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Abstract

Users are usually not familiar with the content and structure of the data when they
explore the data source. However, to improve the exploration usability, they need some
primary hints about the data source. These hints should represent the overall picture
of the data source and include the trending issues that can be extracted from the query
log. In this paper, we propose a two-phase interactive exploratory search framework
for the clueless users that exploits the snippets for conducting the search on the XML
data. In the first phase, we present the primary snippets that are generated from the
keywords of the query log to start the exploration. To retrieve the primary snippets,
we develop an A* search-based technique on the keyword space of the query log. To
improve the performance of computations, we store the primary snippet computations
in an index data structure to reuse it for the next steps. In the second phase, we exploit
the co-occurring content of the snippets to generate more specific snippets with the user
interaction. To expedite the performance, we design two pruning techniques called inter-
snippet and intra-snippet pruning to stop unnecessary computations. Finally, we discuss
a termination condition that checks the cardinality of the snippets to stop the interactive
phase and present the final Top-l snippets to the user. Our experiments on real datasets
verify the efficiency of the proposed framework.
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Figure 1: A part of IMDB dataset

1. Introduction

Database systems are prevalent everywhere. Both experts and naive users inevitably
need to interact with these complex systems to meet their information needs. However, it
is very difficult for an ordinary user to explore a data source when s/he has no hint about
its content and its structure. To improve the usability of the complex data systems, we
argue that there should be an exploratory option to assist the clueless users in exploring
the data source instead of prohibiting them from using the systems.

To set the problem area clearly, assume a user who does not have any experience or
information about the movies, would like to search the internet movie database (IMDB),
which is modeled as XML data, via keywords. It would be almost impossible for a
clueless user to come up with appropriate keywords that could possibly retrieve some
meaningful and interesting results. To provide a user-friendly environment for such
users, the system could assist them by providing some hints (e.g., important keywords
to summarize the underlying data source and provide an overall picture) to explore the
database and initiate the search for them. These hints can be generated by consulting
the expert users’ experience, e.g., by analyzing the query log that stores previous queries.
The query log analysis can extract the keywords that are used recently by the experienced
users and can be considered as trending items for ensuring the recency of the exploration.
However, to explore some meaningful and interesting results for certain user, we cannot
solely use the extracted keywords of the query log, user feedback should also be reflected
in the system generated results. Thus, we advocate providing an interactive environment
for capturing user preferences that might be useful for personalizing the exploration in
addition to query log analysis.

1.1. Motivation

Consider a part of IMDB data as shown in Fig. 1. Assume we have extracted the
keyword pool K = {“drama”, “2012”, “animation”, “usa”, “english”} by analyzing the
query log. Then, by using K we can produce some result hints as follows: the movies that
their genre is “drama” and is produced in the year “2012”, the “animation” movies that
are produced in the “usa”, the tv-series that their genre is “drama” and their language
is “english”, and they are produced in the “usa” and so on. For each result hint, we can
present a summary called snippet [1] to the user for exploration. Suppose the clueless
user selects the snippets of the first two hints for exploration. Then according to the
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Table 1: Movies retrieved from IMDB using 2 combination from K={drama,animation,2012,usa}

k1 k3 #1 #2 #3 #4 #5 #6 ...

genre =
“drama”

year =
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lincoln lawless
man with
iron fist

etc.

k2 k4 #1 #2 #3 #4 #5 #6 ...

genre =
“animation”

country =
“usa”

toy
story

zootopia frozen moana shrek
despicable

me
...

k2 k4 #7 #8 #9 #10 #11 #12 ...

genre =
“animation”

country =
“usa”

minions tangled cars trolls madagascar aladdin etc.

IMDB data source, there is a list of movies for each of the selected snippets as shown
in Table 1. However, these snippets are general, and they contain an enormous number
of results; thus, it is difficult for the user to find some interesting results from these
snippets.

To navigate the exploration to the most interesting results, the system can gener-
ate more specific snippets by exploiting the co-occurring content of the snippets and
increases the size of the snippets to narrow down the exploration space in several iter-
ations. For instance, by adding the feature of movie actor “crowe” or the movie plot
“politics” to the first snippet, or the movie feature of actor “hanks” to the second
snippet, we can navigate the clueless user search to some interesting items. Finally,
for the above example, the system can generate the following subtree snippets from
the general primary snippets: r1 = {[0.0], {movie/gns/genre, “drama”}, {movie/year,
“2012”}, {movie/ats/actor, “crowe”}} by adding the feature actor “crowe” (this sub-
tree retrieves the “drama” movies that is produced in “2012” and “russell crowe” is
the actor of those movies such as “the man with iron fist” or “les miserables”), r2 =
{[0.2], {movie/gns/genre, “dr ama”}, {movie/year, “2012”}, {movie/ks/kwd, “politics”}
, } (this subtree result retrieves the “drama” movies that is produced in the year “2012”
and their plot keyword is about “politics” such as lincoln), and r3 = {[0.3], {movie
/gns/genre, “animation”}, {movie/cts/country, “usa”}, { movie/ats/actor, “hanks”}}
(this subtree retrieves the “an imation” movies that is produced in the “usa” and “tom
hanks” is the actor of those movies.

1.2. Our Work

Though, data exploration is studied extensively in the literature ([2], [3], [4], and [5]
for survey), there is barely any work that proposes a solution for exploring the XML
data. Kalinin, Cetintemel and Zdonik [3] employed semantic windows for the users to
set their favorite conditions and perform exploration queries. Qarabaqi and Riedewald
[2] proposed exploratory search using probability distribution over the entities attributes.
Therefore, the users are helped to specify right conditions on imprecise queries. Drosou
and Pitoura [5] presented a database exploration framework which recommends addi-
tional items called ‘You May Also Like’ results. However, most of these works focus on
relational databases. The XML keyword search is studied extensively in the last decade
([6], [7] for survey). Liu, Huang and Chen [1] exploit result snippets to improve the
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XML search results. However, there is no work in semi-structured data like XML that
tackles data exploration by interaction with the user. In this paper, we propose to use
subtree snippets to explore XML data where each subtree snippet summarizes a part
of the data source. However, these subtree snippets must be diverse enough to reflect
the overall picture of the data source. We propose a two-phase interactive framework to
navigate the exploration on the XML data via snippets. In the first phase, we exploit the
keywords of the query log to generate primary snippets. Then, in the second phase, we
process the user chosen snippets, terminate and present the Top-l snippets in this phase.

1.3. Challenges

There are some challenges for computing the exploratory subtree snippets in XML
data. Assume there are |K| unique keywords in the query log, Then, in the worst case
scenario, we can generate 2|K|− (|K|+ 1) subtree result snippets. Thus, it is impractical
to compute and present all of the subtree snippets to the clueless user in the first phase.
Hence, we propose to rank the subtree snippets based on their interest and novelty
w.r.t. the data source and only present the Top-ranked snippets. We design a novel A*
search-based technique to perform an informed search on the keywords for generating
the snippets efficiently. However, the primary snippets are not specific, and they contain
many results. Thus, in the interactive phase and in each iteration the user chooses
some snippets for processing and the system generates more specific snippets to navigate
the user in the exploration. To generate the more specific snippets, we exploit the co-
occurring content of the snippets and add more features from the co-occurring content
of the snippets in each iteration. Thus, the final subtree snippets should be generated by
considering all possible combination of the primary snippets content with the remaining
or co-occurring part that is not reflected in the snippet. Assume d is the maximum
number of features that could be added to the primary subtree snippet to generate
the ultimate subtree snippet, and |K̂| is the average number of keywords for each of d

features. Then, we can generate 2d × |K̂|d subtree snippets. Due to this combinatorial
explosion and with the fact that each snippet should be analyzed and ranked in terms
of its interest and novelty, we present two pruning techniques called inter-snippet and
intra-snippet pruning to efficiently avoid the unnecessary computations in the interactive
phase. Finally, we check a termination condition at each iteration, and if it satisfies the
condition, we stop the iterations and present the Top-l highly ranked subtree snippets
to the user.

1.4. Contribution

Our main contributions in this paper are as follows:

1. We are the first to formulate and design a framework for the interactive exploration
of XML data via subtree snippets for the scenario that the user is clueless.

2. We propose A* search-based technique to generate top snippets for the user as
primary hints to start the exploration. Moreover, we propose an indexing structure
to store the primary snippet computations and to reuse them for the next steps.

3. We propose two pruning techniques called inter-snippet and intra-snippet pruning
for the interaction phase to expedite the interactive snippet processing.
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Table 2: The list of symbols

Symbol Meaning

f A feature
F A set of features
H A max heap
k A query keyword
K Keyword pool
r A snippet
R A set of snippets
R1 A set of Top-w primary snippets (first iteration)
Ri A set of Top-w snippets (ith iteration)
R∗ A set of Top-l snippets
T XML data
vslca A subtree result root
V A set of root nodes
w Window size
IRF (f, T ) Inverse result frequency of feature f
λ(r, T,R1) The score of primary snippet r
λ(r, T,Ri) The score of snippet r
λint(r, T ) Interestingness score of snippet r
λnov(r,R) Novelty score of snippet r
λmin Threshold score

4. We conduct extensive experiments on two real datasets to verify the effectiveness
and efficiency of our proposed approach.

1.5. Organization

The rest of the paper is organized as follows: In Section 2, we discuss the preliminaries
and the problem. Section 3 presents the details of the primary snippet generation and
the A* search-based technique. In Section 4, we discuss the snippet processing, pruning
techniques and the cardinality stop condition for finalization of the snippets processing.
Section 5 presents the experiments. Section 6 presents the related work. Finally, Section
7 concludes the paper.

2. Background

2.1. Preliminaries

An XML document is a tree data structure T that contains some nodes with labels
and a designated root. For each node in the tree T , there is an index that is a unique
identifier called Dewey code, which consists the path from the root to the corresponding
node. In Fig. 1, the Dewey code 0.0 refers to a node in the tree that contains information
about the les miserables movie. A node mi in the tree T that contains keyword ki is
a match node for ki. E.g, from Fig.1 we can observe the match node of the keyword
ki = politics is mi = [0.2.3.0.0].
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Subtree Result. Given a set of keywords {k1, ..., kn}, a result rT = (vslca, {m1,m2, ...,mn})
is a subtree in T which contains all keywords ki, i ∈ [1− n]. Here we employ the estab-
lished SLCA semantics [7, 8]; thus, vslca is the smallest lowest common ancestor (SLCA)
of the match nodes mi,∀i ∈ [1−n]. However our solutions are independent of the search
semantics. Thus, it is possible to use other kinds of SLCA-based semantics [6, 9, 10] for
the search.
Subtree Result Features. Given a subtree result rT = (vslca, {m1,m2, ...,mn}),
each fi = {mi.type, “ki”}, i ∈ [1 − n] represents a feature for rT where mi.type is
the type of the match node mi with respect to subtree result structure and ki is the
associated keyword for mi. E.g., for rT = {[0.0], {[0.0.1.0.0], [0.0.2.0]}}, we have f1 =
{movie/gs/genre, “drama”}.

2.2. Problem Statement

One way to assist a clueless user in exploring the XML data is to analyze the data
source and to recommend her some primary result snippets to set her exploration pref-
erences. The primary snippets are generated by using trending keywords K from the
query log to incorporate the recent trending in the exploration process. To generate
the primary snippets, we combine the trending keywords of the query log issued by the
expert users to generate keyword queries. Then, we execute these queries against the
data source to compute the subtree results that contain the keywords. To find the high
trending and interesting keywords for the clueless user, we exploit the statistics of the
keywords in the query log such as the frequency of the keywords. Assume M is a set
of match nodes for a keyword k ∈ K w.r.t. the data source T . Then the XML result
snippet is defined as follows:

Definition 1. XML subtree snippet. An XML subtree snippet r = {V,V.type, f1, ..., fn}
is a set of subtree results that have the following common features: (a) V.type that is the
type of the root nodes of the subtrees, (b) {fi}, i ∈ [1, n] that is the type of the ith match
nodes for ki in the subtrees. The keyword ki, i ∈ [1 − n] is a leaf node in the subtree
results and V is the set of root nodes.

Fig. 2 presents the details on how we produce a primary snippet from XML document.
First, we generate a query from the keyword pool that is stored in the query log (as
discussed in Section 3.1). Then, we run SLCA keyword search algorithm on XML data
to produce the potential root nodes that contain all the query keywords within the XML
data. For instance, after processing the query q = {“animation”, “usa”}, we obtain the
following root nodes with their respected movie titles: [0.3] : “toystory”, [0.4] : “shrek”,
[0.6] : “coco”, [0.8] : “frozen”, [0.16] : “zootopia”, and so on. For presenting the primary
snippet, we extract the common features between these results which is highlighted in the
figure, i.e., f1 = {movie/gs/genre, “animation”} and f2 = {movie/cts/country, “usa”}.
In Fig. 2, the produced primary snippet represents a hint that contains 15000 movies
that their genre is “animation” and those movies are produced in the “usa”.

For example for the keyword pool K = {drama, 2012, usa} on IMDB data source, the
value “drama” refers to a movie genre, “2012” refers to a movie production year, and
“usa” refers to a movie production country. Therefore, we can generate 3 XML result
snippets with the size of 2 such as: r1 = {V : 4026,movie, {movie/gns/genre, “drama”},
{movie/year, “2012”}}, r2 = {V : 7452,movie, {movie/gns/genre, “drama”}, {movie/
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Figure 2: Primary snippet generation

cts/country, “usa”}}, r3 = {V : 5120,movie, {movie/year, “2012”}, {movie/cts/country,
“usa”}}. The result cardinality of the snippet is separated by a colon from V that is
the set of root nodes. We use the primary XML result snippets R1 = {r1, r2, ..., r|R|}
for the clueless user to set exploratory preferences for the exploration. However, there
are an enormous list of snippets that we can retrieve from the query log after building
the keyword pool and generating the queries. Moreover, many of these snippets are not
suitable because they contain repetitive information. To retrieve the primary snippets
that cover most of the data source as the overall picture of the data and are interesting
with respect to the data source, we compute the most interesting and diversified XML
result snippets based on the following equation.

λ(r, T,R1) = λint(r, T )× λnov(r,R1) (1)

In Eq. 1, λint(r, T ) measures the interestingness of the XML snippet r with respect
to the data source T . We use TF-IDF to define and measure the intersetingness of
an XML snippet. Therefore, a snippet r is interesting when it has a large number
of occurrences in a document within the data source T and when a small number of
documents in T contain the snippet r (as discussed in detail in Section 3.1). λnov(r,R1)
measures the novelty of r content among the result snippets R1. To provide the user with
different primary snippets, we define and measure the novelty as the difference between
the snippets content. For instance, a snippet content is associated to its results which
is in the form of the its root nodes. Thus, a snippet is regarded as novel if it contains
root nodes which do not exist in the current snippet list (as discussed in detail in Section
3.1). Assume there are |K| unique keywords in the query log. Then we can generate a
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Figure 3: XML subtree snippets

snippet for each keyword query that is produced from |K|. Thus, we can generate up to
2|K| − (|K| + 1) primary snippets. However, not all these snippets are interesting and
informative to the same degree. Furthermore, it is impractical to compute and present
all of the primary snippets to the clueless user for exploration. That’s why we compute
the most interesting and novel primary snippets (Top-w) to present to the user. Assume
w is the size of the window.

Definition 2. Top-w primary XML subtree snippets. Given a set of XML sub-
tree snippets R, the Top-w most interesting and diversified XML result snippets R1 =
{r1, r2, ..., rw}, w ≤ |R| maximize the scoring function presented in Eq. 1.

The parameter w may be set by the system. Since the Top-w snippets should provide
an overall picture for a clueless user, a big w may confuse the user. That’s because a
clueless user needs only a few hints about the trending and interesting items to begin her
data exploration. Moreover, a big w increases the probability of adding more similar and
less informative snippets to the Top-w primary snippets which is useless. Furthermore,
a big w incurs heavy computational costs. In this paper, we found w = 10 as the best
fit for this parameter. However, we proposed an A* search approach with an upper
bound estimation to compute the Top-w primary snippets that avoids the unnecessary
computations and improves the performance. Thus, our approach is able to accept other
values without facing any issue; e.g., w > 10.

We generate the primary snippets in the offline mode to present an overall picture of
the data source for the clueless user. After that, we interact with the user to navigate her
in the exploration process until we stop the interaction and present the final snippets to
the user. When the user chooses some of the primary snippets R1, the system navigates
her into more specific items by focusing on the selected snippets and by adding more
content to these snippets iteratively. Since the primary subtree snippets are general and
they contain many results, we interactively tighten the exploration to more specific items
in some iterations. To make the exploration more specific, we narrow down the search
on user-chosen snippets and we tighten the results based on the hidden content of the
snippets called co-occurring features of the snippets. Therefore in each iteration, we
add more features to each of the user chosen-snippets to generate a set of more specific
subtree snippets with a bigger size. Assume F = {f1, ..., f|F|} denotes the set of features
in the snippet r.

Definition 3. Co-occurring feature. Given a snippet r = {V,V.type,F}, a co-
occurring feature f ∈ F is (a) f 6∈ F , and (b) ∃v ∈ V such that v is an ancestor
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for f denoted by v ≺a f .

For example, for the subtree snippet r1 presented in Fig. 3, we may generate a
more specific subtree snippet r1 = {[0.0],movie, {movie/gs/genre, “drama”}, {movie/
year, “2012”}, {movie/ats/actor, “crowe”}} by adding the co-occurring feature f = {movie/
ats/actor, “crowe”}.

Definition 4. Exploratory snippet. Assume F = {f1, f2, ..., fn} is the set of features
of the subtree snippet r and F is a subset of the co-occurring features. Then, r =
{V,V.type,F ∪ (f ∈ F)} is an exploratory snippet if ∀v ∈ V, v ≺a (F ∪ f).

However, we can generate an enormous number of exploratory subtree snippets in
each iteration. That’s because any combination of the co-occurring features set with the
snippet feature set may generate an exploratory snippet that should be considered. Thus,
we need to limit the number of subtree snippets to the Top-w highly ranked snippets in
each iteration. We finally propose to score and rank the subtree snippets in each iteration
based on the following:

λ(r, T,Ri) =
λint(r, T )× λnov(r,Ri)

log2(1 + |r|)
, i > 1 (2)

where |r| is the result cardinality of the snippet r. We incorporate the result cardinality
into the scoring equation in each iteration to navigate the exploration to the convergence
point quickly. That is when a snippet contains many results, we penalize it by log2(|r|)
factor and give priority to the snippets with smaller cardinality because they contain
specific items.

Definition 5. Top-l exploratory snippets. Given a set of snippets Ri = {r1, ..., rn},
n ≤ w, the problem of Top-l exploratory snippets is to compute l highly ranked exploratory
snippets R∗ such that for r ∈ R∗, λ(r, T,Ri) is maximized, i.e., R∗ = {|R∗| = l |
∀r ∈ R∗, r′ 6∈ R∗, λ(r, T,Ri) ≥ λ(r′, T,Ri)}.

2.3. Solution Overview

We propose a two-phase solution for interactive data exploration in XML data via
snippets as given as follows:

1. Primary snippet generation: This step finds the Top-w snippets from the
dataset that represent the most trending and interesting items of the data source.

2. Interactive snippet processing: This step interacts with the user in several
rounds to extract the user preferences. In each iteration, the user selects a set
of the snippets and the system processes the selected snippets and presents the
more specific snippets to the user. At the end of this step, the system stops the
interactive snippet processing and presents the Top-l subtree snippets to the user.
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Figure 4: XSnippets architecture overview

The XSnippets architecture overview is depicted in Fig. 4. From the figure, the
XSnippets includes offline and online modes. The offline mode prepares the primary
snippets by executing trending keyword queries against the data source and builds the
index for these snippets. In the online mode, the system iteratively adds more keywords
to the user chosen snippets, rank the newly generated snippets and present the Top-w
snippets to the user for evaluation. At last, it displays the Top-l snippets to the user
when the stop condition satisfies.

3. Primary Snippet Generation

A snippet is composed of different features that contain keywords. Thus, to generate
the primary snippets we need to extract some keywords that represent the interesting
and trending items in the data source. Moreover, these snippets should cover different
parts of the data to represent the overall picture of the data to the user. To extract
these keywords, we collect the statistics of the keywords with respect to the query log.
Then, we build a keyword pool that stores the most interesting and trending keywords
and run some keyword queries generated from the keyword pool to generate the snippets.
Afterward, we compute Top-w highly ranked snippets for the user.

3.1. Building the Keyword Pool

The keyword pool K is the key source to generate the primary subtree snippets.
We extract the keywords by considering the query log that contains the queries issued
by expert users. For computing the trending keywords from the query log, we use the
keyword frequency as follows: score(k, Log) = log2(1 + freq(k)) where Log represents
the query log data and freqk is the number of occurrences of k in the log. We select
the keywords that their score is higher than a threshold and store them into K. This
threshold is set using the maximum frequency of the query log keywords. For instance
in this paper, we observe that we get the best keywords by setting the threshold to
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something near to the average frequency of the query log keywords. This would filter
the keywords with less frequency. However, the threshold should be set considering the
keyword query log size. For example when the query log size is small, we should loosen
the threshold to include more keywords in the pool and vice versa. After building the
keyword pool K, we select the combination of keywords from K to generate some keyword
queries. Then, we execute each keyword query q from K against the data source T to
retrieve the primary subtree snippets. However, not all the possible queries are suitable
to generate meaningful subtree snippets. That’s because some queries from K would
generate erroneous or mismatch subtree snippets based on the XML data structure.
Moreover, when the query size gets larger, it generates more specific snippets that would
restrict the exploration space for the user. Therefore, we check the mismatch problem
[11] and put a limit for the primary snippets size to generate the subtree snippets. Since
the number of generated primary snippets is enormous, we score the subtree snippets R
based on their interestingness and their novelty with respect to the data source. This
scoring guarantees that the primary snippets contain important items and cover different
parts of the data. Then to start the exploration, we present the Top-w subtree snippets
R1 to the user to set her exploration preferences.

The interestingness of a subtree snippet r is dependent on each of its constituent
features ∀f ∈ r. According to the TF-IDF method [12], a feature is interesting if it
has a large number of occurrences in the data source T called feature Frequency in the
Results (FR) and when a large number of documents in T reflected the feature called
Inverse Result Frequency (IRF ). We make the similar adaptation of [12] to this formula
to apply it to our problem. Thus, we assume the FR equals to 1 and compute the IRF
to reflect the interestingness of f as follows:

IRF (f, T ) =
|T |

freq
(f.type)
(f.k)

(3)

where freq
(f.type)
(f.k) returns the number of f.type nodes in T that contain the keyword f.k

in their leaf nodes that is presented in the following formula:

λint(r, T ) = log2(1 +
∏
∀f∈r

IRF (f, T ))× φd (4)

where d returns the count of edges in the subtree snippet r, φ is a reduction factor

between (0-1], and freq
(f.type)
(f.k) is the frequency of the feature f with type of type under

the value node of f.k.
We modified the TF-IDF method to adapt it over XML data. To make this adapta-

tion, λint(r, T ) contains two primary parts: (a) IRF which is an adapted version of IDF
to compute the inverse result frequency over XML data which reflects the XML data
content, and (b) the XML tree structure φd which reflects the XML data structure.

In order to present the user maximum different primary options, the Top-w subtree
snippets should be informative and cover the different part of the data source. Thus, we
compute the novelty of the snippets according to the following equation:

λnov(r,R) = log2(1 + (|{r.V} \ {R.V}|)) (5)

where r.V and R.V return the set of root nodes of r and R respectively.
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For the novelty, a snippet is regarded as novel if it contains contents which do not
exist in the current snippet list. Therefore to define the novelty over XML data, we assess
a snippet content based on its results. The snippet results are in the form of the the
containing root nodes within r over XML data. Thus to assess the results, we adapted
the novelty definition λnov(r,R) over XML data by using the difference between the set
of root nodes in the current Top-w list and the snippet r.

Example 1. Consider the snippet r1 presented in Fig. 3 that contains the features
f1 = {movie/gns/genre, ”drama”}, and f2 = {movie/year, ”2012”}. Given φ = 0.8,
IRF (f1, T ) = 350, and IRF (f2, T ) = 1050, we compute the score of snippet r1 presented
in Fig. 3 as follows: (a) λint(r1, T ) = log2(1+350×1050)×0.85 = 6.1, (b) λnov(r1,R) =
log2(1+800) = 9.65. Finally, we compute the total score λ(r1, T,R) = 6.1×9.65 = 58.87.

3.2. A*-search based technique

To generate the Top-w primary snippets, we have to execute all the queries generated
from K against T that is practically impossible. Thus, we exploit an A*-search based
algorithm to perform an informed search on the keyword pool K space and efficiently
rank the snippets without running all the queries. The search space includes K, and in
each step, we add to the size of snippets by using the keywords K and generate new
snippets. The A*-search continues until we find by estimation that adding to the size of
a snippet r, will not contribute the snippet to be on the Top-w list R1. To estimate that
r can beat the bottom line, we compute the upper bound score of r. Assume IRF is the
maximum value for Inverse Result Frequency among the co-occurring features f ∈ F ,
min(d) returns the minimal number of edges d of the snippet r. Then, the maximal score

φd = φmin(d). If c is the number of features that should be added to generate a snippet
with maximum size then the upper bound score for interestingness of r is computed as
follows:

λ
int

(r, T ) = log2(1 +
∏
∀f∈r

IRF (f, T )× IRF c)× φd (6)

Also, the novelty score of snippet r is maximal when all of its constituent results are
new in R. Therefore, the upper bound score for the novelty is computed by the following
equation:

λ
nov

(r,R) = log2(1 + |r.V|) (7)

Finally, by using the upper bound of the two scoring factors of Equation 1, we compute
the total upper bound score λ(r, T,R).

Lemma 1. The upper bound score λ(r, T,R) is computed by using the upper bound of
the two scoring factors of Equation 1 as follows:

λ(r, T,R) = λ
int

(r, T )× λnov(r,R) (8)

Example 2. Consider the snippet r1 presented in Fig. 3. Given the following infor-
mation: IRF = 106, min(d) = 8, φd = 0.88 = 0.17, we compute the upper bound

score of the snippet r1 that is presented in Fig. 3 as follows: (a) λ
int

(r1, T ) = log2(1 +
350× 1050× (106)3)× 0.17 = 13.31, (b) λ

nov
(r1,R) = log2(1 + 4026) = 11.98. Finally,

λ(r1, T,R) = 13.31× 11.98 = 159.45.
12



To ensure the correctness of the A*-search algorithm, the upper bound score λ(r, T,R)
should guarantee that it does not underestimate the score of r.

Lemma 2. Given λ(r∗, T,R), λ(r′, T,R) such that ∀r′′ ∈ R, λ(r′, T,R) ≥ λ(r′′, T,R).
The stop condition λ(r∗, T,R) ≥ λ(r′, T,R) retrieves the optimal r∗ if λ(r′, T,R) is
admissible.

Proof 1. The estimation of λ(r′, T,R) is admissible. Then, we have λ(r′, T,R) ≥
λ(r′, T,R). We know that λ(r′, T,R) is the maximum value among other estimations.
Therefore using the admissibility we have following: ∀r′′ ∈ R, λ(r′′, T,R) ≤ λ(r′, T,R) ≤
λ(r∗, T,R); thus, r∗ is the optimal snippet.

3.2.1. The algorithm.

Algorithm 1 presents the A* search-based technique for generating the Top-w primary
snippets. In line 1, we build the keyword pool K from the query log trending keywords.
In lines 2-4, we initialize the heap H by pushing the entries that are generated by using
the keywords of K into the heap H. Each heap entry e ∈ H contains the following
information: (a) e.q that contains the keyword list of the snippet, (b) the snippet e.r,
(c) e.r.λ that is the score of the snippet, and (d) e.r.λ that is the upper bound score
estimation of the snippet. In line 6 we pop the top entry into e. In lines 8-9, we fill the
Top-w primary snippets list with the currently popped snippet e.r if the list is not filled
yet (checking if |R1| < w). Otherwise, we update the minimum threshold score λmin with
the minimum possible score within the Top-w primary snippets list R1.min. We stop
processing the entries if the upper bound score estimation of the current entry cannot
beat the bottom line score (if e.r.λ < λmin ) in line 13 based on lemma 2. In lines 14-15,
we update the primary snippet list R1 if the current entry snippet e.r is promising that
means its score beats the bottom line score (by checking the condition e.r.λ > λmin). In
lines 18-19, we generate new entry e′ by adding a keyword to the snippet keyword list
e′.q, and generate the corresponding snippet e′.r. Then, we measure the newly generated
snippet score e′.r.λ (based on Eq. 1), its upper bound score e′.r.λ (based on Eq. 8), and
push it into the heap H as pseudocoded in lines 20-22. In line 23, we return the Top-w
primary snippets R1 to the user.

3.3. Indexing the Primary Snippets

The primary snippet generation is done in the offline mode to provide the clueless user
with the data source overall picture and the most trending data regions. Conversely, in
the interactive snippet processing, we interact with the user iteratively in the online mode
that incurs heavy computational costs. Moreover, the primary snippet computations
are the main source that is repeatedly used during the interactive exploration process.
Therefore, we can reuse the primary snippet computations to expedite the performance of
the interactive step. To exploit the primary snippet computations, we propose an index
structure called Snippet BTree (SBTree) to store the information of the primary subtree
snippets. The primary snippets contain the following information for each snippet r: (a)
the root nodes of the snippet V, (b) the features of the snippet F , and (c) the IRF score
of the features F ∈ r. Similar to BTree that is used by [6] for XRank, we design the
SBTree as follows: each feature f ∈ F is the key of the BTree, and the root nodes of
the snippet is the value for the key. Moreover, the IRF of the feature is added to each
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Algorithm 1: Generating Top-w primary snippets

Input : T , Log, w
Output: Top-w Primary XML Subtree Snippets R1

1 K ← generateKeywordPool(T, Log); // initialize keyword pool K
2 while k ← getNext(K) 6= ∅ do
3 e.q ← k ; // set the entry keyword using k
4 H.push(e); // initialize heap H using generated entry e

5 while H 6= ∅ do
6 e← H.pop() ; // pop the top entry e for next steps

7 if |e.q| > 1 then
8 if |R1| < w then
9 R1 ← R1 ∪ e.r; // add r to R1 since R1 is not filled yet

10 else
11 λmin ← R1.min; // update λmin with minimum score in R1

12 if e.r.λ < λmin then
13 break; // as per lemma 2

14 else if e.r.λ > λmin then
15 update(R1, r); // update R1 since r beats the bottom entry

16 if |e.q| < 3 then
17 while k ← K 6= ∅ and k ∩ e.q = null do
18 e′.q ← e.q ∪ k; // increase entry query e.q size using k
19 e′.r ← generateSnippet(e′.q, T );
20 e′.r.λ← score(e′.r, T,R1); // compute score of e′ using Eq. 1

21 e′.r.λ← bound(e′.r, T,R1); // compute bound of e′ using Eq. 8

22 H.push(e′); // push extended entry e′ into H for next steps

23 return R1;

entry of the tree and the entries are sorted based on IRF (f, T ). The indexing structure
for the entry r1 of Fig. 3 is depicted in Fig. 5.

4. Interactive Exploratory Snippet Processing

In this step, we capture the user exploration preferences in various rounds. The goal
of this step is to narrow down the exploration space until the results are specific enough
for the user. At each iteration, after the user chooses the preferred snippets, we refine
the list of snippets by generating more specific snippets that have a bigger size. We refine
the snippets by selecting co-occurring features for each snippet and add it to the existing
snippet to generate the more specific snippets. Finally, at each iteration, we rank the
newly generated snippets to present to the user. The snippet processing operations for
the r are as follows: (a) we read a feature from the co-occurring features f ∈ F and add
it to the features of r; (b) we update the list of root nodes for r by using a set intersection
operation on the new feature set f ∪ F ; and (c) we measure the score of the snippet r
after adding f to its feature set.

Example 3. Consider the snippet r1 presented in Fig. 3. Then, the index of the primary
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Figure 5: Snippet processing by using indexing structure.

snippet r1 is depicted in Fig. 5.a, and the processing steps of r1 is presented in Fig. 5.b.
From the figure, the co-occurring features include f1 = {movie/title, ”miserables”},f2 =
{movie/title, ”lincoln”} , f3 = {movie/kws/keyword, ”politics”}, f4 = {movie/ats/actor,
”crowe”}, and the primary snippet contains the features f5 = {movie/year, ”2012”},
and f6 = {movie/gns /genre, ”drama”}. To process snippet r1, we add one feature
from the co-occurring features F = {f1, f2, f3, f4}to the feature set F = {f5, f6} of
r1. Finally, for the first step, we have the following newly generated snippets: r1 =
{{[0.0]},movie, {f1, f4, f5}}, r2 = {{[0.2]},movie, {f2, f4, f5}}, r3 = {{[0.0], [0.2], ...},
movie, {f3, f4, f5}}, and r4 = {{[0.0], ...},movie, {f4, f4, f5}}.

4.1. Snippet Processing Complexity

Assume |Ri| is the number of snippets, |F| is the average number of features of the
snippets, and c is the cost of the set intersection of the features. Then, the complexity
of the snippet processing would be O(|Ri| × |F| × c). However, the interactive snippet
processing is carried out in the online mode. Thus, we provide two pruning techniques
called inter-snippet pruning and intra-snippet pruning to expedite the performance and
efficiently reduce the sizes of |Ri| and |F| respectively.

4.1.1. Inter-snippet Pruning

We provide a mechanism to stop unnecessary processing of the non-promising snip-
pets. The inter-snippet pruning checks whether a snippet can beat the bottom line score
when we process it. If not, we stop processing the snippets and return the Top-w snippets
to the user. To decide whether a snippet is promising, we compute the upper bound score
that can be achieved by the snippets and sort them according to their maximum score.
If min(d) represents the minimum number of edges w.r.t. the r structure φd = φmin(d),
and min(|r|, T ) returns the minimum result cardinality of the snippet r w.r.t. the data
source.

Lemma 3. The upper bound score λ(r, T,Ri) of the snippet r is computed as follows:

λ(r, T,Ri) =
λ
int

(r, T )× λnov(r,Ri)
log2(1 +min(|r|, T ))

(9)

Example 4. Assume 5 as the maximum size of the snippets. We have the following
information: IRF = 106, φ = 0.8, min(|r|, T ) = 1, and log2(1+min(|r|, T )) = 1. Then,
we compute the upper bound score of the newly generated snippets R2 = {r1, r2, r3, r4}
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from Fig. 5.b.

(a) min(d) = 9, λ
int

(r1, T ) = 78.28× 0.13 = 10.18,
λ
nov

(r1,R2) = 1, λ(r1, T,R2) = 10.18× 1 = 10.18,

(b) min(d) = 9, λ
int

(r2, T ) = 77.13× 0.13 = 10.03,
λ
nov

(r2,R2) = 1, λ(r2, T,R2) = 10.03× 1 = 10.03,

(c) min(d) = 10, λ
int

(r3, T ) = 74.96× 0.11 = 8.25,
λ
nov

(r3,R2) = 6.64, λ(r3, T,R2) = 8.25× 6.64 = 54.78,

(d) min(d) = 10, λ
int

(r4, T ) = 70.85× 0.11 = 7.8,
λ
nov

(r4,R2) = 2.32, λ(r4, T,R2) = 7.8× 2.32 = 18.1.

Assume snippets Ri = {r1, r2, ..., rl, rl+1, ..., r|Ri|} are sorted according to their upper

bound λ(rj , T,Ri), and λmin is the min-score of the l snippetsRi1 = {r1, r2, ..., rl}. Then,
we stop processing the rest of the snippets Ri2 = {rl+1, ..., r|Ri|} if λ(rl+1, T,Ri) < λmin

because they cannot beat λmin.

4.1.2. Intra-snippet Pruning

The inter-snippet pruning expedite the performance by pruning on the snippet level.
However, the snippet processing method uses the co-occurring features of a snippet to
generate more specific snippets for user interaction. Thus, if we execute pruning on the
feature level of the snippets during the snippet processing, we can improve the perfor-
mance further. To prune the snippet at the feature level, we check the upper bound of
the current snippet λ(r, T,Ri). Then, if λ(r, T,Ri) < λmin, we can stop processing r
because the features are sorted based on IRF score and by adding any snippet, the total
score cannot beat λmin. We call this pruning the intra-snippet pruning.

4.1.3. The Algorithm

Algorithm 2 presents the interactive snippet processing details. We initialize the λmin

and set the iteration number i in line 4. In line 5, we compute the upper bound of all
current snippets λ(r, T ),∀r ∈ R. Then, we sort the snippets R according to their upper
bound in line 6. In line 7, we read snippet r from the snippet list R. If r.λ < λmin, we
stop processing the snippets as pseudocoded in lines 8-9 (inter-snippet pruning). Next, we
retrieve the feature list of snippet r from the index and store it into F in line 10. In lines
11-12, we read the co-occurring features of r and invoke the procedure processSnippet.
If the current list is not filled, i.e., |Ri| < w, we add the snippet r to the current Top-w
snippet list Ri as pseudocoded in lines 13-14. In lines 15-16, we apply intra-snippet
pruning if r.λ < λmin. In lines 19-20, we check the stop condition to terminate the
interaction loop. If we do not terminate, we return the Top-w snippets to the user for
the next iteration; otherwise, we return the final Top-l snippets R∗ to the user in line
23.

The procedure processSnippet in line 12 of Algorithm 2 is pseudocoded in Algorithm
3. In line 2, we add new feature f to the feature list of r to increase the snippet r size
and make it more complete. Then, in lines 3-4, we retrieve the list of root nodes for the
features fi ∈ r, and we use the set intersection operator

⋂n
i=1 Vi to update the root node

list of the snippet r since adding more features may result in changing the root node. In
line 5, we compute the number of edges in the snippet r to compute the interestingness
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Algorithm 2: Interactive snippet processing

Input : Index, R1, w
Output: Top-l XML Subtree Snippets R∗

1 i← 1;
2 while true do
3 R ← getSnippet(Ri); // set the snippets R using current snippets

4 λmin ← 0; i← i+ 1; // initialize λmin and set the iteration i

5 r.λ← bound(r, T ),∀r ∈ R; // compute bound of all current snippets

6 sortSnippet(R); // sort R list using upper bound λ
7 while r ← getNext(R) 6= ∅ do

8 if r.λ < λmin then
9 break; // inter-snippet pruning

10 F ← retrieve(r, Index);Ri ← null;
11 while f ← getNext(F) 6= ∅ do
12 r ← processSnippet(r, f, Index,Ri);
13 if |Ri| < w then
14 |Ri| ← |Ri| ∪ r; // add snippet r to the current list Ri

15 else if r.λ < λmin then
16 break; // intra-snippet pruning

17 else if r.λ > λmin then
18 update(Ri, r); λmin ← Ri.min; // inter-snippet pruning

19 if Terminate(Ri−1,Ri) then
20 break; // stop the interaction

21 else
22 continue;

23 return R∗;

of the newly generated snippet r with respect to the data source because adding feature
f results in changing the snippet structure. Next, we compute the interestingness score
r.λint and novelty score r.λnov as pseudocoded in lines 6-7. In lines 8-9, we compute the
total score of the snippet r.λ, and upper bound score r.λ. Finally, we return r in line 10.

4.2. Finalization of the Snippets Processing

In this step, the user or the system (more preferable) stops the interactive snippet pro-
cessing and presents the Top-l computed subtree snippets R∗ to the user. The procedure
Terminate on line 19 of Algorithm 2 checks whether to stop the interaction automati-
cally. Here, we use the cardinality of the results generated by the Top-w snippets as the
condition to continue the interaction. Assume |Ri.V| is the cardinality of the results for
the current Top-w snippets and |Ri−1.V| is the cardinality of the results for the previous
Top-w snippets. Then, if the condition |Ri−1.V| − |Ri.V| > η satisfies, we continue the
interaction; otherwise, we stop the interaction and present the current Top-l snippets.
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Algorithm 3: processSnippet

Input : r, f , Index, Ri
Output: XML Subtree Snippet r

1 procedure processSnippet(r, f, Index,Ri)
2 r.F ← r.F ∪ f ; // add new feature f to the feature list r.F
3 Vi ← retrieveList(r.fi, Index),∀i ∈ [1− n];
4 r.V ←

⋂n
i=1 Vi; // set intersection operator to update r root node

5 d← countEdge(r); // compute the edges existed in snippet r

6 r.λint ←
∏
∀f∈r.F IRF (f, T )× φd; // compute interestingness score of r

7 r.λnov ← log2(1 + {r.V} \ {Ri.V}); // set minus operator for novelty

8 r.λ← r.λint(Index)×r.λnov(Ri)
log(1+|r.V|) ; // compute total score of r

9 r.λ← bound(r, T,Ri); // compute the upper bound of r
10 return r;

5. Experiments

We evaluate the effectiveness and efficiency of our proposed approach. All the experi-
ments are conducted on two real datasets: (a) Internet Movie Database (IMDB) 300MB,
and (b) Digital Bibliography and Library Project (DBLP) 600 MB. All the algorithms
are implemented using C# language. The experiments are run on a PC with 3.2 GHz
CPU, 8 GB memory and with 64-bit windows 7. Since our approach is interactive, the
user would decide in each step to navigate the exploration process based on her favorite
snippets. Thus, the effectiveness of our approach is tested by the user in each step of
interaction (experiments presented in Section 5.1), and then we focus on the evaluation
of the efficiency of the proposed solutions.

5.1. Effectiveness

We conducted a comprehensive user study to evaluate the quality of our snippets. To
do a reliable user study, we select our users among experts and ordinary users and ask
them to score each of our top-l XML snippets between [0-1] based on their relevance to
the original user data exploration criteria (0 means the least relevance and 1 means the
most relevance). The users score the snippets in each iteration separately. A part of the
sample Top-1 primary snippet keywords (after running A* search on keyword pool) are
presented in Table 3.

5.1.1. Quality of snippets

Fig. 6 presents the user study evaluation results for IMDB and DBLP datasets. To
carry out theses experiments we generate a large number of snippets by using a keyword
pool (100 keywords) for each data set that are often used by the expert users recently (we
run A* search on the keyword pool to produce the Top-ranked primary snippets). Then,
we present the Top-5 primary snippets to the users for evaluation. Fig. 6.a presents
the quality of the Top-5 snippets. From the figure, we observe the iteration number
effect on the system effectiveness. Clearly, as we move forward from iteration 1 to 4,
the precision of the Top-5 snippets increases in both datasets. That’s because when the
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Table 3: Top-1 primary snippet keywords
Dataset snippet keywords Dataset snippet keywords

IMDB usa,drama DBLP web, search

IMDB action,2019 DBLP DKE, 2018

IMDB gladiator,action,english DBLP semantic,search,2019

IMDB animation, horror, DBLP stonebraker,pvldb

IMDB usa,horror,killer DBLP DKE,exploration,snippetIMDB DBLP
1 0.6 1 0.75
2 0.7 2 0.8
3 0.85 3 0.85
4 0.9 4 0.92

IMDB DBLP
3 0.9 3 0.95
5 0.9 5 0.92

10 0.82 10 0.85
15 0.7 15 0.75
20 0.65 20 0.7
25 0.65 25 0.65
30 0.55 30 0.5

0

0.2

0.4

0.6

0.8

1

1 2 3 4

Pr
ec

isi
on

Iteration

IMDB
DBLP

0

0.2

0.4

0.6

0.8

1

3 5 10 15 20 25

Pr
ec

isi
on

Top-l Snippets

IMDB
DBLP

(a) Iteration effect on the effectiveness
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Figure 6: Quality of Top-l snippets.

exploratory search advances to higher iterations, our method effectively navigates the
user’s exploration to her favourite results by adding more specific features.

5.1.2. Effect of Top-l size

Fig. 6.b presents the effect of Top-l snippet list size on the effectiveness. To carry out
the experiments, we set the Top-l size to {3, 5, 10, 15, 20, 25} and ask the users to score
the Top-l list for each dataset separately. From the figure, we observe that when the list
size is set to lower values, e.g. {3, 5}, the precision of the snippets achieves the highest
score. However, when we set the list size to bigger values, e.g. {20, 25}, the precision of
snippets deteriorates. That’s because when the list size gets larger, more snippets are
added to list that they may not be interesting to the users. However, when the list size is
small, most of the snippets are relevant to the user exploration criteria. This fact verifies
that our snippet scoring function effectively ranks the more interesting snippets first and
then puts the less relevant snippets after the interesting snippets in the Top-l list.

5.2. Efficiency of Computing Primary Snippets

Although computing the primary snippets is done in the offline mode, the efficiency
of computing the primary snippets is important. That’s because we may need to update
the trending primary snippets after a specific period of time when the query log changes.
To evaluate the efficiency of computing primary snippets, we run experiments by using
two methods: (a) Baseline that generates all the combination of keywords up to size of
3 and then executes these queries against the data source, generates the snippets and
ranks the Top-w snippets and, (b) AStar that is our proposed method in Section 3.2.

5.2.1. Effect of Keyword Pool Size |K| on the Efficiency

In this experiment, we vary the size of the keyword pool to {30, 40, 50, 60, 70, 80, 90, 100}
and compute the execution time of the two methods. Clearly from both datasets in Fig.
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Figure 7: Keyword pool size |K| effect on the efficiency of computing primary snippets.
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Figure 8: Window size w effect on the efficiency of computing primary snippets.

7, the AStar method outperforms the Baseline since it does not generate all combina-
tions of K. Moreover, AStar performs an informed search on K and efficiently stops the
computations when the upper bound estimation of the remaining keywords cannot beat
the bottom line score of the current snippets. From the figure and in Baseline method,
there is a big jump in execution time when |K| ≥ 60 which shows that baseline is not
scalable. However, the AStar method shows a small jump in execution time when |K|
increases that means the AStar is scalable.

5.2.2. Effect of Window Size w on the Efficiency

The effect of window size on computing the primary snippets is presented in Fig. 8.
To conduct the experiments, we set |K| = 20 and vary the window size w to {10,20,30,40}
to compute w snippets for the user by using the Baseline and AStar methods. From the
figure, we observe that the baseline method is not sensitive to |w| because it generates all
combinations and score them to retrieve Top-w snippets. In the AStar method; however,
by increasing the w, there is a small increase in the execution time. That’s because
in AStar when we increase w, the bottom line score gets smaller; thus, more entries
are processed which makes the stop condition to be less effective. However, the AStar
method execution time is still better for all window sizes than the Baseline method since
it does not generate all the combinations from K.
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Figure 9: Snippet processing efficiency in one step.

5.3. Efficiency of Interactive Snippet Processing

In this section, we evaluate the efficiency of our proposed snippet processing method.

5.3.1. Pruning Improvement

To show the effectiveness of our pruning techniques, we employ and compare the
following three methods: (a) The method that uses index to process the snippets but it
does not apply any pruning, (b) the method that uses index to process the snippets and
only implements the inter-snippet pruning technique, and (c) the method that uses index
to process the snippets and implements both inter and intra-snippet pruning techniques
(Algorithm 2). We evaluate the performance of the three methods by assuming the user
would choose |w| snippets in one interaction. The results are presented in Fig. 9 for both
datasets when we vary the number of snippets to {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
From the figure, we observe that the processing time for the methods that implement
the pruning techniques is improved. Inter-snippet pruning is the most effective approach
for improving the performance when the number of snippets increases. The performance
improves the most when many of the snippets are not processed by using inter-snippet
pruning, e.g., in the IMDB when |w| = {90, 100}. That’s because when |w| increases, the
possibility that the bottom line score λmin becomes bigger than the upper bound score
of the rest of snippets; thus, it makes the inter-snippet pruning technique more effective.
For intra-snippet pruning technique; however, the performance is better when there are a
big number of co-occurring features that should be processed, and some of these features
are skipped by the intra-snippet pruning because adding them to the snippet cannot beat
the bottom line λmin. In conclusion, both pruning techniques are effective; however, the
inter-snippet pruning is the most effective technique when the number of snippets is big,
and then the intra-snippet pruning is effective when the number of skipped co-occurring
features is huge.

5.3.2. Effect of parameter η on the efficiency

We set the parameter η to the values {50, 150, 250, 500, 1000} and compute the exe-
cution time for the interactive snippet processing when the window size |w| = 10. During
the interaction, the system chooses 5 snippets randomly to continue the snippet process-
ing. The results of this experiment are presented in Fig. 10. From the figure, we observe

21



0

40

80

120

160

50 150 250 500 1000

Ti
m

e(
m

ili
se

c)

Parameter η

(a) IMDB

0

100

200

300

50 150 250 500 1000

Ti
m

e(
m

ili
se

c)

Parameter η

(b) DBLP

Figure 10: The effect of parameter η on the efficiency.
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that when η is set to a smaller value, the execution time increases, i.g., η = {50, 150}.
However, when we set η to a bigger value, the execution time decreases. That’s because
when we set η to a bigger value, there is smaller possibility that the previous iteration’s
cardinality is bigger than the big η; therefore, the system stops the interaction early, i.e.,
in the first or second iterations. Conversely, when we set η to a smaller value, the stop
conditions would satisfy after more iterations; therefore, it increases the execution time.
To sum up, for the users who are interested in interacting with the system in various
iterations, η could be set to a smaller value. However, for the users who would like to get
the exploration results with the minimum interaction, η could be set to a bigger value.

5.3.3. Naive Method Comparison with Our Approach

A naive way to process the snippets is that we retrieve the co-occurring features
at each step. Then for each co-occurring feature, we add a feature to the snippet and
compute the root nodes of the newly generated snippets in the data source without
using the index. The result of snippet processing using this method is presented in
Fig. 11 for both datasets. Clearly, in both datasets, the execution time shows a big
jump when the number of snippets increases which indicates that the naive approach is
not scalable. Moreover, the execution time is not comparable to the method that uses
indexing structure to store the primary snippet computations. This indicates that the
naive method is impractical due to its heavy computational costs and we have to use the
index to reuse the computations of the primary snippets in the interactive phase.
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6. Related Work

In this section, We present the various related works to data exploration and review
the literature.

6.1. Exploratory Search

Users often tend to perform an exploratory search on the data stored in databases
[13, 14, 15, 16, 17, 18, 19, 20]. However, traditional systems are not equipped with
interactive tools to support this kind of exploration tasks [4]. OLAP cubes enable the
users to explore the data by providing them a relational representation of aggregate data
[14, 17]. Giacometti et al. [18] proposed OLAP cubes query recommendation by exploring
the items that are visited by other users. Kalinin, Cetintemel and Zdonik [3] employed
semantic windows for the users to set their favorite conditions and perform exploratory
queries. They also provide the users with the online and partial result option to improve
the interactivity of the system. Qarabaqi and Riedewald [2] proposed exploratory search
using probability distribution over the entities attributes. Therefore, the users are helped
to specify right conditions on imprecise queries. However, these works focus on structured
data like relational databases. Moreover, they propose their methods with special kind
of queries like range queries. Conversely, we target the exploration of semi-structured
data like XML. We consider the scenario when the user is clueless, and we assist her
in the exploration process by generating primary snippets from the trending keywords
of the query log. Ouksili et al. [21] exploits patterns to facilitate the exploration over
RDF graphs. Unlike this work, XSnippets focuses on interactive exploratory search for
clueless users over general XML data.

6.2. Recommendation Systems

Recommendation systems explore the data source for the users who have visited
the data before to retrieve similar items for them or finding similar content that has
been looked up by the similar users [22, 23, 24, 25]. Akbarnejad et al. [26] proposed
query recommendation based on a prediction of the items that user is interested in those
items. Yao et al. [27] proposed to exploit structural semantics for query reformulation.
Meng, Cao, and Shao [28] used the semantic relationships between keywords and keyword
queries to suggest a set of keyword queries from the query log. The semantic relationship
between keywords and keyword queries is measured as the combination of the internal
and external co-occurrence of the keywords. However, there is no interaction with the
user for query recommendation. Drosou and Pitoura [5] presented a database exploration
framework which recommends additional items called ‘You May Also Like’ results. These
results are not a part of the original user query results; however, they are highly correlated
to the original results. These similar items are retrieved based on the most interesting
sets of attribute-values, called faSets, that is extracted from the content of the user
query result. However, the exploration process is based on the results of the user given
query. In contrast, our work incorporates the users feedback in the data exploration in
several iterations to navigate the exploration. Furthermore, most of these works focus
on the exploration of the relational databases while our work presents a framework for
interactive data exploration for the clueless user on the XML data. Naseriparsa et al. [29]
proposed a comprehensive framework for XML keyword search to retrieve semantically
related results when the user original query is unable to produce sufficient results, but
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semantically related content exists. Conversely, this work focuses on assisting the clueless
users through exploration process by presenting some exciting hints. Some works such
as [30, 31] proposed recommendation of keyword query search results for the user over
XML data. They focus on result diversification of keyword search results and exploiting
the underlying XML data statistics to retrieve meaningful results for the user. In [32], a
recommendation system called XPloreRank is proposed that uses two correlation scores
to generate ”You May Also Like” keyword queries for the users over XML data. However,
XSnippets is the first interactive exploratory search framework that navigates a clueless
user through her exploration over XML data by using XML snippets.

6.3. XML Keyword Search

XML keyword search is studied extensively in the literature [33]. The XML search
results are considered as the fragments of XML document that satisfy the search condi-
tions. Guo et al. [6] proposed the Lowest Common Ancestor (LCA) to extract the XML
nodes in the tree that contain all query keywords in the same subtree. Xu and Papakon-
stantinou [7] introduced the concept of Smallest Lowest Common Ancestor (SLCA) to
tighten the extracted nodes for the query result to the smallest tree that contains all
the keywords in the same subtree. Zhou et al. [34] exploit the set intersection prob-
lem for improving the XML keyword search processing by using a modified inverted list,
namely IDList. Other LCA-based search semantics include ELCA [9, 35], MLCA [36]
and VLCA [37]. Since the XML keyword search may retrieve numerous results, some
works proposed ranking schemes to retrieve only highly relevant results [6, 38, 39, 40].
Hristidis, Papakonstantinou, and Balmin [38] only considered the proximity of the key-
words within the XML documents to rank the results. Guo et al. [6] modified the popular
Google’s PageRank measure to rank the XML elements according to (a) the structure
of the XML document and (b) the proximity of the keywords in the XML document.
Termehchy and Winslett [39, 40] utilized the mutual information measures to design
coherency ranking scheme for the XML search results. Barros et al. [41] proposed two
algorithms for processing multiple keyword queries over XML streams. Le, Bao, and
Ling [42] proposed CR semantics (Common Relative) for XML keyword search which
returns answers independent from schema designs. However, in all these works, the key-
word search methods do not include an exploratory option to assist the user during the
search process. To improve the usability of the search [43], we provide an interactive
environment to navigate a user who is unfamiliar with the content and structure of data.
We exploit the XML snippet which summarizes the result of keyword queries to present
the user an overall picture of the data and then interactively navigate her to the favorite
part of data in several iterations.

7. Conclusion

We propose a framework for interactive exploratory search on semi-structured data.
We employ the trending keywords of the query log to generates primary snippets to
present an overall picture of the data to the clueless user. Since the number of snippets
is enormous, we propose an A*-search based technique to avoid generating the non-
promising snippets. To reuse the primary snippet computations, we design an index
structure to store the snippet computations. Then we exploit the co-occurring content of

24



the snippets to navigate the exploration in an interactive environment with user feedback
about her favorite snippets. In each iteration of the interaction, the snippets are ranked
based on their interestingness, novelty and their cardinality. To avoid the unnecessary
computations in the interactive phase, we design two novel pruning techniques and a stop
condition to check whether to stop the interactive phase automatically. The experiments
demonstrates the efficiency of our approach.
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