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Generalized Bregman envelopes and proximity operators

Regina S. Burachik? Minh N. Dao! and Scott B. Lindstrom*

Abstract

Every maximally monotone operator can be associated with a family of convex functions, called
the Fitzpatrick family or family of representative functions. Surprisingly, in 2017, Burachik and
Martinez-Legaz showed that the well-known Bregman distance is a particular case of a general
family of distances, each one induced by a specific maximally monotone operator and a specific
choice of one of its representative functions. For the family of generalized Bregman distances,
sufficient conditions for convexity, coercivity, and supercoercivity have recently been furnished.
Motivated by these advances, we introduce in the present paper the generalized left and right
envelopes and proximity operators, and we provide asymptotic results for parameters. Certain
results extend readily from the more specific Bregman context, while others only extend for cer-
tain generalized cases. To illustrate, we construct examples from the Bregman generalizing case,
together with the natural “extreme” cases that highlight the importance of which generalized
Bregman distance is chosen.
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1. Introduction

In this paper, unless stated otherwise, (X, ||-]|) is a reflexive Banach space with dual (X*, ||-||,), and
[p(X) is the set of all proper lower semicontinuous convex functions from X to |—oo, +00].

In 1962, Moreau [33] introduced what has come to be known as the Moreau envelope,
. 1
env, o: X — [—00,+00] 1 y = xlg’( {6’(:5) + ’yD”,”z/g(a:,y)} (1)
and its corresponding proximity operator

1
Prox,g: X — X: y — argmin {0(:15) + D||,||2/2(ac,y)} , (2)
zeX Y

where Dj2/2: (2,y) — [lz — y|[*/2. Moreau worked in a Hilbert space and with parameter v = 1,
and then, Attouch [1, 2] introduced the more general parameter v € [0, +00[; see also [5, Chapter 12].
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In 1967, Bregman [11] introduced the distance associated with a differentiable convex function

f,
- —(V , T — if y € intd ,
Dy X x X = [0,400] : (2,9) 1 f@) = fly) = (Vfy),z—y) ify in om f 3)
400 otherwise,
which now bears his name. When f is the energy, namely f = || - [|?/2, it is clear that, for all

z,y € X, D¢(z,y) = ||z — y||*/2 is the Euclidean distance squared. When f is not the energy, the
distance may fail to be symmetric and so one is led to consider the left and right envelopes defined
by

. 1

énv,wz X — [—o0,400] Yy — xlg)f( {G(x) + fny(a;,y)} (4a)

and env. ,: X — [—00,400] : & — inf {H(y) + 1Df(:n,y)}, (4b)
v yeX vy

where the left and right proximity operators are defined as in (2), with Dy in place of D2 /5.

The asymptotic properties of the envelopes and proximity operators for differentiable f with
respect to the parameter v were explored in [7]. Bregman distances admit proximal point methods
while also casting light on those constructed from the classical Moreau envelopes; see, for example,
[4, 6, 14, 15, 17, 20, 21, 23, 28, 32|, as well as [16, Chapter 6].

Recently, Burachik and Martinez-Legaz [18] have introduced two distances based on a represen-
tative function h of a maximally monotone operator T":

Dy (a,y) 1= k. (h(r,v) = (a,0)) (52)
and Dglh(a;, y) = :EuIPy (h(z,v) — (z,v)). (5b)

When 7' = Vf and h(z,Vf(y)) = (f® f*)(z,Vf(y)) := f(x) + f*(Vf(y)) (which is the Fenchel-
Young representative), these distances reduce (under mild domain conditions), to the Bregman
distance Dy(x,y). We therefore call these more general distances as the generalized Bregman dis-
tances (or GBDs).

Bregman proximal methods may be desirable for problems of high dimension. For certain
objectives, using a different Bregman distance than the square norm reduces the computational
complexity of computing a proximal update. For an example of reduction from n3 to n? with SDP-
representable constraints, see [22, 31]). Their work illustrates that a well selected Bregman distance
should complement the problem structure. To that end, choices from the broader class of GBDs
may turn out to be useful.

In [24], the authors devise a prox-Bregman technique for feature extraction in machine learning,
with an application to gene expression problems, wherefore outliers are present while data is noisy
and sometimes missing. The latter properties are known to prevent other approaches—such as
principal component analysis, cluster analysis, and polytomic logistic regression—from delivering
useful results. In particular, the Bregman distance is built from the Boltzmann—Shannon entropy,
because this choice naturally enforces nonnegativity constraints. This distance is equal almost
everywhere to the GBD for the Fenchel-Young representative of the logarithm; we study here the
broader GBD family for the logarithm, noting that more choices of Bregman distances may result
in more efficient methodologies.



Bregman distances also have a prominent role in the solution of important variational problems.
An example of this is its use for solving the equilibrium problem in Banach spaces, see, e.g., [27] as
well as [17]. This is one reason we choose to work in the more general Banach space setting.

More recently, [13] has provided a framework of sufficient conditions for coercivity and superco-
ercivity of the left and right GBDs. It has also shown how such properties are useful for establishing
coercivity of the sum of the distance together with a function in T'g(X).

Hence, it is natural to use these new coercivity properties for carrying out a detailed analysis
of the envelopes and proximity operators that are obtained when the GBD replaces the Bregman
distance in (4a) and (4b). In particular, ours can be seen as a unifying analysis which includes
Moreau envelopes as a particular case. The goal of the present work is to furnish this analysis. We
characterize the domains of the envelopes. We then show under what conditions the GBD envelopes
possess the same advantageous properties that we have when specializing to Bregman case, and
under what conditions those properties may be lost. We will illustrate with the same GBDs used
n [13]. We show, in particular, that the GBDs that arise from using the Fitzpatrick representative
generically share the same desirable properties as their Bregman-generalizing counterparts. Such
results will be important if some Fitzpatrick cases possess computational advantages over their
Bregman counterparts or admit envelopes that are useful for examining existing algorithms through
their dual characterizations.

Outline and contributions

In Section 2, we recall the generalized Bregman distances, along with some of their basic properties.
We also recall the coercivity framework as well as the computed distances recently established in
[13]. Moreover, we explain why these distances are important, since we use them to build the
envelopes and proximity operators in our examples.

In Section 3, we introduce the left and right GBD envelopes and their associated proximity
operators. We characterize the domains of the envelopes, and we provide sufficient conditions to
guarantee the attainment of minimizers so that the proximity operators have nonempty images.
The sufficient conditions rely upon the framework for coercivity established in [13].

In Section 4, we provide asymptotic results for the parameter v. We then show how the results in
the setting of GBDs vary from those we obtain more easily when specializing to Bregman distances.
We illustrate all examples with both left and right versions, along with images of the envelope
nets for a selection of v values. For all examples, we include three prototypical cases: the case of
the distance constructed from the Fenchel-Young representative (which, under certain conditions,
coincides with the classical Bregman distance), as well as the distances constructed from the smallest
and largest members of the representative function set.

We conclude in Section 5, and we provide explicit forms for all of our computed examples and
proximity operators in Appendix A.

2. Preliminaries

Given a nonempty subset C' of X, we denote by tc: X — |—00, +00] the indicator function of C,
i.e., to(z) := 0 when z € C and t¢(x) := +00 otherwise. We will denote by int(C) the interior of
C and by C the closure of C.

Let f: X — |—o00,+00]. The domain of f is defined by dom f := {x € X : f(z) < +oo},



the lower level set of f at height £ € R by lev<e f := {o € X : f(x) < £}, and the epigraph of
f by epif := {(z,p) € X xR : f(x) < p}. We say that f is proper if dom f # @ and lower
semicontinuous (Isc) at z if f(z) < liminf, ,z f(x). Unless specifically mentioned, these concepts
are with respect to the strong (norm) topology. The function f is said to be convex if

Ve,y € X, VA€ (0,1, f((1 =Mz +Xy) <(1=A)f(2)+Af(y); (6)

coercive if lim| 100 f(x) = 4005 and supercoercive if lim g 400 f(2)/[|z| = 400
For a proper function f: X — ]—o0,+00], its e-subdifferential (¢ € R,) is the point-to-set
mapping 0. f: X = X* given by
O-f(x) ={ve X" :Vye X, (y—a,v) < fly) — f(z) + ¢}, (7)

its subdifferential is Of := Oy f, and its Fenchel conjugate is the function f*: X* — |]—o0, 4-00] given
by

[ () := sup{(z,v) — f()}. (8)

zeX

From the definition, we directly obtain the Fenchel-Young inequality
V(z,v) € X x X*, f(2)+ f*(v) = (z,v) (9)
and for ¢ € R, we also have the following well-known characterization of 9. f:

flz)+ ff(v) < (z,v)+ e < v € 0-f(x). (10)

Given a point-to-set operator T: X = X* its domain is domT := {z € X : Ta # &}, its
range is ranT := T'(X), and its graph is G(T) := {(x,z*) € X x X* : 2* € Tx}. We say that T is
mazimally monotone if

(x,u) € G(T) <= V(y,v)eG(T), (r—y,u—v)>0. (11)

More properties and facts on maximally monotone operators can be found in [5, 16].

2.1. Representative functions

Let S: X = X* be a maximally monotone operator. Following [18, Definition 2.3], we say that a
function h: X x X* — |—o0, +00] represents S if it satisfies the following conditions:

(a) h is convex and norm x weak* lower semicontinuous in X x X* (the weak* topology in X* is
the smallest topology that makes continuous the linear functionals induced by = € X).
(b) Y(z,v) € X x X*, h(z,v) > (z,v).
(c) h(z,v) = (x,v) < (z,v) € G(S).
In this situation, we denote h € H(S) and call H(S) the Fitzpatrick family of S. We will make use,
in particular, of three prototypical members of H(S). These are as follows.

(i) The Fitzpatrick function of S, denoted as Fg, is defined by

Fs(z,y):== sup ((z—z,y—w)+(z,9)). (12)
(z,w)eg(S)

It is well known that Fg is the smallest member of H(S) in the sense that Fg < h for any
h € H(S), see [29];



(ii) We denote as og the largest member of #(S) in the sense that og > h for any h € H(S);
(iii) In the case when T'= Jf for f € I'y(X), we also consider the Fenchel-Young representative,
denoted as f @ f* € H(Of), where f & f*: X x X* — ]—o00, +0o0] is given by

V(z,v) € X x X% (f& f)(,v) = f(x) + [ (v). (13)

2.2. A distance between point-to-set operators

From now on, we assume that S: X = X* is a maximally monotone operator, h € H(S), and
T: X = X* any point-to-set operator. As in [18, Definition 3.1], for each (z,y) € X x X, we define

inf (h(z,v) — (z,v if (z,y) € dom S x dom T,
Do) o | A2, (D) = 20D it (020) "
400 otherwise

and Dglh(x,y) = veTy (14b)

sup (h(z,v) — (x,v)) if (z,y) € domS x dom T,
400 otherwise.

When T is point to point, we simply write Déﬁ = DZlh = Dglh. In some situations, we will refer to

both distances (14a) and (14b) simultaneously by the symbol D}’h.

If a distance is of form (14a) or (14b), we call it a generalized Bregman distance or GBD for
short. We mentioned before that the GBDs specialize to the Bregman distance under certain
circumstances, which we now make precise. To a proper and convex function f: X — ]—o0, +0o0],
we associate two Bregman distances (see [32]) defined by

Di(x,y) =f(z) — f(y) + (=) (15a)
and Dgc(:v,y) =f(x) — fly) + S(;lf[g )(y —Z,0). (15b)
ve Yy

It is known that the GBDs specialize to the Bregman distances in the case where the Fenchel-
Young representative is used [18, Proposition 3.5], under mild domain conditions illuminated in [13,
Proposition 2.2]. We recall this result in the following proposition.

Proposition 2.1 (GBDs specialize to Bregman distances). Let f € T'o(X). Then, for all
(z,y) ¢ (dom f\ domdf) x domdf,

b, @ f* SIS
Dy (@) = Dy(w,y) and D[ (wy) = Di (). (16)

Remark 2.1. By Proposition 2.1, we see that, in the case when dom f \ domdf = @, the two
kinds of distances are everywhere equal. However, if f is the Boltzmann—Shannon (see (34)), then
dom f\domdf = {0}, and the two kinds of distances fail to be equal on the set {(0,y)| y > 0} (see
[13] for more details).

As a motivation for considering these new distances, we provide below connections between
our generalized distances and solutions of variational problems. First, we consider the problem of
finding zeros of a sum of operators, and second, the problem of minimizing a DC (difference of
convex) function. In both cases, we need S different than 7', with an operator 7" which may not be
monotone.



Remark 2.2. In the next proposition, we use the Eberlein-Smulian theorem, which states that a
subset of a Banach space is weakly compact if and only if it is weakly sequentially compact (see
[26, Chapter III, page 18]). We also use the fact that, if X is a reflexive Banach space and a map
V : X = X* islocally bounded at a point in the interior of its domain, then there is a neighbourhood
of that reference point which is norm-closed and bounded, and hence weakly compact (by Bourbaki—
Alaoglu’s theorem and reflexivity). We then use the Eberlein-Smulian theorem to deduce that the
given neighbourhood is in fact weakly sequentially compact.

Given h € H(S), the enlargement SP of S is defined by
Sty .= {ve X*: h(z,v) — (z,v) < e} (17)

More details on S” can be found, e.g., in [16, 19]. We will show that the generalized distances can
be used to define approximate solutions of problem

find z € X such that 0 € Sz + Tz. (18)

The proof of the next result follows closely the one in [18, Proposition 3.7], but we include it here
for the convenience of the reader.

Proposition 2.2. Let X be a reflexive Banach space. Suppose that S: X = X* is a maximally
monotone operator and T: X = X* is a point-to-set operator. Fiz any h € H(S), ¢ € R4, and
x € X. Consider the following statements.

(a) 0 € St + Tx.

(b) Dl (z,z) <e.
Then (a) = (b). Moreover, if dlomT is open and T is locally bounded with weakly closed images,
then the two statements are equivalent.

Proof. (a) = (b): Note that (a) implies the existence of w € (—Tx)NS"z. By definition of Db_’gﬁ,
we have

Dbj}(x,w) = velEsz h(z,v) — (x,v) < h(z,w) — (z,w) < ¢, (19)

where we used the fact that w € S"z (see (17)) in the rightmost inequality.

(b) = (a): It follows from (b) that Db_]%(a:,a:) < 400, and so z € dom(—T") = domT. Now,
assume that dom T is open and T is locally bounded with weakly closed images. Then, the same
properties hold for —7T too. Consequently, the set —Tx is contained in a neighbourhood which
is norm-closed and bounded. Using now Remark 2.2, we have that the set —Tz is contained in
a neighbourhood which is weakly sequentially compact. Using also the assumption that h(z,-) is
weakly continuous, we conclude that the infimum in the expression for DE}}(QC, x) must be attained
at some point in —7T'z. Namely, there exists v € —T'x such that

h(z,v) — (z,v) = Db_’}}(x, z) <eg, (20)

which implies that v € SPz. Since —v € Tz, we get (a). [

Note that, if z satisfies condition (a) in Proposition 2.2, it can be seen as an approximate solution
of (18). Indeed, by taking ¢ = 0, condition (a) becomes (18). In the latter case (i.e., when ¢ = 0),
condition (b) in Proposition 2.2 can be seen as a necessary optimality condition for problem (18).
The condition becomes sufficient when 1" verifies additional hypotheses.



We show next that an optimality condition for minimizing a DC function can be expressed by
means of the sharp distance. In the proposition below, the equivalence between statements (a) and
(b) is well known in finite dimensional spaces (see, e.g. [30, Theorem 3.1]). The analogous result in
Banach spaces is hard to track down, so we decided to include its proof here.

Proposition 2.3. Let f: X — |—o00,+0o0] and g: X — R be proper lower semicontinuous convex
functions. Then, the following statements are equivalent

(a) z is a global minimum of f —g on X.
(b) For alle € Ry, d.9(x) C O-f(x).
(c) For alle € Ry, Dg’g;@f (x,z) <e.

Proof. (a) = (b): Assume that z is a global minimum of f — g on X. Then, for all y € X,

f(x)=g(x) < f(y)—g(y), and so g(y) —g(x) < f(y)— f(z). Now, let any ¢ € Ry and any v € 0-g(x).
We have, for all y € X,

(y —x,v) +e <g(y) —g(z) < fly) — f(z), (21)

which implies that v € 9. f(z). Therefore, 0-g(x) C 0. f(x).

(b) = (a): Assume that x is not a global minimum of f —g on X. That is, there exists T € X
such that f(Z) — g(T) < f(x) — g(z). Then, we can pick 0 < g9 < [¢(T) — g(x)] — [f(T) — f(x)] and
u € 0z,9(T) (see [36, Theorem 2.4.4(iii)]). By definition, for all y € X,

(y —T,u) < g(y) — 9(T) + eo, (22)
which can be written as
(y—z,u) < g(y) —g(z) +¢, (23)

where ¢ := g(x) — g(T) + 0 — (x — T,u) > 0. Since y € X is arbitrary, the inequality above yields
u € J:-g(x). On the other hand,

(T —z,u) =9(T) —g(x) —eo+e> f(T) - f(z) +e, (24)

which implies that u ¢ 0. f(z). Hence, (b) does not hold. We deduce that if (b) holds, then so does
(a).

We have shown the equivalence between (a) and (b). To see the one between (b) and (c), we
note that

DE (@ m) = sup ((f& f)(@0)—(z,0) = sup (f(2)+f ()= (w.0). (25)
vEDg(x) vEDeg(x)

Fix any € € Ry, the above expression and characterization (10) of J. f imply that

Dy (1,2) <e = Vo€ dg(x), flx)+ [ (v)—(z,0)<e (26a)

< Yv € 0d.9(x), ve€If(x) (26D)

— O9(z) € 0:f(x), (26¢)

which completes the proof. |

We will make use of the following lemma to simplify our analysis of the asymptotic behaviour
in Section 4.



Lemma 2.1. Let f € To(X) and suppose that h € H(Of) satisfies
Y(r,0) € dom f x randf, h(r,0) < (f & [*)(@,0) = [(z) + F*(0). (27)
Then the following hold:
(i) domDj} = domdf x domdf.
(ii) dom df x int(dom df) C dom Dg’? C domdf x dom df. Consequently, when domdf is open,
then dong’]}f =domdf x domdf.

Proof. Let (x,y) € domdf x dom df. It follows from the assumption on h and Proposition 2.1 that
*,h *, *
Daf (l’,y) SDaJ!@f ($ay) :D}(l',y), (28)
where x € {b, f}.

(i): By definition, we have that dom DE’}L C dom df x dom df. Hence, it is enough to prove the
opposite inclusion. Indeed, fix any vy € df(y). By (28) for x = b and then by Cauchy—Schwarz
inequality, we have that

Djf(e,y) < Do) = (@)~ F@) + nf (y—a.0) (292)
< f(@) = fW) + lly ==l - lvoll < +o0, (29b)

Here, the final inequality follows from the fact that x,y € domdf C dom f. Thus (x,y) €
dom Dg’}c@f*, and we deduce that dom Dg’? =dom df x dom Jf.

(ii): Asin part (i), we always have that dom Dg’;f C domf xdom df. For the leftmost inclusion,
assume that (z,y) € domdf x int(dom df). Since y € int(dom df) and Jf is maximally monotone,
the set Of(y) is bounded, so there exists a constant M (y) > 0 such that ||v]] < M(y) for every
v € 0f(y). Altogether, (28) for x = § and Cauchy—Schwarz inequality give

Dg’?(ﬂl,y) < D?c(x,y) = f(z) - fly) + eS;fIZ )(y —z,0) (30a)
< fl@) = fy) + lly =zl - M(y) < +oo, (30b)

because x,y are fixed. This proves both inclusions. The last statement in (ii) follows directly from
the first one. [

Remark 2.3. The rightmost inclusion in Lemma 2.1(ii) might be strict, in contrast to part (i). Let
B :={(a,b) € R? : a® + b? < 1} the unit ball in two dimensions and consider f := ¢ the indicator
function of the unit ball. Take y = (1,0) € B, and any = = (z1,x2) € B such that z; < 1 (i.e., any
B>z #y). Then 0f(y) = {(¢,0) : ¢ > 0} and f(x) = f(y) =0, thus

Dg}c@f* (.Z‘, y) = sup<y —x, ty> = (1 — :L'l) supt = +o0. (31)
>0 t20

Therefore, (z,y) ¢ dom DngBf* for all z # v.

2.3. Examples of important generalized Bregman distances

For our examples in this section, X = X* =R and, T'= S = 0f is point-to-point on int dom f in
which case we simply write D" for a specific choice of h € H(Af) (not to be confused with Dy, the
classical Bregman distance for f). In these cases, we will refer to the representative function used
by its name. Specifically,



(i) When h = Fg is the Fitzpatrick function for a maximally monotone operator S, we will write
DFs,
(ii) When h = og, the largest member of H(.S), we will write D75;
(iii) When h = f@ f* € H(Of) for f € I'yo(X) is the Fenchel-Young representative, we will denote
this by D¢/,

Remark 2.4 (The lower closed distance). The function D}’h(-,y) may not be lower semicon-
tinuous at € domdf \ dom df. Additionally, for y ¢ int dom(T), the distance may not be lower
semicontinuous with respect to the right variable either. For more details on the semicontinuity
properties of the GBDs, see [18, section 3]. For these reasons, [13] introduced the lower closed GBD

Dy defined by
epi Dy = epiDy", (32)

where, as before, x € {b, #}. The lower closed distances ps , D7, and D' are defined analogously
(with DFs, D7s and Df®f" as in (i)-(iii) above). For all our computed examples, in the cases when

D" and D" do not agree, we will compute with D" 50 as to have a lower semicontinuous distance.

The authors in [7, 13] illustrated their findings with energy, whose Bregman distance specializes
to the Moreau case and the Boltzmann—Shannon entropy, whose importance we will soon recall.
Naturally, we will illustrate our results about envelopes and proximity operators using the GBDs
associated with these operators that were computed in [13]. They are as follows.

Example 2.1 (Energy). In the case where [ : = — %ZL‘Q is the energy, we have 9f = Id. The
distances constructed from the smallest and biggest members of #H(Id) are

1
Di(z,y) = (@ —y)* and D™ =igqq). (33)

Already from this example, we see that we should not expect all asymptotic properties of
Bregman envelopes extend to GBD envelopes, because envelopes associated with the distance D7
will always be vacuously equal to the function being regularized, while their associated proximity
operators will vacuously be equal to Id.

—ent @ ent*

Example 2.2 (Kullback—Leibler divergence and GBD D
Boltzmann—Shannon entropy is defined as

). The (negative)

zlogx —xz if x>0,
ent : R — |—o00,4+00] : £ — <0 if =0, (34)

400 otherwise.

The Boltzmann—Shannon entropy is particularly important and natural to consider, because its
derivative is log, its conjugate is ent™ = exp, and its associated Bregman distance is the Kullback—
Leibler divergence,

z(log(z) —log(y)) —x+y ify >0,
Dent : (z,y) =y if y>0and x =0, (35)

400 otherwise,
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Figure 1: Three prototypical distances constructed from H(log).

which is frequently used as a measure of distance between positive vectors in information theory,
statistics, and portfolio selection. The GBD associated with the Fenchel-Young representative
ent @ ent* € H(log) is

Dent@ent* . (as,y) s {x(log(fv) - 10g(y)) —T+Yy if T,y > 07 (36)

400 otherwise.
Thus, it may be seen that the Bregman distance of the Boltzmann—Shannon entropy is the special

case of the GBD for the Fenchel-Young representative of the logarithm function, except on the set
dom f \ domOf x domdf = {0} x ]0, +o00[ (see Proposition 2.1 and Remark 2.4). Its lower closure

is given by
x(log(x) —log(y)) —x+y ify >0,z >0,
d(x,y) =<0 ify=2=0, (37)

+o00 otherwise

~ent @ ent™
D

and is shown in Figure 1b. Hence, this new distance allows us to extend the domain of the classical
Bregman distance to the boundary points.

Example 2.3 (Kullback—Leibler divergence and GBD fFng). The GBD constructed with
the Fitzpatrick representative is

400 ifz <0ory<0,

DFIO =
g(1’,3/) T (W (%> + W(lﬂ) _ 2) otherwise, (38)
Yy

where W is the principal branch of the Lambert W function. The above expression simplifies,
except on the set {0} x [0, +o0[, to the lower closed version

D5 R, x Ry — [0, +00] (39)
+00 ifz<0ory<O0or(z>0andy=0),
(z,y) — ye ! ifx=0andy >0,

x (W (xe) + A - 2) otherwise.
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This distance is shown in Figure (1a). Taking the closure of the epigraph of Dfies admits

fF‘Og(o,y) = ye~ ! the difference we see in (39). We opt to use the latter lower semicontinuous
version of the distance in our later examples of proximity operators and envelopes. For information
on the computation of Fiog and DFies, see [9, Example .17.6] and [13, Example 3.2], respectively.

Example 2.4 (Kullback—Leibler divergence and GBD D%%ct). The GBD constructed with
the biggest member of H(log) is

1 if 1 <1
Do (2,y) o —wlogly) + § 71BN T 081) S lo(e) (40)
400 otherwise,
which may be recognized as equal, except at the point (0,0), to the lower closed version
zlog(z) — zlog(y) f0<y<ux,
D7 (w,y) = 4 0 ifz=y=0, (41)

400 otherwise,

which is shown in Figure (1c).

3. Envelopes and proximity operators

We next define formally the envelopes and the proximity operators.

Definition 3.1. Given : X — |—o00, +00] and v € R4, the left and right D}’h-envelopes of § with
parameter v are respectively defined by

1
énV::Z: X — [—o00,400] 1y — 1g)f( (0(35) + ’yD;h(x’y)> (42a)
* 1 *
and @t X — [—o00,+00] : @ > inf (9@) + DT’h(x,y)>. (42b)
08 Jex 5

The left and right proximity operator of @ with parameter - are respectively defined by

1
?;(’gh: X = X: y+— argmin (9(:E) + fD:}h(m, y)) (43a)
zeX Y
_>*,h . 1 *,h
and P X = X:xw— argerr)?n 0(y) + ;DT (x,y) ) - (43b)
y

As before, the symbol x can be either b or f. When T is point to point, we remove the symbol *.
When the symbol { appears next to the name of the representative function with the envelope or
proximity operator, it is understood that the distance being used is the closed GBD mh. When
the Bregman distance (15a) or (15b) is used, we remove the name of the representative function in
the envelopes and proximity operators.

Remark 3.1 (A selection operator for the proximity operator). We will find it useful to
employ a selection map for the proximity operators.

(i) If <E;‘bh(y) € 7*’bh(y), then

* * 1 * * *
§vh(y) = 00570 (y) + ;DT’h@;;‘(y),y) > 052 (). (44)
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—
(ii) If 575" (z) € Pj'(x), then

i (x) = 0(5) («) + ,yD*’% 2, S (@) > 05 (). (45)

Sufficient conditions for the images of the proximity operators to be nonempty will be provided in
Propositions 3.4 and 3.5; we only use selection operators in such cases.

Example 3.1 (Energy). Let f be the energy and 6 : x +— |z — 1/2|. In this case, df = Id, and
the distances D4 and D4 are given in Example 2.1 and are both Isc. It is straightforward to
determine that their corresponding envelopes and proximity operators are given by:

(i) DFia: the corresponding GBD envelopes (both left Lb 'y and right emflg) are equal to the
Moreau envelope with parameter 2, and the correspondmg proximity opérators are equal to
the respective Moreau proximity operators with parameter 2.

(ii) D71d: the left and right proximity operators are both necessarily Id, and our left and right
envelopes for 6 are exactly equal to 6 for both the right and left envelopes, a fact that would
hold true with any other choice of 6.

In the following result, part (i) extends [7, Proposition 2.1] and its proof is the same as the
one in [5, Proposition 12.22(i)]. Parts (ii) and (iii) are new and establish relationships between the
domain of left and right envelopes with those of S and T'.

Proposition 3.1. Let : X — |—o00,400| and let v, € Ryy. Then the following hold:
(i) ?MG—W? 6,andeﬁ e—yﬁwg
(ii) dom ? g ©domT and dorn W g © dom S. Moreover,

dom mi}; = U T-Y(S"z)  and (46a)
re€domb, ecR ¢
dom eﬁ,ﬁy’fé: {xeX:domﬁﬂ U T_l(ng)#Z}. (46b)
eeRy

(iii) If dom SNdom6 # & and (dom S Ndomé) x domT C dom D}’h, then dom %;Z =domT.
If domT Ndom# # & and dom S x (dom 7T N dom#) C dom Dl}’h, then dom eﬁ:”g =dom S.

Proof. (i): This is straightforward from the definition.
(ii): We observe that

* 1 * *
y € dom &G inf, (9(;5) + 71>T7h(x,y)) = &vh(y) < +oo (47a)
1«
— JzxeX, O+ §DT’h(:c,y) < 400 (47Db)
— Iz edomb, Di"(z,y) < +oo, (47¢)

since it always holds that 6(z) > —oo and Di}’h(x,y) > 0. On the one hand, (47c) implies that
y € domT, and hence dom m;’; C domT. To prove the first equality in (ii), note that, by

definition of D%h,

D%h(:x,y) < 400 <= sup (h(z,v) — (z,v)) < +0 (48a)
veTy
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— JeecRy, YweTy, h(z,v)—(zr,v)<e (48b)

— JeeRy, TycCSh (48c)
— ye |J 77 (5lw). (48d)
€€R+
Combining with (47) yields
dom %i% = U T-1(Sh). (49)

ze€domb, eeR

The proof for the right envelope is analogous.

(iii): We will only prove the first claim because the second one is similar. In view of (ii), it suffices
to prove that dom 7" C dom rm;;‘ Let y € domT'. By assumption, there exists zg € dom SNdom 6.
Then (z¢,y) € (dom SNdom#) x domT C dom D}’h which gives Dr}’h(aco, y) < +oo. Using (47), we
obtain that y € dom nyz This completes the proof. |

The following proposition compares minimum values of the envelopes with those of the reference
function 6 over the domains of S and T'.

Proposition 3.2. Let 0: X — |—o0,+00], x € dom S, y € domT', and v, pu € Ry with v < p.
Then the following hold:

(i) Suppose that dom S Ndom O # @ and that Tz C Sz for all z € domT. Then

inf 6(dom §) < &V, (y) < EV3G(y) < 6(y) (50a)
and inf (dom S) < &avi'(y) < &l (y) < &I (y) < 0(y). (50b)

Consequently, inf (dom S) < inf &nv” 9( ) < infé(domT'), with equality throughout when
dom S C domT'. Moreover, there e:mst B € [inf §(dom S), 8(y)] such that

m:’fé(y) la as y1 400 and %;:Z(y) T6 as v1]0. (51)
ii) Suppose that domT' N dom I and that Tz C Sz for all z € dom S. en
(ii) Supp hat dom T N dom 6 £ d that T Sz for all dom S. Th
inf f(dom T') < &m¥(x) < envy(z) < O(x) (52a)
and inff(domT) < en¥ ' (z) < end’}'(z) < envl () < O(x). (52b)

Consequently, inf (domT) < inf ﬁ*h( X) < infO(dom S), with equality throughout when
domT C dom S. Moreover, there 6zmst a,B € [inf O(dom T'), 0(x)] such that

W:Z(m‘) la as y1T4+o0 and ﬁ;g(x) T8 as v10. (53)

Proof. The proof for the right envelopes follows the same steps as those for the left ones, and
hence, the details are omitted. The assumption of Tz C Sz for all z € dom T, together with [18,
Remark 3.3(c)], implies that

Vz € domT, D}’h(z, z) =0. (54)

As p > v > 0, we have that, for all z € dom S,

0la) < 0la) + 3 Dif"(2.9) < (@) + iDr}%, ). (55)
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Taking the infimum over x € dom S, with noting that D:*F’h(x, y) = 400 for z ¢ dom S, yields

inf f(dom §) < __inf _0(x) + ;D}’h(x,y) = inf 0(x) + iD}’h(a:,y) —&wihy)  (56a)
. 1 wh . 1 h
<, dnf 0@) + D' (ay) = inf 0(x) + D" (,y) = &V)5(y) (56b)
1
< 0(y) + D" (:y) = ), (56¢)

where the last equality is due to (54). This proves (50a).
Next, for all z € dom S, it holds that 6(x) < 6(z) + imh(m, y) < 0(x)+ %mh(x, y), and hence

inf #(dom S) = xeiﬂi Se(a:) < &) < &), (57)

where we used the fact that ﬁ;’h (x,y) = 400 for x ¢ dom S. Noting also that mh < Dr}’h, we have
v Th( ) < énv’ 9( ), which combined with (57) and (50a) implies (50Db).

Now, taking infimum over y € dom T in (50a) and using the fact that dom %:Z C domT (see
Proposition 3.1(ii)), we obtain that

inf §(dom S) < inf &v’}(X) < inf O(dom T). (58)

If dom S C domT, then inff(dom S) > inf #(domT), and the equalities in (58) must hold. The
remaining conclusion follows directly from (50a) and the fact that v < p. |

Remark 3.2. Suppose that domT = dom S =: D and we want to solve the optimization problem
minf(z) st. x € D. (59)

It is interesting to be able to state relationships between the optimal value of the problem and
inf %:Z(D) as well as inf eﬁ?Z(D). It is also important to establish relationships between the

sets argmin 0(D), argmin W:Z(D), and argmin W:Z(D) We establish these relationships in the

next result.

Proposition 3.3. Suppose that domT = domS =: D and that Tz C Sz for all z € D. Let
0: X — ]—o00,+0o0] with DNdom0 # &, let v € Ryy, and let z,y € D. Set

q .= U {ye D:Tyn Sz # @}, B .= U {ye D:TyC Sz}  (60a)
z€argmin (D) z€argmin (D)

and 4 = U {reD:Tyn Sz # o}, B .= U {reD:TyC Sz}. (60b)
y€argmin (D) yE€argmin 6(D)

Then the following hold:
(i) inf0(D) = inf W:Z(X) = inf eﬁfyg(X) and argmin@(D) C argmin W:Z(X) N
argmln ﬁ 9(X).
(11) a C argmin ﬁ 9( ) and A C argmin en ﬁb’h o(X).
(iii) If Y’M 7é %) for all y E argmin &ov® 0( ) then argmin &nv® 0( - B. Consequently,
argmin % ) C B C a C argmin % 9( )

14



(iv) If ?ﬁ’h( ) # @ for all y € argmin ﬁﬁ’ o(X), then argmin ﬁﬁ’ o(X) C B. Consequently,
argmin ﬂﬁ’ ) C Bc X C argmin ﬁ o(X).

Proof. (i): Since domT = dom S = D, Proposition 3.2 implies that inf §(D) = inf %:Z(X) =
inf W;Z(X) Now, let z € argminé(D). Then z € D and, by assumption, Tz C Sz, from
which we have Dl}’h(z,z) = 0. Therefore, 6(z) + %Dﬁ}’h(z,z) = 0(z) = inf (D) = inf W:Z(X) =
inf GW::Z(X ), which implies that z € argmin W;Z(X ) and also z € argmin EW;:Z(X ). We obtain
that argmin §(D) C argmin m;:’;(X) N argmin em::g(X)

(ii): Let any y € 4. Then y € D and there exists x € argmin §(D) such that Ty N Sz # &. By
[18, Remark 3.3(b)], D bh(x y) = 0. Using (i) with x = b, we have

inf (D) = inf &0v25(X) < &V (y) < 0(x) + Dbh(:r y) = 0(z) = inf O(D), (61)

%
which implies that y € argmin v 9( ). Hence, A C argmin v 0( ). Similarly, we have that

A C argmin eﬁ o(X).

(iii): Let any y € argmin WQE(X) By assumption, there exists x € X such that 6(x) +
%Dgﬁh(x,y) = Wi}g(y) < 400. Then, we must have € dom S = D and, by (i) with * = 4,

inf (D) = inf E0vE(X) = &vEl (y) = 0(x) + ipﬁh(x, y) > 0(x) > inf (D). (62)

Therefore, (x) = inf (D) and Dglh(x, y) = 0. While the former implies x € argmin 6(D), the latter
implies Ty C Sx (see [18, Proposition 3.7(b)]). We deduce that y €
(iv): This is similar to (iii). [
Proposition 3.3 shows that the envelopes can be used to automatically impose the constraints.

Namely, they transform the original constrained problem into an unconstrained one. This remark
justifies the assumption imposed in the next proposition.

For A C X, denote by A" its weak closure. Namely, A" contains all the (weak) limits of weakly
convergent sequences contained in A. Recall that a set is said to be precompact when its closure is
compact.

Proposition 3.4 (Left proximity operators). Let § € I'o(X) and y € domT. Suppose that
dom SNdomé # & and (dom S Ndomé) x {y} C dom Dgp’h. Then the following hold:
(i) Suppose that @, (-) :=0(-) + %Dglh(-,y) is coercive for some u € Ry . Then, for all v € ]0, ],
o+ ﬁi’g(y) CdomSNdom6. If Tz C Sz for all z € dom T, then

U PE W) Cleveny) ou (63)
Y€]0,4]
If, in addition, y € dom 6, then P is weakly precompact.

(ii) Suppose that 0 is coercive. Then, for ally € Ry, & # ?jél(y) CdomSNdomé. If T2 C Sz
for all z € dom T, then

U ﬁ{’;(y) C levg(y) 0. (64)

YER} 4

If, in addition, y € dom 6, then P is weakly precompact.
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Proof. For each v € Ry, set ¢(-) = 6(-) + %Dg&h(-,y). It follows from dom S N domé # &

and (dom S Ndom#é) x {y} C dongp’h that ¢, is proper. By the same argument as in [18,
Lemma 3.17(b)], D%h(-, y) is (strongly) Isc on X, and so is ¢,. Since convexity of ¢, follows from
that of 6 and Dglh(-, y), we obtain that ¢, € I'o(X).

(i): Let v €]0, ). Then ¢ > ¢, and the coercivity of ¢., follows from the assumption that ¢,
is coercive. By combining with the fact that ¢, € I'g(X) and using [35, Theorem 5.4.4], there exists

2y € X such that ¢, (z,) = mingex ¢(x) < +00. We obtain that 9(27)—1—%D¥h(27,y) = %i%(y) <
+00, and so (Fﬁh ) # @. Now, take an arbitrary s, € Hé’(y) Then 6(sy) + %Dgzh(s,y,y) =
fﬁ’ o(y) < 4o0. Since §(s,) > —oo and DTj (8y,y) > 0, we must have that Dglh(sw,y) < 400 and
0(57) < o0, which yield s, € dom S N dom . Hence, Y)“’ ) C dom S N dom 6.

Next, assume that Tz C Sz for all z € domT. We have from the rightmost inequality in (50a)
of Proposition 3.2(i) that, for all v € ]0, ¢] and s, € ?j’eh(y),

1 1
O(y) > & (y) = 0(s,) + ;D%’%sw,y) > pu(5y) = 0(s,) + ;D%sy,y). (65)
Therefore,
U P Clevegy o = {2 € X : 0,(2) < 0())- (66)
v€]0,4]

Now, assume that y € dom 6, so 6(y) < +oc0. Since ¢, is convex and Isc, it is weakly Isc. Moreover,
¢, is coercive, so its level set lev<g(,) ¢, is bounded and weakly closed. By [12, Theorem 3.17],

lev<g(y) pu is weakly compact. This directly implies that P" C leveg(,) pu- Being a weakly closed
subset of a weakly compact set, P is also weakly compact. Hence, P is weakly precompact.

(ii): Since 6 is coercive, we have that ¢, is also coercive for all u € Ry, . The first conclusion
follows from (i). Now, assume that Tz C Sz for all z € domT". Then, by the rightmost inequality

in (50a) of Proposition 3.2(i), for all vy € R 1 and s, € ?ﬁ h(y),
0y) > &5 5(y) = 0(s,) + ;D%:h<s7,y> > 6(s,). (67)
The rest of the proof is similar to that of (i). [

Proposition 3.5 (Right proximity operators). Let 0: X — |—o00, +00] be proper and lsc, and
let z € dom S. Suppose that X is finite-dimensional, that dom T Ndom 6 # &, that {x} x (dom T N
dom 6) C dom D}’h, and that D}’h(x, -) is lsc. Then the following hold:
(i) Suppose that ¢, () :==0(-)+ iD:}h(:U, -) is coercive for some p € Ry . Then, for all v € ]0, ul,
%
o+ Pv*’eh(:v) CdomT Ndomé. If Tz C Sz for all z € dom S, then

U P B h ) C 1ev<9(w) . (68)
YE]0,]
If, in addition, x € dom @, then P is bounded.
(ii) Suppose that 6 is coercive. Then, for ally € Ry, & # P*h( ) CdomTNdomé. IfTz2C Sz
for all z € dom S, then
— U B@) Clevag b (69)
YER L+
If, in addition, x € dom @, then P is bounded.
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Proof. Arguing as in the proof of Proposition 3.4, for all v € |0, u] in case (i) and for all v € Ry in
case (ii), o~ () :==6(-) + aD}h( ,-) is proper, lsc, and coercive. Since ﬂya( ) = infyex oy (y) <

+00, we can take a sequence (yn)nen in X such that ¢ (yn) — m:2($) as n — +oo. We derive
from the coercivity of ¢ that (yn)nen is bounded, and so there is a subsequence (Yk,, )nen converging

to some zy € X. As ¢, is Isc, ¢, (2y) < liminf,, 400 0y (Yn) = ﬂ () = infyex 0~ (y) < oy(2y).
Therefore, W%Q( ) =@y(2y) = 9(27)4— 1pn (33 zy) which 1mphes that P ( ) # &. Proceeding
as in the proof of Proposition 3.4(i), we have P ( ) € dom T N dom 6.

We now prove the second conclusion of (i). By the assumption that Tz C Sz for all z € dom 5,
the rightmost inequality in (52a) of Proposition 3.2(ii) implies that, for all v € ]0,u] and s, €

Br(a),
Ola) 2 GYh(a) = 0(s) + ~DF"(w.5) 2 pulsr) = 0(s,) + D (2.5,) (70)
We deduce that
= U P*h ) C levapr) ou = {2 € X 1 pu(2) < 0(2)}. (71)
v€]0,p]

Combining this fact with the coercivity of ¢, and the additional assumption that 0(z) < +oo, we
obtain the boundedness of P. The second conclusion of (ii) follows by the same argument as in the
proof of Proposition 3.4(ii). [

4. Asymptotic behaviour properties

Moreau first considered the envelope that has come to bear his name in the setting of v = 1 [33]. He
was interested, in particular, in the characterization of infimal convolution as epigraph addition; see
[34]. Attouch introduced the more general parameter v for regularizing convex functions [1, 2] and
later with Wets for nonconvex functions [3]. When the regularized function is the sum of a convex
objective function  together with the indicator function for a constraint set, the Moreau envelope
provides a smooth regularization with full domain. Recovery of the regularized function 6 as v | 0
is important for algorithms that use the Moreau envelope as a surrogate for 8, while the asymptotic
properties as v 1 +o0o shed light on other properties of the regularization. In what follows, we will
analyse both.

We say that a maximally monotone operator S is strictly monotone over a subset B C dom S if
for every 2,2’ € B we have

(z =2 w—w') =0 with w € Tz, w' € T?' implies z = 2. (72)
Because the proximity operators are generically set-valued operators, When their images are
nonempty we will make use of selection operators s <—*9h, —>7*9h that satlsfy (y) € (l:_l/*’eh(y) and
—> h
7*.9 (x) € P%Q (x).

Theorem 4.1 (Asymptotic left behaviour when ~ | 0). Let § € T'o(X) and let y € domT N
dom 6. Suppose that dom S Ndom@ # &, that (dom S Ndomé) x {y} C dom ’D%h, that Tz C Sz
for all z € domT, and that ¢, () = 6(-) + %Dglh(-,y) is coercive for some pu € Ryy. For each

v €10,u], let sy = <_ﬁ’9 (y) € Wﬁ”g(y) Then the following hold:
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(i) Dglh(sv,y) —0asvy]0.
(ii) For every weak cluster point z of (s4)yej0, a8 v 4 0, it holds that Dglh(z,y) =0, Ty C Sz,
and z € leveg(y) 6.
(iii) If T =S and S is strictly monotone over dom S Ndom @, then, as v |0,

h L eh
sy =y, Vi) 10y), 0(sy) = 0(y), and 5@& (s4,y) = 0. (73)
Proof. By the rightmost inequality in (50a) of Proposition 3.2(i), for all v € ]0, u],

0y) > EEh(y) = 0(sy) + iD%:%swy) > 0(s,). (74)

(i): Since 6 € I'g(X), we can apply [16, Proposition 3.4.17] to conclude the existence of u € X*
and 7 € R such that 6 > (-,u) + n (equivalently, dom §* # &). Using (74) and Cauchy—Schwarz
inequality, we have that, for all v € )0, u],

Ola) 2 8(57) + 2D (57,0) 2 (s700) + 1+ D5 (57,9) (75)
> —plull + 1+ ~DF (s.3). (75b)

which rearranges as
0 < D5 (sy,9) <v(O) + pllul =) =0 as ~L0. (76)

Therefore, Dgp’h(s77 y) — 0asy]0.
(ii): Let (sg(y)) be a subnet of (s,),e0,, Weakly converging to z as k() — 0. Note that Dglh(-, Y)

and 6 are weakly lsc since they are convex and lsc. Applying (76) to subnet (sk(ﬂ/)) and using the
weak lsc of D%h(-, y), we derive that
0 < DHM(2,y) < liminf D& (550, y) < liminf k(7)(0(y) + pllul| — 1) = 0, 77
<Dy (zy) < i inf Dy (Sk(y)¥) < i in (M (O(y) + pllull —n) (77)
which yields Dglh(z, y) = 0. Therefore, Ty C Sz due to the definition of Dg:h and property (c) of h.
Next, by applying the first inequality in (74) to subnet (sj(,)) and using the weak Isc of ¢,

1
0(y) > liminf ( 6 —_Dhh )>1' inf 0 >0 78
() =t (00onr) + 5 DF (s10-) ) = i inf ) = 0(2), (79)

and so z € leveg(y) 0.

(iii): Let 2 be an arbitrary weak cluster point z of (sy),¢jo,,] @ 7 | 0. By assumption and (ii),
Ty C Tz. Since y € dom T, taking v € Ty C Tz, we have that 0 = (z — y,v — v) with v € Tz and
v € T'y. The strict monotonicity of T implies that z = y. We deduce that s, — y as v | 0. Now,

recall from Proposition 3.2(i) that W:Z(y) 1 B as v ] 0 for some 5 € R. Using (74) and the weak
Isc of 8, we obtain that

0(y) > B > liminf O(sy) > 6(y) > limsup 6(s,), (79)
70 710

which yields § = 0(y) = lim., o 0(sy). Again using (74), this implies %Dglh(sv, y) — 0, and we are
done. [
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Theorem 4.2 (Asymptotic right behaviour when v | 0). Let §: X — |—o0,+0o0] be proper

and Isc, and let x € dom SNdom . Suppose that X is finite-dimensional, that domT Ndom 6 # &,

that {x} x (domT N dom#) C dom D}’h, that D}’h(m, -) is lsc, and that o(-) := 0(-) + %D?h(m, -) s
_)

coercive for some p € Ryy. For each vy € ]0,p], let s, = E;f’eh(x) € Py*’bh(x). Then the following

hold:

(i) D}’h(x,sv) —0asvy 0.
(ii) For every cluster point z of (Sy)yejo,u @8 v | 0, it holds that D;h(x, z) =0 and z € leveg(,) 0.
(iii) If T =S and S is strictly monotone over dom S Ndom @, then, as vy |0,

) L xh
sy = x,  Evig(x) 1 6(x), 6(sy) —6(x), and ;D} (2,8,) = 0. (80)
Proof. This is proved similarly to Theorem 4.1 by using Proposition 3.2(ii). [

It is worthwhile to connect these asymptotic results with previous ones in the literature. When
T = S = Vf for a strictly convex and differentiable f : R — R, then (Tz C Sz) <= Tz = Sz
and (D¢(z,y) = 0) <= =z = y. In this specific case, Theorems 4.1 and 4.2 show both [7,
Proposition 3.2] and [7, Theorem 3.3]!. Of course, Theorems 4.1 and 4.2 are stronger. In addition
to not requiring right convexity of the distance, these results also include envelopes that are not
classical Bregman envelopes. We include several such examples of non-classical left envelopes in
Figure 2 and of non-classical right envelopes in Figure 3.

Theorem 4.3 (Asymptotic left behaviour when v 1 +00). Let 0: X — |—o00,+o0], y € dom T,
and v € Ry 4. Suppose that dom S Ndom @ # &, that (dom S Ndom6) x {y} C dom D}’h, and that
Tz C Sz for all z € domT. Then the following hold:
(i) %;Z(y) | inff(dom S) as v 1 +oo. Consequently, if inf §(dom S) = infd(dom S), then
m:’feh(y) linff(dom S) as vy 1 +o0.
(i) Suppose that 6 € T'o(X) and 0 is coercive. For each v € Ry, let s, := ?jg(y) € ?jeh(y)
Then

0(sy) — infO(dom S) as 1 +oo. (81)

Moreover, if inf (dom"S) = inf §(dom S), then all weak cluster points of (8y)yeryy as vy T
+00 lie in argminf(dom”S) # @. If additionally argmin@(dom"”S) is a singleton, then
s, — argmin 6(dom"S) as v 1 +oo.

(iii) Suppose that 0 € T'g(X), 6 is coercive, and inf §(dom S) = inf §(dom S). For each v € R4,
let s, = ?jgh(y) € Wugh(y) Then

0(sy) — infO(dom S) as T +oo. (82)
Moreover, if inf §(dom”S) = inf §(dom S), then all weak cluster points of (sy)yer,, asy 1

+00 lie in argminf(dom”S) # @. If additionally argmin@(dom"S) is a singleton, then
s, — argmin 6(dom"S) as v 1 +oo.

n [7], the authors assume joint convexity and coercivity of Dy to obtain non-emptiness of the right proximity
operator images by [6, Proposition 3.5]; the latter result relies on the lower semicontinuity of the right distance as
shown in [6, Lemma 2.6]. Thus, our rather weak assumption that the right distance be lower semicontinuous is much
less restrictive than the assumptions in [7].
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Proof. (i): In view of Proposition 3.2(i),

m 9(y) L @ >infd(domS) as 7T +oo. (83)
By definition, for all z € dom .S N dom 6,
* 1 *
8] 5(y) < 0(@) + ~Di" (@), (84)

Letting v 1 +o00 and using the assumption that (dom S Ndom6) x {y} C dom D}’h, we derive that,
for all z € dom S Ndomé, a < (z), and so o < inf f(dom S N dom ) = inf f(dom S). Combining
with (83) implies that W:Z(y) 1 inf#(dom S) as v T +oo. In turn, by invoking (50b), we get the
second conclusion.

(ii): Accordlng to Proposition 3.4(ii), for all v € Ry, @ # ?ﬁ h ) € dom S Ndom§. Since

?ﬁ’ , we have that s, € dom S N dom#, and so
1
inf 6(dom 5) < 6(s,) < 0(s) + D" (s5,) = &V 5(y). (85)

By combining with (i), 8(s,) — inf §(dom S) as v T +o0.

Now, if inf §(dom"S) = inf §(dom S), then we also have that 6(s.) — inf (dom"S) as v 1 +o0.
The conclusion follows from [7, Lemma 3.1].

(iii): Similar to Proposition 3.4(ii), we have that, forally € Ry, & # %ﬁ Th dom SNdom 6.
Thus, s, € dom S Ndom 6 and

inf 6(dom S) < 0(s,) < 0(s,) + D'“%smy) = &vi g (v). (86)

By assumption and (i), (W/“e (y) — inf f(dom S) = inf f(dom S) as v 1T +oo, and hence 6(s) —
inf f(dom S) as v 1 +o0. Flnally, proceeding as in (ii), we complete the proof. |
Theorem 4.4 (Asymptotic right behaviour when v 1 +00). Let : X — ]—o00,+0], = €
dom S, and v € Ri4. Suppose that domT Ndom @ # &, that {z} x (domT Ndom#) C dom D;Jh,
and that Tz C Sz for all z € dom S. Then the following hold:
(i) W:Z(x) L infO(domT) as v T +oo. Consequently, if inf6(domT) = infO(domT), then
ﬁ*’Th( ) L inf @(domT) as v 1 +oc.
(ii) Suppose that X is finite- dzmenszonal that 0 is lsc and coercive, and that DY "(x,-) is lsc. For
each v € Ry, let sy := _;*h( ) € P (x) Then

0(sy) = infO(domT) as ~ 1 4o0. (87)

Moreover, if inf (domT) = inf §(domT'), then all cluster points of (sy)yer,, as y T +oo
lie in argminf(domT) # @. If additionally argmin@(domT') is a singleton, then s, —
argmin #(dom 1) as v 1 +o0.

(iii) Suppose that X is finite-dimensional, that 0 is Isc and coercive, and that inf §(domT) =

inf §(domT'). For each v € Ry, let sy := _;*Jh( ) € ﬁ:‘,gh(az). Then

0(sy) = infO(domT) as 1 +4oo. (88)

Moreover, all cluster points of (sy)yer,, asy T 400 lie in argmin §(dom T') # @. If addition-
ally argmin §(dom T") is a singleton, then s, — argmin@(domT') as v T +oc.
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Proof. This is analogous to the proof of Theorem 4.3 and uses Proposition 3.2(ii) and Proposi-
tion 3.5(ii). We note for (iii) that f;ih(x, 1) is Isc. [ |
Remark 4.1. We note that the condition inf §(dom"S) = inf #(dom S) in Theorem 4.3 is satisfied

as soon as either

(i) dom S is weakly closed, or
(ii) 6 € T'yp(X), dom S is convex, and int dom S N dom O # .

Indeed, the former case is obvious, while the latter case follows from [5, Proposition 11.1(iv)] (whose
proof is still valid in a Banach space). Analogous statements hold true for the finite-dimensional
counterpart inf §(dom 7") = inf #(dom T") in Theorem 4.4.

It is worthwhile to remark on the importance of the domain conditions imposed in the left
Theorem 4.3(i)-(ii), and in the right Theorem 4.4(i)—(ii). In particular, the distance D?es does not
satisfy them for all z,y € domlog, and we use it to derive envelopes for § = | - —1/2| in Figures 2c
and 3c that do not have the asymptotic properties (i)—(ii) for every =,y € domlog. Of course, the
domain conditions we have imposed in Proposition 3.3, Theorem 4.3, and Theorem 4.4 are still quite
broad in what they cover. Corollary 4.1 will showcase how the corresponding asymptotic guarantees
subsume those of [7, Proposition 2.2], while generalizing them to many other classes of distances
and envelopes. In particular, we illustrate with the GBD D'Flos by constructing its generalized left
and right envelopes in Figures 2a and 3a. It may be seen from the figures that these new envelopes
respectively satisfy the asymptotic guarantees of Theorem 4.3(i)—(ii) and Theorem 4.4(i)—(ii).

Corollary 4.1. Let f € Tg(X) with D := dom df. Suppose that T =S = df and that h € H(Of)
satisfies
V(z,v) € dom f xrandf, h(z,v) <(f@& f*)(z,v) = f(z)+ f*(v). (89)
Let 0: X — Ry with DNdom@ # @, let v € Ry, and let x,y € D. Then the following hold:
(i) As v 1 oo,
(a) %i%(y) L inf (D) and eﬁ:};(x) L inf0(D);
(b) &v2Y'(y) L inf O(D) and e (x) | inf O(D);
(¢) Classic Bregman envelopes satisfy %ze(y) 1 inf@(D) and eﬁﬁhe(x) L infé(D).
(ii) Suppose further that dom Of is open. Then, as v T 400,
(a) &vE(y) | inf O(D) and env™’y(x) | inf 6(D);
(b) &avl(y) | inf O(D) and ety () | inf (D)
(c) Classic Bregman envelopes satisfy %ﬁ%@(y) Linf6(D) and miﬂ(x) L infé(D).

Proof. (i): By Lemma 2.1(i), dom D} = D x D, so D}, satisfies Theorem 4.3(i) and Theorem 4.4(i),
and we therefore get (i)(a) and (i)(b).

Now, since y € D = domdf, in view of Proposition 2.1 and Definition 3.1, we have that
m’;e(y) = m’;”g@f (y) and eﬁ;’@(x) = (ﬁfy:{;@f (). Thus (i)(c) follows by applying (i)(a) with
h=fa& f*.

(ii): As domOf is open, Lemma 2.1(ii) implies that dom Dg;jf = D x D. The proof is then
completed by a similar argument as in (i). |

The results in Corollary 4.1(i)(c)&(ii)(c) for classical Bregman distances reduce to the ones in [7,
Proposition 2.2] when f is a differentiable convex function. The following corollary_yrovides analo-

gous extensions for the generalized proximity operators as well. We denote by 7*79, nye the classical

Bregman proximity operators associated with the classical Bregman envelopes %;79, m;(,.
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Corollary 4.2. Let f € To(X) with D := domdf open. Suppose that T = S = Jf and that
h € H(Of) satisfies

V(z,v) € dom f xrandf, h(z,v) < (f & f*)(x,v) = f(x) + f*(v). (90)

Let 0 € To(X) be coercive with int D Ndom 6 # @&, let v € Ryy, and let y € D. Suppose that one
of the following holds:

(i) For eachy € Ry, sy := <§,Yﬁ7’9 ﬁﬁ’

.. ; h

(ii) For each v € Ryy, sy := ‘?ﬁ (y) <E,ﬁg (?J);
(ili) For each v € Ry, sy := ?j’g(y) € ﬁﬁi@(y)-

Then 6(sy) — infO(D) as v T +oo. Moreover, the net (sy)yer,, is bounded with all cluster
points as vy T 400 lying in argmin§(D") # @. If additionally argmin @(D") is a singleton, then
s, — argmin §(D DY) as v 1 +oo.

Proof. We first have from Lemma 2.1(ii) that dom Dg’j} = DxD. In view of Remark 4.1, inf §(D") =
inf (D). So, the conditions of Theorem 4.3 are satisfied, and we have the desired result in cases

(i), and (ii).
As shown in the proof of Corollary 4.1(i), ffy o(y) = (f*’feaf* (y), which implies that E 0=
?fef ®I” Therefore, the desired result in case (iii) follows from (i) with h = f & f*. [

Corollary 4.3. Let f € Tg(X) with D := dom df. Suppose that T = S = 0f and that h € H(Of)

satisfies
V(z,v) € dom f x randf, h(z,v) < (f & f*)(w,v) = f(2) + F(v). (1)

Let 0: X — |—o0,+00] be lsc and coercive with int D Ndom @ # &, let v € Ry, and let x € D.
Suppose that X is finite-dimensional and that one of the following holds:

(i) Db’h(m, -) s lsc and, for each v € Ry, sy := _;bh( ) € P ( );

(ii) For each v € R4y, sy := _iyb (x) e PbTh( ); .
(iii) Daf< x,-) is lsc and, for each v € Ri, s, := _>,yb70(x) € vaﬂ(x).
iv) dom df is open, Dl x,-) is lsc, and, for each v € Ry, s, := 8

! 5
h dhyoy.

) '@ e Bty

(vi) dom Of is open, Dgf(x, -) is lsc, and, for each v € Ry, sy := ?je(x) € Pvﬁye(x).

(v) domOf is open and, for each v € Ry, sy :=

Then 0(sy) — infO(D) as v T +oo. Moreover, the net (sy)yer,, s bounded with all cluster
points as v T +oo lying in argmin 0(D) # @. If additionally argmin@(D) is a singleton, then
sy — argmin 0(D) as v T +oc.

Proof. The proof is similar to Corollary 4.2, using Lemma 2.1 and Theorem 4.4. |

When f is differentiable, the results for the classical Bregman envelopes given in Corollaries 4.2
and 4.3 generalize those in [7, Theorem 3.5].

Examples of envelopes and proximity operators

Theorems 4.1-4.4 and Corollaries 4.1, 4.2, and 4.3 are important for several reasons. They reveal
that some of the asymptotic results provided in [7, Propositions 2.2 & 3.2, Theorems 3.3 & 3.5]
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Figure 2: Left envelopes for representative functions of the logarithm.
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Figure 3: Right envelopes for representative functions of the logarithm.

for Bregman envelopes are only a special case of a class results that hold for envelopes constructed
from representative functions for maximally monotone operators. We also note that we have also
here provided a clarification of the domain conditions in the exposition of [7, Propositions 2.2 &
3.2], namely, that the asymptotic results are, of course, restricted to the domain of the distance
operator.

We illustrate these connections with the envelopes that correspond to the distances ﬁFIOg,
@em@em*, and D¢ from Examples 2.3, 2.2, and 2.4 respectively, which are illustrated in Fig-
ure 1. The derivation of these distances may be found in [13]. The left envelopes are shown in
Figure 2, and the right envelopes are shown in Figure 3. For both figures, we use the closed versions
of the distances. The explicit forms for the envelopes and their proximity operators are given in

Appendix A.

Let us first discuss how these examples illustrate Theorems 4.1 & 4.2. As the parameter v — 0,
all of the envelopes in Figures 2 and Figure 3 exhibit the behaviour of approaching 6, the Legendre
function being regularized. This is, at first, less clear when the representative function employed
is 010z as in Figures 2c and 3c, and so some clarification is in order. For any v € ]0,+o00], the

function mi‘,’éog is exactly equal to 6 on [0,1/2], while the function mi‘fg"g is exactly equal to 6

23



on [1/2,1]. This is why the net of curves collapses to a single line segment on [0,1/2] in Figure 2c
and on [1/2,1] in Figure 3c. The reason for this may be found by scrutinizing the distance D”'°® in
(41) and in Figure lc, and observing that the distance takes the value infinity whenever the right
variable is greater than the left. For this reason, the sum 6(-) + D”'*(-,y) is minimized at y for
y > 1/2, while the sum 6(-) + D7**(z, -) is minimized at = for z < 1/2.

The case of D7 is also instrumental in understanding Theorems 4.3 & 4.4 and Corollary 4.1.
For the reasons we have just discussed, the condition 9(<_Tgl°g (y)) — inf O(U) as v T 400 fails to hold

for y € ]1/2,1]. Consequently, for y € |1/2,1] the condition &ov!”, 9103( ) L inf§(U) as v T +oo does

not hold. An analogous situation arises for mm}"g (x) in the case of z € [0,1/2[. As previously
mentioned in Examples 2.1 and 3.1, D = 5, is an even more dramatic case where the GBD
envelope does not asymptotically approach inf 6(U).

On the other hand, for y € [0,1/2] we have that H(Etglog(y)) — infO(U) and ﬁvi‘fg’g(y) {
infO(U) as v T +oo. Similarly, for z € [1/2,1] we have that 0(?7ﬁgl°g’gl°g(y)) — infO(U) and
ﬁT 103’( )} infO(U) as v 1 +o0.

The loss of some desirable asymptotic properties for the largest member of H(9f) highlights

the advantage of Corollary 4.2, which assures us that ﬁT 1°g( ) 4 infO(U) and (ﬁi{g"g (x) |
inf O(U) as v 1 400, because Fioz < ent @ ent*. We see this property illustrated in Figures 2a and
3a. Comparing with Figures 2b and 3b, we can also see the essential property from the proof of
Corollary 4.2: that envelopes built from smaller representative functions than the Fenchel-Young
representative are majorized thereby.

Finally, from a theoretical standpoint, the case of P Jr log is illustrative of why we had to employ

selection operators in our analysis of the proximity operators, because it is set valued for x = 0 and
e=1/~.

5. Conclusion

In Section 2, we recalled the theory of GBDs [18] and the coercivity framework established in
[13]. We also introduced the specific computed distances from [13] that we have used to build the
envelopes and proximity operators in the current exposition, along with an explanation of why they
are natural distances to consider. In Section 3, we introduced the left and right envelopes for the
GBDs, along with their associated proximity operators. In Section 4, we provided a selection of
asymptotic results. The examples in Section 4 illustrate how the results in the setting of GBDs
vary from those we obtain more easily when specializing to Bregman distances.

Our analysis also yields results on the Bregman case when specializing thereto by using the
Fenchel-Young representative. Pleasingly, the desirable asymptotic properties for Bregman dis-
tances extend to GBDs constructed from Fitzpatrick representatives, which suggests that such
distances may be a useful subject for specialized investigation. Many important optimization al-
gorithms may be studied as special cases of gradient descent applied to envelopes; now that a
sufficient coercivity framework has been developed [13] and distances with desirable asymptotic
envelope properties identified, two natural follow-up questions present themselves. The first is:
excluding the already known Bregman cases, are there useful descent algorithms—discovered or
undiscovered—whose analysis may fit within such a framework? The second is: are there previ-
ously unknown GBDs—for example, GBDs constructed from Fitzpatrick representatives—whose
forms admit computational advantages over their Bregman counterparts?
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A. Appendix: Closed forms for envelopes and proximity operators

For all our examples, we use the closed distances as described in Remark 2.4. The function denoted
W is the principal branch of the Lambert W function, whose occurrences in variational analysis
have been discussed in, for example, [8, 10, 25].

Example A.1 (Left prox and envelope for fFlog). Beginning with the smallest member of
H(log), we first consider the left envelope and corresponding proximity operator characterized by

Ly (a) = inf {6() + ~D" (y.))

yeR 4

— 0 FTF‘log + ]‘DFlog (FTFlog ),.f) ,

where Flog is given in [9, Example 3.6] and Dfies is in (39). We have that

NI |
% otherwise,
g€l if x < g—i-ily’
wd e = (2= 1) ) - ie>
(1/2\}7(53()%1)) otherwise.

The envelope is shown in Figure 2a.

Example A.2 (Right prox and envelope for fFlOg). We next consider the right envelope and
corresponding proximity operator characterized by

éﬁﬁwwzuﬁwm+vﬂh<y»

yeR L

TFlo Fio TFio
= 0(3)y" (x)) + Dw(r%“my

where 157 (2) € Bl (a).
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. R,
We use the selection operator ?v (1, s

0
[0, 3]
1
S th 2 1
Blgos(x) = { _0ow(3)
W)+
=W (3)
w(E)H
1
2

because,

. . = Flog -
in this case, the prox operator PA/ "9 ¢ is set-valued:

ifx:()ande<%;
ifx:Oand%:e;

if:szand%<e;

. W(—vy)+1 .
1f0<x<—%ande<%7
if 2VO)+) x;

2W(y)

otherwise.

% ifszandeS%;
ﬁ ) ifszand%<e;
ey(W(y)+1)
W) 1, r (P SEr) - £ Y WV()+1) .
tFio > -5+ _ if YYD g
eny! (% (x) = ¢ AOVE)HD) T 2 VW(%) . V()
w1, tWETSE) ) W(=2)+1) 1,
W+§+ WW(—”(VX,(:_”))“)) 1f0<m<—72wﬁ and e < oF
-
% otherwise.

The envelope is shown in Figure 3a.

Example A.3 (Left prox and envelope for 501°g). Turning to the biggest of the representative
functions for the logarithm, we next consider the left envelope and corresponding proximity operator

characterized by

infgog (z)

yeRy

inf {6(y)

1—o
+ —D7%(y,
5 (y,2)}

— (Bl @) + 2 D7 (Bl (0), o).

where D%z is as in 41. We have that
Bl (a) =

The corresponding envelope is

0
r
%Zf‘gg () =%4%—=

—% log(2x)

The envelope is shown in Figure 2c.

—5e7t (< log (we? ™) + 4 + log(x)) + 5

if x < %6_7+1 and 1 < ~;
ifa:2%0r’y<1;

otherwise.

if £ =0;
. 1.
if v > 3;

% and v < 1;
e land 1 <

otherwise.

if z <
if x <
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Example A.4 (Right prox and envelope for D”°¢). We consider the right envelope and cor-
responding proximity operator characterized by

1010 . 1*00
G (@) = inf {0(y) + D™ (2 1)}

_>T o 17 o _>T o
= (B (2)) + ;DUI “ (w2, B3 (@)) .

The corresponding proximity operator is

o % if%<:1:and:n§%7;
Pmelog(a?) =47 ifl<yand 3y <
x otherwise,
while the corresponding envelope is
% —x if x < %;

mmog(): :z:—% if%<xand’y§1;
7.0 —%—i—%(l—i—log(q/)) if 1 <vand 3 <

> log(2x) otherwise.

The envelope is shown in Figure 3c.

The operators in Example A.5 (and their computation) may be found in [7], with the minor
modification that here we are computing with the lower closure of the distance and so obtain closed
forms which differ at zero. We include them here for their comparison with the new GBDs for the
logarithm.

Example A.5 (Proxes and envelopes for perreent ). We next consider the case when perteent

is the closed GBD for the Fenchel-Young representative of log (37), a case whose relationship to
the Bregman distance for the Boltzmann—Shannon entropy is discussed in Example 2.2. The left
proximity operator and envelope are given by

yexp(y), 0 <y < gexp(—);
Biemeent () = L yexp(—y),  ify > L exp(y);
%, otherwise,
M+%, if0<y< %exp(—y);
vl Greent(y) = gl L if 5 exp(y) < y;
%;kln@), otherwise.

For details, see [7, Example 4.1(ii)]. The envelope is shown in Figure 2b. The right proximity
operator and envelope are given by

x ; 1—y.
T lf0§$<T,

?’[ ent @ ent™ (l‘) _

. 1+,
.0 if x > T’Y,

= otherwise.
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In(1—y) 1 : 1—.

v+ 3, if0 <z <%
tent @ ent* _ ) In(1+7) 1 . 14+,
en?me (x) = — =g, it x> =%

% (a: In(2z) —z + %) , otherwise.

For details, see [7, Example 4.1(ii)]. The envelope is shown in Figure 3b.
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