkpoint triggered? In order to reduce the checkpoint operations and storage
overhead, different triggering occasions should be taken for different kinds of checkpoints
according to the ad hoc network features and hybrid checkpointing model.

3. When is the checkpoint eliminated? The existing of DCs makes the elimination of SCs be
complicated, and so creates a lot of checkpoints. In order to save space, it needs to clear away the
useless SCs in time and coordinate the useless DCs actively.

4. What is the strategy for processing handoff? The checkpointing strategy for the hybrid checkpoint
model is decided by the same cluster and different clusters relations of MHs. However, the same
cluster and different clusters relations of MHs will change when MHs take handoff. Hence,
the checkpointing strategy should dispose the change of MHs correctly and automatically
maintain the new cluster relation to guarantee the correct checkpoint operations of processes in
handoff MHs.

3. Correctness Criteria for a Hybrid Checkpointing Model

In the asynchronous checkpointing strategy, the condition that checkpoints ensure the global
correctness is no orphan messages. An orphan message is a message whose receiving event is stored but
its sending event is not stored. Therefore, in order to assure the messages not become orphan messages,
the sender process of the message must take a checkpoint also when the receiver process of a message
takes a checkpoint, but in the asynchronous checkpointing strategy, the orphan messages are allowed
to exist. Hence, the cascade rollback phenomenon exists. However, the checkpoints in the same cluster

Sensors 2017, 17, 2166 8 of 29

and different clusters adopt different strategies. Therefore, it could not finish the checkpoint operation
according to the checkpoints correctness criteria of coordinated or uncoordinated strategy purely.

Let the same cluster message (SM) be the message transmitted from process SPi to process SPj of
MH in same cluster. SCi and SCj are respectively the checkpoints taken by SPi and SPj after sending
and receiving SM. The different cluster message (DM) is the message transmitted between from process
DPi to process DPj of MH in another cluster. CKPi and DCj are respectively the checkpoints of DPi
and DPj related to DM. The Receive(M) is the operation of receiving message M and the Send (M)
expresses the operation of sending message M. A >> B expresses that the appearance of operation A is
prior to operation B. CKP means one checkpoint (SC or DC).

3.1. Checkpoint Taking Criteria

For assuring the SM is not an orphan message, it requires that the sending process of SM must
take a checkpoint when the receiving process of SM takes a checkpoint:

Criterion 1: ∀ SM, if Receive(SM) >> SCi meets, then Send(SM) >> SCj must meet it also.

The DC does not require assuring no orphan message, but it requires that the receiving event
of DM could be cancelled when the sending event of DM is cancelled. Hence, it demands that the
receiving process of DM firstly takes a DC and then receives the message.

Criterion 2: ∀ DM, if CKPi >> Send(DM) meets, then DCj >> Receive(DM) must meet it also.

3.2. Checkpoint Rollback Criteria

To guarantee that all processes could roll back to the global consistent checkpoint states when
some processes fail, it requires that the receiving event of message could be cancelled when the sending
event of message is cancelled. This requirement is suitable to both SCs and DCs:

Criterion 3: ∀SM, if ∃SCj−1(SCj−1 >> Receive(SM)>>SCj) ∧ ∃SCi−1(SCi−1 >> Send(SM) >> SCi),
then SPj must be able to roll back to SCj−1 when SPi rolls back to SCi−1.

Criterion 4: ∀DM, if DPi rolls back to CKPi, then DPj must be able to roll back to DCj.

3.3. Checkpoint Indelibility Criteria

In synchronous checkpointing strategy, the processes which joins the checkpointing can clear
away the prior checkpoint when the checkpointing is finished. While the processes in asynchronous
checkpointing strategy will eliminate checkpoints together after finding the global consistent
checkpoint and finishing rollback recovery when some process fails, however, the checkpoints of
one process not only include the SCs related to MHs in same cluster, but also contain the DCs related
to MHs in different clusters in a hybrid checkpoint environment. When a process finishes the SC, the
other SCs earlier than this SC cannot be eliminated easily, otherwise, global inconsistency may appear.
The elimination of checkpoints is judged by the relations among checkpoints:

Definition 5. If CKPi >> Send(M) and CKPj >> Receive(M), then CKPj directly depends on CKPi between
processes. It expresses as CKPj ⇒ CKPi.

Definition 6. Let CKPi and CKPi+1 to be the contiguous checkpoints of Pi, and then CKPi+1 directly depends
on CKPi in same process. It expresses as CKPi+1 ⇒ CKPi.

The upper two dependence relations are all named by checkpoint direct dependence relation.
They will not be distinguished in the later parts:

Definition 7. If CKPi ⇒ CKPj and CKPj ⇒ CKPk, then CKPi depends on CKPk indirectly. It expresses as
CKPi ⇒⇒ CKPk.

Sensors 2017, 17, 2166 9 of 29

In Figure 3, there are relations such as SCb
i,a,v ⇒ DCm

i,k,s and SCd
i,k,s ⇒⇒ DCm

i,k,s. If Pi,a,v and Pi,k,s

clear away SCb
i,a,v or SCd

i,k,s at once after finished SCb+1
i,a,v or SCd+1

i,k,s , then Pi,a,v or Pi,k,s will not be able to
roll back to global consistent states when Pm,s,c rolls back to SCt

m,s,c (The correct rollback sequence is
1©→ 2©→ 3©→ 4©).

Sensors 2017, 17, 2166 9 of 28

In Figure 3, there are relations such as , ,

b

i a vSC , ,

m

i k sDC and , ,

d

i k sSC , ,

m

i k sDC . If Pi,a,v and Pi,k,s
clear away , ,

b

i a vSC or , ,

d

i k sSC at once after finished
1

, ,

b

i a vSC +

 or
1

, ,

d

i k sSC +

, then Pi,a,v or Pi,k,s will not be able to
roll back to global consistent states when Pm,s,c rolls back to , ,

t

m s cSC (The correct rollback sequence is
①→②→③→④).

Figure 3. Example of checkpoints dependence.

Let SCi and SCk be the SCs of process P. DCx is the DC of P or the processes in the cluster same as
P. Then the indelibility criteria for checkpoint can be described as follows:

Criterion 5: If ∃DCx (SCj DCx or SCj DCx) ∧ ∃SCk (k>i), then SCj cannot be eliminated.

Criterion 5 indicates that if one SC which is not newest depends on any DC directly or indirectly
then it cannot be eliminated. Because the DC is an asynchronous checkpoint, it may cause a cascading
rollback. As Figure 4 shows, the rollback of processes Pm,s,c and Pm,j,t will all cause Pi,k,s rolling back to

, ,

m

i k sDC (rollback ① and ② all cause the rollback ③). If , ,

m

i k sDC is eliminated earlier than , ,

t

m s cSC and
, ,

y

m j tSC , then Pi,k,s will not be able to roll back to the consistent states with processes in Cm when Pm,s,c
rolls back to , ,

t

m s cSC or Pm,j,t rolls back to , ,

y

m j tSC .

Figure 4. Example of rollback in different clusters.

Therefore, the indelibility criteria of DCa can be defined as follows:

Criterion 6: If CKPi is not eliminated, then DCj must not be cleaned up.

Pi,a,v

M2

M1

b
,, vaiSC

t
,s,m cSC

d
,, skiSC

Pi,k,s

Pm,s,c

m
,, skiDC

1b
,,

+
vaiSC

1d
,,

+
skiSC

Cm

Ci

×
failure

Rollback Rollback Request

M0

Pi,j,t

b
,, tjiSC

M3

①

②

③

④

M0

M1t
,s,m cSC

d
,, skiSC

Pi,k,s

Pm,s,c

m
,, skiDC

Pm,j,t

y
,, tjmSC

Cm

Ci

×
failure

①

②

③

Figure 3. Example of checkpoints dependence.

Let SCi and SCk be the SCs of process P. DCx is the DC of P or the processes in the cluster same as
P. Then the indelibility criteria for checkpoint can be described as follows:

Criterion 5: If ∃DCx (SCj ⇒ DCx or SCj ⇒⇒ DCx) ∧ ∃SCk (k>i), then SCj cannot be eliminated.

Criterion 5 indicates that if one SC which is not newest depends on any DC directly or indirectly
then it cannot be eliminated. Because the DC is an asynchronous checkpoint, it may cause a cascading
rollback. As Figure 4 shows, the rollback of processes Pm,s,c and Pm,j,t will all cause Pi,k,s rolling back
to DCm

i,k,s (rollback 1© and 2© all cause the rollback 3©). If DCm
i,k,s is eliminated earlier than SCt

m,s,c and
SCy

m,j,t, then Pi,k,s will not be able to roll back to the consistent states with processes in Cm when Pm,s,c

rolls back to SCt
m,s,c or Pm,j,t rolls back to SCy

m,j,t.

Sensors 2017, 17, 2166 9 of 28

In Figure 3, there are relations such as , ,

b

i a vSC , ,

m

i k sDC and , ,

d

i k sSC , ,

m

i k sDC . If Pi,a,v and Pi,k,s
clear away , ,

b

i a vSC or , ,

d

i k sSC at once after finished
1

, ,

b

i a vSC +

 or
1

, ,

d

i k sSC +

, then Pi,a,v or Pi,k,s will not be able to
roll back to global consistent states when Pm,s,c rolls back to , ,

t

m s cSC (The correct rollback sequence is
①→②→③→④).

Figure 3. Example of checkpoints dependence.

Let SCi and SCk be the SCs of process P. DCx is the DC of P or the processes in the cluster same as
P. Then the indelibility criteria for checkpoint can be described as follows:

Criterion 5: If ∃DCx (SCj DCx or SCj DCx) ∧ ∃SCk (k>i), then SCj cannot be eliminated.

Criterion 5 indicates that if one SC which is not newest depends on any DC directly or indirectly
then it cannot be eliminated. Because the DC is an asynchronous checkpoint, it may cause a cascading
rollback. As Figure 4 shows, the rollback of processes Pm,s,c and Pm,j,t will all cause Pi,k,s rolling back to

, ,

m

i k sDC (rollback ① and ② all cause the rollback ③). If , ,

m

i k sDC is eliminated earlier than , ,

t

m s cSC and
, ,

y

m j tSC , then Pi,k,s will not be able to roll back to the consistent states with processes in Cm when Pm,s,c
rolls back to , ,

t

m s cSC or Pm,j,t rolls back to , ,

y

m j tSC .

Figure 4. Example of rollback in different clusters.

Therefore, the indelibility criteria of DCa can be defined as follows:

Criterion 6: If CKPi is not eliminated, then DCj must not be cleaned up.

Pi,a,v

M2

M1

b
,, vaiSC

t
,s,m cSC

d
,, skiSC

Pi,k,s

Pm,s,c

m
,, skiDC

1b
,,

+
vaiSC

1d
,,

+
skiSC

Cm

Ci

×
failure

Rollback Rollback Request

M0

Pi,j,t

b
,, tjiSC

M3

①

②

③

④

M0

M1t
,s,m cSC

d
,, skiSC

Pi,k,s

Pm,s,c

m
,, skiDC

Pm,j,t

y
,, tjmSC

Cm

Ci

×
failure

①

②

③

Figure 4. Example of rollback in different clusters.

Therefore, the indelibility criteria of DCa can be defined as follows:

Criterion 6: If CKPi is not eliminated, then DCj must not be cleaned up.

Sensors 2017, 17, 2166 10 of 29

Criterion 6 shows that if the checkpoints of MHs in different clusters which are dependent on one
DC are not cleaned up, then this DC cannot be eliminated also. Otherwise, it will cause something
wrong about rollback.

Criterion 7: If CKPi has been eliminated, then DCj cannot be cleared away when one of the following
conditions is satisfied.

DCj is the only checkpoint of DPj. DCj does not depend on the checkpoints of DPj, but it depends
on the checkpoints of processes in the same cluster of DPj.

Th Criterion 7 means that if one DC is the only checkpoint of process or the DC is the earliest
checkpoint and the SCs on which the DC depends are not eliminated, then the DC cannot be cleared
away. The former requires that the new state of process be stored in an update checkpoint, while the
later demands that the elimination of a DC will not cause wrong rollback. Hence, there will be one
conclusion: if the hybrid checkpointing strategy satisfies the Criteria 1~7, then this strategy could
assure the global consistency of checkpoints.

4. Checkpoint Triggering Occasions

In the distributed system, the checkpoint always adopts the way to be triggered at a fixed time or
by a fixed number of messages. For the ad hoc network, the time interval for triggering checkpoints
periodically is hard to decide because of the dynamism and uncertainty of this network on the one
hand, and on the other hand, a timing trigger may usually wake up some MHs staying dormant
state and then cause unnecessary battery consumption. Therefore, the SCs and DCs in the hybrid
checkpointing model all adopt the active trigger mechanism based on messages. Besides, the SCs use
the reactive trigger mechanism to reduce the number of SCs, which cannot be eliminated. There are
two different SC triggers: Active Trigger based on Message and Reactive Trigger:

1. Active Trigger based on Message: The active trigger means that a process initializes
a checkpointing procedure actively when it receives K (K is the threshold, K ≥ 1) messages from
MHs in same cluster. The value of K is directly proportional to the continued communication time
without failure and storage space of the MH, but inversely proportion to the disconnection and
failure probability of the MH. What is more, the choice of K should consider the kinds of overhead
of the ad hoc network. This part will be further discussed and verified in the experiments.

2. Reactive Trigger: It can be seen from Criterion 5, that if one SC depends on any DC directly
or indirectly then it cannot be cleared away, so there will be a lot of SCs which could not
be eliminated.

As Figure 5 shows, all SCs of Pi,k,l and Pi,j,e depends on DCm
i,j,ε directly or indirectly, so they could

not be cleared away before DCm
i,j,ε is eliminated. If the checkpoint frequency of cluster Ci is higher than

the one of Cm, then there may be a lot of SCs of Ci which cannot be cleaned up.

Sensors 2017, 17, 2166 10 of 28

Criterion 6 shows that if the checkpoints of MHs in different clusters which are dependent on
one DC are not cleaned up, then this DC cannot be eliminated also. Otherwise, it will cause something
wrong about rollback.

Criterion 7: If CKPi has been eliminated, then DCj cannot be cleared away when one of the following
conditions is satisfied.

DCj is the only checkpoint of DPj. DCj does not depend on the checkpoints of DPj, but it depends
on the checkpoints of processes in the same cluster of DPj.

Th Criterion 7 means that if one DC is the only checkpoint of process or the DC is the earliest
checkpoint and the SCs on which the DC depends are not eliminated, then the DC cannot be cleared
away. The former requires that the new state of process be stored in an update checkpoint, while the
later demands that the elimination of a DC will not cause wrong rollback. Hence, there will be one
conclusion: if the hybrid checkpointing strategy satisfies the Criteria 1~7, then this strategy could
assure the global consistency of checkpoints.

4. Checkpoint Triggering Occasions

In the distributed system, the checkpoint always adopts the way to be triggered at a fixed time
or by a fixed number of messages. For the ad hoc network, the time interval for triggering checkpoints
periodically is hard to decide because of the dynamism and uncertainty of this network on the one
hand, and on the other hand, a timing trigger may usually wake up some MHs staying dormant state
and then cause unnecessary battery consumption. Therefore, the SCs and DCs in the hybrid
checkpointing model all adopt the active trigger mechanism based on messages. Besides, the SCs use
the reactive trigger mechanism to reduce the number of SCs, which cannot be eliminated. There are
two different SC triggers: Active Trigger based on Message and Reactive Trigger:

1. Active Trigger based on Message: The active trigger means that a process initializes a
checkpointing procedure actively when it receives K (K is the threshold, K ≥ 1) messages from
MHs in same cluster. The value of K is directly proportional to the continued communication
time without failure and storage space of the MH, but inversely proportion to the disconnection
and failure probability of the MH. What is more, the choice of K should consider the kinds of
overhead of the ad hoc network. This part will be further discussed and verified in the
experiments.

2. Reactive Trigger: It can be seen from Criterion 5, that if one SC depends on any DC directly or
indirectly then it cannot be cleared away, so there will be a lot of SCs which could not be
eliminated.

As Figure 5 shows, all SCs of Pi,k,l and Pi,j,e depends on , ,

m

i jDC ε directly or indirectly, so they could
not be cleared away before , ,

m

i jDC ε is eliminated. If the checkpoint frequency of cluster Ci is higher
than the one of Cm, then there may be a lot of SCs of Ci which cannot be cleaned up.

Figure 5. An example of the coexistence of multiple same cluster checkpoints.

Pi,k,l

M1

M0

b
,, lkiSC

t
,s,m cSC

d
,, ejiSC

Pi,j,e

Pm,s,c

m
,, ejiDC

1b
,,

+
lkiSC

1d
,,

+
ejiSC

Cm

Ci

M4

Pm,a,v

b
vamSC ,,

2b
,,

+
lkiSC

M3M2

m
,, lkiDC

Figure 5. An example of the coexistence of multiple same cluster checkpoints.

Sensors 2017, 17, 2166 11 of 29

The key to solve this problem is to clean up the DCs on which the SCs depend. According to the
Criteria 6 and 7, the premises to eliminate DC include two conditions. One is that the process has
finished new checkpoint (namely this DC is not the new checkpoint of the process). The other is that
the checkpoints of processes in other clusters on which the process depends have been eliminated.

Let Ci and Cj to be two different clusters. If the processes in Ci which contains all DCs (created by
the receiving of messages from MHs in Cj) related to Cj have finished the certain checkpoints (namely
meet the first premise), then Ci notices Cj to initialize a new checkpointing (only the new checkpoint is
done, the former SCs can be cleaned up and this meets the last premise). If some checkpoint dependent
on the DCs in Ci can be cleared away after the related processes in Cj has finished new SC, then the
elimination probability of the DCs increases heavily. Then the SCs in Ci which depend on the DCs could
be cleaned up further. The detailed elimination rules of checkpoints will be discussed in Section 5.

Different from the active trigger, this checkpointing procedure is initialized by the CH and the
related processes in cluster just act as the participants, so it is called a reactive trigger.

The DC uses the message trigger mechanism also, namely the DC is triggered when it receives
messages from MHs in different clusters. However, if a process takes a DC when it receives a message
from the same different cluster each time, it will increase the checkpoints and so augment the storage
overhead heavily.

As Figure 6 shows, Pi,j,e in cluster Ci receives messages M1 and M2 from processes Pm,s,c and Pm,a,v

in cluster Cm respectively. If Pi,j,e takes DC1 and DC2 respectively, then Pi,j,e will roll back according to
the following situations when processes in Cm fail.

Sensors 2017, 17, 2166 11 of 28

The key to solve this problem is to clean up the DCs on which the SCs depend. According to the
Criteria 6 and 7, the premises to eliminate DC include two conditions. One is that the process has
finished new checkpoint (namely this DC is not the new checkpoint of the process). The other is that
the checkpoints of processes in other clusters on which the process depends have been eliminated.

Let Ci and Cj to be two different clusters. If the processes in Ci which contains all DCs (created by
the receiving of messages from MHs in Cj) related to Cj have finished the certain checkpoints (namely
meet the first premise), then Ci notices Cj to initialize a new checkpointing (only the new checkpoint
is done, the former SCs can be cleaned up and this meets the last premise). If some checkpoint
dependent on the DCs in Ci can be cleared away after the related processes in Cj has finished new SC,
then the elimination probability of the DCs increases heavily. Then the SCs in Ci which depend on the
DCs could be cleaned up further. The detailed elimination rules of checkpoints will be discussed in
Section 5.

Different from the active trigger, this checkpointing procedure is initialized by the CH and the
related processes in cluster just act as the participants, so it is called a reactive trigger.

The DC uses the message trigger mechanism also, namely the DC is triggered when it receives
messages from MHs in different clusters. However, if a process takes a DC when it receives a message
from the same different cluster each time, it will increase the checkpoints and so augment the storage
overhead heavily.

As Figure 6 shows, Pi,j,e in cluster Ci receives messages M1 and M2 from processes Pm,s,c and Pm,a,v
in cluster Cm respectively. If Pi,j,e takes DC1 and DC2 respectively, then Pi,j,e will roll back according to
the following situations when processes in Cm fail.

M0 exists. If Pm,a,v rolls back to , ,

b

m s cC because of failure, Pm,s,c will roll back to , ,

b

m s cSC and Pi,j,e should
roll back to DC1; if Pm,s,c rolls back to , ,

b

m s cSC because of failure, Pi,j,e will roll back to DC1 also.
M0 does not exist. If Pm,a,v rolls back to , ,

b

m a vC because of failure, Pi,j,e will roll back to DC2; if Pm,s,c
rolls back to , ,

b

m s cSC because of failure, Pi,j,e will roll back to DC1.

Figure 6. Example of DC taking.

It can be seen, Pi,j,e will roll back to DC1 in most instances. Hence, for reducing the number of DCs,
a process just takes one DC for each different cluster during one DC interval.

5. Strategies for Checkpoint Elimination

The storage space of MHs in an ad hoc network is quite limited, so it is necessary to clean up the
overdue useless checkpoints in time. This section will firstly introduce the checkpoint dependence
graph, and then design the relevant rules and strategies for checkpoint elimination. The Figure 7
below shows the IntraCDG of processes Pi,a,v and Pi,k,s (see in Figure 3). Because there are no
dependence relations in proesses Pm,s,c and Pi,j do,t, they not have the dependence relations at present
and so the IntraCDGm,s,c and IntraCDGi,j,t are empty.

t
,s,m cSC

b
,, ejiSC

b
,, vamSC

×

1DC 2DC

Figure 6. Example of DC taking.

M0 exists. If Pm,a,v rolls back to Cb
m,s,c because of failure, Pm,s,c will roll back to SCb

m,s,c and Pi,j,e

should roll back to DC1; if Pm,s,c rolls back to SCb
m,s,c because of failure, Pi,j,e will roll back to DC1 also.

M0 does not exist. If Pm,a,v rolls back to Cb
m,a,v because of failure, Pi,j,e will roll back to DC2; if Pm,s,c

rolls back to SCb
m,s,c because of failure, Pi,j,e will roll back to DC1.

It can be seen, Pi,j,e will roll back to DC1 in most instances. Hence, for reducing the number of
DCs, a process just takes one DC for each different cluster during one DC interval.

5. Strategies for Checkpoint Elimination

The storage space of MHs in an ad hoc network is quite limited, so it is necessary to clean up the
overdue useless checkpoints in time. This section will firstly introduce the checkpoint dependence
graph, and then design the relevant rules and strategies for checkpoint elimination. The Figure 7 below
shows the IntraCDG of processes Pi,a,v and Pi,k,s (see in Figure 3). Because there are no dependence
relations in proesses Pm,s,c and Pi,j do,t, they not have the dependence relations at present and so the
IntraCDGm,s,c and IntraCDGi,j,t are empty.

Sensors 2017, 17, 2166 12 of 29
Sensors 2017, 17, 2166 12 of 28

Figure 7. IntraCDGi,a,v and IntraCDGi,k,s.

5.1. Checkpoint Dependence Graph

5.1.1. Intra-Cluster Checkpoint Dependence Graph

In order to describe the dependence relations among checkpoints of processes in same cluster
clearly, every process stores an Intra-cluster Checkpoint Dependence Graph (IntraCDG). The nodes
of IntraCDG are certain checkpoints or DCs and the edges of SDG are directed edges. The edge is
started by one checkpoint and ended by another checkpoint on which the checkpoint depends.
According to Definitions 5 and 6, the update situations of IntraCDG contain the following two aspects:

1. The update of dependence relations among processes. When a process Pi receives a SM, it firstly
obtains the recent checkpoint of the sender process and then checks whether the edge started by
this recent checkpoint and ended by current checkpoint of Pi exists in IntraCDGi. If the edge does
not exist, then it will be added to IntraCDGi.

2. The update of dependence relations in same process. When Pi takes a new certain checkpoint or
DC, it adds a directed edge started by the current checkpoint (a certain checkpoint or DC) and
ended by the new checkpoint to IntraCDG.

5.1.2. Inter-Cluster Checkpoint Dependence Graph

In order to describe the dependence relations among checkpoints of processes in different
clusters, the source cluster head and target cluster head store Inter-Cluster Checkpoint Dependence
Graph (InterCDG) for sending messages and receiving messages. They are marked by S_InterCDG
and R_InterCDG, respectively. The nodes of InterCDG are certain checkpoints or DCs and the edges
of it are directed edges. The edge is started by one checkpoint and ended by another checkpoint on
which the checkpoint depends.

In Figure 4, , ,

m

i k sDC depends on , ,

t

m s cSC . This dependence relation can be recorded in the InterCDGs
related to M1. The InterCDGs are respectively stored in CHi and CHm. The figure is comparative simple,
and so it is not given.

5.2. Rules and Strategies of Checkpiont Elimination

The checkpoint elimination includes two parts: the elimination of SC and elimination of DC.

5.2.1. Elimination of SC

As Criterion 5 shows, one SC can be cleared away if it is not the newest checkpoint of process
and it does not depend on any DC.

Let IntraCDGglobal to be the global checkpoint dependence graph of all processes in one cluster.
SCi and SCk are the SCs of Pi. Set-Path(SCi) is the set of paths which are ended by SCi in IntraCDGglobal.
DCx is any DC. The elimination rule of SC can be described in formalized way as follows:

Let Pi to be the process which cleans up the DCx, then the algorithm for elimination of DC is
indicated as Algorithm 1.

1b
,,

+
vaiSCb

,,i vaSC

IntraCDGi,a,v

IntraCDGi,k,s

m
,, skiDC

m
,, skiDC 1d

,,
+
skiSCd

,,i skSCb
,,i vaSC

b
,,i tjSC

Figure 7. IntraCDGi,a,v and IntraCDGi,k,s.

5.1. Checkpoint Dependence Graph

5.1.1. Intra-Cluster Checkpoint Dependence Graph

In order to describe the dependence relations among checkpoints of processes in same cluster
clearly, every process stores an Intra-cluster Checkpoint Dependence Graph (IntraCDG). The nodes of
IntraCDG are certain checkpoints or DCs and the edges of SDG are directed edges. The edge is started
by one checkpoint and ended by another checkpoint on which the checkpoint depends. According to
Definitions 5 and 6, the update situations of IntraCDG contain the following two aspects:

1. The update of dependence relations among processes. When a process Pi receives a SM, it firstly
obtains the recent checkpoint of the sender process and then checks whether the edge started by
this recent checkpoint and ended by current checkpoint of Pi exists in IntraCDGi. If the edge does
not exist, then it will be added to IntraCDGi.

2. The update of dependence relations in same process. When Pi takes a new certain checkpoint or
DC, it adds a directed edge started by the current checkpoint (a certain checkpoint or DC) and
ended by the new checkpoint to IntraCDG.

5.1.2. Inter-Cluster Checkpoint Dependence Graph

In order to describe the dependence relations among checkpoints of processes in different clusters,
the source cluster head and target cluster head store Inter-Cluster Checkpoint Dependence Graph
(InterCDG) for sending messages and receiving messages. They are marked by S_InterCDG and
R_InterCDG, respectively. The nodes of InterCDG are certain checkpoints or DCs and the edges of it are
directed edges. The edge is started by one checkpoint and ended by another checkpoint on which the
checkpoint depends.

In Figure 4, DCm
i,k,s depends on SCt

m,s,c. This dependence relation can be recorded in the InterCDGs

related to M1. The InterCDGs are respectively stored in CHi and CHm. The figure is comparative simple,
and so it is not given.

5.2. Rules and Strategies of Checkpiont Elimination

The checkpoint elimination includes two parts: the elimination of SC and elimination of DC.

5.2.1. Elimination of SC

As Criterion 5 shows, one SC can be cleared away if it is not the newest checkpoint of process and
it does not depend on any DC.

Let IntraCDGglobal to be the global checkpoint dependence graph of all processes in one cluster.
SCi and SCk are the SCs of Pi. Set-Path(SCi) is the set of paths which are ended by SCi in IntraCDGglobal.
DCx is any DC. The elimination rule of SC can be described in formalized way as follows:

Let Pi to be the process which cleans up the DCx, then the algorithm for elimination of DC is
indicated as Algorithm 1.

Sensors 2017, 17, 2166 13 of 29

Algorithm 1 DC_Elimination()

if (∃Edge(CKPi, DCx) ∈ IntraCDGi) then
DELETE(DCx);
REPLACE_IntraCDGnodes(CKPi, DCx); // CKPi replaces DCx

NOTICE_IntraCDGchange(CKPi, DCx);
//Notice processes the replacement of CKPi for DCx

else
if (∃Edge(DCx, CKPi) ∈ IntraCDGi) then
if (∃Edge(CKPj, DCx) ∈ IntraCDGi ∧ CKPj

Sensors 2017, 17, 2166 13 of 28

Algorithm 1 DC_Elimination()

if (∃Edge(CKPi, DCx) ∈ IntraCDGi) then
DELETE(DCx);
REPLACE_IntraCDGnodes(CKPi, DCx); // CKPi replaces DCx
NOTICE_IntraCDGchange(CKPi, DCx);
//Notice processes the replacement of CKPi for DCx

else
if (∃Edge(DCx, CKPi) ∈ IntraCDGi) then
if (∃Edge(CKPj, DCx) ∈ IntraCDGi ∧ CKPj ∉ Pi) then

TurnDCtoSC(DCx, SCk); // Turn DCx to SCk
NOTICE_CKPturn(DCx, SCk);
//Notice processes in same cluster of turning of DCx

else
DELETE(DCx);
NOTICE_delete(DCx);
//Notice processes in same cluster of the elimination of DCx

//Notice processes in same cluster of the elimination of DCx

Rule 1: If ∄DCx ∈ Set-Path(SCi) ∧ ∃SCk (k > i), then SCi can be cleaned up.

The elimination occasions of SC include two occasions:

1. When one process finishes the new SC, the initialization process of checkpointing (active trigger)
or the CH (reactive trigger) will collect the IntraCDGglobal and check whether the earlier
checkpoints can be cleaned up.

2. After any DC is cleared away by one process, the process will notice the CH to collect the
IntraCDGglobal. Then the CH checks whether the earlier checkpoints can be cleaned up.

5.2.2. Elimination of DC

It can be seen from Criterion 6, one DC must not be able to be cleared up if the related
checkpoints of processes in other clusters on which the DC depends directly are not eliminated.
Hence, one premise of DC to be cleaned up is that all checkpoints from other clusters on which the
DC depends directly are cleared away. However, it needs to check whether the elimination of DC
satisfies the conditions in Criterion 7 even if this premise meets. The elimination of DCs is based on
the elimination of SCs. If the conditions are satisfied, then the DC still cannot be cleared away.

Let DCx to be any DC of process Pi. CKPi is any kind of checkpoint of Pi. CKPj is any checkpoint
of process in the cluster same as Pi. Edge(A, B) expresses the edge started by A and ended by B in
IntraCDG. Then the elimination rules of DC can be described in formalized way as follows:

Rule 2: If ∃Edge (CKPi, DCx) ∈ IntraCDGi, then DCx can be cleaned up.

Rule 3: If ∃Edge (CKPi, DCx) ∉ IntraCDGi, then if only if ∃Edge(DCx, CKPi) ∈ IntraCDGi ∧ ∃Edge (CKPj,
DCx) ∉ IntraCDGi), then DCx can be cleaned up.

Because the CH to which the sending process of DM belongs records S_IntraCDG, so the process
needs to inform the CH to delete the checkpoint and related edges in S_IntraCDG when the process
cleans up the SC. If the CH finds the isolated DC DCx, then it informs the related cluster to judge
whether the DC can be eliminated according to Rules 2 and 3. After receiving the processing request
of the DC, the related process decides the next step operation by its own IntraCDG.

1. If there is any edge which is started by checkpoint CKPi of process and ended by DCx in IntraCDG,
then DCx will be cleared away. The edge which is started by and ended by DCx will be eliminated.
What is more, it will use CKPi to replace DCx. Finally, the CH informs the processes in same
cluster to change the DCx to CKPi in their own IntraCDGs.

Pi) then
TurnDCtoSC(DCx, SCk); // Turn DCx to SCk
NOTICE_CKPturn(DCx, SCk);
//Notice processes in same cluster of turning of DCx

else
DELETE(DCx);
NOTICE_delete(DCx);
//Notice processes in same cluster of the elimination of DCx

//Notice processes in same cluster of the elimination of DCx

Rule 1: If

Sensors 2017, 17, 2166 16 of 28

SEND_CKPReq(Pk);
if (Pi get all replies) then

CKP_Turning(SCi); //turn uncertain CKP to certain CKP
for (Pk ∈ LDS) do
if (Pk ∈ DPm) then

SEND_CKPturn(CHm); //send checkpoint turn request
else

SEND_CKPturn (Pk);
FIND_CKPdeleted(IntraCDGfinal); //find the deletable checkpoints*/
NOTICE_CKPdeleted();
/*notice processes in same cluster of CKP elimination*/
MNi = 0; /*reset receiving messages number*/

6.2. Algorithm for Checkpoints in Different Clusters

The DC is triggered by the message that is sent from a process in a different cluster. The
processing of DC is relatively simple. The following steps are its detailed procedures:

1. When a process sends a DM to MHs in different clusters, it adds the current checkpoint to the
message.

2. After received the DM, the CH updates S_InterCDG according to the dependence relation
between checkpoints of the sender and receiver process and then transmits the DM.

3. The CH of the cluster to which the receiver process of the DM belongs updates the R_InterCDG
also after received the DM, and then transmits the DM to the receiver process.

4. By the time the process received the DM, if it has taken DC for the cluster, it receives the DM
directly. Otherwise, it checks whether it receives or sends any message during the current
checkpoint interval. If it has sent or received any message, it stores a OC. Or else, it turns the
current checkpoint to OC.

Let DM be a message sent by Pi (belongs to Cs) and received by Pj (belongs to Ct). CKPi and DCj
are respectively the checkpoints of Pi and Pj related to DM. The algorithm for checkpoints in different
clusters is described as Algorithm 3.

Algorithm 3 DC_Processing()

SEND_message(Pi, DM); // Pi sends DM
TRANSMIT_message(CHs, DM); // CHs transmits DM
UPDATE_S_InterCDG(Pi, Pj); // update S_InterCDG
TRANSMIT_message(CHt, DM);
UPDATE_R_InterCDG(Pi, Pj);
RECEIVE_message(Pj, DM); // Pj receives DM

if (Pj has taken DCj) then
RECEIVE(DM);

else
if (∄ M((Send(M) >> CKPk) || (Receive(M) >> CKPk)) then

TURN_CKP(CKPk, DCj); // CKPk turns to DCj
else

STORE_CKP(DCj);

6.3. Algorithm for Failure Recovery

When a process fails, it firstly asks related processes to roll back to some global consistency states.
Then these processes execute the operations stored in the logs. The keys of the correctness for rollback

DCx ∈ Set-Path(SCi) ∧ ∃SCk (k > i), then SCi can be cleaned up.

The elimination occasions of SC include two occasions:

1. When one process finishes the new SC, the initialization process of checkpointing (active trigger)
or the CH (reactive trigger) will collect the IntraCDGglobal and check whether the earlier
checkpoints can be cleaned up.

2. After any DC is cleared away by one process, the process will notice the CH to collect the
IntraCDGglobal. Then the CH checks whether the earlier checkpoints can be cleaned up.

5.2.2. Elimination of DC

It can be seen from Criterion 6, one DC must not be able to be cleared up if the related checkpoints
of processes in other clusters on which the DC depends directly are not eliminated. Hence, one premise
of DC to be cleaned up is that all checkpoints from other clusters on which the DC depends directly
are cleared away. However, it needs to check whether the elimination of DC satisfies the conditions in
Criterion 7 even if this premise meets. The elimination of DCs is based on the elimination of SCs. If the
conditions are satisfied, then the DC still cannot be cleared away.

Let DCx to be any DC of process Pi. CKPi is any kind of checkpoint of Pi. CKPj is any checkpoint
of process in the cluster same as Pi. Edge(A, B) expresses the edge started by A and ended by B in
IntraCDG. Then the elimination rules of DC can be described in formalized way as follows:

Rule 2: If ∃Edge (CKPi, DCx) ∈ IntraCDGi, then DCx can be cleaned up.

Rule 3: If ∃Edge (CKPi, DCx)

Sensors 2017, 17, 2166 13 of 28

Algorithm 1 DC_Elimination()

if (∃Edge(CKPi, DCx) ∈ IntraCDGi) then
DELETE(DCx);
REPLACE_IntraCDGnodes(CKPi, DCx); // CKPi replaces DCx
NOTICE_IntraCDGchange(CKPi, DCx);
//Notice processes the replacement of CKPi for DCx

else
if (∃Edge(DCx, CKPi) ∈ IntraCDGi) then
if (∃Edge(CKPj, DCx) ∈ IntraCDGi ∧ CKPj ∉ Pi) then

TurnDCtoSC(DCx, SCk); // Turn DCx to SCk
NOTICE_CKPturn(DCx, SCk);
//Notice processes in same cluster of turning of DCx

else
DELETE(DCx);
NOTICE_delete(DCx);
//Notice processes in same cluster of the elimination of DCx

//Notice processes in same cluster of the elimination of DCx

Rule 1: If ∄DCx ∈ Set-Path(SCi) ∧ ∃SCk (k > i), then SCi can be cleaned up.

The elimination occasions of SC include two occasions:

1. When one process finishes the new SC, the initialization process of checkpointing (active trigger)
or the CH (reactive trigger) will collect the IntraCDGglobal and check whether the earlier
checkpoints can be cleaned up.

2. After any DC is cleared away by one process, the process will notice the CH to collect the
IntraCDGglobal. Then the CH checks whether the earlier checkpoints can be cleaned up.

5.2.2. Elimination of DC

It can be seen from Criterion 6, one DC must not be able to be cleared up if the related
checkpoints of processes in other clusters on which the DC depends directly are not eliminated.
Hence, one premise of DC to be cleaned up is that all checkpoints from other clusters on which the
DC depends directly are cleared away. However, it needs to check whether the elimination of DC
satisfies the conditions in Criterion 7 even if this premise meets. The elimination of DCs is based on
the elimination of SCs. If the conditions are satisfied, then the DC still cannot be cleared away.

Let DCx to be any DC of process Pi. CKPi is any kind of checkpoint of Pi. CKPj is any checkpoint
of process in the cluster same as Pi. Edge(A, B) expresses the edge started by A and ended by B in
IntraCDG. Then the elimination rules of DC can be described in formalized way as follows:

Rule 2: If ∃Edge (CKPi, DCx) ∈ IntraCDGi, then DCx can be cleaned up.

Rule 3: If ∃Edge (CKPi, DCx) ∉ IntraCDGi, then if only if ∃Edge(DCx, CKPi) ∈ IntraCDGi ∧ ∃Edge (CKPj,
DCx) ∉ IntraCDGi), then DCx can be cleaned up.

Because the CH to which the sending process of DM belongs records S_IntraCDG, so the process
needs to inform the CH to delete the checkpoint and related edges in S_IntraCDG when the process
cleans up the SC. If the CH finds the isolated DC DCx, then it informs the related cluster to judge
whether the DC can be eliminated according to Rules 2 and 3. After receiving the processing request
of the DC, the related process decides the next step operation by its own IntraCDG.

1. If there is any edge which is started by checkpoint CKPi of process and ended by DCx in IntraCDG,
then DCx will be cleared away. The edge which is started by and ended by DCx will be eliminated.
What is more, it will use CKPi to replace DCx. Finally, the CH informs the processes in same
cluster to change the DCx to CKPi in their own IntraCDGs.

IntraCDGi, then if only if ∃Edge(DCx, CKPi) ∈ IntraCDGi ∧ ∃Edge
(CKPj, DCx)

Sensors 2017, 17, 2166 13 of 28

Algorithm 1 DC_Elimination()

if (∃Edge(CKPi, DCx) ∈ IntraCDGi) then
DELETE(DCx);
REPLACE_IntraCDGnodes(CKPi, DCx); // CKPi replaces DCx
NOTICE_IntraCDGchange(CKPi, DCx);
//Notice processes the replacement of CKPi for DCx

else
if (∃Edge(DCx, CKPi) ∈ IntraCDGi) then
if (∃Edge(CKPj, DCx) ∈ IntraCDGi ∧ CKPj ∉ Pi) then

TurnDCtoSC(DCx, SCk); // Turn DCx to SCk
NOTICE_CKPturn(DCx, SCk);
//Notice processes in same cluster of turning of DCx

else
DELETE(DCx);
NOTICE_delete(DCx);
//Notice processes in same cluster of the elimination of DCx

//Notice processes in same cluster of the elimination of DCx

Rule 1: If ∄DCx ∈ Set-Path(SCi) ∧ ∃SCk (k > i), then SCi can be cleaned up.

The elimination occasions of SC include two occasions:

1. When one process finishes the new SC, the initialization process of checkpointing (active trigger)
or the CH (reactive trigger) will collect the IntraCDGglobal and check whether the earlier
checkpoints can be cleaned up.

2. After any DC is cleared away by one process, the process will notice the CH to collect the
IntraCDGglobal. Then the CH checks whether the earlier checkpoints can be cleaned up.

5.2.2. Elimination of DC

It can be seen from Criterion 6, one DC must not be able to be cleared up if the related
checkpoints of processes in other clusters on which the DC depends directly are not eliminated.
Hence, one premise of DC to be cleaned up is that all checkpoints from other clusters on which the
DC depends directly are cleared away. However, it needs to check whether the elimination of DC
satisfies the conditions in Criterion 7 even if this premise meets. The elimination of DCs is based on
the elimination of SCs. If the conditions are satisfied, then the DC still cannot be cleared away.

Let DCx to be any DC of process Pi. CKPi is any kind of checkpoint of Pi. CKPj is any checkpoint
of process in the cluster same as Pi. Edge(A, B) expresses the edge started by A and ended by B in
IntraCDG. Then the elimination rules of DC can be described in formalized way as follows:

Rule 2: If ∃Edge (CKPi, DCx) ∈ IntraCDGi, then DCx can be cleaned up.

Rule 3: If ∃Edge (CKPi, DCx) ∉ IntraCDGi, then if only if ∃Edge(DCx, CKPi) ∈ IntraCDGi ∧ ∃Edge (CKPj,
DCx) ∉ IntraCDGi), then DCx can be cleaned up.

Because the CH to which the sending process of DM belongs records S_IntraCDG, so the process
needs to inform the CH to delete the checkpoint and related edges in S_IntraCDG when the process
cleans up the SC. If the CH finds the isolated DC DCx, then it informs the related cluster to judge
whether the DC can be eliminated according to Rules 2 and 3. After receiving the processing request
of the DC, the related process decides the next step operation by its own IntraCDG.

1. If there is any edge which is started by checkpoint CKPi of process and ended by DCx in IntraCDG,
then DCx will be cleared away. The edge which is started by and ended by DCx will be eliminated.
What is more, it will use CKPi to replace DCx. Finally, the CH informs the processes in same
cluster to change the DCx to CKPi in their own IntraCDGs.

IntraCDGi), then DCx can be cleaned up.

Because the CH to which the sending process of DM belongs records S_IntraCDG, so the process
needs to inform the CH to delete the checkpoint and related edges in S_IntraCDG when the process
cleans up the SC. If the CH finds the isolated DC DCx, then it informs the related cluster to judge
whether the DC can be eliminated according to Rules 2 and 3. After receiving the processing request of
the DC, the related process decides the next step operation by its own IntraCDG.

Sensors 2017, 17, 2166 14 of 29

1. If there is any edge which is started by checkpoint CKPi of process and ended by DCx in IntraCDG,
then DCx will be cleared away. The edge which is started by and ended by DCx will be eliminated.
What is more, it will use CKPi to replace DCx. Finally, the CH informs the processes in same
cluster to change the DCx to CKPi in their own IntraCDGs.

2. If there is no edge started by the own checkpoint CKPi of process and ended by DCx, and there is
edge started by DCx and ended by its own checkpoint CKPj, then two situations exist.

3. If there is not edge started by checkpoint CKPa of process in same cluster and ended by DCx in
IntraCDG, then can be cleared away.

4. If there is edge started by checkpoint CKPa of process in same cluster and ended by DCx in
IntraCDG, then turns DCx to SCk and informs other processes in same cluster to change DCx in
IntraCDG to SCk.

Theorem 1. The strategy of checkpoint elimination satisfies the correctness criteria of hybrid checkpointing model.

Proof. We prove this from the SC and DC, respectively:

1. Let SCi and SCj to be the SCs of any process Pi. DCx is any DC. According to Rule 1, if there is no
path from DCx to SCi but there is node SCj (j > i) in IntraCDGglobal, then it shows that SCi is not
the current checkpoint of Pi and there is no DCx meeting the condition SCi ⇒ DCx or SCi ⇒⇒
DCx. At this moment, any rollback of process in different cluster will not cause Pi,j,t to roll back to
SCy

i,j,t. Hence, SCi can be eliminated. It can be seen, the elimination of SCs meets the Criterion 5.

2. Let the cluster to which the DC belongs to be Cm. If there is any isolated DCx in S_InterCDGm

after CHm has handled the set of checkpoints that could be eliminated, then it means that any
checkpoint CKPi of the process in Cm does not meet the condition DCx ⇒ CKPi. Therefore,
any rollback of process in Cm will not cause Pi to roll back to DCx.

Let CKPa to be any kind of checkpoint of Pi. CKPb is any kind checkpoint of process in the
cluster same as Pi. If ∃Edge(CKPa, DCx) ∈ IntraCDGi, when DCx has no relation with checkpoints
in Cm, then Pi can roll back to CKPa relatively. Hence, the elimination of DCx will not cause wrong
rollback. If ∃Edge (CKPa, DCx) ∈ IntraCDGi and ∃Edge(DCx, CKPa) ∈ IntraCDGi ∧ ∃Edge (CKPb, DCx)
∈ IntraCDGi, then it shows that no rollback will cause Pi to roll back to DCx but there is checkpoint
which stores the newest state of Pi. Hence, DCx can be eliminated. It can be seen that the elimination
of DCs meets the Criteria 6 and 7. In conclusion, the strategy of checkpoint elimination satisfies the
correctness criteria of the hybrid checkpointing model.

6. Checkpointing and Recovery Algorithms

6.1. Algorithm for Checkpoints in the Same Cluster

Different from the traditional synchronous checkpointing strategy, when a process initializes the
checkpointing, it firstly collects the dependence list of each process in the same cluster to obtain the
dependence relation among processes. Then it finds out the processes that have to remain synchronous
with it for realizing the checkpoints coordination of processes. However, if there are multiple processes
initializing the checkpointing in the same cluster at the same time, then it will create unnecessary
wireless communication overhead. Hence, let the CH of each cluster to control one token. In order
to avoid the concurrent initializations, only the process which gets the token from CH is allowed to
initialize the checkpointing. The all processes staying in active states in one cluster is named as the
process list (PL).

In order to reduce the occupation of useless checkpoints to the precious storage space of wireless
terminals, this paper divides the SCs into uncertain checkpoints and certain checkpoints (see the
Definitions 2 and 3). If and only if the all processes which take part in the checkpointing finish
the coordination of checkpoints, the uncertain checkpoints could be turned to certain checkpoints.
Otherwise, these uncertain checkpoints will be eliminated, namely the caches released.

Sensors 2017, 17, 2166 15 of 29

Different from the DL which stores the list of processes depended on one process directly, the LDS
stores the set of processes depended on one process directly and indirectly. The dependence relations
in LDS can be achieved from the DLs of different processes:

Definition 8. If Pi sends a message to Pj, then Pj depends on Pi directly. It expresses as Pj→Pi.

Definition 9. If Pk→Pj and Pj→Pi, then Pk depends on Pi transitively. It expresses as Pk→Pi.

Definition 10. The least dependence set (LDS) of Pi is the set of processes in cluster same as Pi which depends
on Pi directly or transitively. If Pj→Pi or Pk→Pi, then Pj, Pk ∈ LDSi.

To describe the up-dependence relations, the dependence list (DL) is used to store the set of
process which directly depends on one process, and so, the transitive dependence relation for LDS
can be obtained from the DLs of different processes. The steps of checkpointing in same cluster are
described as follows:

1. When process P receives K, SMs, it sends token request to CH. If the token is not assigned, then P
gets the token. Otherwise, P goes on applying for the token. During the interval, if P receives the
checkpoint request from other process, then it takes an uncertain checkpoint.

2. After getting the token, P initializes the checkpointing. This procedure includes collecting the
DLs of other processes, calculating LDS and so on.

3. P takes an uncertain checkpoint and sends checkpoint request and LDS to all of the other processes
in same cluster. If some members stay in the disconnected states, it sends the information to
the CH.

4. After getting the checkpoint request, the processes will take uncertain checkpoints if they are part
of LDS. Then they send replies to P.

5. If P receives all of the positive replies, then it turns the uncertain checkpoint to certain checkpoint
and notices the processes in LDS to turn. If some members stay in the disconnected states, P sends
the turn request to the CH. If P does not receive all of the positive replies during a time interval,
P clears away the uncertain checkpoint and informs all of the processes in the same cluster.

6. If P finishes the checkpointing successfully, then P collects the IntraCDG of processes in same
cluster to build the IntraCDGfinal and P checks whether any checkpoints could be eliminated
according to Rule 1. If this kind of checkpoint exists, P notices the processes in same cluster to
execute elimination processing.

Let Pj to be the process which initializes the checkpointing. Pj stays in the cluster Cm. PLm

expresses the process list of Cm. CSNi indicates the checkpoint sequence number (CSN) of Pj.
UCi expresses whether Pj has taken the uncertain checkpoint. The UCi initialization value of is 0.
DPm indicates the set of processes which are disconnected in Cm. MNi indicates the number of
messages received by Pi from processes in same cluster. The algorithm of process which initializes the
checkpointing is indicated as Algorithm 2.

Sensors 2017, 17, 2166 16 of 29

Algorithm 2 CKP_InitProcess()

Ask_token (CHm); //ask for token
if (token is assigned) then

WAIT (token);
else

CSNi = CSNi+1; //increase its own CSN
for (Pk ∈ PLm ∧ k 6= i) do

SEND_DLrequest(Pk); //send DL request
CALCULATE(LDS, Pi);
DO_uncheckpoint(SCi);
UCi = 1; //change mark of uncertain CKP

for (Pk ∈ LDS) do
if (Pk ∈ DPm) then

SEND_CKPReq(CHm); //send CKP request
else

SEND_CKPReq(Pk);
if (Pi get all replies) then

CKP_Turning(SCi); //turn uncertain CKP to certain CKP
for (Pk ∈ LDS) do
if (Pk ∈ DPm) then

SEND_CKPturn(CHm); //send checkpoint turn request
else

SEND_CKPturn (Pk);
FIND_CKPdeleted(IntraCDGfinal); //find the deletable checkpoints*/
NOTICE_CKPdeleted();
/*notice processes in same cluster of CKP elimination*/
MNi = 0; /*reset receiving messages number*/

6.2. Algorithm for Checkpoints in Different Clusters

The DC is triggered by the message that is sent from a process in a different cluster. The processing
of DC is relatively simple. The following steps are its detailed procedures:

1. When a process sends a DM to MHs in different clusters, it adds the current checkpoint to
the message.

2. After received the DM, the CH updates S_InterCDG according to the dependence relation between
checkpoints of the sender and receiver process and then transmits the DM.

3. The CH of the cluster to which the receiver process of the DM belongs updates the R_InterCDG
also after received the DM, and then transmits the DM to the receiver process.

4. By the time the process received the DM, if it has taken DC for the cluster, it receives the DM
directly. Otherwise, it checks whether it receives or sends any message during the current
checkpoint interval. If it has sent or received any message, it stores a OC. Or else, it turns the
current checkpoint to OC.

Let DM be a message sent by Pi (belongs to Cs) and received by Pj (belongs to Ct). CKPi and DCj
are respectively the checkpoints of Pi and Pj related to DM. The algorithm for checkpoints in different
clusters is described as Algorithm 3.

Sensors 2017, 17, 2166 17 of 29

Algorithm 3 DC_Processing()

SEND_message(Pi, DM); // Pi sends DM
TRANSMIT_message(CHs, DM); // CHs transmits DM
UPDATE_S_InterCDG(Pi, Pj); // update S_InterCDG
TRANSMIT_message(CHt, DM);
UPDATE_R_InterCDG(Pi, Pj);
RECEIVE_message(Pj, DM); // Pj receives DM

if (Pj has taken DCj) then
RECEIVE(DM);

else
if (

Sensors 2017, 17, 2166 16 of 28

SEND_CKPReq(Pk);
if (Pi get all replies) then

CKP_Turning(SCi); //turn uncertain CKP to certain CKP
for (Pk ∈ LDS) do
if (Pk ∈ DPm) then

SEND_CKPturn(CHm); //send checkpoint turn request
else

SEND_CKPturn (Pk);
FIND_CKPdeleted(IntraCDGfinal); //find the deletable checkpoints*/
NOTICE_CKPdeleted();
/*notice processes in same cluster of CKP elimination*/
MNi = 0; /*reset receiving messages number*/

6.2. Algorithm for Checkpoints in Different Clusters

The DC is triggered by the message that is sent from a process in a different cluster. The
processing of DC is relatively simple. The following steps are its detailed procedures:

1. When a process sends a DM to MHs in different clusters, it adds the current checkpoint to the
message.

2. After received the DM, the CH updates S_InterCDG according to the dependence relation
between checkpoints of the sender and receiver process and then transmits the DM.

3. The CH of the cluster to which the receiver process of the DM belongs updates the R_InterCDG
also after received the DM, and then transmits the DM to the receiver process.

4. By the time the process received the DM, if it has taken DC for the cluster, it receives the DM
directly. Otherwise, it checks whether it receives or sends any message during the current
checkpoint interval. If it has sent or received any message, it stores a OC. Or else, it turns the
current checkpoint to OC.

Let DM be a message sent by Pi (belongs to Cs) and received by Pj (belongs to Ct). CKPi and DCj
are respectively the checkpoints of Pi and Pj related to DM. The algorithm for checkpoints in different
clusters is described as Algorithm 3.

Algorithm 3 DC_Processing()

SEND_message(Pi, DM); // Pi sends DM
TRANSMIT_message(CHs, DM); // CHs transmits DM
UPDATE_S_InterCDG(Pi, Pj); // update S_InterCDG
TRANSMIT_message(CHt, DM);
UPDATE_R_InterCDG(Pi, Pj);
RECEIVE_message(Pj, DM); // Pj receives DM

if (Pj has taken DCj) then
RECEIVE(DM);

else
if (∄ M((Send(M) >> CKPk) || (Receive(M) >> CKPk)) then

TURN_CKP(CKPk, DCj); // CKPk turns to DCj
else

STORE_CKP(DCj);

6.3. Algorithm for Failure Recovery

When a process fails, it firstly asks related processes to roll back to some global consistency states.
Then these processes execute the operations stored in the logs. The keys of the correctness for rollback

M((Send(M) >> CKPk) || (Receive(M) >> CKPk)) then
TURN_CKP(CKPk, DCj); // CKPk turns to DCj

else
STORE_CKP(DCj);

6.3. Algorithm for Failure Recovery

When a process fails, it firstly asks related processes to roll back to some global consistency states.
Then these processes execute the operations stored in the logs. The keys of the correctness for rollback
recovery are that determining the earliest rollback set of process and finding out the processes in
different clusters belonging to the cascade rollback.

Definition 11. The rollback set of Pi is the set of checkpoints to which the processes in same cluster and Pi may
roll back, it is recorded as RSi.

Definition 12. The earliest rollback set is the set of earliest checkpoints to which the processes in same cluster
and Pi must roll back, it is recorded as ERSi, ERSi ⊆ RSi.

Definition 13. Let CKPi to be the checkpoint to which the failure process Pi needs roll back. If ∃CKPk(CKPk ⇒
CKPi ∨ CKPk ⇒⇒ CKPi), then CKPk ∈ RSi.

Definition 14. Let Pi to be the failure process, Pj is the process in the cluster same as Pi. CKP1, CKP2, . . . ,
CKPn are the set of checkpoints of Pj and they belong to RSi. If ∃CKPx, x ∈ {1, 2, . . . , n}, the condition CKPx

⇒ CKPk (k ∈ {1, 2, . . . , n}, x 6= k) is not satisfied, then CKPx ∈ ERSi.

The ERS calculation procedure for failure process Pi is described as follows:

1. Pi collects the IntraCDGs of all processes in same cluster and builds the IntraCDGglobal.
2. Pi executes the depth-first traversal to the IntraCDGglobal started from the checkpoint to which

Pi has to roll back, and adds any checkpoints that can be arrived to the RSi. Finally, the earliest
checkpoint of each process in RSi is added to ERSi.

Based on the ERS, we define the following rollback rules:

Rule 4: Let Pi to be the failure process. CKPx is any checkpoint of process Pj in the cluster same as Pi.
If CKPx ∈ ERSi, then Pj should roll back to CKPx.

Rule 5: Let Pi to be the failure process. CKPx is any checkpoint of process Pj in the cluster same as
Pi. CKPx ∈ RSi. If ∃Edge(CKPx, DCx) ∈ S_InterCDGm, then the related process in other cluster will be
noticed to roll back to DCx.

Let Pi to be the failure process and CKPi to be the checkpoint to which Pi has to roll back. The
rollback recovery algorithm is described as Algorithm 4.

Theorem 2. The strategy of rollback satisfies the correctness criteria of hybrid checkpointing model.

Sensors 2017, 17, 2166 18 of 29

Proof. By contradiction. If the rollback strategy does not satisfy the correctness criteria, then there
must be a message M there must be a message M whose sender process has cancelled the sending
event of M but the receiver process does not cancel the receiving event of M. Let Pi and Pj to be the
sender process and receiver process of M respectively. CKPi and CKPj are the newest checkpoints of Pi
and Pj when they send and receives M, respectively.

1. M is a SM. By the time Pj receives M, the IntraCDGj of Pj will record the dependence relation of
CKPj ⇒ CKPi. If some process in the cluster same as Pj build the IntraCDGglobal for failure, then
there must be a path from CKPi to CKPj. Therefore, Pj is sure to roll back to CKPj because CKPj
belongs to RSj when Pi rolls back to CKPi for failure or rollback request.

2. M is a DM. At present, CKPj is DCj. After Pi sends M, the cluster head CHk of cluster same as Pi
will firstly receive M. When CHk receives M, it transmits M and records the dependence relation
of CKPj ⇒ CKPi in S_InterCDGk. When Pi rolls back to CKPi for failure or rollback request, CHk
is sure to require Pj to roll back to CKPj because there is edge started by CKPi and ended by CKPj
in S_InterCDGk.

So, it follows that the assumption for rollback strategy does not set up. The rollback strategy
meets the correctness criteria.

Algorithm 4 CKP_Rollback()

for (Pj ∈ PLk ∧ j 6= i) do
SEND_IntraCDGReq(Pj); //send IntraCDG request
BUILD_IntraCDG(IntraCDGglobal);
Traverse(IntraCDGglobal, CKPi);
//traverse IntraCDGglobal by depth-first

for (Pj ∈ PLk ∧ j 6= i) do
SEND_ERS(Pj);

for (Pj ∈ PLk) do
if (CKPs ∈ ERSi ∧ CKPs ∈ Pj) then

Rollback(Pj, CKPs);
for (CKPs ∈ ERSi ∧ CKPs ∈ S_InterCDGk) do
if (∃Edge(CKPs, DCj)) then

SEND_RollReq(DCj);
//send rollback request to process related to DCj

7. Processing of Handoffs

A MH leaves one cluster and enters another cluster in the ad hoc network, namely a handoff
occurs, then the relations of the MH in same cluster and different clusters all change. We call this MH
that passes the handoff as the HandOff Host (HOH). The cluster that HOH leaves is called old cluster
and the cluster that HOH enters is called new cluster.

After the handoff has happened, there will be some situations. If the old cluster does not deal
with this change in time, then any checkpointing procedure of processes in old cluster may fail to
accomplish because of the absence of HOH. The rollback of processes may also not be realized, because
the processes could not obtain all of dependence relations of checkpoints. If the new cluster does not
deal with this change in time, then the DCs of HOH may not be able to be cleared away and affects the
elimination of more checkpoints further. What is more, the checkpointing in new cluster will ignore
the entering of HOH and so cause the incoordination of checkpoints. Hence, the HOH, old cluster and
new cluster all must deal with this change relatively for assuring the correctness of checkpoints when
the handoff happens.

Sensors 2017, 17, 2166 19 of 29

7.1. Process States and Treatment

For the processes running in the HOH, they stay one of the following states when the handoff
happens. Figure 8 is the transition figure of states.

1. Running state. The process runs or communicates normally.
2. Checkpoint state. The process is taking checkpoint. The process can be divided to CKP Initiator

or CKP Participant. The CKP Intiator means that the checkpointing procedure is initialized by
this process, while the CKP Participant means that this process just take part in the checkpointing
procedure initialized by other process.

3. Rollback state. The process is just dealing with the rollback recovery. This state can be divided
to Active Rollback and Reactive Rollback state. The Active Rollback state indicates that the
process is the failure process, namely the initiator of rollback. While the Reactive Rollback state
means that the process rolls back because of the cascade rollback caused by rollback request of
another process.

Sensors 2017, 17, 2166 19 of 28

HOH informs its location and state to the CH of old cluster when it enters the new cluster. Then the
CH judges whether it is needful to notice the processes in its cluster.

Figure 8. The transition of states.

7.1.1. The Process Stays in the Rollback State

Active Rollback. The HOH goes on obtaining the IntraCDG of processes in the old cluster and
calculates the ERS according to IntraCDG. The LCH sends the cluster id of new cluster to the CH of
old cluster. Then the process executes rollback operation according to ERS and sends the ERS to
related processes in old cluster to inform them to roll back.

Reactive Rollback. The process waits for the ERS sent by the process running in old cluster and
executes rollback after received the ERS.

7.1.2. The Process Stays the Checkpoint State

CKP Initiator. If the process stays the receiving stage of DL, then it goes on waiting for the DL
sent from processes in old cluster. If the process has sent the LDS, then it waits for the replies from
processes in old cluster. After that, the process continues executing the checkpointing until the end.

CKP Participant. The process waits for the coordination request from the initiator of
checkpointing and replies until the end of checkpointing procedure.

7.2. Update of Checkpoint Dependence Relation

Because the the relations of the HOH in same cluster and different clusters all change after it
leaves the old cluster and enters the new cluster, so it needs to update the dependence relations
among checkpoints in old or new cluster and the checkpoints of processes in HOH when the all
processes in HOH have finished their current work. The main update work is to renew the related
data structures such as the PL, DL, IntraCDG and InterCDG. Let Ck and Ci respectively the old cluster
and new cluster related to HOH. PS is the set of processes running in HOH.

7.2.1. Update of Checkpoints Dependence Relation in Old Cluster

Firstly, it needs to delete the processes in PS from the PLk and DLs of all processes in old cluster.
Then it should turn the same cluster dependence relation among checkpoints of processes in PLk and
PS to dependence relations among different clusters. That means to modify the related IntraCDG and
InterCDG.

Let Pt ∈ PS, Pj ∈ PLk. CKPa and CKPb are the checkpoints of Pt and Pj respectively. The algorithm
for updating of checkpoints dependence relations in old cluster is described as the Algorithm 5.

Figure 8. The transition of states.

When the HOH leaves the old cluster, and enters the new cluster, the processes running in HOH
should be able to handle according to their different states. Despite the processes staying normal state,
all processes running in HOH have to finish the current work (checkpointing or rollback operation)
with the processes in old cluster together for assuring the consistency of checkpoints. Hence, the HOH
informs its location and state to the CH of old cluster when it enters the new cluster. Then the CH
judges whether it is needful to notice the processes in its cluster.

7.1.1. The Process Stays in the Rollback State

Active Rollback. The HOH goes on obtaining the IntraCDG of processes in the old cluster and
calculates the ERS according to IntraCDG. The LCH sends the cluster id of new cluster to the CH of old
cluster. Then the process executes rollback operation according to ERS and sends the ERS to related
processes in old cluster to inform them to roll back.

Reactive Rollback. The process waits for the ERS sent by the process running in old cluster and
executes rollback after received the ERS.

Sensors 2017, 17, 2166 20 of 29

7.1.2. The Process Stays the Checkpoint State

CKP Initiator. If the process stays the receiving stage of DL, then it goes on waiting for the DL
sent from processes in old cluster. If the process has sent the LDS, then it waits for the replies from
processes in old cluster. After that, the process continues executing the checkpointing until the end.

CKP Participant. The process waits for the coordination request from the initiator of checkpointing
and replies until the end of checkpointing procedure.

7.2. Update of Checkpoint Dependence Relation

Because the the relations of the HOH in same cluster and different clusters all change after it
leaves the old cluster and enters the new cluster, so it needs to update the dependence relations among
checkpoints in old or new cluster and the checkpoints of processes in HOH when the all processes in
HOH have finished their current work. The main update work is to renew the related data structures
such as the PL, DL, IntraCDG and InterCDG. Let Ck and Ci respectively the old cluster and new cluster
related to HOH. PS is the set of processes running in HOH.

7.2.1. Update of Checkpoints Dependence Relation in Old Cluster

Firstly, it needs to delete the processes in PS from the PLk and DLs of all processes in old cluster. Then
it should turn the same cluster dependence relation among checkpoints of processes in PLk and PS to
dependence relations among different clusters. That means to modify the related IntraCDG and InterCDG.

Let Pt ∈ PS, Pj ∈ PLk. CKPa and CKPb are the checkpoints of Pt and Pj respectively. The algorithm
for updating of checkpoints dependence relations in old cluster is described as the Algorithm 5.

Algorithm 5 OldCluster_CKPUpdate()

DELETE_process(PLk, PS); //delete PS from PLk
NOTICE_DLChange(PS); //notice processes to change DL

for (Px ∈ PS || Px ∈ PLk) do
REQUIRE_IntraCDG(Px); //send IntraCDG request
BUILD_IntraCDG(IntraCDGglobal);

if (∃Edge(CKPa, CKPb) ∧ IntraCDGglobal) then
CHANGE_IntraCDG(IntraCDGj); //modify IntraCDGj
CHANGE_InterCDG(R_InterCDGk);

if (∃Edge(CKPb, CKPa) ∧ IntraCDGglobal) then
CHANGE_IntraCDG(IntraCDGt);
CHANGE_InterCDG(S_InterCDGk);
BUILD_SubInterCDG(R_InterCDGk, S_InterCDGk, Pt);
//build subgraph related to Pt

SEND_SubInterCDG(CHi); //send subgraph to CHi
CHANGE_InterCDG(R_InterCDGk);
CHANGE_InterCDG(S_InterCDGk);

7.2.2. Update of Checkpoints Dependence Relation in New Cluster

Firstly, it needs to add the processes in PS to PLi. When CHi receives the subgraph SubInterCDG
from CHk, it adds the edges ended by the checkpoints of processes in PS to R_InterCDGi and adds the
rest to S_InterCDGi. Then CHi builds new relations of same cluster for the processes in PS, namely
updates the IntraCDGs and DLs of related checkpoints.

Let Pt ∈ PS, Ps ∈ Ci. CKPc and CKPd are the checkpoints of Pt and Ps, respectively. The algorithm
for updating checkpoints dependence relations in a new cluster is described as the Algorithm 6.

Sensors 2017, 17, 2166 21 of 29

Algorithm 6 NewCluster_CKPUpdate()

ADD_process(PLi, PS); //add PS to PLi
CHANGE_InterCDG(SubInterCDG, R_InterCDGi);
//modify R_InterCDGi with SubInterCDG
CHANGE_InterCDG(SubInterCDG, S_InterCDGi);

if (∃Edge(CKPc, CKPd) ∈ R_InterCDGi || ∃Edge(CKPd, CKPc) ∈ S_InterCDGi) then
CHANGE_dependence(CKPc, CKPd);
//change dependence relation of CKPc and CKPd

for (Px ∈ PLi) do
NOTICE_IntraCDGchange(Px);

for (CHm, m ∈ k ∧ m ∈ i) do
NOTICE_clusterchange(CHm, Pt);
//notice CHm the cluster change of Pt

for (Px ∈ PLi) do
CHANGE_IntraCDG(Px); //Px modify IntraCDG
CHANGE_DL(Px); //Px modify DL

8. Performance Test and Analysis

8.1. Experiment Environment and Parameters

This experiment builds a simulation environment of a mobile ad hoc network based on Windows
XP. The simulation network consists of five clusters. Each cluster includes 5 MHs. The routing
protocol in the experiment is the Ad hoc On-Demand Distance Vector Routing (AODV). The size of one
checkpoint and one message log are set to 2 KB and 50 B, respectively. Table 1 shows the parameters of
this experiment.

Table 1. Parameters for Experiments.

Parameter Description Value

F Failure probability 5~20%
M Average hops between MHs 2~4
K Message threshold for checkpoint 10

SCN Successive checkpoints number 4~16
R Ratio of SM number to DM number 0.25~4

This experiment plans to compare the proposed hybrid checkpointing protocol (HCP) with
the pure Synchronous Checkpointing Protocol (SCP) and the pure Asynchronous Checkpointing
Protocol (ACP). In the pure synchronous checkpointing strategy, a process sends the coordination
request to the related processes in same cluster and different clusters after received K messages. The
process firstly takes an uncertain checkpoint, and then turns the uncertain one to certain one after
the coordination is successful. In the pure asynchronous checkpointing strategy, a process takes
a checkpoint independently after received K messages. According to the characteristics of ad hoc
networks, this experiment adopts the following performance indexes:

1. Average Checkpoint Time (ACT): average time for finishing the checkpointing procedure;
2. Average Recovery Time (ART): average time for finishing the rollback recovery operation;
3. Average Storage Size (ASS): average disk space that is occupied by the checkpoints of MH;
4. Average Additional Messages (AAM): average number of messages for checkpoints coordination

and rollback recovery despite the normal communication messages;
5. Average Cluster head Forwarded Messages (ACFM): average number of messages forwarded by

the cluster head.

Sensors 2017, 17, 2166 22 of 29

8.2. Experiment Results and Analysis

This experiment divides to two parts. The first part is to test the message threshold for checkpoint
K in the experiment environment. The second part is to test the ACT, ART, ASS, AAM and ACFM of
the three protocols under different conditions.

8.2.1. Experiment 1 Selection of K

The checkpoint frequency of a process is decided by the message threshold K in HCP. If K enlarges,
then the number of checkpoints deceases and the ART increases. What is more, if K increases, then the
logs between checkpoints increase. Because the storage overhead of checkpoints is much larger than
the average storage overhead of message logs, so the storage overhead will reduce as K increases.

For the additional messages, the checkpoint frequency deceases as K increases and so the
additional messages for checkpoint coordination reduce, but the additional messages for rollback
recovery augment, so the AAM does not maintain an absolute downtrend as K augments. Hence,
this experiment takes the lower of AAM as the main parameter for selection of K. Figure 9 shows the
AAM for varying values of K under different failure probabilities. It can be seen that the AAM under
different failure probabilities is the least when K is 10. Therefore, the follow-up experiments choose
this value of K to analyze and compare.Sensors 2017, 17, 2166 22 of 28

Figure 9. Test for a suitable value of K.

8.2.2. Experiment 2 Test of ACT

Figure 10 shows the ACT for varying ratios of SM number to DM number (R). It can be seen that
because the checkpoints in ACP do not remain coordinated with other processes and the processes
just need to store the current states of processes, so the ACT does not change at all. However, the ACT
of HCP and SCP reduces as R augments. For the HCP, the number of processes that participate in the
coordination decreases when the processes satisfy the checkpoint condition as R increases, so the ACT
reduces as R augments. For the SCP, the number of DMs diminishes as R increases and it means that
the processes in different clusters which also have to join the coordination reduction. Hence, the ACT
decreases as R augments. What is more, the time for checkpoints coordination of HCP is sure to be
less than the SCP, because the checkpoints coordination of HCP is limited in one cluster.

Figure 10. Impact of R on ACT.

8.2.3. Experiment 3 Test of ART

Because there are major cascade rollbacks in ACP, so the ART of ACP is greatly large than the
one of HCP and SCP. In order to clearly describe the difference between HCP and SCP, this
experiment just compares the effect on ART of HCP and ACP for varying M and F. The results are
displayed in Figures 11 and 12.

Figure 11. Impact of M on ART.

0

100

200

300

400

500

5 10 15 20

A
A

M

K

F=0.05

F=0.1

F=0.15

F=0.2

0

50

100

150

200

250

0.25 0.5 1 2 4

A
C

T
(m

s)

R

HCP
SCP

ACP

660

680

700

720

740

760

780

800

2 3 4

A
R

T
(m

s)

M

HCP

SCP

Figure 9. Test for a suitable value of K.

8.2.2. Experiment 2 Test of ACT

Figure 10 shows the ACT for varying ratios of SM number to DM number (R). It can be seen that
because the checkpoints in ACP do not remain coordinated with other processes and the processes just
need to store the current states of processes, so the ACT does not change at all. However, the ACT of
HCP and SCP reduces as R augments. For the HCP, the number of processes that participate in the
coordination decreases when the processes satisfy the checkpoint condition as R increases, so the ACT
reduces as R augments. For the SCP, the number of DMs diminishes as R increases and it means that
the processes in different clusters which also have to join the coordination reduction. Hence, the ACT
decreases as R augments. What is more, the time for checkpoints coordination of HCP is sure to be less
than the SCP, because the checkpoints coordination of HCP is limited in one cluster.

Sensors 2017, 17, 2166 22 of 28

Figure 9. Test for a suitable value of K.

8.2.2. Experiment 2 Test of ACT

Figure 10 shows the ACT for varying ratios of SM number to DM number (R). It can be seen that
because the checkpoints in ACP do not remain coordinated with other processes and the processes
just need to store the current states of processes, so the ACT does not change at all. However, the ACT
of HCP and SCP reduces as R augments. For the HCP, the number of processes that participate in the
coordination decreases when the processes satisfy the checkpoint condition as R increases, so the ACT
reduces as R augments. For the SCP, the number of DMs diminishes as R increases and it means that
the processes in different clusters which also have to join the coordination reduction. Hence, the ACT
decreases as R augments. What is more, the time for checkpoints coordination of HCP is sure to be
less than the SCP, because the checkpoints coordination of HCP is limited in one cluster.

Figure 10. Impact of R on ACT.

8.2.3. Experiment 3 Test of ART

Because there are major cascade rollbacks in ACP, so the ART of ACP is greatly large than the
one of HCP and SCP. In order to clearly describe the difference between HCP and SCP, this
experiment just compares the effect on ART of HCP and ACP for varying M and F. The results are
displayed in Figures 11 and 12.

Figure 11. Impact of M on ART.

0

100

200

300

400

500

5 10 15 20

A
A

M

K

F=0.05

F=0.1

F=0.15

F=0.2

0

50

100

150

200

250

0.25 0.5 1 2 4

A
C

T
(m

s)

R

HCP
SCP

ACP

660

680

700

720

740

760

780

800

2 3 4

A
R

T
(m

s)

M

HCP

SCP

Figure 10. Impact of R on ACT.

Sensors 2017, 17, 2166 23 of 29

8.2.3. Experiment 3 Test of ART

Because there are major cascade rollbacks in ACP, so the ART of ACP is greatly large than the one
of HCP and SCP. In order to clearly describe the difference between HCP and SCP, this experiment
just compares the effect on ART of HCP and ACP for varying M and F. The results are displayed in
Figures 11 and 12.

Sensors 2017, 17, 2166 22 of 28

Figure 9. Test for a suitable value of K.

8.2.2. Experiment 2 Test of ACT

Figure 10 shows the ACT for varying ratios of SM number to DM number (R). It can be seen that
because the checkpoints in ACP do not remain coordinated with other processes and the processes
just need to store the current states of processes, so the ACT does not change at all. However, the ACT
of HCP and SCP reduces as R augments. For the HCP, the number of processes that participate in the
coordination decreases when the processes satisfy the checkpoint condition as R increases, so the ACT
reduces as R augments. For the SCP, the number of DMs diminishes as R increases and it means that
the processes in different clusters which also have to join the coordination reduction. Hence, the ACT
decreases as R augments. What is more, the time for checkpoints coordination of HCP is sure to be
less than the SCP, because the checkpoints coordination of HCP is limited in one cluster.

Figure 10. Impact of R on ACT.

8.2.3. Experiment 3 Test of ART

Because there are major cascade rollbacks in ACP, so the ART of ACP is greatly large than the
one of HCP and SCP. In order to clearly describe the difference between HCP and SCP, this
experiment just compares the effect on ART of HCP and ACP for varying M and F. The results are
displayed in Figures 11 and 12.

Figure 11. Impact of M on ART.

0

100

200

300

400

500

5 10 15 20

A
A

M

K

F=0.05

F=0.1

F=0.15

F=0.2

0

50

100

150

200

250

0.25 0.5 1 2 4

A
C

T
(m

s)

R

HCP
SCP

ACP

660

680

700

720

740

760

780

800

2 3 4

A
R

T
(m

s)

M

HCP

SCP

Figure 11. Impact of M on ART.Sensors 2017, 17, 2166 23 of 28

Figure 12. Impact of F on ART.

As Figure 11 shows, the ART of SCP is lower than the one of HCP when M is 2. This is because
the extent of change of the rollback caused by the cascade rollback of HCP is larger than the one
brought by the rollback request of SCP, but the ART of these two protocols all increase as M augments
and the time of HCP is lower than SCP when M is 3 and M is 4. The reason for the augment of two
algorithms is that there are rollback requests sent to different clusters. Thus, the rollback extent
increases when processes in different clusters receive the rollback requests as M augments. By
contrast, the rollback requests sent to different clusters of SCP are greatly larger than the ones of HCP
because the rollback of SCP is global. Hence, the rollback extent change of SCP caused by M is greater
than the rollback extent change of HCP brought by the cascade rollback when M is larger.

It can be seen from Figure 12, the recovery time of HCP and SCP all increase when F augments
but the recovery time of HCP is less than the one of SCP. This is because the communications between
the checkpoint and failure point decrease and then the related rollback processes reduce. Hence, the
rollback extents of processes that do not fail have larger rollback extents when they roll back next
time. This situation causes the increment of recovery time. Because the rollback notifications sent to
different clusters of HCP is lesser, so the ART of HCP is less than the one of SCP.

8.2.4. Experiment 4 Test of ASS

In order to test the ASS, this experiment compares the occupation of storage space of different
protocols by testing the change of SCN. Figure 13 shows the results of tests. It can be seen, the ASS of
SCP does not change basically. This is because each process in SCP just needs to store one checkpoint
and a handful of message logs. However, each process in HCP and ACP has to store multiple
checkpoints and many message logs, and so the occupation of storage space increases as the
successive checkpoints number augments. But the ASS of HCP is less than the ASS of ACP greatly
because the DCs of HCP will be cleared away in advance.

Figure 13. Impact of SCN on ASS.

0

200

400

600

800

1000

1200

1400

5 10 15 20

A
R

T
(m

s)

F(%)

HCP

SCP

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

4 8 12 16

A
S

S
(B

)

SCN

HCP

SCP

ACP

Figure 12. Impact of F on ART.

As Figure 11 shows, the ART of SCP is lower than the one of HCP when M is 2. This is because the
extent of change of the rollback caused by the cascade rollback of HCP is larger than the one brought
by the rollback request of SCP, but the ART of these two protocols all increase as M augments and the
time of HCP is lower than SCP when M is 3 and M is 4. The reason for the augment of two algorithms
is that there are rollback requests sent to different clusters. Thus, the rollback extent increases when
processes in different clusters receive the rollback requests as M augments. By contrast, the rollback
requests sent to different clusters of SCP are greatly larger than the ones of HCP because the rollback
of SCP is global. Hence, the rollback extent change of SCP caused by M is greater than the rollback
extent change of HCP brought by the cascade rollback when M is larger.

It can be seen from Figure 12, the recovery time of HCP and SCP all increase when F augments
but the recovery time of HCP is less than the one of SCP. This is because the communications between
the checkpoint and failure point decrease and then the related rollback processes reduce. Hence, the
rollback extents of processes that do not fail have larger rollback extents when they roll back next time.
This situation causes the increment of recovery time. Because the rollback notifications sent to different
clusters of HCP is lesser, so the ART of HCP is less than the one of SCP.

Sensors 2017, 17, 2166 24 of 29

8.2.4. Experiment 4 Test of ASS

In order to test the ASS, this experiment compares the occupation of storage space of different
protocols by testing the change of SCN. Figure 13 shows the results of tests. It can be seen, the
ASS of SCP does not change basically. This is because each process in SCP just needs to store one
checkpoint and a handful of message logs. However, each process in HCP and ACP has to store
multiple checkpoints and many message logs, and so the occupation of storage space increases as the
successive checkpoints number augments. But the ASS of HCP is less than the ASS of ACP greatly
because the DCs of HCP will be cleared away in advance.

Sensors 2017, 17, 2166 23 of 28

Figure 12. Impact of F on ART.

As Figure 11 shows, the ART of SCP is lower than the one of HCP when M is 2. This is because
the extent of change of the rollback caused by the cascade rollback of HCP is larger than the one
brought by the rollback request of SCP, but the ART of these two protocols all increase as M augments
and the time of HCP is lower than SCP when M is 3 and M is 4. The reason for the augment of two
algorithms is that there are rollback requests sent to different clusters. Thus, the rollback extent
increases when processes in different clusters receive the rollback requests as M augments. By
contrast, the rollback requests sent to different clusters of SCP are greatly larger than the ones of HCP
because the rollback of SCP is global. Hence, the rollback extent change of SCP caused by M is greater
than the rollback extent change of HCP brought by the cascade rollback when M is larger.

It can be seen from Figure 12, the recovery time of HCP and SCP all increase when F augments
but the recovery time of HCP is less than the one of SCP. This is because the communications between
the checkpoint and failure point decrease and then the related rollback processes reduce. Hence, the
rollback extents of processes that do not fail have larger rollback extents when they roll back next
time. This situation causes the increment of recovery time. Because the rollback notifications sent to
different clusters of HCP is lesser, so the ART of HCP is less than the one of SCP.

8.2.4. Experiment 4 Test of ASS

In order to test the ASS, this experiment compares the occupation of storage space of different
protocols by testing the change of SCN. Figure 13 shows the results of tests. It can be seen, the ASS of
SCP does not change basically. This is because each process in SCP just needs to store one checkpoint
and a handful of message logs. However, each process in HCP and ACP has to store multiple
checkpoints and many message logs, and so the occupation of storage space increases as the
successive checkpoints number augments. But the ASS of HCP is less than the ASS of ACP greatly
because the DCs of HCP will be cleared away in advance.

Figure 13. Impact of SCN on ASS.

0

200

400

600

800

1000

1200

1400

5 10 15 20

A
R

T
(m

s)

F(%)

HCP

SCP

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

4 8 12 16

A
S

S
(B

)

SCN

HCP

SCP

ACP

Figure 13. Impact of SCN on ASS.

8.2.5. Experiment 5 Test of AAM

In order to test the AAM, this experiment compares the effect of change created by F and R
respectively. The performance results of this experiment are described in Figures 14 and 15. It can
be seen from Figure 14 that the additional messages increase along with the increment of F. This is
because the larger the F is, the more additional messages related to rollbacks exist, but only the AAM
of SCP shows a downtrend as R augments. The reason is that the processes which participate in the
coordination decrease with the reduction of number of DMs when R increases, but for the HCP and
ACP, the increment of R causes the dependence relations among checkpoints of processes to become
tighter and so the additional messages created by the rollbacks of failure processes augment. In general,
the AAM of SCP is greatly larger than the one of HCP and ACP. This is because the SCP has the global
rollback despite the global coordination, but for the HCP, though there are additional messages caused
by coordination and rollback together, the coordination and rollback are limited in the same cluster.
Hence, the additional messages of HCP are less than S for CP. For the ACP, its additional messages are
the least because there is no coordination in ACP.

Sensors 2017, 17, 2166 24 of 28

8.2.5. Experiment 5 Test of AAM

In order to test the AAM, this experiment compares the effect of change created by F and R
respectively. The performance results of this experiment are described in Figures 14 and 15. It can be
seen from Figure 14 that the additional messages increase along with the increment of F. This is
because the larger the F is, the more additional messages related to rollbacks exist, but only the AAM
of SCP shows a downtrend as R augments. The reason is that the processes which participate in the
coordination decrease with the reduction of number of DMs when R increases, but for the HCP and
ACP, the increment of R causes the dependence relations among checkpoints of processes to become
tighter and so the additional messages created by the rollbacks of failure processes augment. In
general, the AAM of SCP is greatly larger than the one of HCP and ACP. This is because the SCP has
the global rollback despite the global coordination, but for the HCP, though there are additional
messages caused by coordination and rollback together, the coordination and rollback are limited in
the same cluster. Hence, the additional messages of HCP are less than S for CP. For the ACP, its
additional messages are the least because there is no coordination in ACP.

Figure 14. Impact of F on AAM.

Figure 15. Impact of R on AAM.

8.2.6. Experiment 6 Test of ACFM

Figures 16 and 17 express the change of ACFM for the three protocols under different F and R.
It can be seen that the enlargement of F causes the increment of ACFM in the three protocols. Hereinto,
the change extents of HCP and ACP are lesser. This is because the rollback requests forwarded by
CHs increase when F augments. For the HCP and ACP, the rollback requests forwarded by CHs are
lesser, and so is the effect of F. In the Scp, each rollback requires all processes to partake and so the
messages forwarded by CHs become major and take up a high proportion of the total messages. Then
it causes the change extent of messages forwarded by CHs being larger when R varies. What is more,
the CHs in SCP will forward the coordination requests also and so the messages forwarded by CHs in
Scp are the largest. For the HCP, the coordination requests for different clusters and rollback requests
forwarded by CHs are lesser, and so the messages forwarded by CHs are less than ACP. As R increases,
the ACFM of the three protocols all reduce. Hereinto, the ACFM of HCP is least when R is less than
1. This is because the kinds of requests related to processes in different clusters increase when R

0
200
400
600
800

1000
1200
1400
1600
1800

5 10 15 20

A
A

M

F(%)

HCP

SCP
ACP

0

500

1000

1500

2000

2500

3000

0.25 0.5 1 2 4

A
A

M

R

HCP

SCP
ACP

Figure 14. Impact of F on AAM.

Sensors 2017, 17, 2166 25 of 29

Sensors 2017, 17, 2166 24 of 28

8.2.5. Experiment 5 Test of AAM

In order to test the AAM, this experiment compares the effect of change created by F and R
respectively. The performance results of this experiment are described in Figures 14 and 15. It can be
seen from Figure 14 that the additional messages increase along with the increment of F. This is
because the larger the F is, the more additional messages related to rollbacks exist, but only the AAM
of SCP shows a downtrend as R augments. The reason is that the processes which participate in the
coordination decrease with the reduction of number of DMs when R increases, but for the HCP and
ACP, the increment of R causes the dependence relations among checkpoints of processes to become
tighter and so the additional messages created by the rollbacks of failure processes augment. In
general, the AAM of SCP is greatly larger than the one of HCP and ACP. This is because the SCP has
the global rollback despite the global coordination, but for the HCP, though there are additional
messages caused by coordination and rollback together, the coordination and rollback are limited in
the same cluster. Hence, the additional messages of HCP are less than S for CP. For the ACP, its
additional messages are the least because there is no coordination in ACP.

Figure 14. Impact of F on AAM.

Figure 15. Impact of R on AAM.

8.2.6. Experiment 6 Test of ACFM

Figures 16 and 17 express the change of ACFM for the three protocols under different F and R.
It can be seen that the enlargement of F causes the increment of ACFM in the three protocols. Hereinto,
the change extents of HCP and ACP are lesser. This is because the rollback requests forwarded by
CHs increase when F augments. For the HCP and ACP, the rollback requests forwarded by CHs are
lesser, and so is the effect of F. In the Scp, each rollback requires all processes to partake and so the
messages forwarded by CHs become major and take up a high proportion of the total messages. Then
it causes the change extent of messages forwarded by CHs being larger when R varies. What is more,
the CHs in SCP will forward the coordination requests also and so the messages forwarded by CHs in
Scp are the largest. For the HCP, the coordination requests for different clusters and rollback requests
forwarded by CHs are lesser, and so the messages forwarded by CHs are less than ACP. As R increases,
the ACFM of the three protocols all reduce. Hereinto, the ACFM of HCP is least when R is less than
1. This is because the kinds of requests related to processes in different clusters increase when R

0
200
400
600
800

1000
1200
1400
1600
1800

5 10 15 20

A
A

M

F(%)

HCP

SCP
ACP

0

500

1000

1500

2000

2500

3000

0.25 0.5 1 2 4
A

A
M

R

HCP

SCP
ACP

Figure 15. Impact of R on AAM.

8.2.6. Experiment 6 Test of ACFM

Figures 16 and 17 express the change of ACFM for the three protocols under different F and R. It
can be seen that the enlargement of F causes the increment of ACFM in the three protocols. Hereinto,
the change extents of HCP and ACP are lesser. This is because the rollback requests forwarded by CHs

increase when F augments. For the HCP and ACP, the rollback requests forwarded by CHs are lesser,
and so is the effect of F. In the Scp, each rollback requires all processes to partake and so the messages
forwarded by CHs become major and take up a high proportion of the total messages. Then it causes
the change extent of messages forwarded by CHs being larger when R varies. What is more, the CHs in
SCP will forward the coordination requests also and so the messages forwarded by CHs in Scp are the
largest. For the HCP, the coordination requests for different clusters and rollback requests forwarded
by CHs are lesser, and so the messages forwarded by CHs are less than ACP. As R increases, the ACFM
of the three protocols all reduce. Hereinto, the ACFM of HCP is least when R is less than 1. This is
because the kinds of requests related to processes in different clusters increase when R augments. So
the messages forwarded by CHs reduce. For the SCP, the related coordination processes in different
clusters decreases with the increment of R when R is larger than 1, and so the coordination requests
forwarded by CHs reduce obviously. In the HCP, though the coordination and rollback requests for
different clusters decrease with the increment of R, there are a certain amount of elimination notices of
DCs. Hence, the reduction extent of HCP is less than the one of SCP.

Sensors 2017, 17, 2166 25 of 28

augments. So the messages forwarded by CHs reduce. For the SCP, the related coordination processes
in different clusters decreases with the increment of R when R is larger than 1, and so the coordination
requests forwarded by CHs reduce obviously. In the HCP, though the coordination and rollback
requests for different clusters decrease with the increment of R, there are a certain amount of
elimination notices of DCs. Hence, the reduction extent of HCP is less than the one of SCP.

Figure 16. Impact of F on ACFM.

Figure 17. Impact of R on ACFM.

In short, because each process in SCP just stores one checkpoint, so the occupation of storage
space is lesser. There is no cascade rollback in SCP, thus the recovery time is short, but in order to
assure the checkpoints coordination of all processes, the processes in SCP need to exchange a lot of
coordination information and so the additional messages are major.

In the ACP, because the checkpoints of processes are not synchronous, so the checkpoint time is
just the time needed to store the state of the process and the additional messages just include bits of
additional messages caused by rollback. However, the storage space of ACP is larger because of the
storing of many checkpoints. What is more, the recovery time is longer, because there are cascade
rollbacks among checkpoints of processes.

For the proposed hybrid protocol HCP, the time to transmit and receive the kinds of
coordination information is less than the one of SCP, because the coordination of checkpoints is
limited to the processes in same cluster. Hence, the checkpoint time of HCP is greatly shorter than
the one of SCP. In addition, the coordination and rollback of HCP do not affect the other clusters
marginally and so the retransmission overhead of CHs is lesser. Though the additional messages of
HCP are a little higher than the ones of ACP because of coordination, the recovery time of HCP is
shorter for bits of constraints from different clusters and cascade rollbacks.

9. Conclusions and Next Work

Mobile ad hoc networks are an important part of modern communication networks, but the
existing checkpointing algorithms could not be applied to this network environment very well
because it has the features such as less of support of fixed network, multi-hops routing, changeable
topological structure, bad stability and high failure probability.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

5 10 15 20

A
C

F
M

F(%)

HCP SCP ACP

0

500

1000

1500

2000

2500

3000

0.25 0.5 1 2 4

A
C

F
M

R

HCP

SCP
ACP

Figure 16. Impact of F on ACFM.

In short, because each process in SCP just stores one checkpoint, so the occupation of storage
space is lesser. There is no cascade rollback in SCP, thus the recovery time is short, but in order to
assure the checkpoints coordination of all processes, the processes in SCP need to exchange a lot of
coordination information and so the additional messages are major.

In the ACP, because the checkpoints of processes are not synchronous, so the checkpoint time
is just the time needed to store the state of the process and the additional messages just include bits
of additional messages caused by rollback. However, the storage space of ACP is larger because of

Sensors 2017, 17, 2166 26 of 29

the storing of many checkpoints. What is more, the recovery time is longer, because there are cascade
rollbacks among checkpoints of processes.

Sensors 2017, 17, 2166 25 of 28

augments. So the messages forwarded by CHs reduce. For the SCP, the related coordination processes
in different clusters decreases with the increment of R when R is larger than 1, and so the coordination
requests forwarded by CHs reduce obviously. In the HCP, though the coordination and rollback
requests for different clusters decrease with the increment of R, there are a certain amount of
elimination notices of DCs. Hence, the reduction extent of HCP is less than the one of SCP.

Figure 16. Impact of F on ACFM.

Figure 17. Impact of R on ACFM.

In short, because each process in SCP just stores one checkpoint, so the occupation of storage
space is lesser. There is no cascade rollback in SCP, thus the recovery time is short, but in order to
assure the checkpoints coordination of all processes, the processes in SCP need to exchange a lot of
coordination information and so the additional messages are major.

In the ACP, because the checkpoints of processes are not synchronous, so the checkpoint time is
just the time needed to store the state of the process and the additional messages just include bits of
additional messages caused by rollback. However, the storage space of ACP is larger because of the
storing of many checkpoints. What is more, the recovery time is longer, because there are cascade
rollbacks among checkpoints of processes.

For the proposed hybrid protocol HCP, the time to transmit and receive the kinds of
coordination information is less than the one of SCP, because the coordination of checkpoints is
limited to the processes in same cluster. Hence, the checkpoint time of HCP is greatly shorter than
the one of SCP. In addition, the coordination and rollback of HCP do not affect the other clusters
marginally and so the retransmission overhead of CHs is lesser. Though the additional messages of
HCP are a little higher than the ones of ACP because of coordination, the recovery time of HCP is
shorter for bits of constraints from different clusters and cascade rollbacks.

9. Conclusions and Next Work

Mobile ad hoc networks are an important part of modern communication networks, but the
existing checkpointing algorithms could not be applied to this network environment very well
because it has the features such as less of support of fixed network, multi-hops routing, changeable
topological structure, bad stability and high failure probability.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

5 10 15 20

A
C

F
M

F(%)

HCP SCP ACP

0

500

1000

1500

2000

2500

3000

0.25 0.5 1 2 4

A
C

F
M

R

HCP

SCP
ACP

Figure 17. Impact of R on ACFM.

For the proposed hybrid protocol HCP, the time to transmit and receive the kinds of coordination
information is less than the one of SCP, because the coordination of checkpoints is limited to the
processes in same cluster. Hence, the checkpoint time of HCP is greatly shorter than the one of SCP.
In addition, the coordination and rollback of HCP do not affect the other clusters marginally and
so the retransmission overhead of CHs is lesser. Though the additional messages of HCP are a little
higher than the ones of ACP because of coordination, the recovery time of HCP is shorter for bits of
constraints from different clusters and cascade rollbacks.

9. Conclusions and Next Work

Mobile ad hoc networks are an important part of modern communication networks, but the
existing checkpointing algorithms could not be applied to this network environment very well because
it has the features such as less of support of fixed network, multi-hops routing, changeable topological
structure, bad stability and high failure probability.

In the distributed system, the performance indexes for measuring checkpoints mainly include the
number of communication messages, storage overhead, recovery overhead and time for checkpointing
coordination, so it can choose between coordinated or uncoordinated checkpointing according to
the characteristics of application environment. However, there is no support for fixed networks
and the kinds of resources are very limited in mobile ad hoc networks. For example, the wireless
bandwidth is lower and the CPU capability is weak in mobile ad hoc networks, so the checkpointing
technologies for this kind of network cannot only consider any index alone, and a trade off method
which takes kinds of performance indexes (such as checkpoint time, rollback recovery time, storage
space and number of additional messages) into account synthetically should be designed. Therefore,
this paper designs a hybrid checkpointing model and algorithm which combines the synchronization
with asynchronization technology. This hybrid checkpointing algorithm not only avoids the major
cascade rollback among MHs in the same cluster and too much message transmissions among the
MHs in different clusters, but also reduces communication delay. What is more, this hybrid model has
little dependence on CHs, so it has good flexibility.

Compared to the pure synchronous and asynchronous checkpointing strategy, this paper does
plenty of performance tests for the hybrid checkpointing strategy. The results show that the hybrid
checkpointing strategy is a good trade off method between the synchronous and asynchronous
checkpointing strategy. What is more, it has shorter recovery time compared with the two methods.

Our next work is to analyze the multicast communication protocols and kinds of routing protocols
and then design a new checkpointing algorithm which is suitable to the multicast environment and
adapts to the different routing protocols. To do so, the fault tolerance and reliability of ad hoc networks
will be further improved.

Sensors 2017, 17, 2166 27 of 29

Acknowledgments: This work is supported by The Fundamental Research Funds for the Central Universities
(Grant No. YWF-14-YQGD-007) and The National Natural Science Fund (NSFC-61473022). The authors extend
their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding
this research work through ISPP# 0033.

Author Contributions: For this article with several authors, N.N.X. developed the idea to use mode splitting for
angular-rate sensing. L.Z.Z. and W.Z. constructed the measurement model, carried out the simulations, and wrote
the manuscript. A.V.V. and M.I. helped with the analysis of the rate equations.

Conflicts of Interest: All authors declare no conflict of interest.

References

1. Zhou, Z.; Wu, Q.J.; Huang, F.; Sun, X. Fast and accurate near-duplicate image elimination for visual sensor
networks. Int. J. Distrib. Sens. Netw. 2017, 13. [CrossRef]

2. Zhang, Y.; Sun, X.; Wang, B. Efficient Algorithm for K-Barrier Coverage Based on Integer Linear Programming.
China Commun. 2016, 13, 16–23. [CrossRef]

3. Chandy, K.M.; Lamport, L. Distributed snapshots: Determining global state of distrubuted systems.
ACM Trans. Comput. Syst. 1985, 3, 63–75. [CrossRef]

4. Shen, J.; Chang, S.; Shen, J.; Liu, Q.; Sun, X. A lightweight multi-layer authentication protocol for wireless
body area networks. Future Gener. Comput. Syst. 2016. [CrossRef]

5. Soni, S.K.; Aseri, T.C. A Review of Current Multicast Routing Protocol of Mobile Ad Hoc Network.
In Proceedings of the Second International Conference on Computer Modeling and Simulation, Sanya,
China, 22–24 January 2010; pp. 207–211.

6. Wang, B.; Gu, X.; Ma, L.; Yan, S. Temperature Error Correction based on BP Neural Network in Meteorological
WSN. Int. J. Sens. Netw. 2017, 23, 265–278. [CrossRef]

7. Praveen, P.K. A min-process checkpointing protocol for deterministic mobile Ad hoc networks. Int. J. Eng.
Sci. Technol. 2011, 3, 6923–6930.

8. Sun, Y.; Gu, F. Compressive sensing of piezoelectric sensor response signal for phased array structural health
monitoring. Int. J. Sens. Netw. 2017, 23, 258–264. [CrossRef]

9. Elnozahy, E.N.; Johnson, D.B.; Zwaenepoel, W. The performance of consistent checkpointing. In Proceedings
of the 11th Symposium on Reliable Distributed Systems, Houston, TX, USA, 5–7 October 1992; pp. 39–47.

10. Xiong, N.; Vasilakos, A.V.; Yang, L.T.; Song, L.; Pan, Y.; Kannan, R.; Li, Y. Comparative analysis of quality of
service and memory usage for adaptive failure detectors in healthcare systems. IEEE J. Sel. Areas Commun.
2009, 27, 495–509. [CrossRef]

11. Tamir, Y.; Sequin, C.H. Error recovery in multi-computers using global checkpoints. In Proceedings of the
13th International Conference on Parallel Processing, Bellaire, MI, USA, 13–15 March 1984; pp. 32–41.

12. Koo, R.; Toueg, S. Checkpointing and rollback recovery for distributed systems. IEEE Trans. Softw. Eng. 1987,
SE-13, 23–31. [CrossRef]

13. Strom, R.E.; Yemini, S. Optimistic recovery in distributed systems. ACM Trans. Comput. Syst. 1985, 3, 204–226.
[CrossRef]

14. Bhargava, B.; Lian, S.R. Independent checkpointing and concurrent rollback for recovery in distributed
systems—An optimistic approach. In Proceedings of the 17th IEEE Symposium on Reliable Distributed
Systems, Columbus, OH, USA, 10–12 October 1988; pp. 3–12.

15. Wang, Y.; Fuchs, W.K. Lazy checkpoint coordination for bounding rollback propagation. In Proceedings of
the 12th Symposium on Reliable Distributed Systems, Princeton, NJ, USA, 17–19 October 1983; pp. 78–85.

16. Baldoni, R.; Hélary, J.; Mostefaoui, A.; Raynal, M. A communication-induced checkpointing protocol
that ensures rollback-dependency trackability. In Proceedings of the International Symposium on
Fault-Tolerant-Computing Systems, Seattle, WA, USA, 24–27 June 1997; pp. 68–77.

17. Hélary, J.M.; Mostefaoui, A.; Raynal, M. Communication-induced determination of consistent snapshots.
IEEE Trans. Parallel Distrib. Syst. 1999, 10, 865–877. [CrossRef]

18. Xiong, N.; Vasilakosb, A.V.; Yang, L.T.; Wang, C.; Kannane, R.; Chang, C.; Pan, Y. A novel self-tuning feedback
controller for active queue management supporting TCP flows. Inf. Sci. 2010, 180, 2249–2263. [CrossRef]

http://dx.doi.org/10.1177/1550147717694172
http://dx.doi.org/10.1109/CC.2016.7489970
http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1016/j.future.2016.11.033
http://dx.doi.org/10.1504/IJSNET.2017.083532
http://dx.doi.org/10.1504/IJSNET.2017.083531
http://dx.doi.org/10.1109/JSAC.2009.090512
http://dx.doi.org/10.1109/TSE.1987.232562
http://dx.doi.org/10.1145/3959.3962
http://dx.doi.org/10.1109/71.798312
http://dx.doi.org/10.1016/j.ins.2009.12.001

Sensors 2017, 17, 2166 28 of 29

19. Ssu, K.F.; Yao, B.; Fuchs, W.K.; Neves, N.F. Adaptive checkpointing with storage management for mobile
environments. IEEE Trans. Reliab. 1999, 48, 315–324.

20. Cao, J.; Chan, G.H.; Dillon, T.S.; Jia, W. Checkpointing and rollback of wide-area distributed applications
using mobile agents. In Proceedings of the 15th International Parallel and Distributed Processing Symposium,
San Francisco, CA, USA, 23–27 April 2001; pp. 1–6.

21. Chowdhury, C.; Neogy, S. Checkpointing using mobile agents for mobile computing system. Int. J. Recent
Trends Eng. 2009, 1, 26–29.

22. Xiong, N.; Jia, X.; Yang, L.T.; Vasilakos, A.V.; Li, Y.; Pan, Y. A distributed efficient flow control scheme for
multirate multicast networks. IEEE Trans. Parallel Distrib. Syst. 2010, 21, 1254–1266. [CrossRef]

23. George, S.E.; Chen, I. Movement based checkpointing and logging for failure recovery of database
applications in mobile environments. Distrib. Parallel Databases 2008, 23, 189–205. [CrossRef]

24. Cao, G.; Singhal, M. Mutable checkpoints: A new checkpointing approach for mobile computing systems.
IEEE Trans. Parallel Distrib. Syst. 2001, 12, 157–172.

25. Zhou, J.; Lu, Z.; Lu, J.; Huang, S. A Channel Assignment Scheme for Location Service in Multi-Channel
Mobile Ad Hoc Networks. In Proceeding of the 5th International Conference on Ubiquitous Information
Technologies and Applications, Sanya, China, 16–18 December 2010; pp. 1–6.

26. George, S.M.; Zhou, W.; Chenji, H.; Won, M.; Lee, Y.; Pazarloglou, A.; Stoleru, R.; Barooah, P. DistressNet:
A wireless ad hoc and sensor network architecture for situation management in disaster response.
IEEE Commun. Mag. 2010, 48, 126–138. [CrossRef]

27. Brahmi, N.; Boukhatem, L.; Boukhatem, N.; Boussedjra, M.; Nuy, N.D.; Labiod, H.; Mouzna, J. End-to-end
routing through a hybrid ad hoc architecture for V2V and V2I communications. In Proceeding of the
Med-Hoc-Net, Juan Les Pins, France, 23–25 June 2010; pp. 1–6.

28. Du, K.; Chang, Y.; Li, B. DSR-Based Cross-Layer QoS Design in Ad Hoc Networks. In Proceeding of
the International Conference on Communications and Intelligence Information Security, Nanning, China,
13–14 October 2010; pp. 224–227.

29. Yahata, H.; Yamamoto, K.; Yamamoto, M. A study on performance improvement of ad hoc multicast by
directional antenna. In Proceedings of the 15th Asia-Pacific conference on Communications, Shanghai,
China, 8–10 October 2009; pp. 808–811.

30. Liang, W.; Brent, R.; Xu, Y.; Wang, Q. Minimum-energy all-to-all multicasting in wireless ad hoc networks.
IEEE Trans. Wirel. Commun. 2009, 8, 5490–5499. [CrossRef]

31. Visu, P.; Chembian, W.T.; Koteeswaran, S. Security in multicast mobile ad hoc networks. In Proceedings of
the First International Coference on Advanced Computing, Chennai, India, 13–15 December 2009; pp. 38–44.

32. Tuli, R.; Kumar, P. Asynchronous checkpointing and optimistic message logging for mobile Ad hoc networks.
Int. J. Adv. Comput. Sci. Appl. 2011, 2, 70–76. [CrossRef]

33. Men, C.; Xu, Z.; Li, X. An efficient checkpointing and rollback recovery scheme for cluster-based
multi-channel Ad-hoc wireless networks. In Proceedings of the International Symposium on Parallel
and Distributed Processing with Applications, Sydney, Australia, 10–12 December 2008; pp. 371–378.

34. Saluja, K.; Kumar, P. A non-blocking checkpointing algorithm for non-deterministic mobile Ad hoc networks.
Int. J. Comput. Organ. Trends 2011, 1, 13–20.

35. Qin, S. Scale-free topology structure in ad hoc networks. In Proceedings of the 11th International Conference
on Communication Technology, Hangzhou, China, 10–12 November 2008; pp. 21–24.

36. Zeng, Y.; Sreenan, C.J.; Xiong, N.; Yang, L.T.; Park, J.H. Connectivity and coverage maintenance in wireless
sensor networks. J. Supercomput. 2010, 52, 23–46. [CrossRef]

37. He, R.; Xiong, N.; Yang, L.T.; Park, J.P. Using multi-modal semantic association rules to fuse keywords and
visual features automatically for web image retrieval. Inf. Fusion 2011, 12, 223–230. [CrossRef]

38. Tan, L.; Zhu, Z.; Ge, F.; Xiong, N. Utility maximization resource allocation in wireless networks: Methods
and algorithms. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 1018–1034.

39. Wan, Z.; Xiong, N.; Ghani, N.; Vasilakos, A.V.; Zhou, L. Adaptive unequal protection for wireless video
transmission over IEEE 802.11 e networks. Multimed. Tools Appl. 2014, 72, 541–571. [CrossRef]

http://dx.doi.org/10.1109/TPDS.2010.29
http://dx.doi.org/10.1007/s10619-008-7026-3
http://dx.doi.org/10.1109/MCOM.2010.5434384
http://dx.doi.org/10.1109/TWC.2009.070602
http://dx.doi.org/10.14569/IJACSA.2011.021011
http://dx.doi.org/10.1007/s11227-009-0268-7
http://dx.doi.org/10.1016/j.inffus.2010.02.001
http://dx.doi.org/10.1007/s11042-013-1378-z

Sensors 2017, 17, 2166 29 of 29

40. Xiong, N.; Han, W.; Vandenberg, A. Green cloud computing schemes based on networks: A survey.
IET Commun. 2012, 6, 3294–3300. [CrossRef]

41. Guo, W.; Xiong, N.; Vasilakos, A.V.; Chen, G.; Yu, C. Distributed k–connected fault–tolerant topology control
algorithms with PSO in future autonomic sensor systems. Int. J. Sens. Netw. 2012, 12, 53–62. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-com.2011.0293
http://dx.doi.org/10.1504/IJSNET.2012.047720
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	DesignAndAnalysisCopyright
	Federation University ResearchOnline
	https://researchonline.federation.edu.au

	sensors-17-02166-v2
	Introduction
	Research Motive
	Related Works
	Work and Organization of This Paper

	Ad Hoc Network Structure and Hybrid Checkpointing Model
	Mobile Ad Hoc Network Topological Structure
	Hybrid Checkpointing Model
	Problem of Hybrid Checkpointing Model to Be Solved

	Correctness Criteria for a Hybrid Checkpointing Model
	Checkpoint Taking Criteria
	Checkpoint Rollback Criteria
	Checkpoint Indelibility Criteria

	Checkpoint Triggering Occasions
	Strategies for Checkpoint Elimination
	Checkpoint Dependence Graph
	Intra-Cluster Checkpoint Dependence Graph
	Inter-Cluster Checkpoint Dependence Graph

	Rules and Strategies of Checkpiont Elimination
	Elimination of SC
	Elimination of DC

	Checkpointing and Recovery Algorithms
	Algorithm for Checkpoints in the Same Cluster
	Algorithm for Checkpoints in Different Clusters
	Algorithm for Failure Recovery

	Processing of Handoffs
	Process States and Treatment
	The Process Stays in the Rollback State
	The Process Stays the Checkpoint State

	Update of Checkpoint Dependence Relation
	Update of Checkpoints Dependence Relation in Old Cluster
	Update of Checkpoints Dependence Relation in New Cluster

	Performance Test and Analysis
	Experiment Environment and Parameters
	Experiment Results and Analysis
	Experiment 1 Selection of K
	Experiment 2 Test of ACT
	Experiment 3 Test of ART
	Experiment 4 Test of ASS
	Experiment 5 Test of AAM
	Experiment 6 Test of ACFM

	Conclusions and Next Work

