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ABSTRACT

The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.
Smaller or fine fragments cause the loss of ore during loading and transportation, whereas large or
coarser fragments need to be further processed, which enhances production cost. Therefore, accurate
prediction of rock fragmentation is crucial in blasting operations. Mean fragment size (MFS) is a crucial
index that measures the goodness of blasting designs. Over the past decades, various models have been
proposed to evaluate and predict blasting fragmentation. Among these models, artificial intelligence (Al)-
based models are becoming more popular due to their outstanding prediction results for multi-
influential factors. In this study, support vector regression (SVR) techniques are adopted as the basic
prediction tools, and five types of optimization algorithms, i.e. grid search (GS), grey wolf optimization
(GWO), particle swarm optimization (PSO), genetic algorithm (GA) and salp swarm algorithm (SSA), are
implemented to improve the prediction performance and optimize the hyper-parameters. The prediction
model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system
based on Al techniques. Among all the models, the GWO-v-SVR-based model shows the best compre-
hensive performance in predicting MFS in blasting operation. Three types of mathematical indices, i.e.
mean square error (MSE), coefficient of determination (R?) and variance accounted for (VAF), are utilized
for evaluating the performance of different prediction models. The R?>, MSE and VAF values for the
training set are 0.8355, 0.00138 and 80.98, respectively, whereas 0.8353, 0.00348 and 82.41, respectively
for the testing set. Finally, sensitivity analysis is performed to understand the influence of input pa-
rameters on MFS. It shows that the most sensitive factor in blasting MFS is the uniaxial compressive
strength.
© 2021 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

Blasting is widely used in many engineering operations
including mining engineering, civil engineering and tunneling
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(Sanchidrian et al., 2007; Wang et al., 20183, b; Hu et al., 2020; Zhou
et al., 20204, 2021a). The primary purpose of the blasting operation
is fragmentation and displacement of rock mass in mining engi-
neering. Although significant developments have been achieved in
explosive technology, only 20%—30% explosive energy is used for
the actual fragmentation and displacement of rock mass
(Khandelwal and Monjezi, 2013; Ebrahimi et al., 2016), and the rest
of the energy is dissipated in the ground or air and produces various
hazardous effects, such as backbreak (Monjezi et al., 2012; Esmaeili
et al., 2014), ground vibration (Zhou et al, 2020b), flyrock
(Armaghani et al., 2014), and air blast. In mining operations, a blast
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Table 1

Previous work about blast fragmentation prediction using Al techniques.
Source Technique Input Output Number of datasets Performance
Monjezi et al. (2009) FIS B, S, ST, SD, PF, HL, p, MC Fragmentation (%) 415 R? =096
Monjezi et al. (2010a) BPNN BS, D, ST, TC, PF, NR, MH, PI, TR Fragmentation (cm) 132 R? = 0.985, RMSE = 0.995
Monjezi et al. (2010b) ANN D, HL, BS, ST, N, PF, p, MC Fragmentation (%) 250 R?>=10.98
Kulatilake et al. (2010) BPNN S.B, HL/B, B/D, ST|B, PF, Xg, E Xm 91 R? = 0.941, RMSE = 0.009
Bahrami et al. (2011) BPNN D, HL, B, S, PF, SMR, BI, SD, ST, MC Fragmentation (%) 220 R? = 0.97, RMSE = 0.56
Kulatilake et al. (2012) ANN S.B, HL/B, BID, ST|B, PF, Xg, E Xm 109 R?>=0.94
Shi et al. (2012) SVM S.B, H/B, B|D, ST|B, PF, E, Xg Xm 102 R? = 0.962, RMSE = 0.006
Sayadi et al. (2013) ANN B,S,HL,SD, q Fragmentation (m) 103 R?>=10.85
Enayatollahi et al. (2014) ANN HL, PF, SD, BS, S.B, WD, ST, MC, NR, RQD, T, B Fragmentation (m) 70 R?> =098
Monjezi et al. (2014) ANN B, S, PF, NR, D, MC, ST, H X20 135 R? = 0.92, RMSE = 1.47
Monjezi et al. (2014) ANN B, S, PF, NR, D, MC, ST, H Xso 135 R? = 0.941, RMSE = 1.945
Monjezi et al. (2014) ANN B, S, PF, NR, D, MC, ST, H Xs0 135 R? = 0.95, RMSE = 1.104
Esmaeili et al. (2015) SVM DR, q, ST, D, BI, S.B Fragmentation (cm) 80 R? =083
Esmaeili et al. (2015) ANFIS DR, q, ST, D, BI, S.B Fragmentation (cm) 80 R? =0.89
Shams et al. (2015) FIS B, S, D, Sch, DJ, PF, ST Xs0 185 R? = 0.922, RMSE = 2.423
Ebrahimi et al. (2016) BPNN B, S, ST, HL, PF Fragmentation (cm) 34 R? = 0.78, RMSE = 2.76
Ghaeini et al. (2017) Ml UCS, P, RQD, JS, p, q, B, ST, S/D, JPO Xso 36 R? = 0.81, RMSE = 10.71
Asl et al. (2018) ANN B, S, HL, SD, ST, MC, PF, GSI Xs0 200 R? = 0.94, RMSE = 0.1
Dimitraki et al. (2019) ANN BI, PF, QB Xs0 100 R>=108
Hasanipanah et al. (2018) PSO-ANFIS B, S, ST, q, MC Xso 72 R? = 0.89, RMSE = 1.31
Hasanipanah et al. (2018) SVM B, S, ST, g, MC Xs0 72 R? = 0.83, RMSE = 1.66
Hasanipanah et al. (2018) ANFIS B, S, ST, q, MC Xso 72 R?> = 0.81, RMSE = 1.78
Gao et al. (2018) GPR B, S, ST, PF, MC Xs0 72 R? = 0.948
Gao et al. (2018) SVM B, S, ST, PF, MC Xs0 72 R?>=0.83
Gao et al. (2018) ANFIS B, S, ST, PF, MC Xs0 72 R? =081
Gao et al. (2018) PSO-ANFIS B, S, ST, PF, MC Xs0 72 R?=10.89
Sayevand et al. (2018) ICA MC, B, S, ST, PF, RMR Xso 80 R? = 0.947, RMSE = 1.23
Mojtahedi et al. (2019) FFA-ANFIS B, S, ST, PF, MC Xs0 72 R? =098
Huang et al. (2020) CSO q, B, RMR, MC, ST, S Xs0 75 R? = 0.985, RMSE = 0.847
Fang et al. (2021) FFA-BGAM PF, MC, S, ST, B, H X100 136 R? = 0.98, RMSE = 1.213
Zhang et al. (2020) ACO-BRT PF, MC, S, ST, B, H X100 136 R? = 0.962, RMSE = 1.64
Zhou et al. (2021c) FFA-ANFIS B, S, ST, PF, MC, RMR Xs0 88 R? = 0.981, RMSE = 1.249
Zhou et al. (2021¢) GA-ANFIS B, S, ST, PF, MC, RMR Xs0 88 R? = 0.989, RMSE = 0.974

Note: BPNN - Back propagation neural network; MI - Mutual information; CSO - Cat swarm optimization; BGAM - Boosted generalized additive model; ACO - Ant colony
optimization; BRT - Boosted regression tree; GA - Genetic algorithm; HL - Hole depth (m); S - Spacing (m); B - Burden (m); ST - Stemming (m); PF - Powder factor (kg/m?); SD -
Specific drilling (m/m?); MC - Charge per delay (kg/ms); D - Hole diameter (mm); p - Rock density (t/m?); BS - Ratio of burden to spacing; NR - Number of rows; BI - Blastability
index; TC - Total charge per delay (kg/ms); MH - Maximum holes per delay; PI - Point load index (MPa); TR - Delay between rows (ms); SMR - Slope mass rating; E - Elastic
modulus (GPa); Bs - Bench slope (°); WD - Water depth (m); RQD - Rock quality designation (%); T - tensile strength (MPa); q - Specific charge (kg/m?); DR - Ratio of total delays
per number of rows; S.B — Ratio of spacing to burden; UCS - Uniaxial compressive strength (MPa); P - Joint persistency (m); DJ - Density of joint; JS - Joint spacing (m); S/D -
Ratio of borehole spacing to diameter; JPO - Joint plane orientation; H - Bench height (m); GSI - Geological strength index; QB - Quantity of blasted rock pile (t); Sch - Schmidt
hammer rebound number; Xg - In situ block size (m); RMR - Rock mass rating; X, - Mean particle size (cm); Xo0 - 20% passing size (cm); Xgo - 80% passing size (cm); X100 - 100%

passing size (cm); Xso - 50% passing size (cm).

pattern must be designed with due care to obtain optimum frag-
ment size. Fragment size plays a crucial role in subsequent crushing
and grinding operations. It is well-known that there is a tradeoff
between fragment size and economic benefit. Large fragments need
secondary blasting to reduce boulder size; however, finer frag-
ments will increase the cost of mining due to higher explosive
charge. Therefore, controlling and predicting the blast fragment
size is important in mining operations.

A number of researchers have proposed and developed various
empirical models to predict and estimate the blasting fragment size
(e.g. Koulli and Rustan, 1993; Aler et al., 1996a,b; Zhang and Jin,
1996; Chung and Katsabanis, 2000; Hamdi et al., 2002; Thornton
et al,, 2002; Esen et al., 2003; Moser, 2003; Ouchterlony, 2003;
Spathis, 2004; Cunningham, 2005; Gheibie et al., 2009). These
empirical models were created based on plenty of blast engineering
cases, blasting mechanisms and mathematical statistics. For
instance, Kuznetsov (1973) proposed a prediction function of mean
fragment size (MFS), where rock mass and explosive properties
were used as the main factors. Bergmann et al. (1973) developed a
classical model named BRW model, in which a few new factors such
as the velocity of detonation and the peak pressure in the gauge
hole with filled water were associated. Later on, based on the
research from Holmberg (1974) and Larsson (1974), a function of
MFS in terms of the specific charge, explosive strength and spacing

to burden ratio was proposed. Inspired by the BRW model, Aler and
Du Mouza (19964, b), Hamdi et al. (2002) and Ouchterlony (2003)
drew up an equation, so that the BRW model can be utilized
easily. Chung and Katsabanis (2000) created 80% passing size and
MFS prediction equations based on rock mass factors and blasting
design parameters. Gheibie et al. (2009) modified the Kuz Ram
model and proposed a uniformity index method. Table Al in
Appendix A illustrates a detailed description of various empirical
equations and the relative work of various researchers. These
studies provide a valuable significance for future work, as they in-
tegrated different blast design parameters and rock mass parame-
ters to analyze the relationship of various influential factors with
blast fragmentation.

Blast fragmentation is influenced by numbers of blast design
parameters. It is difficult to propose a fitting equation considering
all the influential factors simultaneously. In such complex circum-
stances, artificial intelligence (Al)-based methods, which can
develop a complicated relationship among various input and
output variables, attract the attention of scholars worldwide. Over
the past few decades, Al-based methods have brought satisfactory
prediction results in mining engineering and various geo-
engineering fields (Hajihassani et al., 2015; Gordan et al., 2016;
Zhou et al., 2016, 2019b; Moayedi and Armaghani, 2018; Armaghani
et al, 2019; Sarir et al., 2019; Zhang et al., 2020b, 2021a). For
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instance, Shi et al. (2012) applied a support vector machine (SVM)
to assessing rock fragment distribution and compared their pre-
diction abilities with artificial neural network (ANN), multivariate
regression analysis (MVRA) and Kuznetsov methods. Gao et al.
(2018) used Gaussian process regression (GPR) with five kernel
functions to propose various rock fragmentation prediction models.
The GPR model performance was evaluated by the coefficient of
determination (R?) and also compared with other Al-based models.
It was found that the GPR-squared exponential model showed the
best prediction performance. Monjezi et al. (2009) applied a fuzzy
inference system (FIS) to predicting rock fragmentation and
compared their results with regression analysis. They found that
FIS-based models performed much better than the regression
models. Hasanipanah et al. (2018) explored the feasibility of par-
ticle swarm optimization-adaptive network-based FIS (PSO-ANFIS)
technique to estimate rock fragmentation and compared the pre-
diction capability of PSO-ANFIS model with SVM, ANFIS and
nonlinear multiple regression (MR) models. They found that the
PSO-ANFIS model outperformed other models and its prediction
capability was assessed with R? and root mean square error (RMSE).
Asl et al. (2018) adopted ANN and firefly algorithm (FFA) as pre-
diction tools to optimize the flyrock distance and rock fragment
distribution and found that the obtained models can offer favorable
evaluation results for flyrock and fragment size evaluation. More
pertinent work about blast fragmentation prediction using Al
methods is tabulated in Table 1.

A remarkable outcome could be achieved by implementing
these models; however, there are still some shortcomings that need
to be addressed. For instance, the selection of hyper-parameters is
not determined by standard methods and probably ignores more
effective hyper-parameters (Dimitraki et al, 2019). In the past
studies, cross-validation was not implemented and thus the pre-
diction accuracy may not be scientific (Ebrahimi et al., 2016). Apart
from that, a limited number of influential parameters were taken
into consideration in the past studies to develop the blast frag-
mentation prediction models. From the literature review, it can be
found that various significant factors were ignored and thus the
prediction models failed to provide convincing results.

Input parameters

p 1, Blast design
‘ Training sets } ! parameters
L)

-

[(E@ ][ BD ]}

In this study, 76 groups of blasting fragmentation datasets are
collected from Sharma and Rai (2017) to predict blasting fragment
size. Here, support vector regression (SVR) models including e-SVR
and v-SVR are utilized as the main prediction tools combined with
five optimization algorithms, i.e. GA, PSO, grey wolf optimization
(GWO), salp swarm algorithm (SSA) and grid search (GS) method.
Meanwhile, cross-validations are employed to examine the pre-
diction capability of different models. Three mathematical indices,
i.e. R?, mean square error (MSE) and variance accounted for (VAF),
are used to assess the prediction performance. Finally, the sensi-
tivity analysis is implemented to understand the sensitivity of each
input parameter on blasting MFS. A general working framework of
this study is demonstrated in Fig. 1.

2. Data description

In this study, a total of 76 groups of blasting datasets are utilized.
The datasets involve 19 influential factors and one output param-
eter (MFS (m)). These influential factors are categorized into three
groups, i.e. blast design parameters, explosive parameters and rock
mass parameters. Compared with the past research, more influ-
ential parameters are used for developing prediction models. The
blast design parameters are blast hole diameter (D) (m), average
bench height (H) (m), average sub-grade drilling (J) (m), average
spacing (S) (m), average burden (B) (m), average stemming (ST) (m),
average length (L) (m), average width (Wd) (m), S/B ratio (S.B), ST/B
ratio (ST.B), stiffness ratio (H.B), J/B ratio (J.B), B/D ratio (B.D), length/
width ratio (L.Wd), and number of holes (NH), whereas explosive
parameters are total explosive amount (Qe) (t), linear explosive
density (De) (kg/m) and powder factor (PF) (kg/m?). The rock mass
parameter is reflected by the UCS (MPa).

General data distribution of each of the parameters is shown in
Fig. 2 based on the violin plot. A violin plot consists of a boxplot and
a density plot, where a black spot is a median value. The black box
represents the range from the lower quartile to the upper quartile.
The black line indicates the 95% confidence interval. The outer
shape of the box represents the density estimation of the data. The
original datasets are divided into two parts at a ratio of 4:1. The 80%

[ e e | |
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Fig. 1. A framework of SVR-based model for blasting fragment size evaluation.
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datasets are used to establish the training networks (Esmaeili et al.,
2015). The remaining 20% of the datasets are not used in the model
development but are employed to test the prediction performance
of the network.

3. SVR and optimal algorithms

There are numbers of factors that influence MFS in blast oper-
ation. When the number of influential parameters is too high, the
conventional empirical equations hardly provide a good prediction
of MFS. Therefore, in this study, an SVR tool is applied to predicting
the MFS.

3.1. V-SVR and e-SVR

SVM is a powerful machine learning technique developed by
Vapnik (2013) to tackle classification problems based on mathe-
matical statistics. SVM can solve regression problems by intro-
ducing the e-insensitive loss function (Cherkassky and Ma, 2004;
Shawe-Taylor and Cristianini, 2004). For the SVR, it can be
described as follows.

Suppose that a group of datasets are represented by {(x1,y1), (Xq,
Ya),---,(Xaa,Yaa) }» where a represents the number of training data,
AA denotes the total number of training data, xe RN represents that
the dimension of input variables is N, and ye R! indicates an output.
If the SVR is used for handling nonlinear regression problems, then
it can be written as

B B.D D
101 om0 | 36
5 344 0.304
8 321 0.28 1
301 0.26
7- | 28 | |
B B.D D
H.B J JB
— — 0.4
44 31 0.3
34 21 0.2 ﬁ
2- 14 0.1
B — 0- T 001+ &=
H.B J JB
MFS NH
8_;- 150 250 -
64 2.25 4
0.54 100 4 2.08.
0.44 50 1.75
Dt 150+
. -1 T
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S.B ST
13T | 12- 1.24
1.24 104 104
111 o 0.8
1.0 | G | 06

w1

w
w
6]
puk

fX) =[w-0)]+b (1)

where w is the weight coefficient, € is the coefficient used for
transforming the nonlinear problem into a linear problem, and b is
the model error.

The v-SVR is another branch of SVM (Scholkopf et al., 2000;
Chang and Lin, 2002; Thomas et al., 2017). For the v-SVR, there is
one important parameter, i.e. v with the range of (0, 1]. This
parameter is used for balancing the number of support vectors and
model errors. The primary task of v-SVR is as follows:

} (2)

m1n{2||w| +C

ve+— Z §a+5a

subject to

[@-0(Xq) +b] —ya <e+&q
Ya— [0-0(xq) +b] <e+£, 3)
£i.6.>0,a =12 AA >0

where ||w/|| is the norm of w, £, and EZ represent two positive slack
variables used for controlling the distance between the actual
values and boundary values, and C is a regularization parameter
used for balancing the model errors and model flatness. The
e-insensitive loss function is used for determining if the value of -
0(x,) is located in the range of y + ¢, then the calculation loss can be
ignored.
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Fig. 2. Data distribution of all parameters used for developing prediction models.
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While in the e-SVR (Chang and Lin, 2002), the aforementioned
formulation is written as follows and subject to Eq. (3):

m1n{2|w|| +C Z Ea+Ey) (4)

Given the difficulty of selecting ¢, Scholkopf et al. (1999) pro-
posed a new parameter v which can control training errors by
controlling the number of support vectors. Therefore, the dual
formulations for v-SVR can be described as follows:

min B(a —o"YTHK(a — ") + yT(a — a*)]
EVia—a") = 0, EVi(a+a") <Cv (5)

C
0< <— a=12--AA
aﬂ? 0{ AA’ )&y )
where @ and a” are the Lagrangian multipliers, HK = 0" (xa)0(xp) is
the kernel, EV represents all the vectors, and «, and az are the
corresponding Lagrangian multipliers of the a-th training data.
While in the e-SVR, this formulation is written as

min %(a —o")VTHK(a — ") +y"(a — &) + cEVT (0 + &)
EVia—a) =0
0<u« a <C a=12,--AA
as AA, - » & )
(6)
Then, the regression function can be approximately described as
M .
fx) = (g~ )8 (Xa)0(x) +b (7)
a=1

In this study, the radial basis function (RBF) kernel is employed
and written as

k(xq,Xp) = exp( — gammal||xq — xb||2> (8)

where gamma defines the bandwidth of the RBE.

There are two parameters needed to be selected to control the
model performance in the RBF kernel function, i.e. penalty factor Ct
and RBF kernel deviation g. The penalty factor Ct is used to balance
the model complexity and biasness. A higher Ct would probably
bring better model fitting while being easier to get stuck into “over-
fitting”. A smaller Ct would decrease the model complexity but also
weaken the model performance. The RBF kernel deviation g implies
the space distribution of mapped data. Generally, larger g needs
fewer support vectors, while smaller g would require more support
vectors. The number of support vectors determines the speed of the
model development. Two typical data redistributions by hyper-
plane in SVR are demonstrated in Figs. 3 and 4. More details about
SVR theory and its implementation can be found in other available
literature (Drucker et al., 1997; Smola and Schélkopf, 2004; Awad
and Khanna, 2015).

Manual selection of Ct and g costs a long time and thus it is not
realistic to obtain the best parameters. Therefore, in this study,
optimal algorithms are utilized to opt and optimize these two
crucial parameters. Currently, many meta-heuristic algorithms,
such as moth flame optimization (Zhou et al., 2021d), equilibrium
optimizer algorithm (Yu et al.,, 2021a), Bayesian optimization al-
gorithm (Zhou et al., 2021e) and whale optimization algorithm (Qiu
etal,, 2021), have been widely used to obtain satisfactory outcomes.

* Input space * Feature space
* * Hyperplane
* * * \
*x % *
* *x X
* * * Support
vectors

Redistribution by hyperplane

Fig. 3. Data redistribution by hyperplane in two-dimensional space.

B - Hyperplane
e ek \ e ***\/
* K INE ***
* ¥ X *** "
* N

Redistribution by
hyperplane

Fig. 4. Data redistribution by hyperplane in three-dimensional space.

In the current study, five types of optimization algorithms, i.e. GS,
GA, PSO, SSA and GWO, are chosen to conduct parametric optimi-
zation. They are combined with SVR techniques and used to
develop different prediction models.

3.2. PSO

PSO is a powerful method for solving optimization problems
among many evolutionary search methods, prompted by simu-
lating fish schools and bird schools (Eberhart and Kennedy, 1995).
In PSO, a herd of birds represents a group of particles, and a food
source represents a functional purpose. By sharing and trans-
mitting information about the distance between the bird herds and
the food source, the location of the food source can be determined
by bird schools. This cooperation allows the entire herd of birds to
select the best information about the location of the food source
and eventually gather around the food. By implementing these
steps, the best food source can be found. In PSO, the particle
numbers are initialized by PSO and each particle possesses the
same probability of being selected as a candidate solution for the
defined problem. In the next step, two crucial properties of each
particle need to be determined carefully, i.e. updated speed (V) and
iterative position (X) (Poli et al., 2007). The goodness of each par-
ticle is appraised by the fitness function and the positions of par-
ticle swarms are updated based on the evaluation results of the
fitness function. By iterations, particle swarms reach the best po-
sition according to the pre-defined target function by users.

Some important parameters in PSO are updated as follows, by
which the new position and velocity can be determined:

vl — oyt +C rand(A)(Pbest

— XY) + czrand(B) (Gpest — X¥)
Xprl _ Xt + Vf+]

9)

where t represents the current iteration number; rand(A) and
rand(B) signify the random number in the range of (0, 1); Ppest and



E. Li et al. / Journal of Rock Mechanics and Geotechnical Engineering 13 (2021) 1380—1397 1385

/
N = Move towards the
g = — / optimal solution /
<
8 S - / e \/ o
S 8 / A
£28 — — | / N =P,
g a2 / ol e
g g B — =
E g _—
gl / /
= —
Evaluate fitness function — Update Pbest and Gbest particle —* Update position and velocity
Stopping criterion satisfied
. . No
‘ Optimal solution Vs
Particle Output the optimal parameters
Fig. 5. A general process of PSO.
P
S

w
Selected

Initialization
A
w)

Y
Mating

el ] |

CB

r
Eliminated

Q m m O o w »

{
{

o=
v L
Mutation

{ Mating and mutation ‘

Output results

Fig. 6. A general process of GA.

Gpest denote the best position of the single-particle and the whole
particle swarm, respectively; c¢; and c; are the constants which
control the acceleration of particles (Zhou et al., 2013); and w de-
notes an inertia weight which determines the balance between
global optimization and local optimization (Shi and Eberhart, 1998;
Poli et al., 2007). Generally, the value of w decreases with the
iteration. It can be determined as follows:

max _ wmin

max

=w (10)

" Tterationmax

where @™ js the maximum inertia weight, @™ is the minimum
inertia weight, and Iterationmax is the maximum iteration.

In SVR, the objective of the PSO is to optimize two important
hyper-parameters Ct and g. By updating the velocity and position of
the whole particle swarm, the particle swarm will eventually

achieve global optimization. The general process of PSO optimiza-
tion can be interpreted in Fig. 5.

33. GA

GA was first proposed and developed by Holland (1992).
Inspired by Darwin’s theory of evolution (Zhou et al., 2021b), GA
reckons that the strongest individual has more opportunities to
reproduce, while undesirable individuals cannot obtain the right to
spawn.

In GA, each chromosome is encoded as a candidate solution for a
re-defined problem. GA can conduct global optimizations and by
implementing the adaptive search process, a better optimal solu-
tion replaces the former one, as like other meta-heuristic algo-
rithms. Generally, there are three steps in GA, i.e. chromosome
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initialization, ranking and selecting, and mating and mutation
(David, 1991).

In the beginning, GA randomly produces some chromosomes
(individuals) and these individuals constitute a swarm. This step is
so-called chromosome initialization. Next, the re-defined function
judges the fitness of these individuals and gives corresponding
scores. The individual with higher fitness will have the qualification
to reproduce, while undesirable individuals will be eliminated. At
the mating and mutation stage, those desirable chromosomes will
change their genes to generate new chromosomes. Sometimes the
mutation will occur to bring some fresh genes to join the repro-
duction process. The mutation probably is good for reproduction or
may not, but it can prevent local convergence. By iteration, the
evolutionary process tends to move to the best optimal solution.
General working architecture of GA is shown in Fig. 6.

3.4. SSA

Like the above two mentioned algorithms, SSA belongs to a
group of swarm intelligence-based optimization algorithms
(Mirjalili et al., 2017; Faris et al., 2020). It was inspired by the
hunting and navigation behaviors of salp swarms. A salp is a kind of
marine mollusk with a similar appearance to a jellyfish. They move
and hunt together by connecting like social animals. In the salp
chains, there is a leader salp and a host of follower salps. The leader
moves towards the direction of the food source and leads the
movement of followers. This behavior can be regarded as global
optimization and the followers explore the food in the local space.
This behavior can be regarded as a local optimization. With the
cooperation of leader salp and follower salps, falling into local
optimum can be largely reduced.

In SSA, there are mainly three steps to optimize the hyper-
parameters, i.e. salp swarm initialization, update of leader, and
update of followers. In the initialization process, the number and
position of salp swarm will be defined. In addition, the best food
source (the fitness function) will be determined according to the
user requirement. In the next step, the optimization process starts

in the search domain and this search domain can be represented by
a matrix named S;:

1

s108 Sp
2 2 2
S S e S
Si= |71 2 on (11)
m m m
S] 52 ce Sn

In this search space, the leader salp will go into action at first so
that it can provide the guide for follower salps. The update equation
of the position of leader salp is written as

(C>0.5)

1 {fj + Rc[(gb] — hb])RB + hb]] =03
< U.

U = \fi — Re[(gb; — hb;)Rg + hb;] (12)
where gbj and hb; denote the searching upper and lower boundaries
in the j-dimension, respectively; f; represents the location of food in
the j-dimension; and Rp and R¢ indicate two random parameters
with the value of [0, 1]. The parameter Rz determines the length of
salp movement, and it can control the direction of movement. The
parameter R¢ plays a significant role in controlling the exploration
and exploitation. It can be explained as follows:

Delta

* Prey , sentinels,
B Omega and

Fig. 8. A diagrammatic sketch of GWO.
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Re=2 exp[— (4kg/1<g)2] (13)

where k; represents the current iteration and K, represents the
total iteration number. From Eq. (13), it can be found that with the
increase in iteration, parameter A will decrease.

For salp followers, they move under the guidance of a salp
leader. The new location of salp followers obeys the following
equation:

uf = % (u]‘ + u}‘l) (14)

The aforementioned steps will be operated recursively before
the optimization reaches the stopping criterion. The optimal pro-
cess of SSA is shown in Fig. 7.

3.5. GWO

GWO is a kind of novel swarm-based algorithm introduced by
Mirjalili et al. (2014). GWO forms a strict hierarchy structure
inspired by the hunting and social behavior of wolves, where
different wolves play different roles in a grey wolf group. Every wolf
is dominated by the harsh social order. Basically, there are four
types of wolves involving:

(1) The alpha wolf (o) may not be the strongest wolf but it plays
the manager role in a whole wolf herd. It is responsible for
commanding and all other wolves would submit the order
from the alpha wolf.

(2) The beta wolves () mainly assist the alpha wolves to make
decisions and provide advice. They make the action around
the alpha wolves and the command from the alpha wolf
would be transmitted from the beta wolves to the delta
wolves and omega wolves.

Table 2
Parameter configurations of four meta-heuristic algorithms.
Meta-heuristic algorithm Parameter Value
GWO a Decreasing linearly from 2 to 0
Ub 100
Lb 0.01
PSO (1 2
Cy 2
kp 0.6
wVv 1.2
wP 1
GA ggap 0.9
SSA Ub 100
Lb 0.01

Note: Ub - Upper boundary; Lb - Lower boundary; c;, ¢, - Acceleration constant;
ggap - Probabilities of crossover and mutation; k, - Parameter determining the
relationship between particle velocity and movement; wV - Elastic coefficient in the
velocity update formula; wP - Elastic coefficient in population update formula.

(3) The delta wolves (8) would implement more trivial work like
guarding, hunting and caretaking. They obey the order of the
alpha wolves and beta wolves.

(4) The omega wolves (w) are the lowest level of a wolf herd.
They have to submit to all other wolves. However, they are
still important because without them the wolf herd would
have internal problems such as cannibalism.

In the implementation of GWO, the wolf herd updates its dis-
tribution and location according to the evaluation results of po-
tential prey coordinates. The wolves make corresponding decisions
and approach the prey step by step by iterations. Basically, the
social behavior of grey wolves can be divided into three stages:
social hierarchy, encircling and hunting:

(1) At the first stage, the hierarchy structure would be estab-
lished. The grey wolves with the best fitness in the swarm
would be labelled as “alpha”, “beta”, “delta” in order. While
the rest wolves are regarded as “omega” wolves. During the
iteration process, evolution would be directed by the afore-
mentioned three wolves.

(2) The second stage is encircling prey. At this stage, wolves
approach and encircle prey and this process can be formu-

lated as

— - = —

D =|C-Xpt)—X(t) (15)
X(t+1)=Xp(t)—A-D (16)
A=20-T,-7 (17)
C =27, (18)

where 7[)(’:) and Y(t) represent the positions of the prey and
grey wolf under the t-th iteration, respectively; D impicates
the distance vector between the grey wolf and prey; A and
C are the coefficient vectors; and 7’1 and T 5 are the random
vectors in the range of [0, 1] Wthh control the swarm update.
During the lteratlon process, @ is a variable that can control
the change of A and it decreases linearly from 2 to 0 with the
increase in iteration.

(3) Hunting stage. We assume that in each iteration, three
wolves with the best fitness would be retained, i.e. “alpha”,
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Fig. 11. Optimization performance with different swarm sizes: (a) PSO-e-SVR and (b) PSO-v-SVR.

“beta” and “delta” wolves. These three wolves have the best
ability to recognize the position of prey and the other wolves
would update their positions. This behavior can be shown as

follows:

— - = — — =

Dy = C1-Xa(t)—X‘, X1 = Xo(t)—A1-Da (19)
— - = —| = — - =

Ds= cz-xﬂ(t)—x‘, Xy = Xg(t)— Ay Dy (20)
b, = | Xa(f)—X’, X3 = X;t) - A3 Dy (1)

The best prey position can be procured by calculating the
average of the prey position for “alpha”, “beta” and “delta” wolves
as follows:

X(t+1) :% X1(t) + Xo(t) + X3(0) (22)

For global optimization, the “alpha”, “beta” and “delta” wolves
collect the food information respectively and transmit the food

Table 3
Performance and scores of different swarm sizes of PSO-e-SVR.
Swarm  Performance and score Final
size Training set Testing set score
R? MSE VAF  R? MSE VAF
60 0.8442 0.00512 80.41 0.8116 0.01388 7948 19
(3) (3) (3) (2) (5) (3)
70 0.8267 0.00583 77.63 0.8175 0.01625 75.79 14
2) (2) (2) (4) (2) (2)
80 0.8931 0.00299 88.38 0.8331 0.01413 81.13 29
(5) (5) (5) (5) (4) (5)
90 0.8713 0.00367 85.81 0.7999 0.01413 79.99 21
(4) (4) (4) (1) (4) (4)
100 0.8202 0.00609 76.64 0.8121 0.0169 7479 8
(1) (1) (1) (3) (1) (1)

Note: The value in the round brackets represents the corresponding score.

information to the whole wolf herd. By employing |A| > 1, the wolf
individual can conduct a global search. As aforementioned, C is a
random vector with the value of [0, 2] which can avoid local opti-
mization. A general diagrammatic sketch of GWO is shown in Fig. 8.

3.6. GS optimization

The GS is a kind of classical parametric optimization method and
has been proved to be effective to optimize the model (Zhou et al.,
2012). The main idea of this method is to test all combinations of
the given parameters and find the most suitable one according to
the fitness function. While implementing the GS, the search range
and step need to be determined. A general process of GS optimi-
zation is demonstrated in Fig. 9.

4. Principal component analysis and cross-validation

A principal component analysis (PCA) is used for extracting and
recognizing the significant information from a group of multidi-
mensional variables (Cadima and Jolliffe, 1995; Croux and
Haesbroeck, 2000; Higuchi and Eguchi, 2004). By matrix trans-
formation, original data are mapped into a new dimension. The
data with large dimensions are presented with fewer dimensions.
However, data information is discarded by such operations. The
original data are compressed and good for calculation. By

Table 4
Performance and scores of different swarm sizes of PSO-v-SVR.
Swarm  Performance and score Final
size . . score
Training set Testing set
R? MSE VAF  R? MSE VAF
60 0.8743 0.00362 85.99 0.8313 0.01313 8235 24
(5) (5) (5) (2) (3) (4)
70 0.8353 0.00517 80.22 0.8404 0.0137 8039 12
(2) (1) (1) (5) (2) (1)
80 0.8726 0.00365 85.86 0.8073 0.01415 80.64 16
(4) (4) (4) (1 (M (2)
90 0.8417 0.00482 81.56 0.8335 0.01283 82.07 19
(3) (3) (3) (3) (4) (3)
100 0.831 0.00509 80.48 0.8386 0.01233 82.64 19
(1) (2) (2) (4) (5) (5)
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Table 5
Performance and scores of different swarm sizes of GA-e-SVR.
Swarm  Performance and score Final
size Training set Testing set score
R? MSE VAF  R? MSE VAF
60 0.8461 0.00501 80.86 0.8159 0.01495 77.87 24
(4) (4) (4) (4) (4) (4)
70 0.8449 0.00506 80.67 0.8144 0.01496 77.82 9
(1) (1) (1) (1) (3) 2)
80 0.8457 0.00502 80.81 0.8151 0.01498 77.81 12
(2) (3) (3) (2) (1 (M
90 0.8458 0.00502 80.81 0.8154 0.01496 77.83 18
(3) (3) (3) (3) (3) (3)
100 0.8474 0.00496 81.05 0.8174 0.01488 77.97 30
(5) (5) (5) (5) (5) (5)

implementing the PCA, 19 variables are transmitted into 7 new
variables and the overfitting problems can be improved.
Cross-validation is a useful method for assessing the model
robustness and generalization. It can avoid over-fitting and under-
fitting to some extent. In this study, the k-fold cross-validation
method is utilized (Kuhn and Johnson, 2013). Original training set
is equally separated into k sets. k—1 sets are treated as new training
sets and the remaining set is used for validation. This process is
operated for k times. The average accuracy of these k models is used
as the performance index of the regression model. As suggested by
Kohavi (1995), 10-fold or 5-fold cross-validation is recommended.
In this study, 5-fold cross-validation is utilized according to the
scale of the datasets. A general display of 5-fold cross-validation is
shown in Fig. 10. In this figure, P1, P2, P3, P4 and P5 represent the
prediction results of the corresponding fold, respectively.

5. Evaluation metrics

To control and compare the performance of proposed algo-
rithms, three mathematical evaluation metrics are adopted
(Hasanipanah et al., 2016; Mehrdanesh et al., 2018; Zhang et al.,
2020a, 2021a; Li et al, 2021b), i.e. R? (Eq. (23)), MSE (Eq. (24))
and VAF (Eq. (25)). Generally, R? and VAF values equal to 100 and
MSE values equal to zero indicate the best prediction performance.
For different optimization algorithms, they would output different
prediction results and thus these values can be used for deter-
mining the best optimization method. Meanwhile, for the

15 1 1 1 1
0 100 200 300 400 500
Number of iterations
Table 6
Performance and scores of different swarm sizes of GA-v-SVR.
Swarm  Performance and score Final
size . . score
Training set Testing set
R? MSE VAF  R? MSE VAF
60 0.8347 0.005 80.84 0.8363 0.01252 8241 21
(4) (4) (4) (2) (3) (4)
70 0.8377 0.00486 81.35 0.8323 0.01261 824 20
(5) (5) (5) (1) (1) (3)
80 0.8347 0.005 80.84 0.8368 0.0125 8244 23
(3) (4) (4) (3) (4) (5)
90 0.8325 0.0051 80.46 0.8391 0.01249 8236 14
(1) (1) (1) (4) (5) 2)
100 0.8329 0.00509 80.47 0.8398 0.01253 82.3 14
(2) () (2) (5) (2) (1)

synthetical assessment performance of these five algorithms, a
comprehensive evaluation system is employed (Zorlu et al., 2008).
In this system, the best prediction performance is endowed with a
higher score and inferior performance is given with a lower score.
By adding all scores, each model obtains cumulative scores and the
one with the highest scores is considered as the best.

2
R2_1_ >l Vi —y)

(23)
2
> (.Vi —Y§'>

1 M N2
MSE = M - 1 Vi —¥i) (24)

i=
— VAR(yl 7y:) o

VAF = [1 —W} x 100% (25)

where y;, y; and y} represent the original, predicted and mean
values of blast fragment size, respectively; and M represents the
total amount of data.

6. Discussion
To develop e-SVM and v-SVM-based MFS prediction models,

four types of meta-heuristic algorithms and GS method are tested
and ten models are established and compared. The
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Table 7
Performance and scores of different swarm sizes of SSA-e-SVR.
Swarm  Performance and score Final
size . X score
Training set Testing set
R? MSE VAF  R? MSE VAF
60 0.846 0.00139 80.84 0.8155 0.00416 77.8 17
(3) (5) (2) (2) (4) (1)
70 0.8461 0.00139 80.85 0.8157 0.00415 77.88 27
(4) (5) (3) (5) (5) (5)
80 0.8463 0.00139 80.90 0.8157 0.00415 77.88 30
(5) (5) (5) (5) (5) (5)
90 0.846 0.00139 80.86 0.8157 0.00415 77.85 25
3) (5) (4) (5) (5) (3)
100 0.8457 0.0014  80.8 0.8152 0.00416 77.84 13
(1 (4) (M (1) (4) (2)
Table 8
Performance and scores of different swarm sizes of SSA-v-SVR.
Swarm  Performance and score Final
size . X score
Training set Testing set
R? MSE VAF  R? MSE VAF
60 0.8332 0.00141 80.59 0.839 0.00346 8243 17
(M (M (1) (5) (5) (4)
70 0.8369 0.00137 81.09 0.8348 0.0035 8233 18
(5) (5) (5) (1) (1) (1)
80 0.8352 0.00138 80.9 0.8364 0.00348 8243 20
(4) (4) (4) (2) (2) (4)
90 0.8343 0.00139 80.76 0.8374 0.00347 8243 19
(2) (3) (2) (4) (4) (4)
100 0.8345 0.00139 80.81 0.8369 0.00347 8244 21

(3) (3) (3) (3) (4)

aforementioned 19 influential factors are utilized as the input
parameters and the MFS is used as the output parameter. In meta-
heuristic algorithms, many parameters influence the optimal ef-
fect. Among these parameters, the swarm size and the number of
iterations have significant impacts on optimization performance
(Koopialipoor et al., 2019; Li et al., 2021a; Yu et al., 2021c; Zhou
et al., 2021f). Therefore, in this study, these two parameters are
discussed and compared. Detailed parameter configurations are
listed in Table 2.

6.1. PSO-SVR optimization

To achieve the best performance of blasting MFS prediction,
several parameters including velocity equation, number of itera-
tions and swarm size, which have a significant influence on PSO, are
carefully selected. Among these parameters, the number of itera-
tions and swarm size bring a significant impact on optimization
performance. Generally, with the increase of iteration, the optimi-
zation performance tends towards stability but the calculation time
also increases. For judging the optimization performance, the MSE
value is used in this section.

During testing, when the number of iterations is 500, the pre-
diction performance is stable. Therefore, the number of iterations is
determined to be 500 and the swarm sizes equal to 60, 70, 80, 90
and 100 are tested to choose the best optimal parameters. As Fig. 11
depicts, the optimal process of each swarm size is different and
with the increase of iteration, MSE value decreases. Each model
obtains the lowest MSE value, when it reaches the end of
optimization.

To compare the prediction performance of different swarm
sizes, three evaluation performance metrics are referenced in this
study and each performance is given with a corresponding score
based on the comprehensive evaluation system (Zorlu et al., 2008).
In this grading system, better performance is assigned a higher
score and by adding all scores, each parameter configuration ob-
tains comprehensive scores. The one with the highest score is
regarded as the best parameter combination.

From Table 3, when the swarm size is equal to 80 for the PSO-e-
SVR, the established model obtains the best prediction perfor-
mance, where R?>, MSE and VAF values are 0.8931, 0.00299 and
88.38, respectively for the training sets, and 0.8331, 0.01413 and
81.13, respectively for the testing sets. In addition, when the swarm
size is 80, the evaluation performance is superior to the other
models except for the MSE of the testing sets.

For the PSO-v-SVR, when the swarm size is 60, the developed
model procures the best prediction performance, where R?, MSE
and VAF values are 0.8743, 0.00362 and 85.99, respectively for the
training sets, and 0.8313, 0.01313 and 82.35, respectively for the
testing sets. When the swarm size is 60, the prediction model
shows strong fitness abilities in training sets, while for the testing
sets, the model with the swarm size equal to 100 seems to have
stronger fitness abilities. Detailed results of the training and testing
sets can be found in Table 4. Then, the accumulation bar charts are
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Fig. 14. Optimization performance with different swarm sizes: (a) GWO-e-SVR and (b) GWO-v-SVR.

Table 9 Table 11
Performance and scores of different swarm sizes of GWO-e-SVR. Performance and scores of different grid steps of GS-e-SVR.
Swarm  Performance and score Final Grid Performance and score Final
size . - score step . - score
Training set Testing set Training set Testing set
R? MSE VAF  R? MSE VAF R? MSE VAF  R? MSE VAF
60 0.8457 0.0014 80.78 0.8151 0.00416 77.81 12 0.2 0.8464 0.00499 80.93 0.8154 0.01487 77.98 29
(2) (2) (2) (2) (3) (1) (4) (5) (5) (5) (5) (5)
70 0.8451 0.0014 80.71 0.8149 0.00415 77.84 13 04 0.8464 0.00499 80.93 0.8154 0.01487 77.98 29
(1) (2) (1) (1) (4) (4) (4) (5) (5) (5) (5) (5)
80 0.8462 0.00139 80.86 0.8153 0.00416 77.84 23 0.6 0.8464 0.00499 80.93 0.8154 0.01487 77.98 29
(4) (5) (4) (3) (3) (4) (4) (5) (5) (5) (5) (5)
90 0.8463 0.00139 80.89 0.8156 0.00414 77.9 29 0.8 0.7858 0.00754 7121 0.7151 0.02666 59.61 8
(5) (5) (5) (4) (5) (5) (1) (1) (1) (2) (2) (1)
100 0.8458 0.00139 80.82 0.8157 0.00416 77.83 21 1 0.8563  0.0051 80.54 0.7139 0.02685 60.16 13
(3) (5) (3) (5) (3) () (5) () () (1) (1) (2)
Table 10 Table 12
Performance and scores of different swarm sizes of GWO-v-SVR. Performance and scores of different grid steps of GS-v-SVR.
Swarm  Performance and score Final Grid Performance and score Final
size . - score step . - score
Training set Testing set Training set Testing set
R? MSE VAF  R? MSE VAF R? MSE VAF  R? MSE VAF
60 0.8326 0.00141 80.52 0.8392 0.00346 8243 18 0.2 0.8391 0.00502 80.78 0.8394 0.01335 81.03 19
(1) (1) (1) (5) (5) (5) (5) (4) (4) (2) (2) (2)
70 0.8348 0.00139 80.86 0.8365 0.00348 8242 20 0.4 0.8308 0.00523 79.95 0.8434 0.01286 81.67 18
(3) (4) (3) (3) (3) (4) (3) (3) (3) (3) (3) (3)
80 0.8337 0.0014 80.66 0.838 0.00347 8239 15 0.6 0.8214 0.00546 79.02 0.8461 0.01252 82.11 19
(2) (2) (2) (4) (4) (1) (2) (2) (2) (4) (5) (4)
90 0.8351 0.00139 80.87 0.8362 0.00348 8241 20 0.8 0.8347 0.00488 81.25 0.8298 0.01256 8249 24
(4) (4) (4) (2) (3) (3) (4) (5) (5) (M (4) (5)
100 0.8355 0.00138 80.98 0.8353 0.00348 8241 22 1 0.7989 0.00647 7498 0.8462 0.01744 75.1 10
(5) (5) (5) (1) (3) (3) (1) (1) (1) (5) (1) (1)

shown in Figs. A1 and A2 in Appendix A to help to interpret the
ranking results.

6.2. GA-SVR optimization

As mentioned earlier, GA can bring a positive effect on parameter
selection and optimization. Before implementation, the most effec-
tive GA parameters that are utilized to govern GA-SVR prediction
models should be opted. Similar to the development of PSO-SVR
models, the impacts of the number of iterations and swarm size

should be discussed. For the sake of comparison, the same number of
iterations and swarm size are employed in GA-SVR. The optimization
process of GA-e-SVR and GA-v-SVR can be found in Fig. 12. By
calculating the performance scores, it can be observed that when the
swarm size is equal to 100 for GA-e-SVR, the proposed model can
obtain the best prediction performance. At this time, R?, MSE and
VAF values are 0.8474, 0.00496 and 81.05, respectively for training
sets, and 0.8174, 0.01488 and 77.97, respectively for testing sets. From
Table 5, when the swarm size is equal to 100, all evaluation metrics
obtain the best performance. Therefore, for the GA-e-SVR, it can be



1392 E. Li et al. / Journal of Rock Mechanics and Geotechnical Engineering 13 (2021) 1380—1397

0 T .
log,(g) 10 10 log, (Ct)

Fig. 15. GS-e-SVR optimization curve with grid step equal to 0.4.
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Fig. 16. GS-v-SVR optimization curve with grid step equal to 0.8.

concluded that the model with a swarm size equal to 100 has the
best robustness in this study.

For the GA-v-SVR, when the swarm size is 80, the procured
model brings the best comprehensive prediction results, with R?,
MSE and VAF values of 0.8347, 0.005 and 80.84, respectively for the
training sets, and 0.8368, 0.0125 and 82.44, respectively for the
testing sets. From Table 6, although the model with swarm size
equal to 80 does not obtain prominent performance in each single

the other models. For the model with the swarm size equal to 70, it
produces a good prediction effect in training sets but fails to bring
desirable feedback in the testing sets. As for models with swarm
sizes equal to 90 and 100, they obtain superior scores in R? and MSE
in testing sets but show mediocre performance in the other metrics.
The intuitive scoring results of GA-e-SVR and GA-v-SVR are shown
in Figs. A3 and A4 in Appendix A, respectively.

6.3. SSA-SVR optimization

As a kind of novel swarm intelligence algorithm, SSA shows its
superiority and feasibility in various optimal problems. SSA is easy
to implement and adjust. For the sake of comparison, the same
hyper-parameter values are also employed in the SSA-based
models. The optimization process of SSA-based models with
different swarm sizes is shown in Fig. 13.

By comparing the model performance, it can be observed that
when the swarm size is equal to 80 for SSA-e-SVR, the proposed
model can obtain the best prediction performance according to
Table 7. For the SSA-e-SVR, R%, MSE and VAF values are 0.8463,
0.00139 and 80.9, respectively for the training sets, and 0.8157,
0.00415 and 77.88, respectively for the testing sets. From Table 7,
when the swarm size is equal to 80, the prediction model produces
excellent prediction performance and each evaluation metric gen-
erates the best feedback.

From Table 8, when the swarm size is 100, the proposed model
produces the best synthetical prediction results for the SSA-v-SVR
with R?, MSE and VAF values of 0.8345, 0.00139 and 80.81,
respectively for the training sets, and 0.8369, 0.00347 and 82.44,
respectively for the testing sets. Although the model with a swarm
size of 70 generates outstanding performance in training sets, it
does not work well for the testing sets. Therefore, its generalization
and robustness are poor under this situation. Finally, the intuitive
ranking results of SSA-e-SVR and SSA-v-SVR are depicted in Figs. A5
and A6 in Appendix A, respectively.

6.4. GWO-SVR optimization

The GWO is easy to interpret as a kind of effective optimization

evaluation metric, its comprehensive performance is better than strategy. In the GWO, three kinds of wolves control the
Table 13
Comparison of optimal algorithms of e-SVR.
Algorithm Swarm size (grid step) Performance and score Final score
Training set Testing set
R? MSE VAF R? MSE VAF
PSO-e-SVR 80 0.8931 (5) 0.00299 (3) 88.38 (5) 0.8331 (5) 0.01413 (3) 81.13 (5) 26
GA-e-SVR 100 0.8474 (4) 0.00496 (2) 81.05 (4) 0.8174 (4) 0.01488 (1) 77.97 (3) 18
SSA-e-SVR 80 0.8463 (2) 0.00139 (5) 80.9 (2) 0.8157 (3) 0.00415 (4) 77.88 (1) 17
GWO-e-SVR 90 0.8463 (2) 0.00139 (5) 80.89 (1) 0.8156 (2) 0.00414 (5) 779 (2) 17
GS-e-SVR 0.4 0.8464 (3) 0.00499 (1) 80.93 (3) 0.8154 (1) 0.01487 (2) 77.98 (4) 14
Table 14
Comparison of meta-heuristic algorithms of v-SVR.
Algorithm Swarm size (grid step) Performance and score Final score
Training set Testing set
R? MSE VAF R? MSE VAF
PSO-v-SVR 60 0.8743 (5) 0.00362 (3) 85.99 (5) 0.8313 (2) 0.01313 (1) 82.35 (1) 17
GA-v-SVR 80 0.8347 (3) 0.005 (1) 80.84 (2) 0.8368 (4) 0.0125 (3) 82.44 (4) 17
SSA-v-SVR 100 0.8345 (1) 0.00139 (4) 80.81 (1) 0.8369 (5) 0.00347 (5) 82.44 (4) 20
GWO-v-SVR 100 0.8355 (4) 0.00138 (5) 80.98 (3) 0.8353 (3) 0.00348 (4) 82.41(2) 21
GS-v-SVR 0.8 0.8347 (3) 0.00488 (2) 81.25 (4) 0.8298 (1) 0.01256 (2) 82.49 (5) 17
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Fig. 17. Predicted results using e-SVR-based models for (a) testing set and (b) training
set.

optimization process. Similarly, the number of iterations is set to be
500 and the swarm (wolf) sizes are set to be 60, 70, 80, 90 and 100,
respectively. From Fig. 14, it can be seen that GWO optimization has
a faster convergence velocity, which reflects its eminent optimi-
zation abilities. By comparing the model performance in Table 9, it
can be observed that when the swarm size is equal to 90 for GWO-
e-SVR, the proposed model can obtain the best prediction perfor-
mance. For the GWO-e-SVR, R?, MSE and VAF values are 0.8463,
0.00139 and 80.89, respectively for the training sets, and 0.8156,
0.00414 and 77.9, respectively for the testing sets. Although the R?
value in testing sets is a little bit inferior to the one with the swarm
size of 100, the model with the swarm size of 90 has the higher
comprehensive score in any other evaluation metrics.

For the GWO-v-SVR, the proposed model produces the best
comprehensive prediction feedback when the swarm size is 100, as
shown in Table 10, with R%, MSE and VAF values of 0.8355, 0.00138
and 80.98, respectively for the training sets, and 0.8353, 0.00348
and 82.41, respectively for the testing sets. It is worth noting that
although the model with swarm size equal to 100 has a superior
performance in training sets, it fails to procure similar performance
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Fig. 18. Predicted results using v-SVR-based models for (a) testing set and (b) training
set.

in testing sets. That is to say, the generalization of this model is
worthwhile to be improved and discussed in the future. Perhaps, by
changing and testing different swarm sizes and numbers of itera-
tions, it produces more persuasive scenarios. Similarly, the ranking
results of GWO-e-SVR and GWO-v-SVR are displayed in Figs. A7 and
A8 in Appendix A, respectively.

6.5. GS-SVR optimization

In the GS optimization, there are mainly two parameters that
need to be tuned, i.e. grid step and grid bound. In this study,
different grid bounds are changed and tested. It is found that grid
bound almost does not have any influence on the optimization
effect. Therefore, the search bound of Ct and g is set to (278, 28). In
the next step, five grid steps are tested, i.e. 0.2,0.4,0.6,0.8 and 1 in
the GS-e-SVR and GS-v-SVR models. From Table 11, the same grid
steps (equal to 0.2, 0.4 and 0.6) can produce the same prediction
performance. From Tables 11 and 12, it can also be said that finer
grids always do not bring better prediction performance. It is due
to the limitation of the GS method. It is almost impossible to
examine the performance of all nodes in specified grid bound,
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Fig. 19. Sensitivity analysis of different factors on blasting MFS.

unless the grid step is set to be ultra-small. Therefore, some more
effective parameter combinations perhaps are missed. As per
Figs. 15 and 16, one grid node represents one kind of parameter
combination and the longitudinal axis represents the corre-
sponding MSE value. With the grid color changes from yellow to
dark blue, a lower MSE value is obtained. When the grid step
equals 0.2, 0.4 and 0.6, the GS-e-SVR method would obtain the
best comprehensive performance, and for the GS-v-SVR method,
the most suitable grid step is 0.8.

6.6. Comparison of optimal algorithms

Based on the previous discussions, the model with the highest
comprehensive scores of each optimal algorithm is selected and
compared. The detailed data are listed in Table 13. Among the e-
SVR-based MFS prediction models, PSO-e-SVR obtains the best
comprehensive scores. In addition, PSO-e-SVR also obtains the best
performance in R?> and VAF. Only considering the performance
metric MSE, GWO-e-SVR outperforms the other algorithms for both
training and testing sets. SSA-e-SVR has prominent performance
with the metric MSE when being tested in training sets.

For the v-SVR-based MFS prediction, GWO-v-SVR procures the
best comprehensive scores in Table 14. However, SSA-v-SVR is also
competent because it has an excellent performance in the testing
sets which means this algorithm has strong generalization ability
based on the current data. Apart from that, the ability of PSO-v-SVR
is worthwhile to be declared because it obtains the best scores for
R? and VAF in the training set.

Finally, e-SVR and v-SVR-based models with the highest syn-
thetical scores are screened and compared. Given the aforemen-
tioned discussions, it can be observed that PSO-e-SVR and GWO-v-
SVR obtain the best scores and GWO-v-SVR shows better perfor-
mance in four metrics, i.e. MSE of the training set, R, MSE and VAF
of testing set. While PSO-e-SVR only outperforms in two metrics,
i.e. R? and VAF of the training set. The GWO-v-SVR model shows
superior performance in the testing set which proves that it has
better generalization and robustness capabilities. For Al-based
models, subtle advantages can be magnified for large-scale data.
Therefore, GWO-v-SVR can be regarded as the best method for
blasting MFS prediction in this study. Corresponding swarm size
and number of iterations are 100 and 500, respectively. Finally,
predicted MFS values along with their actual values are

demonstrated in Fig. 17 for e-SVR and v-SVR-based models,
respectively, and the results are demonstrated in Fig. 18.

7. Sensitivity analysis

For identifying and comparing the sensitivity of different
influential factors on blasting MFS, the cosine amplitude method
proposed by Yang and Zhang (1997) is utilized. Each input and
output are considered as a column matrix. Then total of 20 column
matrices are obtained as follows:
Xa = {Xq1,Xa2, "> Xan} (26)
where the length of each matrix is equal to the number of datasets
and then the sensitivity of different influential factors on blasting
MFS can be analyzed by (Yang and Zhang, 1997):

76
Zn:]xdnxbn

Sab:
76 2 76 2
VR k3 [0 2,

where x4, represents one kind of input variable; xp, represents the
output variable; and n represents the sequence number of the data,
and for each variable, total of 76 groups of data are evaluated.

By implementing the cosine amplitude method, the relative
strength of effects (RSE) of each variable can be evaluated. It is
found that the most sensitive factor is UCS for blasting MFS, as
shown in Fig. 19. This result is reasonable because when the violent
blasting shock wave occurs, the dynamic stress on the rock will also
increase sharply and the strength of the rock itself counteracts this
effect. Therefore, this indicates that UCS has a positive influence on
the fragment size. The significance of UCS on the fragment size has
also been reported in some previous researches (Bond, 1952; Lilly,
1986).

The sensitivity of each factor not less than 0.8 indicates that
selected factors indeed contribute to the blasting MFS. Finally, the
sensitivity of different parameters on blasting MFS based on
available data can be sorted in ascending order as: Qe, J, J.B, LWd, H,
L, ST, H.B, NH, De, STB, B, S, PF, B.D, Wd, D, S.B and UCS. It is noted that
different data would bring different results. However, current
analysis results could provide some references for blasting designs
with similar conditions.

(27)
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8. Limitation

By utilizing SVR as the predominant strategy to predict the
blasting MFS, satisfactory prediction accuracies are procured.
However, there are still some drawbacks and limitations that need
to be improved in future work. Firstly, the scale of data used to
establish the evaluation models is still small and only a several
dozens of samples are collected. It tends to be easy to mine more
useful information from larger datasets and thus the performance
of prediction models remains to be strengthened. Secondly, deeply
analyzing blasting mechanisms is significant for mining more
related factors of blasting MFS. Thirdly, more advanced meta-
heuristic algorithms (Yu et al., 2020, 2021b) are worthwhile to be
combined with SVR prediction models to improve the prediction
accuracy. Apart from that, the potential of some other powerful
regression tools such as random forest (Zhou et al., 2019a), extreme
gradient boosting (Ding et al., 2020; Zhang et al., 2021b), and
gradient boost machine (Zhou et al., 2019b; Zhang et al., 2020a) are
not investigated and compared in this study.

9. Conclusions

The blasting MFS prediction and evaluation are always influ-
enced by many factors and the relationship between these factors
and fragment size is elusive. Therefore, it is hard to be evaluated by
means of a certain function. Al-based techniques can simulate so-
phisticated relationships between influential factors and output
targets compared to the conventional functions. In this study, a
group of blasting fragment datasets which contain 19 types of
influential factors are adopted. To control and estimate the blasting
MES, two types of SVR-based techniques, i.e. v-SVR and e-SVR, are
employed. Then, five types of optimal algorithms are combined
with SVR to optimize the hyper-parameters. Three types of math-
ematical indices combined with a comprehensive ranking system
are utilized to evaluate the model performance. As a result, it is
found that GWO-v-SVR obtains the most comprehensive prediction
performance with R?, MSE and VAF values of 0.8355, 0.00138 and
80.98, respectively for the training set, and 0.8353, 0.00348 and
82.41, respectively for the testing set.

According to the sensitivity analysis results, the UCS plays the
most important role in influencing the blasting MFS. Compared
with other Al-based studies, this research takes more influential
factors into consideration. On the one hand, the prediction results
can provide significant guidance for complicated blasting design.
On the other hand, the feasibility of Al-based techniques is vali-
dated again in open-pit mining fields. Finally, this study offers a
more accurate prediction approach for multi-parameter coupling
blasting MFS evaluation compared with the original paper (Sharma
and Rai, 2017).
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