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ABSTRACT Leveraging the cognitive Internet of things (C-IoT), emerging computing technologies, and
machine learning schemes for industries can assist in streamlining manufacturing processes, revolutionizing
operational analytics, and maintaining factory efficiency. However, further adoption of centralized machine
learning in industries seems to be restricted due to data privacy issues. Federated learning has the potential
to bring about predictive features in industrial systems without leaking private information. However, its
implementation involves key challenges including resource optimization, robustness, and security. In this
article, we propose a novel dispersed federated learning (DFL) framework to provide resource optimization,
whereby distributed fashion of learning offers robustness. We formulate an integer linear optimization
problem to minimize the overall federated learning cost for the DFL framework. To solve the formulated
problem, first, we decompose it into two sub-problems: association and resource allocation problem. Second,
we relax the association and resource allocation sub-problems to make them convex optimization problems.
Later, we use the rounding technique to obtain binary association and resource allocation variables. Our
proposed algorithm works in an iterative manner by fixing one problem variable (for example, association)
and compute the other (for example, resource allocation). The iterative algorithm continues until convergence
of the formulated cost optimization problem. Furthermore, we compare the proposed DFLwith two schemes;
namely, random resource allocation and random association. Numerical results show the superiority of the
proposed DFL scheme.

INDEX TERMS Smart industry, cognitive Internet of Things, federated learning, convex optimization.

I. INTRODUCTION
The widespread use of collaborative robotics, edge com-
puting, cloud computing, cyber-physical systems, cognitive
computing, cognitive Internet of things (C-IoT), and advance-
ments in machine learning has brought groundbreaking
innovations in industrial sectors [1]–[3]. C-IoT jointly uses
Internet of Things (IoT) and cognitive computing to perform
various smart functions with minimum human intervention
[4], [5]. Specifically, cognitive computing combines human
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computer interaction, speech processing, natural language
processing, reasoning, and machine learning, to improve
human decision making [6]. According to statistics, IoT mar-
ket will reach to 1, 319.08 Billion US Dollar at a growth rate
of 25.68% from 2019 − 2026 [7]. Additionally, cognitive
computing market will reach 29.550 Billion US Dollar at a
compound annual growth rate (CAGR) of 19.8% from 2021−
2026 [8]. Integrating industries and machine learning can
lead to optimizing production costs, increasing productivity,
reducing errors, enriching automation processes, and bring-
ing better quality control. Therefore, machine learning can be
considered an integral part of the smart industry. However,
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traditional machine learning poses serious privacy concerns
due to the requirement of migrating data from the end devices
to a centralized edge/cloud server for training [9]. Most of the
industries do not want to share their data with the third party
for training of a centralized machine learning model due to
the risk of data leakage [10]. Such industries include military,
bank, insurance, and health sector. Furthermore, centralized
machine learning suffers from high latency for industrial
use cases where real-time interaction is necessary [10]. For
instance, autonomous cars generate approximately 4, 000
gigaoctet of data every day that must be taken into account
during machine learning training. Therefore, we can use fed-
erated learning in the training of autonomous driving cars
machine learning models. Federated learning accounts for
newly added data in a resource-efficient way via sending of
only learning model updates to the aggregation server.

Smart industries can suffer from several security and pri-
vacy attacks. These attacks include denial of service (DoS),
false data injection, and physical attacks [11]. On the other
hand, enabling smart industries via traditional machine learn-
ing might suffer from a variety of privacy concerns. Coping
with such issues, federated learning (FL) has been proposed
to offer learning in a distributed fashion without migrating
the data from the end devices to a centralized server. FL is
based on the iterative exchange of learning model parame-
ters between the end devices and centralized server till the
convergence of the global FL model to a certain accuracy
level. However, traditional FL for smart industries has its own
challenges as discussed below.

• FL is based on the iterative exchange of learning model
parameters between end-devices and the aggregation
server. Furthermore, a single, centralized aggregation
server might be attacked by a malicious user. Therefore,
the failure of the centralized aggregation server due to
a physical defect or security attack results in the FL
process interruption.

• A collaborative FL model for different industries must
take into account the validity of the learning model
parameters received from the industry. For traditional
FL, the centralized server does not check the validity of
the learning model parameters received from different
industries, and thus may suffer from false data injection.

The aforementioned limitations can be tackled using
blockchain-based collaborative FL for smart industries,
which envisions to replace a centralized server with multi-
ple geographically distributed miners. Each miner receives
a learning model updates and verifies it before shar-
ing with other miners, and thus offers enhanced reliabil-
ity through trustful verification. Although blockchain-based
collaborative FL offers several advantages, it suffers from
a prominent issue of using high communication resources
and high-latency due to blockchain consensus algorithm [12],
[13]. Another feasible way is to use light-weight authentica-
tion scheme for learning models verification. To tackle the
issue of high communication resource usage, we can use the

hierarchical fashion for collaborative FL to offer communi-
cation resource optimization [14].

The co-location of different industries is expected to gain
an immense interest in the future to enable sustainable oper-
ation by sharing power supply and other resources [15],
[16]. In [15], the co-location of several telecommunication
operators for sharing backup power supply is considered,
while in [16] the co-location of multiple cloud providers is
discussed. Also, in a typical industrial zone, multiple indus-
tries exist in a close vicinity. Therefore, a common power
supply can be used in such a type of closely located indus-
tries. Furthermore, various industries (i.e., military industries,
health-care industries, and manufacturing industries) don’t
want share their data with other industries. Inspired from
the immense interest in co-location, close vicinity of the
different industries, and data privacy concerns, we can use
FL for training of collaborative machine learning models for
different industries without data transfer. However, FL for
industries has its own challenges such as robustness and
security. To cope with these issues, we proposed a novel dis-
persed federated learning (DFL) framework for smart indus-
tries. Enabling DFL for C-IoT enabled smart industries has
three main aspects: resource (both communication and com-
putation) optimization, incentive mechanism, and learning
algorithm design [17]. In this article, we focus on resource
optimization to enable the DFL for C-IoT. To the best of our
knowledge, we are the first to consider resource optimization
in DFL for C-IoT enabled smart industries.

Our key contributions are summarized below:
• Wedevise a novel systemmodel; namely, DFL for C-IoT
enabled smart industries. The proposed system model
uses distributed and hierarchical FL to offer robust-
ness and communication resources optimization, respec-
tively.

• We formulate an integer linear programming problem
to minimize the global FL cost of the proposed DFL.
Due to the NP-hard nature of the formulated problem,
we decompose the problem into two sub-problems: asso-
ciation problem and resource allocation problem. Then,
we relax the association and resource allocation vari-
ables into continuous variables for a low-complexity
solution using a convex optimization solver. Later, the
continuous variables are transformed into binary vari-
ables to yield the sub-optimal association and resource
allocation.

• Finally, we provide numerical results to validate our
proposed DFL scheme for smart industries. We com-
pare the performance of our proposed decomposition-
relaxation based scheme with two other schemes such as
baseline-1 and baseline-2. Baseline-1 uses the proposed
device association algorithm and random resource allo-
cation, whereas baseline-2 uses the proposed resource
allocation algorithm and random device association.

The rest of the paper is organized as follows. Section II
outlines the recent literature available on C-IoT enabled smart
industries, federated learning resource optimization, and
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blockchain-based federated learning. The proposed system
model and problem formulation are presented in Section III.
Section IV presents the proposed decomposition-relaxation
based solution for the formulated problem. Finally, results
and conclusions are given in Sections V and VI, respectively.

II. RELATED WORKS
Several studies have considered resource optimization in fed-
erated learning [14], [17]–[19]. For example, in [17], resource
optimization and incentive mechanism for federated learning
at the network edge were presented. A Stackelberg game-
based incentive mechanism was also proposed. Finally, the
authors provided an outlook on future research. Although
the authors reviewed resource optimization and incentive
mechanism for federated learning, it is preferable to pro-
vide a review of the security for federated learning over
wireless networks. In [18], Chen et al. discussed the per-
formance of federated learning over wireless networks. The
effect of packet error rate on the performance of federated
learning was studied. The authors derived the closed-form
expression for the expected convergence rate of federated
learning, which was further used to compute the optimal
transmit power for a given resource block allocation and user
selection. Subsequently, user selection and resource alloca-
tion were optimized for minimizing a federated learning loss
function. The work in [18] considered the case of a single
base station (BS) and performed resource allocation and user
selection. As a future work, one can extend the work for
multiple BSs with efficient solutions. On the other hand,
hierarchical federated learning has been proposed to offer
wireless resource optimization [14]. A heterogeneous cellular
network consisting of a macro base station (MBS) and small
cell base stations (SBS)was considered. Initially, a sub-global
model is trained at every SBS in an iterative manner similar
to traditional federated learning. After the computation of
the sub-global model by all the SBS, the sub-global models
are sent to the MBS for global model aggregation. Finally,
the global model updates are sent to the SBS that broadcast
the global model parameters to the end devices. The work
presented in [14] an attractive solution that can reuse wire-
less resources. However, their scheme uses centralized MBS
for global aggregation which might be out of order due to
physical damage. Moreover, a malicious user can attack the
centralized global aggregation server and alters the global
model updates. Tran et al. in [19] analyzed the performance
of federated learning over wireless networks and presented
two types of trade-offs. The first one deals with federated
learning model computation time versus end device energy
consumption, and the second one deals with communication
and computation latencies for a federated learning model
accuracy level.

Machine learning can be considered as a key enabling tech-
nology for cognitive industrial Internet of Things (C-IIoT)
[20]–[22]. In [22], the authors presented a framework using
machine learning for C-IIoT. Several machine learning
approaches were discussed to enable C-IIoT. Furthermore,

deep reinforcement learning for scenario-aware dynamic
adaptive planning was used that showed impressive results
for IIoT. In another paper [21], the C-IoT based framework
for the smart city was proposed and discussed different arti-
ficial intelligence schemes for enabling it. Mostly, the works
presented in [20]–[22] use traditional machine learning that
suffers from the issue of privacy leakage. Additionally, the
use of traditional machine learning for a massive number
of smart industrial devices requires a significant amount of
communication resources for transferring data from local
devices to the centralized server for training.

In [23], the authors proposed blockchain-based federated
learning. First, all the devices compute their local model
updates which are then send to their associated miners. The
miners cross verification and exchange local model updates
without the need for the centralized edge/cloud server. All the
miners get the local model updates of different devices after
consensus is reached. The miners send back the local model
updates of all devices to their corresponding devices where
global model aggregation takes place. The proposed approach
has the advantage of non-usage of a centralized edge/cloud
server but at the cost of extra communication resources usage
and high-latency due to blockchain consensus algorithm.
Therefore, to enable federated learning using blockchain, one
must propose novel consensus algorithms with low latency.

Several techniques such as reinforcement learning, deep
neural networks, and fuzzy logic, have been considered for
resource allocation and power management in different sce-
narios [24]–[26]. In [24], the authors proposed a Deep-
Q Network-enabled resource allocation and task offloading
for edge computing. Mainly, the authors considered the sce-
nario of multiple tasks to be offloaded to the edge server.
A cost considering delay, computational cost, and energy
was minimized. Reference [25] proposed the use of deep
neural network for computational resource allocation in edge
computing scenario. The other work in [26] used a fuzzy logic
inference based scheme for efficient power management in
electric vehicles in a parking lot. On the other hand, the works
in [27]–[30] used decomposition and relaxation-based algo-
rithms to solve the resource allocation problem in wireless
networks. The work in [27] used the block successive upper
bound minimization method to solve the resource allocation
problem of joint computing, caching, communication, and
control in big data multi-access edge computing (MEC).
In [28], the authors leveraged the block coordinate descent
and successive convex optimization techniques to solve the
joint optimization problem for the unmanned aerial vehicles
(UAV’s) recharging duration, power allocation as well as
trajectory by decomposing it into two sub-problems, which
are alternately solved. Moreover, the authors in [29], [30]
applied a decomposition-relaxation based approach to solve
the resource slicing problem for the enhanced Mobile Broad-
band (eMBB) and Ultra-Reliable Low Latency Communica-
tions (URLLC) coexistence in 5G networks.

The works in [14], [17]–[19] considered federated learn-
ing based on communication between the end devices
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FIGURE 1. Proposed federated learning framework for smart industries.

and edge/cloud server. Such fashion of federated learning
might suffer from robustness issue which occurs when the
edge/cloud server gets malfunctioned. Another disadvantage
is the possibility of a malicious user that can easily access the
edge/cloud server and alters the global model aggregation,
and thus introduces error. On the other hand, the blockchain-
based approach presented in [23] suffers from the extra com-
munication overhead to reach consensus among the miners
used for transferring learning model parameters. Addition-
ally, the blockchain consensus algorithm generates high
latency which is not desirable for federated learning. There-
fore, it is necessary to propose distributed and hierarchical
fashion based federated learning for offering enhanced secu-
rity, robustness, and communication resources optimization.

III. PROPOSED FRAMEWORK AND PROBLEM
FORMULATION
In this section, we present a DFL framework for smart indus-
tries as shown in Fig. 1. We consider a system that consists
of a set I of I industries. Each industry has set Ui,∀i ∈ I of
Ui,∀i ∈ I users with local datasets. To serve these devices,
the set Bi,∀i ∈ I of Bi,∀i ∈ I of edge computing-based
SBS are installed at the industries. A set R of R orthogonal
resource blocks already in use by the macro cell users are
reused by SBS users to enable resource-efficient operation.
The set of IoT devices from different industries want to train
a global FLmodel. To enable resource efficient and robust FL

for different industries, we propose the use of DFL scheme,
whose steps (shown in Fig. 2) are given below.
• Each device computes its local learning model in an
iterative manner using its local dataset.

• All the local devices are associated with the SBS for
transferring the local model updates. Then, the devices
sent their local learning model to their corresponding
edge computing enabled SBS.

• The edge computing enabled SBS first verifies the local
devices before starting computing sub-global models.
After verification, the learning model updates received
from the devices are aggregated to compute the sub-
global model. The computed sub-global model is then
transmitted to the devices. Such type of sub-global
model aggregation takes place in an iterative manner
between devices and SBS.

• All the edge computing enabled SBS use a light-weight
authentication scheme for the trustful transferring of
sub-global model updates with other edge computing
enabled SBS.

• After a transfer of sub-global model updates is com-
pleted, every edge computing enabled SBS computes
the global model via aggregation of sub-global models.
Finally, the global model updates are sent to the end
devices.

Our proposed framework (shown in Fig. 1) can offer
robustness due to the use of multiple distributed aggregation
servers. In contrast to centralized aggregation server-based
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FIGURE 2. Proposed federated learning framework sequence diagram.

FL which results in learning process interruption in case of a
malicious user attack, DFL can still continue the learning pro-
cess without complete interruption. On the other hand, trans-
ferring the learning model parameters between end-devices
and aggregation servers might suffer from a malicious third
party attack. To cope with this issue, we can use encryption
schemes.

A. FEDERATED LEARNING MODEL
In this subsection, we first find the expression in terms of
the packet error rate for traditional FL to reflect the effect
of wireless channel uncertainties on the global FL model
accuracy. Then, the expression for the proposed model is
derived. All the devices involved in FL has their own datasets
Di
u = [d iu1, d

i
u2, . . . , d

i
uk iu

], where k iu denotes the total number
of data samples for a device u of industry i. Different FL task
has different input sizes and a number of outputs depending
on the application nature. For simplicity, we assume a single
output 2i

uk which is determined by wiu for a given input d iuk .
The goal of the FL is to minimize the loss function f .

minimize
wi1,w

i
2,...,w

i
Uu

1
K

I∑
i=1

Ui∑
u=1

k iu∑
k=1

f (wiu, d
i
uk ,2

i
uk ), (1a)

s.t. w1
u = w2

u = . . . = wiu = z, ∀u ∈ Ui, ∀i ∈ I, (1b)

where K and z denote the total number of data points of all
devices and global FL model, respectively. Function f is the
loss function that is application dependent. The same learning
model for all devices is ensured by the constraint (1b). The
global model update is given by:

z =

∑I
i=1

∑Ui
u=1 k

i
uw

i
u

K
. (2)

As FL is based on an iterative exchange of learning model
parameters between the end devices and SBS, the random
channel variations have significant degradation effect on the
global FL model accuracy. To capture the effect of random
channel variations on the performance of FL model, we con-
sider a packet error rate which is given by:

eu,i(X,Y ) = xu→bi
i yu→bi

i 4, (3)

where

4 =

(
1− exp

(
−ϑ(

∑
c∈Cr h

r
cP

r
c + σ

2)

pui h
u→bi
i

))
, (4)

where pui , h
u→bi
i , and σ 2 denote the transmitted power by

device u of industry i, channel gain between device u and
SBS bi of industry i, and noise, respectively. ϑ represents
the waterfall threshold [31]. The binary variable xu→bi

i is the
association variable and is given by:

xu→bi
i

=

{
1, If device u of industry i is connected to SBS bi,
0, otherwise.

(5)

Every SBS in an industry can serve a limited number of
devices due to hardware limitations. The maximum number
of devices served by a SBS is restricted by the following
constraint:∑

u∈Ui

xu→bi
i ≤ 1bi , ∀bi ∈ Bi, ∀i ∈ I. (6)

On the other hand, every device must not be associated to
more than one SBS of every industry:∑

bi∈Bi

xu→bi
i ≤ 1, ∀u ∈ Ui, ∀i ∈ I. (7)

The binary resource block allocation variable yu→bi
i (r) is

given by:

yu→bi
i (r) =

{
1, If device u of industry i is assigned r,
0, otherwise.

(8)

The packet error rate strictly determines the FL model
accuracy. For higher values of the packet error rate, it is
desirable not to consider the corresponding local learning
model in computation of the global model. To consider this
effect, we define a binary variableQiu for device u of industry
i, whose value is taken Qiu = 1 if the packet error rate is
less than a certain threshold, and Qiu = 0 otherwise. We can
re-write (2) as:

z =

∑I
i=1

∑Ui
u=1 k

u
i w

i
uQ

i
u∑I

i=1
∑Ui

u=1 k
i
uQiu

. (9)

A standard gradient decent method is considered in this
article to update the local learning model and assume that
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F(z) = 1
K

∑I
i=1

∑Ui
u=1

∑kui
k=1 f (z, d

i
uk ,2

i
uk ). Furthermore,

we made several assumptions as follows [18], [19]:

• Assumption 1: The gradient
`
(F(z)) with respect to z

have uniform Lipschitz continuous nature [32].

‖

h
(F(zt+1))−

h
(F(zt )) ‖≤ L ‖ zt+1 − zt ‖, (10)

where ‖ ∗ ‖ and L denote the norm of ∗ and positive
constant, respectively.

• Assumption 2: The function F(z) is assumed to be
strongly convex for a positive constant µ:

F(zt+1) ≥ F(zt )+ (zt+1 − zt )T
h

F(zt )

+
µ

2
‖ zt+1 − zt ‖2 . (11)

• Assumption 3: FunctionF(z) is assumed to have strongly
differentiable nature. Using (10) and (11), we can write:

µI �
2h
F(z) � LI. (12)

• Assumption 4: It is assumed that ‖
`
f (zt , d iuk ,2

i
uk ) ‖

2
≤

ζ1 + ζ2
`
‖ F(zt ) ‖2 for positive constants ζ1 ≥ 0 and

ζ2 ≥ 1.

Due to FL loss function satisfying the assumptions 1 − 4
and exactly one resource block per device, the cost function
Ep that counts for the effect of packet loss rate on the FL
model accuracy is given by [18]:

Ep(X,Y ) =
I∑
i=1

Ui∑
u=1

k iueu,i(X,Y ). (13)

Considering assumptions 1−4, we get the intuition of cost
function that captures the effect of packet error rate on our FL
model accuracy for our proposed model. The term k iu in (13)
is constant, and therefore it is assumed to be equal to 1 and
cost function for our model can be written as follows:

E(X,Y ) =
I∑
i=1

Ui∑
u=1

eu,i(X,Y ). (14)

B. COMMUNICATION MODEL
All SBSs are assigned different orthogonal resource blocks,
and thus there is no interference between them. However,
SBSs will receive interference from cellular users because of
reusing the cellular users’ resource blocks for communication
by devices involved in FL. In our model, a single resource
block can be assigned to a maximum of one device:∑

i∈I

∑
u∈Ui

yu→bi
i (r) ≤ 1, ∀r ∈ R. (15)

On the other hand, every device must not be assigned more
than one resource block:∑

r∈R
yu→bi
i (r) ≤ 1, ∀i ∈ I, u ∈ Ui. (16)

Other than a maximum number of resource blocks per user,
the total number of resource blocks assigned to devices must
not exceed the total number of available resource blocks:∑

r∈R

∑
i∈I

∑
u∈Ui

yu→bi
i (r) ≤ R. (17)

The signal-to-interference-plus-noise ratio (SINR) for a
device u of industry i connected to SBS bi using resource
block r is given by:

0u→bi
r =

pri,uh
u→bi
i,r∑

c∈Cr h
r
cPrc + σ 2 , (18)

where pri,u and h
u→bi
i,r denote the transmission power of device

u of industry i and channel gain between device u of industry
i and base station bi, respectively. σ 2 and Cr represent the
noise and set of cellular users using the resource resource
block r , respectively. In our model, we assume that all devices
involved in FL transmit signals with equal power. The term∑

y∈Cr h
r
cP

r
c denotes the interference due to cellular users.

The data rate of the device u of industry i using resource block
r with bandwidth Aru,i is given by:

Ru→bi
r = Aru,i log2(1+ 0

u→bi
r ). (19)

We consider only the transmission delay in our system
model for sub-global model computation. The up-link delay
is considered only and downlink delay is assumed negligible.
Let the local learning model of device ui of industry i consist
of giu bits. The total time taken by computation of the sub-
global model of size giu and Isg sub-global iterations is given
by:

T bisg (X,Y ) = Isg

∑
u∈Ui

yu→bi
i (r)xu→bi

i giu
Ru→bi
r

 , ∀bi ∈ Bi.

(20)

C. PROBLEM FORMULATION
In this subsection, we formulate a problem to minimize the
cost CDFL of the proposed FL model computation. First,
we compute the total time taken during FL model compu-
tation that is given by:

T (X,Y ) =
∑
i∈I

∑
b∈Bi

T bisg (X,Y ). (21)

Now, we can write the cost function CDFL as follows:

CDFL(X,Y ) = αT (X,Y )+ (1− α)E(X,Y ). (22)

where α ∈ (0, 1) is a constant that enables us to strike the
balance between the FL model computation delay T and
global model accuracy loss due to packet error rate E . Now,
we formulate problem P that minimizes the cost CDFL as
follows:

minimize
X ,Y

CDFL(X,Y ) (23)

subject to:
∑
i∈I

∑
u∈Ui

yu→bi
i (r) ≤ 1, ∀r ∈ R, (23a)
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∑
r∈R

yu→bi
i (r) ≤ 1, ∀i ∈ I, u ∈ Ui, (23b)∑

r∈R

∑
i∈I

∑
u∈Ui

yu→bi
i (r) ≤ R, (23c)

∑
u∈Ui

xu→bi
i ≤ 1bi , ∀bi ∈ Bi, ∀i ∈ I,

(23d)∑
bi∈Bi

xu→bi
i ≤ 1,∀u ∈ Ui, ∀i ∈ I, (23e)

xu→bi
i ∈ {0, 1} ∀i ∈ I, u ∈ Ui, (23f)

yu→bi
i (r) ∈ {0, 1} ∀i ∈ I, u ∈ Ui. (23g)

Problem P is an integer linear programming problem and
has combinatorial nature due to the presence of two binary
variables xu→bi

i and yu→bi
i (r). Constraints (23a) and (23b)

restricts the assignment of the orthogonal resource block to a
maximum of one device and maximum of one resource block
per device, respectively. Constraint (23c) ensures that the
total number of resource blocks assigned to devices must not
exceed the maximum limit of the available resource blocks.
The maximum number of devices that can be associated
with the SBS of an industry is restricted by the maximum
limit indicated by constraint (23d). Constraint (23e) limits the
association of a device to a maximum of one SBS. Finally,
constraints (23f) and (23g) restrict the variables xu→bi

i and
yu→bi
i (r) to be assigned only binary values.

IV. PROPOSED DECOMPOSITION-RELAXATION BASED
ALGORITHM
The formulated problem P is NP-hard for a large number
of smart factory devices. We first decompose (23) into two
sub-problems: P-1: Association Problem and P-2: Resource
Blocks Allocation Problem. Then, we relax x and y to con-
tinuous variables. Later, we perform a binary conversion
techniques to meet the constraints of the original problem
(23). Finally, we iteratively solveP-1 andP-2 till convergence
as shown in Algorithm 1.

A. ASSOCIATION PROBLEM
In this subsection, we formulate the devices association prob-
lem for a fixed resource block assignment. For any fixed
feasible RBs allocation y, problem P can be represented as
follows:

P− 1 : minimize
X

CDFL(X ) (24a)

subject to
∑
u∈Ui

xu→bi
i ≤ 1bi , ∀bi ∈ Bi, ∀i ∈ I,

(24b)∑
bi∈Bi

xu→bi
i ≤ 1, ∀u ∈ Ui, ∀i ∈ I,

(24c)

xu→bi
i ∈ {0, 1} ∀i ∈ I, u ∈ Ui. (24d)

Algorithm 1 Proposed Decomposition-Relaxation Based
Algorithm
1: Inputs
2: Industries set I, Devices set Ui,∀i ∈ I.
3: Resource blocks setR, SBS set Bi,∀i ∈ I.
4: Outputs
5: Device-SBS association matrix X .
6: Resource block matrix Y .
7: Initialization
8: Set k = 0, ε1, ε2 > 0.
9: Find initial feasible solutions (x(0), y(0)).
10: repeat
11: Association Phase
12: Compute x(k+1) from (P-1) at given yk .
13: Resource Allocation Phase
14: Compute y(k+1) from (P-2) at given x(k+1).
15: until Convergence.

The optimization problemP-1 is an integer linear program-
ming problem, which can be relaxed to a problem whose
solution is within a constant approximation from the optimal.
The fractional solution is then rounded to get a solution to
the original integer problem. Accordingly, the optimization
problem in (24) can be approximated as follows:

minimize
X

CDFL(X ) (25a)

subject to
∑
u∈Ui

xu→bi
i ≤ 1bi , ∀bi ∈ Bi, ∀i ∈ I,

(25b)∑
bi∈Bi

xu→bi
i ≤ 1, ∀u ∈ Ui, ∀i ∈ I, (25c)

0 ≤ xu→bi
i ≤, 1 ∀i ∈ I, u ∈ Ui. (25d)

To solve the optimization problem in (25), we first analyze its
convexity in the following lemma.
Lemma 1: For a given y, (25) is a convex optimization

problem.
Proof: We first prove the convexity of the objective

function CDFL(X) with respect to X . Then, we prove the
convexity of the feasible region.We can notice that both T (X)
and E(X) are linear functions in x which are convex functions
for 0 ≤ x ≤ 1. Therefore, CDFL is a convex function as
it is a summation of two convex functions. Moreover, the
constraints (25b) and (25c) are linear constraints. Therefore,
(25) is a convex optimization problem.

According to lemma 1, we can obtain an optimal solution
for (25) using the standard convex optimization toolkits, e.g.
CVXPY. Next, we use the threshold rounding technique to
convert the relaxed x to be a binary form. Let ηx ∈ [0, 1] be
a rounding threshold, we set xu∗i as

x∗u→b
i =

{
1, if x∗u→b

i ≥ ηx ,

0, otherwise.
(26)
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B. RESOURCE BLOCKS ALLOCATION PROBLEM
In this sub-section, we formulate the resource block alloca-
tion sub-problem for fixed devices association. For any given
devices association matrix X , (23) can be written as follows:
P− 2 : minimize

Y
CDFL(Y ) (27a)

subject to
∑
i∈I

∑
u∈Ui

yu→bi
i (r) ≤ 1, ∀r ∈ R,

(27b)∑
r∈R

yu→bi
i (r) ≤ 1, ∀i ∈ I, u ∈ Ui,

(27c)∑
r∈R

yu→bi
i (r) ≤ 1, ∀i ∈ I, u ∈ Ui,

(27d)∑
r∈R

∑
i∈I

∑
u∈Ui

yu→bi
i (r) ≤ R, (27e)

yu→bi
i (r) ∈ {0, 1} ∀i ∈ I, u ∈ Ui.

(27f)
Similar to P-1, P-2 is an integer linear programming problem
which becomes NP-had for large number of devices and
SBSs. Therefore, for a simple solution, we use a relaxation-
based technique to compute the resource block allocation
matrix Y . First, we relax the problem (27b) as follows:

minimize
Y

CDFL(Y ) (28a)

subject to
∑
i∈I

∑
u∈Ui

yu→bi
i (r) ≤ 1, ∀r ∈ R, (28b)

∑
r∈R

yu→bi
i (r) ≤ 1, ∀i ∈ I, u ∈ Ui, (28c)∑

r∈R
yu→bi
i (r) ≤ 1, ∀i ∈ I, u ∈ Ui, (28d)∑

r∈R

∑
i∈I

∑
u∈Ui

yu→bi
i (r) ≤ R, (28e)

0 ≤ yu→bi
i (r) ≤ 1 ∀i ∈ I, u ∈ Ui. (28f)

We prove the convexity of the optimization problem in (28)
in the following lemma.
Lemma 2: For a given x, (28) is a convex optimization

problem.
Proof: We can notice that the objective function of

(28) is a summation of two linear functions in Y . Hence,
CDFL(Y ) is a convex function for 0 ≤ Y ≤ 1. Moreover,
the constraints (28b), (28c), (28d), (28e), and (28b) are linear
inequality constraints. Thus, the problem in (28) is a convex
optimization problem.
An optimal solution can be obtained for (28) using the stan-

dard convex toolkits as it is a convex optimization problem.
Finally, a rounding technique is used to obtain a binary form
of the realxed variable y. We set y∗iu as

y∗u→b
i =

{
1, if y∗u→b

i ≥ ηy,

0, otherwise,
(29)

where ηy ∈ [0, 1] is a rounding threshold.

FIGURE 3. Sample simulation scenario.

V. PERFORMANCE EVALUATION
In this section, we present numerical results for the validation
of our proposed DFL. For comparison, we use two baseline
algorithms. Baseline-1 uses the proposed device association
scheme and random resource allocation, whereas baseline-2
uses proposed resource allocation and random device asso-
ciation. We consider the LTE-based network that consists of
three SBS for one industry deployed at fixed locations in an
area of 1000 × 1000 m2. The sample simulation scenario
for 3 SBS, 30 industrial devices, and cellular users each, are
shown in Fig. 3. A singleMBS is deployed with cellular users
equal in the number to industrial devices. The devices used for
training of FL models are deployed randomly according to
uniform distribution and all the values are computed using an
average of 30 different runs for different positioning of indus-
trial devices and cellular users. Other simulation parameters
are given in Table. 1.

TABLE 1. Simulation parameters [33].

Fig. 4a shows CDFL vs. iterations using 42 devices and
3 SBSs for proposed, baseline-1, and baseline-2 schemes.
It is clear from Fig. 4a that all the three algorithms converge
rapidly with an increase in numbers of iterations. The reason
for the lowest costCDFL of the proposed scheme compared to
baseline-1 and baseline-2 is because of the fact that it consid-
ers both resource allocation and device-SBS association. The
reason for the lower cost of baseline-1 than baseline-2 is due
to the dependency of CDFL more on device-SBS association
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FIGURE 4. (a) CDFL vs. iterations for α = 0.5, (b) CDFL vs. SBS for α = 0.5 and 30 devices, (c) CDFL vs. devices for α = 0.5 and 3 SBS.

than resource allocation. For both baseline-1 and baseline-2,
CDFL converges in the first iteration because of the fact that
output vector (e.g., X) of the CVX optimizer does not change
with further increase number of iterations for a fixed value of
another vector (e.g., Y ).

Fig. 4b shows variations in CDFL with an increase in
number of SBSs for 30 devices. The proposed scheme out-
performed both baseline-1 and baseline-2. The reason for the
decrease in costCDFL with an increase in the number of SBSs
is the overall throughput enhancement. For a higher number
of SBSs, the devices will have more chances to connect to
nearby SBSs, and thus there will be less path loss. Such type
of low path loss results in overall high throughput which
causes a reduction in cost CDFL . One thing must be noted
here that for a fixed area and a fixed number of devices,
increasing the number of SBSs beyond a certain number does
not cause a significant decrease in cost CDFL . The reason
is the existing number of SBSs is sufficient to serve the
fixed number of devices with high throughput. For instance,
consider two different cases of 5 SBS and 6 SBS serving
a fixed number of devices in a fixed area. For 6 SBS case,
the probability for devices to achieve high throughput by
getting connectivity to the nearby SBS almost remain similar
to 5 SBS case. Furthermore, increasing the number of SBSs
causes an increase in deployment cost. Therefore, we must
make a trade off between the number of SBSs and devices vs.
performance. On the other hand, Fig. 4c shows the variations
in CDFL with an increase in number of devices for constant
α = 0.5 and 3 SBSs. There is an increasing trend in cost
for all three schemes with an increase in the number of
devices for a fixed number of SBSs. Similar to Fig. 4b, the
proposed algorithm outperformed baseline-1 and baseline-2
for different numbers of devices and fixed numbers of SBSs.

Finally, we analyze the convergence of the proposed algo-
rithm using training loss vs. communication rounds and accu-
racy vs. communication rounds for 50 industrial devices and 5
SBS in Figs. 5 and 6. We use MNIST dataset which contains
images of handwritten digits and perform image classifica-
tion task [34], [35]. It is clear that the proposed scheme
converges fast for different number of sub-global iterations.

FIGURE 5. Training loss vs. communication rounds.

FIGURE 6. Accuracy vs. communication rounds.

Generally, increasing the number of sub-global model itera-
tions causes performance improvement. However, increasing
the number of sub-global model iterations is at the cost of
communication and local computation resources. In DFL,
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we reuse already occupied communication resources by cel-
lular users to enable communication resources efficient oper-
ation. The proposed FL scheme offers a trade-off between
the sub-global model iterations and global communication
rounds. For a fixed accuracy, increasing the number of sub-
global iterations causes a decrease in global communication
rounds, and vice versa.

VI. CONCLUSION
In this article, we have proposed a novel collaborative fed-
erated learning framework for smart industries. We have
formulated an integer linear programming problem. To solve
the formulated problem, we have used a decomposition and
relaxation-based algorithm. Additionally, we have proved the
convexity of the sub-problems and solve them using a con-
vex optimization solver. Numerical results have shown fast
convergence of the proposed decomposition and relaxation-
based algorithm. Furthermore, we have tested the training
loss and accuracy of the proposed FL scheme. Therefore,
we can conclude that the proposed DFL scheme can be
effectively used in future smart industries for enabling various
smart functions while preserving the users’ privacy. We have
shown that the joint optimization of device association and
resource block allocation can significantly improve the per-
formance of FL for smart industries.
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