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RaSEC: An Intelligent Framework for Reliable and
Secure Multi-Level Edge Computing in Industrial

Environments
Muhammad Usman, Member, IEEE, Alireza Jolfaei∗, Senior Member, IEEE, and Mian Ahmad Jan∗

Abstract—Industrial applications generate big data with re-
dundant information that are transmitted over heterogeneous
networks. The transmission of big data with redundant in-
formation not only increases the overall end-to-end delay but
also increases the computational load on servers which affects
the performance of industrial applications. To address these
challenges, we propose an intelligent framework for Reliable
and Secure multi-level Edge Computing (RaSEC) in industrial
environments. This framework operates in three phases. In the
first phase, level-one edge devices apply a lightweight aggregation
technique on the generated data. This technique not only reduces
the size of the generated data, but also helps in preserving the
privacy of data sources. In the second phase, a multi-step process
is used to register Level-Two Edge Devices (LTEDs) with High-
Level Edge Devices (HLEDs). Due to the registration process,
only legitimate LTEDs can forward data to the HLEDs, and as a
result, the computational load on HLEDs decreases. In the third
phase, the HLEDs use a convolutional neural network to detect
the presence of moving objects in the data forwarded by LTEDs.
If a movement is detected, the data are uploaded to the cloud
servers for further analysis otherwise the data are discarded
which minimizes the use of computational resources on cloud
computing platforms. Simulation results show that our proposed
framework is highly resilient against security and privacy threats.
The proposed framework also helps in increasing the response
time by forwarding useful information to the cloud servers and
can be utilized by various industrial applications.

Index Terms—intelligent, secure, edge computing, privacy,
convolutional neural network.

I. INTRODUCTION

Industrial applications like healthcare, transportation man-
agement, and surveillance, generate huge volumes of data
that are sent to the cloud servers for processing and storage.
The data are always forwarded to the cloud servers over
public networks, e.g., the Internet, based on best-effort de-
livery service. The cloud computing platforms offer ample of
computing and storage resources, however, they are unable
to deal with critical issues like response time, security and
privacy, in the underlying networks. To deal with these issues,
a Multi-Level Edge Computing (MLEC) architecture can be
utilized [1]. In this architecture, different computing tasks are
set for geographically distributed edge devices. The MLEC
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architecture helps in bringing the computational resources
closer to data sources, e.g., end-devices and applications,
in industrial environments. Although the MLEC architecture
helps in distributing the processing load between edge devices,
challenges like security, privacy and response time, still need
to be addressed.

In the traditional MLEC architecture, the computational
resources are usually owned by different providers, e.g., Inter-
net service providers, cloud service providers, and enterprise
organizations that own a complete network and a cluster setup
[2], [3]. Due to multiple ownership of computing resources in
the MLEC architecture, a malicious device can easily enter
the network, act like a legitimate edge device, and connect
with end-devices and industrial applications to control them.
Due to the absence of a centralized authentication mechanism
in the MLEC architecture, malicious edge devices may get
access to data generated by end-devices and sensitive industrial
applications, e.g., healthcare, surveillance, and transportation
management, and manipulate and misuse it or forward it to
an unknown destination. In another example, a malicious end-
device or application may try to connect to a legitimate edge
device and requests for access to sensitive data stored on it
or forwards fake data to keep it occupied. In either scenario,
there is a need for a device authentication mechanism in the
MLEC architecture to avoid the misuse of available computing
resources.

In the MLEC architecture, the edge devices are in the
vicinity of end-devices. A compromised edge device can
collect sensitive information, e.g., location coordinates infor-
mation and identities (IDs), of end-devices and use it for
malicious purposes. To protect the privacy of end-devices,
various privacy-preserving techniques have been introduced in
past few years [4]. These techniques are basically designed for
cloud computing based architectures. In these techniques, ho-
momorphic encryption and differential privacy algorithms are
used to preserve the privacy of data sources and allow to search
a specific type of data through keywords without decryption.
Although these techniques are efficient, they are computation-
ally complex, and are not feasible for industrial applications
using MLEC architecture. The industrial applications, e.g.,
surveillance, transportation management, and healthcare, gen-
erate huge volumes of hybrid data. Applying computationally
complex privacy-preserving techniques on generated data may
increase the processing time which may affect the performance
of aforementioned industrial applications. Therefore, there
is a need for a lightweight and efficient privacy-preserving
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technique that can be applied on multimedia data and protect
the privacy of end-devices and industrial applications based
on MLEC architecture.

Data generated by industrial applications are always sent to
cloud servers for storage and analysis. However, it is possible
that the applications may generate redundant data, and as a
result, the cloud sources may be misused. Furthermore, trans-
mission of redundant data over public networks, e.g., the In-
ternet, may increase the latency and response time which may
affect the performance of real-time industrial applications. To
address the latency and response time issues, researchers have
proposed various intelligent edge computing based approaches
over the past few years [5]. In the intelligent edge computing
based approaches, lightweight machine learning algorithms are
implemented on edge devices to reduce the amount of data
sent to the cloud servers. The intelligent edge devices can help
in decreasing the network latency and improving the response
time of real-time industrial applications. However, the machine
learning algorithms are computationally complex, and take
significantly a large amount of time to process the input data.
Therefore, there is a need for a lightweight machine learning
algorithm on edge devices that can quickly process the input
data and decide whether the data need to be forwarded to the
cloud servers or not.

In this paper, we propose an intelligent framework for
Reliable and Secure multi-level Edge Computing (RaSEC)
in industrial environment. This framework operates in three
phases to address security, privacy, and response time issues.
In the first phase, a lightweight aggregation technique is used
by Level-One Edge Devices (LOEDs) to minimize the size of
multimedia data and preserve the privacy of end-devices. In the
second phase, Level-Two Edge Devices (LTEDs) are registered
with High-Level Edge Devices (HLEDs) using a handshaking
mechanism to protect the framework from malicious edge de-
vices. In the last phase, the HLEDs use Convolutional Neural
Network (CNN) to process the aggregated data to detect the
redundancy on an advanced level. The major contributions of
our proposed framework are as follows.

• To the best of our knowledge, our proposed framework is
the first effort to deal with security, privacy and response
time issues using a MLEC architecture. This framework
is designed to process big multimedia data generated by
real-time industrial applications.

• A lightweight aggregation technique is applied to min-
imize the size of generated multimedia data. The re-
dundancy in the generated data is detected through a
similarity-based comparison between video frames. The
location coordinates information of end-devices is also
aggregated to protect their privacy by hiding their actual
location coordinates information.

• An energy-efficient technique is used to register the
LTEDs with the HLEDs. Multiple encrypted messages are
exchanged between the LTEDs and HLEDs to complete
the registration process. Once the registration process
is completed, the LTEDs are allowed to forward the
collected data to HLEDs.

• A lightweight CNN-based architecture is implemented
on HLEDs to analyze the aggregated data forwarded by

LTEDs using multiple connected and hidden layers to
extract features from input data and detect the movements
of objects. Based on the analysis, the HLEDs decide
whether the aggregated data need to be discarded or
forwarded to the cloud servers for processing and storage.

The rest of this paper is organized as follows. An overview
of recent efforts on the security, privacy, and response time
issues in the edge computing domain is provided in Section
II. The proposed framework is discussed in detail in Section
III. Simulation results are explained in Section IV. Finally, the
paper is concluded in Section V.

II. LITERATURE REVIEW

This section provides an overview of recent developments
made in the edge computing domain. In the following subsec-
tions, we discuss various approaches that are proposed to deal
with issues like security, privacy, and data management using
machine learning in the edge computing architecture.

A. Security Efforts
A survey on research challenges in connecting edge and

cloud computing architectures was presented in [6]. In this
survey, the research challenges focus on security and forensic
issues when achieving a higher throughput using concurrent
access and mobility support. Another survey on extending
cloud services using mobile edge and fog computing archi-
tectures was presented in [7]. This survey highlights various
security and resilience issues when using cloud computing
services over public networks. A survey on security issues
in Internet of Things (IoT) based architectures supported by
mobile edge computing was presented in [8]. This survey
focuses on the use of mobile edge computing to resolve
security issues in certain IoT applications, e.g., environment
perception and vehicular networks. Another survey on security
and privacy issues in edge computing paradigm was presented
in [9]. This survey analyzes existing security and privacy
attacks and countermeasures provided by the traditional edge
computing paradigm. Surveys presented in [6]–[9] highlight
various security issues in edge computing based architectures.
However, these surveys do not highlight security issues when
streaming multimedia data generated by real-time industrial
applications.

A secured IoT service architecture, based on edge and cloud
computing, was presented in [10]. In this architecture, a trust
evaluation mechanism is introduced to reduce resource con-
sumption and improve IoT-cloud services. A secured pairing-
based key agreement protocol for smart grids based on the
edge computing architecture was proposed in [11]. This proto-
col provides an anonymous and secured authentication facility
between utility control and smart meter without involving a
third party. A two-layer detection engine with hybrid feature
analysis for edge computing paradigm was proposed in [12].
This engine detects various mobile IoT malware as com-
pared to the existing malware detection engines. Approaches
presented in [10]–[12] provide security services in the edge
computing based environments. However, these approaches
are computationally complex, and may not be feasible for
industrial applications generating real-time multimedia data.
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B. Privacy Efforts

A survey on security and privacy challenges in the edge
computing architecture was presented in [13]. In this sur-
vey, various security and privacy concerns are reviewed, and
ongoing research efforts and future research directions are
highlighted. A survey of different IoT-related architectures was
presented in [14]. In this survey, various technologies and
applications, which can help in addressing security and privacy
challenges in IoT-related architectures are discussed. Various
privacy-preserving issues in querying IoT-related architectures
were surveyed in [15]. This survey focuses on recent privacy-
preserving approaches along with their pros and cons. Surveys
presented in [13]–[15] discuss various privacy-related issues in
the edge computing architecture. However, these surveys do
not provide a discussion on privacy-preserving issues during
multimedia streaming in the edge computing architecture.

Privacy-preserving schemes for mobile edge computing
applications were proposed in [16], [17]. These schemes
encrypt data to preserve the privacy of end-devices. A privacy-
preserving scheme based on differential privacy was proposed
in [18]. In this scheme, the Laplacian mechanism is applied
to unknown attributes of collected data to protect the privacy.
A privacy-preserving framework based on local differential
privacy was proposed in [19]. In this framework, data are ag-
gregated and distilled at network edge to preserve the privacy
of users’ sensitive information. A privacy-preserving approach
for mobile edge clouds was proposed in [20]. In this approach,
heuristics strategies are adopted at network edge to distract
eavesdroppers by mimicking users’ mobility and minimizing
users’ tracking accuracy. Approaches presented in [16]–[20]
use computationally complex processes to preserve the privacy
of end-users and applications, and may not be feasible for real-
time edge computing based applications operating in industrial
environment.

C. Machine Learning Efforts

A survey on the use of machine learning techniques in
the edge computing architecture was presented in [21]. This
survey reviews different machine learning techniques that can
be used to analyze data streams generated by various industrial
applications. Surveys on machine learning algorithms for
IoT-based architectures and wireless sensor networks were
presented in [22]. In these surveys, various machine learning
algorithms are studied to analyze the generated data in the
IoT-based architectures and wireless sensor networks. These
surveys describe various challenges, such as sink scheduling,
congestion control, synchronization between services, energy
harvesting, and response time. Surveys presented in [21],
[22] discuss various machine learning algorithms to deal with
different time critical factors in IoT and edge computing
architectures, however, they do not provide any discussion on
real-time multimedia data processing.

Personalized healthcare systems, based on cloud and edge-
enabled network, were presented in [23], [24]. These systems
use edge computing and deep learning technologies to process
big healthcare data in real-time. A deep learning and edge
computing based system for food recognition was proposed in

[25]. This system uses deep learning based visual food recog-
nition algorithms to overcome latency and battery lifetime
issues faced by end-devices. Systems proposed in [23]–[25]
use deep learning techniques to deal with latency and response
time challenges faced by IoT-based applications. However,
they may not be feasible for real-time industrial applications.

III. RELIABLE AND SECURE MULTI-LEVEL EDGE
COMPUTING

In this section, we explain our proposed RaSEC framework.
A block diagram of our proposed framework is shown in
Fig. 1. Our proposed framework operates in three phases.
In the first phase, multimedia data generated by industrial
applications are forwarded to LOEDs as shown in Fig. 1.
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Fig. 1. RaSEC Framework

The industrial applications are using Multimedia Sensor
Nodes (MSNs) to generate the data. These nodes build
up a network, called Wireless Multimedia Sensor Network
(WMSN). After receiving the data, the LOEDs apply a
lightweight aggregation technique to reduce the size of data
and preserve the privacy of end-devices by hiding their IDs
and location coordinates information. The LOEDs forward
aggregated data to nearby LTEDs. The LTEDs are responsible
to collect data from LOEDs and forward to the HLEDs
without revealing information of LOEDs. In the second phase,
the LTEDs need to register with HLEDs before forwarding
the collected data. The registration process is based on a
mutual handshaking mechanism and completed in five steps.
In the last phase, after receiving the data from registered
LTEDs, the HLEDs use a CNN-based architecture to detect
the movements of objects. If a movement is detected, the
data are forwarded to cloud servers for further analysis. In
the following subsections, we explain these phases in detail.
Symbols used in the following subsections are summarized in
Table I.
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Notation Description
γ Similarity index value

Hs,Hr Histograms
β LTED
R Registration request
µ Session key
η Random nonce
C Challenge
∆ Time-stamp
δ Authentication value
R Response
Ω Registration certificate
F Function

f1, f2 Functions to motion detection
α1, α2 Predefined weights
s Data sample
I Total data samples
K Total predefined motions

TABLE I. Notations of RaSEC framework

A. Aggregation Phase

In this phase, two tasks are performed, i.e., distributing an
underlying WMSN into multiple clusters and aggregating the
data. These two tasks are performed to manage the network
and generated data, and preserve the privacy of data sources,
i.e., MSNs.

In the first task, the WMSN is partitioned into multiple
clusters. Each cluster consists of N nodes. Out of these N
nodes, only one node is selected as a LOED to manage and
represent the cluster. The selected LOEDs are responsible
to collect data from member MSNs and coordinate with
the LTEDs. The first task, i.e., partitioning the WMSN and
selecting the LOEDs, is based on our previous works published
in [26]–[28].

The second task deals with captured multimedia data. In our
proposed framework, we consider videos as the multimedia
data. In practical scenarios, the MSNs are randomly deployed.
Due to random deployment, it is possible that multiple MSNs
may capture the same scene but at different angles. As a
result, videos with similar visual contents are forwarded to
LOEDs which creates the redundancy issue. Redundant video
data not only require extra computational resources, but also
require extra bandwidth to transmit from LOEDs to HLEDs
via LTEDs. Furthermore, if the redundant video data are
leaked during transmission, it may reveal information of data
sources, and as a result, the privacy of MSNs can easily
be compromised. To address these two challenges, i.e., data
redundancy and privacy protection, the LOEDs aggregate the
received video data and location coordinates information of
member MSNs. The aggregation of location coordinates infor-
mation is a simple process and does not require computational
resources. In this process, the LOEDs compute a mean value
of location coordinates of member MSNs in a cluster and use
the computed mean value as location coordinates of aggregated
data. From aggregated location coordinates information, it
is hard to locate the actual location coordinates values of

individual MSNs, and as a result, their privacy is preserved.
To minimize the redundancy in captured videos, the LOEDs

uses a similarity-based technique. It is a lightweight technique
that distributes the videos into two data sets, i.e., standard
and redundant data sets. In cluster-based communication, the
LOEDs also captures videos. Videos captured by LOEDs are
placed into the standard data set while videos captured by
member MSNs are placed in the redundant data set. A video
is a combination of multiple pictures called frames. In video
processing, the frames are distributed into multiple groups
where the sizes of groups can be variable or fixed, depending
upon the availability of buffer space and computational power.
In our proposed framework, the videos in each data set are
distributed into multiple groups of frames of same size, i.e.,
10 video frames per group, and the comparison is performed
on a frame-by-frame basis as shown in Fig. 2.

Standard Video Frame

Redundant Video Frame

Aggregated Video Frame

Fig. 2. Frame Comparison

In the comparison process, a video frame can be partitioned
into multiple blocks of different shapes and sizes. Unlike
the fixed shape and size, the variable shape and size can
produce high accuracy at the cost of computational complexity.
The variable shape and size based processing is useful for
applications like tracking and identification of multiple objects
moving with variable speeds. However, in real-life scenarios, it
is possible that the MSNs may not always be capturing videos
containing multiple objects moving with variable speeds. To
reduce the computational complexity and processing load on
LOEDs, our proposed framework partitions video frames into
square-shaped blocks of equal size, i.e., 64× 64. After parti-
tioning the video frames, a histogram normalization technique
is applied on each block to compute a similarity index value
(i.e., γ) as shown in the following equation.

γ = Hs × log2
(
Hs

Hr

)
, (1)

where Hs and Hr represent histograms of blocks of video
frames from standard and redundant data sets, respectively.
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After computing the similarity index value, it is com-
pared against a predefined threshold (i.e., γ), where γ ∈
(γmin, γmax). If the computed value is less than the predefined
threshold, then the block is deemed to be dissimilar from the
corresponding block selected from standard data set. If 25%
or more blocks in a selected video frame from redundant data
set are found dissimilar, the frame is considered different and
is kept in the buffer. Once the comparisons of frames from
both data sets are completed, the LOEDs create aggregated
videos consisting of all dissimilar frames. After aggregating
the video data, the LOEDs associate it with the computed
mean values of location coordinates information and forward
them to LTEDs.

B. Registration Phase

To securely transmit data to HLEDs, the LTEDs need to
get registered. The registration is performed in five steps,
i.e., Registration request, Challenge to request, Response to
challenge, Registration certificate, and Share databases of
LOEDs.

In the first step, an LTED (i.e., βj , j ∈ {1, 2, · · · , J}) sends
a registration request to a nearby HLED. It is possible that the
HLED may be dealing with multiple LTEDs. Therefore, the
requesting LTED creates an encrypted registration request (i.e.,
Rj) by using the following equation.

Rj = AES{j, (ηj ⊕ µj)}, (2)

where µj and ηj represent a session key and a random nonce,
respectively, each having 128-bit length and being unique to
the requesting LTED. The AES-128 bit in CBC mode (Cipher
Block Chaining) is used for encrypting messages between
nodes. It is chosen due to its smaller computational and
storage overhead as compared to other popular algorithms like
Rivest–Shamir–Adleman (RSA) and Elliptic-Curve Cryptogra-
phy (ECC).

After receiving the Rj , the HLED decrypts and retrieves
the embedded values. In the second step, the HLED uses
the retrieved values to create an encrypted challenge for the
requesting LTED. The encrypted challenge (i.e., Cj) is created
using the following equation.

∆j = (j || ηe1), (3a)

δj = (j || ηj || ηe1), (3b)

Cj = AES{∆j , δj}, (3c)

where ∆j and δj represent a time-stamp and an authentication
value, respectively, and ηe1 is a random nonce generated
by HLED. The time-stamp represents the total amount of
session time between the requesting LTED and HLED, and
the authentication value is used to create a response to the
challenge generated by HLED.

After receiving the encrypted challenge from HLED, the
LTED decrypts and retrieves the embedded values. In the third
step, the LTED creates an encrypted response (i.e., R̄j) using
the forwarded δj and ηe1 as shown in the following equation.

R̄j = AES{ηj , (δj || (ηj ⊕ µj) || ηe1)}. (4)

After receiving the encrypted response, the HLED verifies
the identity of the requesting LTED by retrieving δj and ηe1 .
If the values exist, the LTED is considered authentic. In the
fourth step, the HLED generates a registration certificate (i.e.,
Ωj) by using the following equation.

Ωj = ηe2 .(j || (ηj ⊕ µj)), (5)

where ηe2 is another random nonce generated by HLED.
After generating the registration certificate, the HLED

makes two copies of it. The first copy is sent to the requesting
LTED as an acknowledgment and the second copy is stored at
HLED for future communication. In the last step, the LTED
forwards the first batch of aggregated data upon receiving the
registration certificate, to the HLED. This entire registration
process is summarized in Algorithm 1.

Algorithm 1 LTED Registration
1: Initialization:

• βj ←− j, where j ∈ {1, 2, 3, ..., J}
• βj ←− [µj , ηj ]
• HLED←− [ηe1 , ηe2 ]
• Input [j = 2128, µj = 2128, ηj = ηe1 = ηe2 = 2128]

2: βj → HLED : {Rj , Registration request}
3: HLED→ βj : {Cj , Challenge to request}
4: βj → HLED : {R̄j , Response to challenge}
5: if (δj , ηe1) exist then
6: βj is authentic
7: HLED→ βj : {Ωj , Registration certificate}
8: else
9: βj is unauthentic

10: end if

C. Analysis Phase

In this phase, we use a network of layers and modules
based on CNNs to analyze the aggregated videos and detect
the movements of objects. This network consists of four
modules and two ordinary convolutional layers. The first
two modules are called convolutional modules, and the third
and the fourth modules are called detection and regression
modules, respectively. The convolutional modules consist of
two variable-sized convolutional kernels. These kernels are
used to extract different features from input data on different
scales. They can also help in detecting objects of different
sizes. The detection and regression modules consist of two
fully connected layers to analyze the features that are extracted
and forwarded by the lower layers. The output of the detection
module varies between 0 and 1 while the regression module is
used to predict different characteristics of the detected objects.
This architecture is based on a work proposed in [29]. It was
used to analyze and understand a scene. Based on this work,
we propose a function (i.e., F ) that performs two tasks, i.e.,
detecting a motion and determining the degree of the motion,
and is represented by the following equation.
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F = α1f1 + α2f2, (6)

where f1 and f2 are functions to detect a motion and the
degree of a motion, respectively, and α1 and α2 are prede-
fined weights to adjust relative performances of f1 and f2,
respectively.

The function f1 is based on the Softmax loss function, and
is used to detect the motion of an object in a specific region.
If an input data sample is represented by si, and its ground
truth label by li, for i = 1, 2, · · · , I , where I represents the
total number of input samples, then the si can be analyzed by
function f1 as shown in the following equation.

f1 = −

∑I
i=1

∑K
k=1 1{li = l̂k}log

{
em

(k)
1 (si)∑K

k=1 em
(k)
1 (si)

}
I

, (7)

where K represents the total number of predefined motions,
mk

1(si) represents the corresponding output of the Softmax
classification layer, l̂k is a real value for possible results, and
em

k
1 (si) represents the possibility of a specific type of motion

and varies between 0 and 1.
The function f2 is a regression function used to define the

degree of motion. This function is based on a bounding box
regression method proposed in [30]. It is a popular technique
to refine or predict localization boxes in object detection
approaches. Typically, bounding-box regressors are trained to
regress from either region proposals or fixed anchor boxes to
nearby bounding boxes of a pre-defined target object classes.
In our proposed framework, the function f2 is expressed in
the following equation.

f2 =

∑I
i=1 smoothL1(m

(di)
2 (si)− di)

I
, (8a)

smoothL1(c) =

{
0.5c2, if |c| < 0

|c| − 0.5, otherwise
, (8b)

where m
(di)
2 (si) represents the output of the SmoothL1 lo-

calization layer and di represents the central coordinates,
dimensions and Euler angles of moving objects.

The HLEDs analyze the aggregated videos forwarded from
LTEDs using the aforementioned CNN-based network and
make the following decisions.

• If no motion is detected, the aggregated videos are
discarded by assuming that the data do not contain any
useful information and do not need to be forwarded to
the cloud servers.

• If a motion is detected, then some actions need to be
taken by HLEDs.

– Priorities need to be set for data coming from dif-
ferent LTEDs.

– The LTEDs forwarding multimedia data containing
the highest degree of motion need to be given the
highest priority and their data need to be processed
first at the HLEDs. The multimedia data containing
the highest degree of motion need to be offloaded

immediately and sent to the cloud servers for a
detailed analysis.

– If the multimedia data contain a small degree of
motion, the HLEDs need to wait for more data to
arrive from LTEDs to analyze whether the degree
of motion is consistent or keeps increasing. In either
case, the multimedia data need to be offloaded to the
cloud servers for further analysis.

IV. EXPERIMENTAL SETUP

In this section, we evaluate the performance of our proposed
framework. This framework is designed to deal with three
challenges, i.e., privacy, security, and response time. Metrics
like computational and transmission overheads are used to
evaluate the performance of privacy and security features of
our proposed framework. The resilience of security feature
is also tested against well-known attacks. The performance of
analysis feature is evaluated in terms of detection accuracy. For
simulations, we use Matlab 2018a. The proposed framework
consists of 500 randomly deployed MSNs. In each round of
simulation, only 5% MSNs are selected as LOEDs.

Our proposed framework is compared with existing privacy-
preserving frameworks, i.e., SLICER with Transfer on Meet
Up (SLICER-TMU) and Minimal Cost Transfer (SLICER-
MCT) [31]. These two frameworks use k anonymity rule for
privacy preservation. The privacy is preserved through data
coding techniques and message transfer strategies. Similar to
our proposed framework, these frameworks use multiple algo-
rithms to achieve the goal. We also compare the performance
with another framework, called Simple Exchanging (SE) [32].
In this framework, the privacy of location coordinates is
preserved by applying a decentralized mechanism, i.e., aggre-
gation technique. Although, these frameworks provide privacy-
preserving services, they have certain limitations. Firstly, they
can only protect the privacy of location coordinates of data
sources. Secondly, they are designed for small-scale networks.
Lastly, their is no support to preserve the privacy in end-to-end
communication. On the other hand, our proposed framework
covers all these limitations as shown in simulation results in
this section.

In the MLEC architecture, edge devices on each level are
responsible for multiple tasks. The LOEDs are responsible
for verifying and authenticating newly joining MSNs and
managing existing MSNs. They are also responsible to protect
the privacy of member MSNs. To protect the privacy, the
LOEDs use an aggregation technique. Unlike the location
coordinates aggregation, the data aggregation task becomes
computationally intensive if it is performed on multimedia
data, e.g., videos. To aggregate multimedia data, the LOEDs
require computational resources and buffer storage to process
the forwarded videos on frame-by-frame bases. Fig. 3 shows
the performance of our proposed framework in terms of
computational overhead. As shown in Fig. 3, our proposed
framework has a lower computational overhead as compared to
the SLICER-TMU and SLICER-MCT frameworks, but has a
slightly higher computational overhead than the SE framework
due to the absence of aggregation process.
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Fig. 3. Computational Overhead

Data aggregation not only helps in preserving the privacy of
member MSNs, but also helps in reducing the size of generated
data. In the case of multimedia data, sufficient amount of
bandwidth is required, and as a result, the underlying WMSN
may face problems like heavy network traffic, latency, and end-
to-end delay. These problems ultimately affect the response
time of applications operating in industrial environments. As
shown in Fig. 4, the SE framework generates a huge amount
of network traffic which ultimately increases the transmission
overhead. On the other hand, our proposed framework shows
the least transmission overhead and outperforms the targeted
frameworks.

Fig. 4. Transmission Overhead

In Fig. 5, we evaluate data freshness in the presence of up
to 10 malicious nodes. A high percentage of data freshness
means that a scheme is highly robust against replay attacks.
We consider malicious nodes as those entities that infiltrate
a network by registering with the HLEDs. Our proposed
algorithm, i.e., Algorithm 1, is highly resilient against replay
attacks and ensures that the freshness of data is maintained
all the time. In the presence of 10 malicious nodes, the
average data freshness of our proposed framework is 98.15%,
the SLICER-TMU framework is 96.3%, the SLICER-MCT is
95.5%, and the SE framework is 92.01%, over a period of
120 minutes. Our proposed framework achieves the highest
percentage of data freshness and hence sustains itself against
replay attacks over the course of time. Unlike our proposed
framework, the Slicer-TMU and Slicer-MCT frameworks ex-

perience a significant decrease in data freshness after 45
minutes of network deployment. The SE framework, on the
other hand, experiences a significant drop of 7.5% after the
initial 20 minutes of network deployment. Unlike the targeted
frameworks, our proposed framework is resilient against replay
attacks and is marginally prone to such attacks. The proposed
algorithm 1 is lightweight. It uses 128-bit encryption and
consumes less energy at LTEDs. It is worth to note that the
presence of 256-bit encryption can further enhance the data
freshness and ensure a further reduction of replay attacks.
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Fig. 5. Data Freshness

In Fig 6, packet delivery ratio is shown for a varying number
of malicious nodes. The average packet delivery ratio for our
proposed framework is 94.96%, the SLICER-TMU framework
is 92.23%, the SLICER-MCT framework is 85.31%, and the
SE framework is 74.1%. Unlike our proposed framework, the
targeted frameworks experience significant drops in the packet
delivery ratios as the number of malicious nodes increases.
In general, this metric is associated with the authentication
rate. During the authentication process, the malicious LTEDs
that go undetected forward their malicious and fabricated data
packets to HLEDs. Due to this forwarding, the legitimate
LTEDs are unable to transmit their data and they need to
wait for longer times. This longer wait may result in buffer
overloading, which ultimately leads to packet-drop and a loss
of valuable information.
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Videos processed through our proposed framework and the
targeted frameworks are analyzed on HLEDs to detect the
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movements of objects. In our proposed framework, we assume
that the member MSNs are fixed nodes and capture videos with
static backgrounds. To perform a comparison, we use different
metrics, i.e., Recall (Re), Precision (Pr), and F-measure. The
F-measure is approximately the average of the precision and
recall when they are close, and is more generally the harmonic
mean, which, for the case of two numbers, coincides with the
square of the geometric mean divided by the arithmetic mean.
It is also known as F1 measure because recall and precision
are evenly weighted. These metrics are commonly used in
the machine learning domain to perform a quantitative-based
evaluation and test the accuracy. These metrics are expressed
in the following equations.

Re =
#tp

#tp+ #fn
, (9a)

Pr =
#tp

#tp+ #fp
, (9b)

F-measure =
2× Pr× Re

Pr + Re
, (9c)

where #tp, #fn and #fp represent the total number of true-
positives, false-negatives and false-positives, respectively.

Multimedia data are always compressed at sources before
transmission and decompressed on destinations. Here, we
consider the LTEDs as sources and the HLEDs as destination.
The reconstruction quality depends on various factors, e.g.,
compression technique, quantization parameters, packet-drop
during transmission, and resolution of videos. In this work,
the objects and their movements are detected in compressed
and aggregated videos. A comparison based on the Re, Pr, and
F-measure is shown in Table II. This comparison is performed
on video data generated by our proposed framework and
the targeted frameworks. It can be seen in Table II that our
proposed framework shows a better performance and achieves
the highest scores as compared to the targeted frameworks.
The SE framework does not aggregate multimedia data, and
as a result, extensive compression are applied to multimedia
data to reduce the size. Higher compression ratios and packet-
drop errors make the detection task difficult. Therefore, the
lowest performance is observed in the case of SE framework.

Method Average
Re

Average
Pr

Average
F-Measure

SLICER-TMU 0.7963 0.8095 0.8028

SLICER-MCT 0.7937 0.8139 0.8037

SE 0.8033 0.8673 0.8341

RaSEC 0.8358 0.8923 0.8631

TABLE II. Quantitative Comparison

V. CONCLUSION

In this paper, we have proposed an intelligent framework
(RaSEC) for reliable and secure multi-level edge computing
for industrial applications. In our proposed framework, an
underlying WMSN is partitioned into small clusters. Each

cluster is represented by an LOED. The LOEDs collect data
from member MSNs, aggregate it to preserve the privacy of
member MSNs and reduce the volumes of data, and forward to
nearby LTEDs. The LTEDs are registered with nearby HLEDs
through a multi-step mutual handshaking mechanism. Once
the registration process is completed, the LTEDs are allowed
to forward the aggregated multimedia data to the HLEDs for
analysis. The HLEDs use a CNN-based architecture to analyze
the aggregated data to detect the movements of objects.
Simulation results have shown that our proposed framework
outperforms the existing frameworks in terms of various
metrics. In future, we plan to extend the scope of our proposed
framework in mobile environments, e.g., mobile crowdsensing
and computing. We also plan to add mathematical modeling
and see the behavior of our proposed framework in large-scale
networks.
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