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Abstract A common approach to address multiobjective problems using rein-
forcement learning methods is to extend model-free, value-based algorithms such
as Q-learning to use a vector of Q-values in combination with an appropriate ac-
tion selection mechanism that is often based on scalarisation. Most prior empirical
evaluation of these approaches has focused on deterministic environments. This
study examines the impact on stochasticity in rewards and state transitions on
the behaviour of multi-objective Q-learning. It shows that the nature of the opti-
mal solution depends on these environmental characteristics, and also on whether
we desire to maximise the Expected Scalarised Return (ESR) or the Scalarised
Expected Return (SER). We also identify a novel aim which may arise in some
applications of maximising SER subject to satisfying constraints on the variation
in return, and show that this may require different solutions than ESR or conven-
tional SER.

The analysis of the interaction between environmental stochasticity and multi-
objective Q-learning is supported by empirical evaluations on several simple mul-
tiobjective Markov Decision Processes with varying characteristics. This includes
a demonstration of a novel approach to learning deterministic SER-optimal poli-
cies for environments with stochastic rewards. In addition, we report a previously
unidentified issue with model-free, value-based approaches to multiobjective rein-
forcement learning in the context of environments with stochastic state transitions.
Having highlighted the limitations of value-based model-free MORL methods, we
discuss several alternative methods that may be more suitable for maximising SER
in MOMDPs with stochastic transitions.
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1 Introduction

Multiobjective reinforcement learning (MORL) aims to extend the capabilities
of reinforcement learning (RL) methods to enable them to work for problems
with multiple, conflicting objectives [15]. RL algorithms generally assume that the
environment is a Markov Decision Process (MDP) in which the agent is provided
with a scalar reward after each action, and must aim to learn the policy that
maximises the long-term return based on those rewards [20]. In contrast, MORL
algorithms operate within multiobjective MDPs (MOMDPs), in which the reward
terms are vectors, with each element in the vector corresponding to a different
objective. This creates a number of new issues to be addressed by the MORL
agent. Most notably there may be multiple optimal policies (in terms of Pareto
optimality), and which policy the agent should learn is not immediately obvious.

In the utility-based paradigm of MORL [15, 40] the preferences of the user
are captured using a utility function f and associated parameters w, and the aim
of the agent is to learn the policy which produces vector returns that maximise
the utility to the user as defined by f and w. Various approaches have been
explored for the form of the utility function – some may be better suited to express
the preference of the user within a particular problem domain, while others offer
benefits from an algorithmic perspective. A simple weighted linear scalarisation
has been widely used because of its simplicity (for example, [2, 4, 12]). Linear
scalarisation transforms an MOMDP into an equivalent single-objective MDP, and
enables existing RL approaches to be directly applied [15]. However for many tasks
this may not be able to accurately represent the preferences of the user [15, 23],
and so may fail to discover the policy that is optimal with regards to their true
utility. As a result numerous non-linear scalarisation functions have been explored
in the literature (for example, [7, 33, 34]). These tend to produce algorithmic
complications, but are better able to represent the true preferences of the user.

As well as the choice of scalarisation function and parameters, a second factor
must be considered within this utility-based paradigm – the time-frame over which
the utility is being maximised. Roijers et al. [15] identified two distinct possibilities.
The agent may aim to maximise the expected scalarised return (ESR). That is,
it is assumed the returns are first scalarised, and then the agent aims for the
policy which maximises the expected value of that scalar, so that the scalar value
of a policy π for any given state under ESR is given by Equation 1, where w is
the parameter vector for f , rk is the vector reward on time-step k, and γ is the
discounting term.

V πw(s) = f(Vπ(s),w) = f(E[
∞∑
k=0

γkrk | π, s0 = s],w) (1)

This ESR approach is suited to problems where the aim is to maximise the
expected outcome within any individual episode. For example, when producing a
treatment plan for a patient that trades off the likelihood of a cure versus the extent
of negative side-effects - any individual patient will only undergo this treatment
once, and so they care about the utility obtained within that specific episode.

In other contexts we may be concerned about the mean utility received over
multiple episodes. In this situation the agent should aim to maximise the scalarised
expected return (SER) - that is, it estimates the expected vector return per
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episode, and then maximises the scalarisation of that expected return as shown in
Equation 2.

V πw(s) = E[f(
∞∑
k=0

γkrk,w) | π, s0 = s) (2)

For example, consider an agent controlling a manufacturing process which can
produce several different items. The amount of each item produced per day may
be reflected in a corresponding objective. We may desire to output the maximal
amount possible for each product. However, assuming the existence of suitable
warehousing facilities, it may be beneficial to focus on the the mean per-day pro-
duction of each item, rather than trying to produce a particular number of all
items on each individual day.

As demonstrated in Roijers et al. [17], the optimal policy for a particular
MOMDP under the ESR and SER settings may differ considerably, even if the
same utility function and parameters are used in both cases. The majority of ex-
isting work in MORL has considered SER optimization, although this has often
been implicitly rather than explicitly stated [14, 17]. In addition much of this
SER-focused work has been based on benchmark environments such as those of
Vamplew et al. [25], the majority of which are deterministic MOMDPs. Conse-
quently there has been very little work contrasting ESR and SER formulations in
non-deterministic MOMDPs. Therefore, in this paper we examine the operation of
multiobjective Q-learning methods across several example environments that vary
in the stochasticity of their state and reward dynamics, and illustrate the differ-
ences between the optimal policies that arise for the ESR and SER formulations
of the same problem.

Section 2 discusses the extension of Q-learning to handle multiple objectives,
and presents the general algorithm for multiobjective Q-learning which will form
the basis for our later discussion. Section 3 starts by considering the simplest
case where all aspects of the environment are deterministic, and demonstrates
empirically that both ESR and SER must use an augmented state definition in
order to ensure convergence to the optimal policy when using non-linear scalari-
sation. In Section 4 we consider environments with deterministic state-transitions
but stochastic rewards, and show that the previous state augmentation approach
remains adequate for ESR agents, but demonstrate that a novel form of state aug-
mentation is required to find SER-optimal deterministic policies in this context.
Finally, in Section 5, we examine MOMDPs with stochastic state transitions and
demonstrate by example that model-free value-based MORL methods may fail to
maximise the SER utility within such environments, and may in fact converge to
solutions which are not even Pareto-optimal.

2 An Overview of Multiobjective Q-learning

One of the most common approaches taken in the MORL literature is to ex-
tend single-objective, model-free value-based RL algorithms such as Q-Learning
or SARSA – for example see [7, 10, 32]. For this paper we will focus on a single-
policy form of multi-objective Q-learning as shown in Algorithm 1 in which the
utility function f is used to filter the multiple Pareto-optimal actions that may be
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available at any state, so as to obtain a single policy that is optimal with regards
to f .

Algorithm 1 A general algorithm for multiobjective Q(λ). Note that if f is linear
then the operations related to state augmentation on Lines 10, 15 and 16 are
not required – the policy can be derived purely from Q-values of the current
environmental state.

input: learning rate α, discounting term γ, eligibility trace decay term λ, number of ob-
jectives n, action-selection function f and any associated parameters

1: for all states s, actions a and objectives o do
2: initialise Qo(s, a)
3: end for
4: for each episode do
5: for all states s and actions a do
6: e(s, a)=0
7: end for
8: sums of prior rewards Po = 0, for all o in 1..n
9: observe initial state st

10: st = (st, P ) . create augmented state
11: select at from an exploratory policy derived using f(Q(s))
12: for each step of the episode do
13: execute at, observe st+1 and reward Rt
14: P = P +Rt
15: st+1 = (st+1, P ) . create augmented state
16: U(st+1) = Q(st+1) + P . create value vector
17: select a∗ from a greedy policy derived using f(U(st+1))
18: select a′ from an exploratory policy derived using f(U(st+1))
19: δ = Rt + γQ(st+1, a∗) −Q(st, at)
20: e(st, at) = 1
21: for each state s and action a do
22: Q(s, a) = Q(s, a) + αδe(s, a)
23: if a′ = a∗ then
24: e(s, a) = γλe(s, a)
25: end if
26: end for
27: st = st+1, at = a′

28: end for
29: end for

As can be seen from Algorithm 1, there are two key changes required to extend
value-based methods to multiple objectives. The first is that as the rewards are
vector-valued, the Q-values must also be vectors – this is a straightforward mod-
ification. The second, and more complex, issue is that the selection of a greedy
action is less clear than in the single-objective case, as different actions may have
value-vectors that are non-dominated. The solution taken is to use the scalari-
sation function f to create an ordering over the vector values so as to allow the
selection of a greedy action1.

A further complexity arises when the scalarisation function f is non-linear. As
discussed in Roijers et al. [15], the returns under such a function are no longer
additive, which conflicts with the use of the Bellman equation within the temporal-

1 Technically, f need not perform an explicit scalarisation of vectors, as long as it provides a
complete ordering over vectors – for example, a lexicographic ordering of vectors can be used,
even though this cannot be directly represented as a scalarisation operation [5].
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difference updates of the Q-values. Therefore, selecting actions based on applying
f to the Q-values for the current state is insufficient to produce results that actu-
ally maximise f over the return for the entire episode. Instead the choice of action
must be conditioned both on the current state and also a summary of the history of
the current trajectory, such as by accumulating the reward for the current episode
and adding that on to the current state’s Q-values before applying f . In addition,
in order for the policy to converge, the Q-values must also be conditioned on the
same factors. Geibel [8] refers to this as using an augmented state formed by a con-
catenation of the environmental state with the summed rewards from the current
episode (lines 10 and 15 of Algorithm 1). While this expands the dimensionality
of the state-space and therefore may slow learning, it is in general necessary to
guarantee convergence of the policy. There may be limited circumstances under
which such state augmentation is not required. For example, Issabekov and Vam-
plew [10] note it can be ignored where rewards are known to be zero at all steps
other than when a terminal state is reached. In the later sections of this paper we
will identify some further exceptions where state augmentation is not necessary –
being aware of such exceptions potentially allows faster learning where we know
the problem domain has these characteristics.

Many options exist for the action-selection function f . For the remainder of
this paper we will restrict discussion to a linear-weighted sum (still widely used,
despite its limitations), and thresholded lexicographic ordering (TLO) [7, 10] as an
example of a non-linear function. The highly non-linear nature of TLO will help
to highlight some of the issues that we wish to emphasise, but we note that similar
issues would be observed under any non-linear f . TLO aims to maximise the value
of a certain objective, subject to achieving at or above the threshold value for
the other objective(s). In cases where policies are equivalent when considered in
terms of the thresholded values, then the unthresholded values for these objectives
can be used as a ‘tie-breaker’, to ensure the agent’s policy will be Pareto-optimal.
This is illustrated in Figure 1. In this example, if simple lexicographic ordering was
applied then policy π6 would be selected as it maximises the first objective, despite
its very poor performance on the second objective. However if TLO is applied
with a threshold of 0.6 for the first objective, then policy π4 will be preferred as
it maximises the second objective subject to satisfying the threshold for the first
objective2.

It has been previously shown that lexicographic ordering cannot be repre-
sented as a scalarisation operation [5]. TLO can be implemented via a discontin-
uous scalarisation, but only if assumptions are made about the range of values
obtainable for each objective. However, the role played by the scalarisation func-
tion f within Algorithm 1 is to identify the greedy action selection, and this can
be achieved without explicit scalarisation, if the action selection is instead repre-
sented in terms of an ordering operator for vector values. This representation of
TLO for the two-objective case is shown in Equation 3, where T1 indicates the
threshold value for the first objective and U(s, a) represents the summation of
Q(s, a) and the accumulated reward vector. This approach can easily be extended
to any number of thresholded objectives.

2 Note that this policy could not be found via linear selection, as it does not lie on the
convex hull of the Pareto set of solutions.
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Fig. 1 An illustration of TLO selection over vector values. The blue points π1 to π6 cor-
respond to the vector returns achieved by six different policies on an MOMDP with two
objectives. The red dashed line marks the threshold value for the first objective, and the red
points π′4 to π′6 show the result of thresholding the original policy values (π1 to π3 are unaf-
fected by the thresholding as their first objective value is below the threshold). In this case
TLO would select policy π4 as it achieves the highest reward for objective 2 out of the policies
which meet or exceed the threshold value for objective 1.

∀s, a, a′ ~U(s, a) �
TLO

~U(s, a′) ⇐⇒

min
(
U1(s, a), T1

)
> min

(
U1(s, a′), T1

)
∨
(((

min(U1(s, a), T1
)

= min(U1(s, a′), T1
))
∧
(
U2(s, a) > U2(s, a′)

))
∨
(((

min(U1(s, a), T1
)

= min(U1(s, a′), T1
))
∧
(
U2(s, a) = U2(s, a′)

)
∧
(
U1(s, a)) > U1(s, a′)

))
(3)

3 Fully-Deterministic MOMDPs

We first consider the case of MOMDPs where all of the environmental properties
(choice of starting state, state transitions and rewards) are deterministic. The
widely-used Deep Sea Treasure (DST) benchmark [25] serves as an illustrative
example of this type of environment. As shown in Figure 2, the DST is a 2D grid.
A submarine controlled by the agent starts at the shore, and must travel out to
one of several points on the sea-bed to retrieve treasure, trading off the time taken
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Fig. 2 The Deep Sea Treasure environment (reproduced from [23]).

 
Deep Sea Treasure: This task consists of a grid of 10 rows and 11 columns (see Fig 
3). The agent controls a submarine searching for treasure. There are multiple treasures 
with varying values. There are two objectives – to minimise the time taken to reach 
treasure, and to maximise the value of the treasure retrieved. This is an episodic task – 
each episode starts with the vessel in the top row of the first column, and ends when a 
treasure is reached or after 1000 actions. At each time-step, four actions are available 
to the agent – moving one square to the left, right, up or down. Any action which 
would result in the agent leaving the grid will leave its position unchanged. The 
reward received by the agent on each turn is a 2-element vector. The first element is a 
time penalty, which equals -1 on all turns. The second element is 0 on all turns except 
when the agent moves into a treasure location, when it is the value shown in Fig 3. 
There are ten non-dominated policies, each of which leads to one of the ten treasure 
locations. The Pareto front of these policies is shown in Fig 4. The front is globally 
concave, with local concavities at the second, fourth and sixth points from the left. 
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Fig 3: Deep Sea Treasure: Black cells are the 
sea-floor; grey cells are treasure locations.  
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Fig 4: The Pareto front for the Deep Sea 
Treasure problem. 

MO-Puddleworld: This is a 2-D environment. The agent starts each episode at a 
random state and must reach the goal in the top-right corner, whilst avoiding puddles. 
It receives its current coordinates as input, and at each step selects an action (left, 
right, up or down). The agent’s position is bounded by the limits of the world. The 
reward structure for the original single-objective Puddleworld task [13] is effectively 
a form of scalarisation with fixed weights for the two objectives of reaching the goal 
quickly and avoiding the puddles. On each step on which the goal is not reached, the 
agent receives a penalty of -1. An additional penalty applies if the agent is within a 
puddle, equal to 400 multiplied by the distance to the puddle’s edge. To convert this 
problem to a multiobjective task, we present the two penalties as separate elements of 
a reward vector (omitting the multiplication by 400, as it is no longer relevant). To 
facilitate the evaluation of the Pareto front, it was necessary to make several 
alterations to the original problem specification. The noise added to the movement of 
the agent was omitted. The policies were based on a 20x20 discretisation of the state-
space (although the actual position of the agent in the environment was still modeled 
as a continuous value). The goal was enlarged from its original triangular shape to fill 
the entire 0.05 unit square in the top-right corner of the world. With these alterations 
in place, and through the application of several manually identified constraints, it was 
possible to identify all non-dominated policies to construct the Pareto front shown in 

Fig. 3 The Pareto front of solutions for the Deep Sea Treasure environment (reproduced
from [23]).

to reach the treasure against the value of the treasure at that location. The set of
possible trade-offs available via following different policies is shown in Figure 3.

As shown in Vamplew et al. [23], because the Pareto-front is concave the only
solutions that can be found using a linear scalarisation for f are the two at the
extremities of the front – (-1, 1) and (-19,124). This is true regardless of the choice
made for the weights of f , and has previously been empirically confirmed by Iss-
abekov and Vamplew [10]. This illustrates a key limitation of linear scalarisation;
while it is computationally straightforward and avoids the need for state augmen-
tation, it may be a poor match for the true utility of the user [15].

In contrast when using a non-linear f such as TLO, all possible solutions
are actually obtainable provided the correct parameters are set for f (for TLO,
this means choosing a suitable threshold). For a fully deterministic MOMDP like
DST, the value of the accumulated reward P must still be taken into account when
selecting a greedy action (i.e. basing the action selection on the augmented state as
calculated on Line 16 of Algorithm 1). However, as both the environment and the
policy are deterministic, the value of P will always be the same whenever the agent
reaches a particular state of the environment, and hence it is sufficient to condition
the Q values simply on the environmental state rather than the augmented state.
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Fig. 4 Graphs of the mean reward achieved over twenty independent runs of the TLO Q-
learning agent (Algorithm 1) on the DST problem using a time threshold of -16 (shown by
the red line). Two variants of the algorithm are shown - one uses only the environmental
state when selecting an action, while the other uses an augmented state consisting of both the
environmental state and the sum of the rewards received so far in the current episode.

Figure 4 summarises the results of an empirical comparison of a TLO agent
with action-selection conditioned only on the unaugmented environmental state
and one conditioned on the augmented state. These results were based on twenty
independent runs of each algorithm, using softmax-t exploration [27] with the
temperature parameter decayed from 30 to 0.01 over 10,000 learning episodes,
with learning rate α=0.3, λ=0.95, γ = 1, and the threshold for the time objective
set to -16. For that threshold, the optimal policy obtains a treasure reward of 50
with a time penalty of -14. It can be seen that the agent using accumulated reward
to augment the state converges to the desired policy, while the unconditioned TLO
agent performs very poorly with regards to the treasure objective.

The unaugmented TLO agent ignores the time already expended in the current
episode when deciding whether the outcome of its future actions will result in it
exceeding the time threshold. For example, if after 13 time steps it has reached
the grid-cell directly above the 50 reward cell in Figure 2, the correct action would
be to move down. However it can reach the 124 treasure in 6 more steps, and
as the future cost of reaching that larger treasure is equal to -6 (which is above
the threshold of -16) the agent will instead move to the right. The effects of this
erroneous decision propagate back into the Q-values for earlier states, and the
agent learns that moving to the right ultimately leads to it exceeding the time
threshold, and therefore it converges to a policy that instead leads to one of the
rewards closest to the starting point, ensuring that the time threshold is satisfied,
but with severely sub-optimal outcomes regarding the treasure objective.

For the ESR formulation, the deterministic policy found using Algorithm 1 in
combination with non-linear f will be optimal. However, for the SER formula-
tion, there may be benefits from allowing the agent to follow policies which are
either stochastic or non-stationary [24]. Consider an agent that alternates between
the policies that achieve the returns (-1,1) and (-19, 124). The mean return for
this agent will be (-10, 62.5). Looking at Figure 3, clearly this solution Pareto-
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dominates many of the deterministic policies and so may be superior in terms of
the user’s true utility. The MO Q-learning approach from Algorithm 1 cannot di-
rectly find such policies. However, it can be used to find ‘base policies’ which can
be combined in a non-stationary manner, as in the Q-steering algorithm of [28],
which was demonstrated on the DST in [26]. For example, at the start of each
episode the agent could compare the average return received so far against the
threshold parameter specified for the TLO function. If the return for the treasure
objective is below the threshold, the agent follows the policy with return (-19,
124), otherwise it follows the policy with return (-1,1). For any given threshold
value, this approach will result in the optimal mean outcome and so will be ap-
propriate if the user wishes to maximise SER. Of course, many of the individual
episode outcomes will fall below the threshold, and so this approach would not be
suitable if the aim is to maximise ESR.

In certain contexts the wide variation between individual episodes may also
be undesirable, even if the user is primarily concerned with maximising SER.
For example, consider a commercial fishing operation with a trade-off between
time spent at sea and the amount of fish caught. In order to maintain a suitable
cash-flow the company management may require an SER formulation. However,
the optimal mean performance may feature wide variations in the catch between
trips, leading to storage issues following large catches, and dissatisfied customers
following small catches. This suggests a third possible approach to maximising
utility in a multiobjective setting, which is to maximise SER subject to achieving
some constraint on the variation between episodes. For example in the DST we
might prefer a policy which alternates between the (-5, 3) and (-14, 50) returns,
even though the SER for this approach is lower than for the policy which mixes
the (-1,1) and (-19, 124) returns. While there is prior work on reducing variance
within risk-aware single-objective RL [6, 21] and also on MORL approaches to
risk-aware RL [35, 9], we are not aware of any previous work that addresses the
issue of reducing the variance in returns within the context of MORL.

A specific form of this reduced-variance SER optimisation would be for the
agent to identify the member of the set of deterministic policies that maximises
the value of SER. We will refer to this as SER-deterministic optimisation. In the
context of fully deterministic environments such as the DST, the same policy will
be optimal for both SER-deterministic and ESR, but in future sections we will
show that this is not necessarily the case for stochastic environments.

4 MOMDPs with Stochastic Rewards

Consider the two-objective MOMDP shown in Figure 5. Each episode starts in
state s0. Regardless of the action chosen the environment always transitions to
state s1, and returns a reward of either (1,0) or (3, 0) with equal probability. From
s1 five actions are available, each transitioning to a terminal state but giving a
different Pareto-optimal trade-off between the two objectives.

The stochasticity of the environment has no impact on an agent using linear
f . As was the case for the DST, it will be restricted to finding solutions which
lie on the convex hull of the Pareto front (eliminating actions B and C from
consideration), and so in this case will converge to one of three deterministic
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Fig. 5 A simple MOMDP with deterministic state transitions and stochastic rewards.

policies – always selecting action A, always selecting D, or always selecting E. As
before, these options may not suitably match the true utility of the user.

Therefore we may need to use a non-linear definition of f in order to better
satisfy the user’s utility. However there is a critical difference between these sce-
narios and the deterministic environments considered previously in that for these
stochastic scenarios the value of the accumulated reward P when a particular en-
vironmental state is reached may vary between episodes. As a result, when using
methods based on non-linear f in this type of stochastic environment it is vital
that both the choice of action and the Q-values take into account the value of
P (i.e. the state augmentation operations on Lines 10, 15 and 16 in Algorithm 1
must be included).

Consider what the optimal behaviour would be for an ESR-maximising agent,
using the visualisation of reward space shown in Figure 6, and assuming a threshold
of 4.4 for the first objective. When a reward of (1,0) is received on the first tran-
sition, then the optimal action for the agent is E as this is the only choice which
will produce a whole-of-episode return satisfying that threshold. In contrast when
the initial reward is (3, 0), then all actions would give an outcome satisfying this
threshold, and so the agent is free to perform action A which maximises the return
for the second objective. Note that this policy is non-deterministic with respect to
the environmental state, but is deterministic with respect to the augmented state.

Consider now an SER-maximising agent which is allowed to use stochastic
or non-stationary policies. If it selects at the start of each episode whether to
follow action A or action D in s1 then, as shown in Figure 6, its mean return
(πSER−Stochastic) will lie along the line Am..Dm. By selecting between those
actions in an appropriate ratio, the agent can achieve a mean result which satisfies
the threshold on the first objective, while performing considerably better than the
ESR agent on the second objective. Of course many of the individual episodic
returns under this mixture policy would fall below the threshold, and so this
approach would not be appropriate for maximising ESR.

Finally consider the case of SER-deterministic optimisation. Unlike in the de-
terministic DST example, the optimal deterministic policies for this task differ if
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Fig. 6 A visualisation of the solutions to the stochastic rewards MOMDP. The green points
and line labelled A+1..E+1 indicate the total episodic reward and Pareto front when action
A..E is executed after a reward of (1,0) is returned on the first state transition; The blue points
A+3..E+3 do the same for the case where the initial reward is (3, 0), and the black points
Am..Em show the mean return for each action over all episodes. The red dotted line shows the
desired threshold of 4.4 for the first objective. An ESR agent conditioned on the accumulated
reward will select action E following an initial reward of (1,0) and action A following an
initial reward of (3, 0), thereby satisfying the first-objective threshold for all episodes, and
yielding a mean result of πESR = (4.6, 5) (shown in brown). A stochastic SER agent which
randomly selects between actions A and D with equal probability regardless of the value of the
initial reward, will receive a mean outcome of πSER−Stochastic = (4.4, 7.5) (purple). Finally a
deterministic SER agent which conditions actions based on the accumulated expected reward
will always select action C, giving a mean outcome of Cm = (4.5, 6).

the agent is trying to maximise SER rather than ESR. In this case, as shown in
Figure 6, the best deterministic policy with regards to SER is to always select
action C. The question is how to condition the action-selection and Q-values of
the agent so as to achieve this policy. Algorithm 2 presents a novel solution to
this issue. As SER-optimisation cares about the mean result over all episodes,
conditioning the actions and augmented state on the accumulated reward within
the current episode as done in Algorithm 1 is not appropriate. Instead, the agent
should accumulate the expected immediate reward for each action performed in
the current trajectory, and use this vector to derive both the augmented state and
the choice of action. In order to achieve this, the agent must maintain an estimate
of these expected immediate rewards (Lines 3 and 15 in Algorithm 2). Consider
how this operates on our simple stochastic MOMDP. The immediate reward esti-
mates for all actions in the initial state s0 will converge to (2,0). Therefore when
the agent reaches state s1 the value of the accumulated estimated rewards P will
always be (2,0) regardless of the actual reward received in this episode. When P
is combined with the values of Q(s1), actions A and B will be below the threshold
for the first objective, and action C will be selected from the remaining actions as
it performs best for the second objective. From Figure 6, it can be seen that the
mean return for this policy will be Cm which is preferable from an SER perspective
to the ESR agent’s return (πESR). The SER-deterministic result is inferior to that
of the SER agent which is allowed to use stochastic policies (πSER−Stochastic), as
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both meet the threshold for the first objective and the mean return of the stochas-
tic policy outperforms the deterministic policy on the second objective. However
the SER-deterministic agent provides greater consistency, with the same return
achieved for the second objective in all episodes, which for some applications may
be preferable.

Algorithm 2 Multiobjective Q(λ) using accumulated expected reward as an ap-
proach to finding deterministic policies for the SER context. The differences from
Algorithm 1 have been highlighted in red text.

input: learning rate α, discounting term γ, eligibility trace decay term λ, number of ob-
jectives n, action-selection function f and any associated parameters

1: for all states s, actions a and objectives o do
2: initialise Qo(s, a)
3: initialise Io(s, a) . estimated immediate (single-step) reward
4: end for
5: for each episode do
6: for all states s and actions a do
7: e(s, a)=0
8: end for
9: sums of prior expected rewards Po = 0, for all o in 1..n

10: observe initial state st
11: st = (st, P ) . create augmented state
12: select at from an exploratory policy derived using f(Q(s))
13: for each step of the episode do
14: execute at, observe st+1 and reward Rt
15: update I(st, at) based on Rt
16: P = P + I(st, at)
17: st+1 = (st+1, P ) . create augmented state
18: U(st+1) = Q(st+1) + P . create value vector
19: select a∗ from a greedy policy derived using f(U(st+1))
20: select a′ from an exploratory policy derived using f(U(st+1))
21: δ = Rt + γQ(st+1, a∗) −Q(st, at)
22: e(st, at) = 1
23: for each state s and action a do
24: Q(s, a) = Q(s, a) + αδe(s, a)
25: if a′ = a∗ then
26: e(s, a) = γλe(s, a)
27: end if
28: end for
29: st = st+1, at = a′

30: end for
31: end for

To highlight the difference made by using actual or expected rewards in state
augmentation, empirical trials of the ESR and SER-deterministic algorithms were
carried out. A tabular implementation of each algorithm was executed for 20 in-
dependent runs, with α=0.3, λ=0.95 and γ=1.0. Exploration used multiobjective
softmax-t [27], with the temperature parameter initialised to 10, and decayed to
0.01 over the learning episodes. The accumulated reward values (P ) were quantised
into three discrete bins (p ≤1.2, 1.2< P ≤2.8, and P >2.8). Given the discrete
nature of the environment, the immediate reward values for the SER-deterministic
agent were estimated by using the actual mean of the rewards received for each
state-action pair to that point in learning. Each run consisted of 1000 learning
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Fig. 7 The results of the greedy final policy in 20 independent runs of the ESR agent (Al-
gorithm 1, brown diamonds), and the SER-deterministic agent (Algorithm 2, black triangles).
A zoomed-in portion of the fronts and threshold values shown in Figure 6 have been included
to highlight how these results arise from the combination of actions selected by each agent.

episodes, followed by 200 off-line episodes with no learning or exploration in order
to evaluate the final policy3.

Figure 6 shows the mean offline result achieved by each run of each algorithm.
It can be seen that, as expected, the results of the ESR agent lie along the line
connecting the returns from action A+3 and E+1. The variation between these
results depends entirely on the frequency with which the +1 and +3 rewards were
obtained for the first objective during these offline episodes. The chart of the
frequency with which actions are selected, shown in Figure 8, confirms that the
ESR agent has learned to select action E following an initial reward of (+1,0)
and action A after an initial reward of (+3, 0), thereby guaranteeing that every
episode exceeds the threshold for the first objective.

Similarly, the results for all but one of the runs of the SER-deterministic agent
lie along the line joining C+1 and C+3, and the action-selection frequencies shown
in Figure 9 confirm that this agent is always selecting action C in its final policy.
The variation in the stochastic rewards obtained during the 200 offline episodes
was sufficient that for two runs, the mean offline return for the first objective fell
below the threshold of 4.4. The outcome observed for the outlier at (5.24, 5) in
Figure 7 is explained by the stochasticity of the rewards – in this particular run,
the mean reward returned for the first objective during the 1000 learning episodes
was 1.891, which is low enough that this agent learned the deterministic policy
which always chooses action D. These results reflect observations made in earlier

3 We note that if the environment’s state transitions are deterministic the value of P calcu-
lated at Line 16 of Algorithm 2 will be conditioned on the current state s (once the agent is
following a fully deterministic policy). Therefore the conditioning of Q values on an augmented
state (line 17) is not necessary, and learning efficiency may be improved by omitting this step.
This is not true for Algorithm 1 as P will vary due to stochasticity in the rewards. We thank
the anonymous reviewer of the original submission of this paper for alerting us to this poten-
tial for more efficient implementation of the SER-deterministic agent for environments with
deterministic state transitions.
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Fig. 8 The frequency with which actions are selected in a randomly-selected run of the
ESR-maximising TLO agent (Algorithm 1) where actions and Q-values are conditioned on the
sum of the actual rewards received in the current episode). The upper graph shows the action
selected following an initial reward of (1,0), and the lower-graph shows the action selected
following an initial reward of (3,0).

experiments within a different problem domain, that the highly non-linear nature
of the TLO operator can exaggerate small inaccuracies in estimated state-action
values into substantial variations in the final policy [31].
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Fig. 9 The frequency with which actions are selected in a randomly-selected run of the SER-
deterministic TLO agent (Algorithm 2) where actions and Q-values are conditioned on the
sum of the expected rewards so far in the current episode). The upper graph shows the action
selected following an initial reward of (1,0), and the lower-graph shows the action selected
following an initial reward of (3,0).

5 MOMDPs with Stochastic State Transitions

Having examined the impact of stochastic rewards on value-based MORL agents,
we now consider the case of MOMDPs in which the transitions between states are
stochastic. While it might be expected that both forms of environmental stochas-
ticity would have similar effects, we will see that this in fact is not the case, and
that stochastic transitions can pose a significant problem for value-based MORL.

As an example of this class of MOMDPs we propose the novel Space Traders
MOMDP shown in Figure 10. This is a finite-horizon task with a horizon of two
time-steps. It consists of two non-terminal states, with three actions available in
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Fig. 10 The Space Traders MOMDP. Solid black lines show the Direct actions, solid grey
lines show the Indirect actions, and dashed lines indicate Teleport actions. Sold black circles
indicate terminal (failure) states.

each state. The agent starts at its home planet (state A) and must travel to another
planet (state B) to deliver a shipment, and then return home with the payment.
The agent receives a reward with two elements - the first is 0 on all actions, except
that a reward of 1 is received when the agent successfully returns home, while the
second element is a negative value reflecting the time taken to execute the action.

There are three possible pathways between the two planets. The direct path
(actions shown by solid black lines in Figure 10) is fairly short, but there is a
risk of the agent being waylaid by space pirates and failing to complete the task.
The indirect path (grey lines) avoids the pirates and so always leads to successful
completion of the mission, but takes longer. Finally the recently developed telepor-
tation system (dashed lines) allows instantaneous transportation, but has a higher
risk of failure. The figure also details the probability of success, and the reward
for the mission-success and time objectives for each action – due to variations in
local conditions such as solar winds and the location of the space pirates, the time
values for the outward and return journeys on a particular path may vary.

Table 1 summarises the transition probabilities and rewards of the MOMDP,
and also shows the mean immediate reward for each action from each state,
weighted by the probability of success. As there are three actions from each state
there are a total of nine deterministic policies available to the agent. The mean
reward per episode for each of these policies is shown in Table 2 and illustrated in
Figure 11. The solid points in the figure highlight the policies which belong to the
Pareto front, and the dashed grey line indicates the convex hull (only those policies
lying on the convex hull can be located via methods using linear scalarisation –
this set of policies is referred to as the Convex Coverage Set [16]).

For the remainder of the paper we will assume that the agent’s aim is to
minimise the time taken to complete the delivery and return home, subject to
having at least an 88% probability of successful completion. That is, the user’s
utility function f(~v) = v2 if v1 > 0.88 and −∞ otherwise.

This type of task in which the aim is to achieve a threshold level of the probabil-
ity of occurrence of some stochastic event fits poorly with the ESR-based approach
to maximisation. Specifying any threshold value for mission success that must
be met by every episode is equivalent to requiring that each individual episode’s
probability-of-success must be maximised. For the Space Traders environment this
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Table 1 The probability of success and reward values for each state-action pair in the Space
Traders MOMDP.

State Action P(success)
Reward
on
success

Reward
on
failure

Mean
reward

A
Indirect 1.0 (0,-12) n/a (0,-12)

Direct 0.9 (0, -6) (0, -1) (0, -5.5)

Teleport 0.85 (0,0) (0,0) (0, 0)

B
Indirect 1.0 (1, -10) n/a (1, -10)

Direct 0.9 (1, -8) (0, -7) (0.9, -7.9)

Teleport 0.85 (1, 0) (0, 0) (0.85, 0)

Table 2 The mean episodic return vector for each of the nine deterministic policies available
for the Space Traders MOMDP.

Policy
identifier

Action in
state A

Action in
state B

Mean return

II Indirect Indirect (1, -22)

ID Indirect Direct (0.9, -19.9)

IT Indirect Teleport (0.85, -12)

DI Direct Indirect (0.9, -14.5)

DD Direct Direct (0.81, -12.61)

DT Direct Teleport (0.765, -5.5)

TI Teleport Indirect (0.85, -8.5)

TD Teleport Direct (0.765, -6.715)

TT Teleport Teleport (0.7225, 0)

can only be achieved by following the strictly safe indirect route on both legs of
the journey.

SER maximisation is a more natural fit for this type of task, as the concept
of a probability-of-success implies that the user is concerned about the mean per-
formance over multiple episodes. Under this assumption, the optimal policy is to
follow the direct path to B and then the indirect path back to A (policy DI). This
will on average exceed the desired threshold for mission success, while outperform-
ing on time both other policies (ID and II) which also meet this threshold.

5.1 Applying Multiobjective Q-Learning to Space Traders

Clearly from Figure 11 the return achieved by the desired policy DI lies in a
concavity in the Pareto front, and so linear methods will not be able to converge
to this policy. This result is not surprising and we mention it here simply for the
sake of completeness.

Assume instead that f is the TLO operator and that a thresholding parameter
of 0.88 is applied to the first element of the Q-value vector. If this operator could
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Fig. 11 The mean return per episode for the nine possible deterministic policies for the Space
Traders MOMDP. Each policy’s return is labelled with a bigram specifying its actions. I, D,
T refer to the indirect, direct and teleport actions so, for example, policy DI selects the direct
action in state A and the indirect action in state B. Solid markers indicate policies that are
members of the Pareto-front, and hollow markers indicate dominated policies. The dashed grey
lines illustrate the convex hull formed by mixture combinations of the policies that make up
the Convex Coverage Set (CCS). The dashed red vertical line indicates the threshold value of
0.88 for the probability of mission success, and the red square marker is the DI policy which
is the SER-deterministic optimal policy for that setting of the threshold.

be applied directly to the mean returns of each policy from Table 2, then clearly
policy DI would be selected. However the results of empirical trials show that this
does not occur in practice, while also further highlighting the impact that noisy
estimates of action values can have on the behaviour of TLO agents. The results
shown in Figure 12 are from the final greedy policies learned by 20 independent
runs of the SER-deterministic agent (Algorithm 2) for 20,000 training episodes,
with α=0.01, λ=0.95, γ = 1, and the softmax-t temperature parameter decayed
from an initial value of 10 down to 2. Even with parameters chosen in this way to
reduce the variance in the estimates of action values, the highly varying stochastic
outcomes of the Space Traders task coupled with the proximity of the threshold to
the true values of the actions in both states leads to a large amount of variation in
the policy learned between different runs of the agent. The most common outcome
(12/20 runs) is the ID policy, as predicted by our earlier analysis, but the II policy
(4 repetitions) and IT policy (2) also occur in some runs. One run leads to the
desired DI policy, but this is due to random factors and is not reproducible.

A closer examination of the behaviour of the agent reveals that this inconsistent
behavior is due to occasional sequences of unsuccessful or successful runs leading
the Q-values for an action to move from one side of the threshold to the other. In
particular if the currently greedy action’s estimate falls below the threshold late
in training (when exploration is low), the action may not be selected sufficiently
often for its estimated value to rise above the threshold again before the policy
is finalised at the end of training. When all actions’ values are being estimated
with sufficient accuracy, the agent converges to the ID policy, but when one (or
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Table 3 The Q-values which will be learned for each action in state A, under the assumption
that the Direct action will be selected in State B.

Action in state A Policy Q(A, a)
Indirect ID (0.9, -19.9)

Direct DD (0.81, -12.61)

Teleport TD (0.765, -6.715)

more) actions’ estimated values are too noisy, convergence to other policies oc-
curs. Figure 13 illustrates this for a sample run (this run decayed the exploration
parameter to 0.01 to highlight this problem). It can be seen that after the initial
period of near random exploration, the agent starts to favour the Direct action.
However at around 8500 and 9500 episodes there are spikes in the selection of
Teleport, indicating that the estimated value of this action incorrectly rose to be
above the threshold, making it the preferred greedy action. This is later corrected
as the agent correctly learns that Teleport’s true value is below the threshold.
From about 12000 episodes onwards the agent strongly favours Direct (and was
at this point following the ID policy), but the selection of this action plummets
at around 13,5000 episodes. At this point the estimated value of Direct fell below
the threshold, and with minimal exploration occurring at this stage in learning,
the Direct action was never executed sufficient times for its estimated value to
rise above the threshold again. With Indirect now favoured in State B, we might
expect the agent to switch to the DI policy, but the Direct action was also not
selected sufficiently in state A to allow this to occur, and so the agent incorrectly
converged to the II policy.

Even when the action values are learned with sufficient accuracy, the agent
converges to the ID policy rather than the DI policy which is actually optimal
with regards to the user’s utility function. This failure can be understood by
examining how the TLO operator selects actions during the execution of a policy.
Regardless of the path selected at state A, if state B is successfully reached then a
zero reward will have been received by the agent for the first objective. Therefore,
the choice of action at state B is independent of the previous action. Looking at
the mean action values reported in Table 1, it can be seen that action T will be
eliminated as it fails to meet the threshold for the first objective, and that action
D will be preferred over I as both meet the threshold, and D has a superior value
for the time objective. So it can already be seen that this agent will not converge
to the desired policy DI. This would be true for an agent using an unaugmented
state, and also for either of the state augmentation methods considered in Section
4.

Knowing that action D will be selected at state B, we can calculate the Q-
values for each action at state A, as shown in Table 3. The TLO action selector
will eliminate actions D and T from consideration as neither meets the threshold
of 0.88 for the probability-of-success. Action I will be selected giving rise to the
overall policy ID. Not only is this not the desired DI policy, but as is evident from
Figure 11 its average outcome is in fact Pareto-dominated by DI.
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Fig. 13 The frequency with which actions are selected in State B of the Space Traders envi-
ronment for a single run of the SER-Deterministic agent (Algorithm 2). This agent ultimately
converged to the II policy.

5.2 The Interaction of Local Decision-Making and Stochastic State Transitions

The failure of the non-linear value-based MORL algorithms on the Space Traders
MOMDP can be explained by the analysis of stochastic-transition MOMDPs pre-
viously carried out by Bryce et al. [3] in the context of probabilistic planning. This
analysis has been largely overlooked by MORL researchers so far, and so one of
the aims of this paper is to bring this work to the attention of the MORL research
community.
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Figure 1:Example of Conditional Probabilistic Planning.

Plansπ E[Cost(π)] Pr(G|π)
a, [π1|π3] 1+(.2)50+(.8)30 = 35 (.2)1+(.8).75 = .8
a, [π2|π3] 1+(.2)10+(.8)30 = 27 (.2).5+(.8).75 = .7
a, [π1|π4] 1+(.2)50+(.8)0 = 11 (.2)1+(.8)0 = .2
a, [π2|π4] 1+(.2)10+(.8)0 = 3 (.2).5+(.8)0 = .1

If τ = 0.6, then using sub-plansπ2 andπ3 exceeds the threshold with a minimal expected cost of 27. Notice that if
we commit to sub-plans in each branch without considering other branches, we may chooseπ1 andπ3 (because each
individually exceedsτ ). Yet, this aggressive (and incomplete) strategy finds a feasible plan with ahighercost of 35.

Our first contribution (a solution to this problem), is to delay such pre-mature commitments in each branch with
bottom-up dynamic programming in belief state space. Each belief state maintains a set of non-dominated sub-plans
and, through multi-objective dynamic programming (Henig,1983), communicates these options to its ancestors. It is
only possible at the root (initial belief state) to select the sub-plans that correspond to a cost-optimal feasible plan.

Since we cannot enumerate the (infinite sized) belief state space to perform multi-objective value iteration, our
second contribution is to search forward from the initial belief state using a multi-objective generalization of the
LAO∗ algorithm, calledMOLAO∗. Since the cost-optimal feasible plan is one of several non-dominated plans,
MOLAO∗ readily computes Pareto sets of plans.

At first glance, it would seem as if combining multi-objective optimization and probabilistic planning (two no-
toriously computationally difficult tasks) will not scale.Our third contribution is aimed at taming the complexity
of the search, by pursuing a number of speed-ups. The most notable of these speed-ups is to use existing planning
graph reachability heuristics (Bryce, Kambhampati, & Smith, 2006) to guide the search. We also discuss variations on
MOLAO∗ that focus synthesis on likely branches, reduce the complexity of dynamic programming, and reduce the
size of Pareto sets by usingε-domination (Papadimitriou & Yannakakis, 2003).

We also take advantage of the multi-objective formulation to include other objectives. In our fourth contribution,
we pursue limited contingency planning (LCP). Our approachto LCP trades the complexity of increasing the state
space, as Meuleau & Smith (2003), for the complexity of usinganother objective: the number of plan branches.

In the next section, we formally define our planning model. The following section discusses two single objective
dynamic programming formulations of conditional probabilistic planning and shows how they rely on very restrictive
assumptions. We then show how anovelmulti-objective formulation lifts these assumptions in the successive section.
The next section describesMOLAO∗ and our speed-ups, followed by an empirical evaluation, a discussion of limited
contingency planning, related work, and conclusions.
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Figure 1:Example of Conditional Probabilistic Planning.

Plansπ E[Cost(π)] Pr(G|π)
a, [π1|π3] 1+(.2)50+(.8)30 = 35 (.2)1+(.8).75 = .8
a, [π2|π3] 1+(.2)10+(.8)30 = 27 (.2).5+(.8).75 = .7
a, [π1|π4] 1+(.2)50+(.8)0 = 11 (.2)1+(.8)0 = .2
a, [π2|π4] 1+(.2)10+(.8)0 = 3 (.2).5+(.8)0 = .1

If τ = 0.6, then using sub-plansπ2 andπ3 exceeds the threshold with a minimal expected cost of 27. Notice that if
we commit to sub-plans in each branch without considering other branches, we may chooseπ1 andπ3 (because each
individually exceedsτ ). Yet, this aggressive (and incomplete) strategy finds a feasible plan with ahighercost of 35.

Our first contribution (a solution to this problem), is to delay such pre-mature commitments in each branch with
bottom-up dynamic programming in belief state space. Each belief state maintains a set of non-dominated sub-plans
and, through multi-objective dynamic programming (Henig,1983), communicates these options to its ancestors. It is
only possible at the root (initial belief state) to select the sub-plans that correspond to a cost-optimal feasible plan.

Since we cannot enumerate the (infinite sized) belief state space to perform multi-objective value iteration, our
second contribution is to search forward from the initial belief state using a multi-objective generalization of the
LAO∗ algorithm, calledMOLAO∗. Since the cost-optimal feasible plan is one of several non-dominated plans,
MOLAO∗ readily computes Pareto sets of plans.

At first glance, it would seem as if combining multi-objective optimization and probabilistic planning (two no-
toriously computationally difficult tasks) will not scale.Our third contribution is aimed at taming the complexity
of the search, by pursuing a number of speed-ups. The most notable of these speed-ups is to use existing planning
graph reachability heuristics (Bryce, Kambhampati, & Smith, 2006) to guide the search. We also discuss variations on
MOLAO∗ that focus synthesis on likely branches, reduce the complexity of dynamic programming, and reduce the
size of Pareto sets by usingε-domination (Papadimitriou & Yannakakis, 2003).

We also take advantage of the multi-objective formulation to include other objectives. In our fourth contribution,
we pursue limited contingency planning (LCP). Our approachto LCP trades the complexity of increasing the state
space, as Meuleau & Smith (2003), for the complexity of usinganother objective: the number of plan branches.

In the next section, we formally define our planning model. The following section discusses two single objective
dynamic programming formulations of conditional probabilistic planning and shows how they rely on very restrictive
assumptions. We then show how anovelmulti-objective formulation lifts these assumptions in the successive section.
The next section describesMOLAO∗ and our speed-ups, followed by an empirical evaluation, a discussion of limited
contingency planning, related work, and conclusions.
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Fig. 14 A sample probabilistic planning MOMDP, reproduced from Bryce et al. [3]. Executing
action a from bt leads to two branches with probability 0.2 and 0.8. At each of these branches
a choice between two sub-plans with different payoffs exists. The aim for the planner is to
identify the correct sub-plan to execute at each branch, so as to minimise cost while ensuring
successful execution above a fixed probability.

Figure 14 illustrates a simple MDP reproduced from Bryce et al. [3], with a
stochastic branch occurring on the transition from the initial state. The table in the
lower half of this figure specifies the mean return for the four possible deterministic
policies. Keeping in mind that this MOMDP is phrased in terms of minising cost
(rather than maximising the inverse of the cost), it can be seen that unlike Space
Traders, there are no Pareto-dominated policies for this MOMDP4.

The aim of the agent is to minimise the cost, subject to satisfying at least a 0.6
probability of success. Within an ESR formulation of the problem (i.e. ensure the
probability of success threshold is achieved in each episode), the optimal policy is

4 While clearly illustrating the problem, this MOMDP also lacks the narrative drama of
Space Traders!
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to select sub-plan π1 at branch b1 and π3 at branch b2 as both of these sub-plans
individually satisfy the probability threshold. However, if considered from the SER
perspective, the optimal plan is to execute π2 at branch b1 and π3 at branch b2
– while π2 itself fails to achieve the probability threshold, this branch is executed
with a low probability and so the mean outcome of the two sub-plans will achieve
the threshold while also producing a significant cost saving.

As identified by [3], whether the overall policy meets the constraints depends
on the probability with which each branch is executed as well as the mean outcome
of each branch. Determining the correct sub-plan to follow at each branch requires
consideration of the sub-plan options available at each other branch in combination
with the probability of branch execution.

This requirement is fundamentally incompatible with the localised decision-
making at the heart of model-free value-based RL methods like Q-learning, where
it is assumed that the correct choice of action can be determined purely based
on information available to the agent at the current state. The provision of state
augmented by the sum of either actual or expected rewards as used in Section 4
is insufficient, as this still only provides information about the branch which has
been followed in this episode, rather than all possible branches that might have
been executed.

The conclusion to be drawn from both this example and Space Traders is
that value-based model-free MORL methods are inherently limited when applied
in the context of SER optimisation of non-linear utility on MOMDPs with non-
deterministic state transitions. These methods may fail to discover the policy that
maximises the SER (i.e. the mean utility over multiple episodes). To the best of
our knowledge this limitation has not previously been identified in the MORL
literature. It is particularly important as the combination of SER, stochastic state
transitions and non-linear utility may well arise in important areas of application
such as AI safety [30].

5.3 Potential Solutions

In this section we will briefly review and critique various options which may address
the issue identified above.

5.3.1 Non-stationary or non-deterministic policies

As discussed earlier, for the SER formulation policies formed from a non-stationary
or non-deterministic mixture of deterministic policies can Pareto-dominate deter-
ministic policies [24, 28]. For example, for Space Traders an agent that randomly
selects between policies TI and II with appropriate probabilities at the start of
each episode can produce a mean outcome which exceeds that of policy DI, as
shown in Figure 15. The issues with stochastic transitions identified by [3] only
arise in the context of non-linear scalarisation (due to the non-additivity of re-
turns). Therefore, an SER agent could use linear scalarisation to find the base
policies TI and II, and use them as the basis for a mixture policy.

However, as discussed earlier, the use of policies which vary so widely may not
be appropriate in all contexts and so methods to find SER-optimal deterministic
policies for stochastic MOMDPs are still required.
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Fig. 15 The mean return per episode for a mixture policy formed by selecting between the
deterministic policies TI and II with probability 0.65 and 0.35 respectively Pareto-dominates
the mean return of deterministic policy DI.

5.3.2 Multi-policy value-based MORL

As well as the single-policy value-based MORL methods examined in this paper,
several authors have proposed multi-policy methods. These operate by retaining
sets of vectors at each state. These can correspond to either all Pareto-optimal
values obtainable from that state, or (for purposes of efficiency) be constrained to
store only those values that can help construct the optimal value function under
some assumptions about the nature of the overall utility function f [16]. Multi-
policy algorithms were first proposed for variants of dynamic programming [36, 37]
and more recently have been extended to MORL [18, 32].

By propagating back the coverage set of values available at each successor
state, these algorithms would correctly identify all potentially optimal policies
available at the starting state, and the optimal policy could then be selected at
that point – in the context of Space Traders this would allow for the desired
DI policy to be selected. However, two issues still need to be addressed. One
is ensuring that the agent has a means of determining which action should be
performed in each encountered state to align with the initial choice of policy.
Existing algorithms do not necessarily provide such a means in the context of
stochastic transitions. Second, the existing multi-policy MORL algorithms do not
have an obvious extension to complex state-spaces where tabular methods are
infeasible. Conventional function-approximation methods cannot be applied, as
the cardinality of the vectors to be stored can vary between states. Vamplew et al.
[29] provides preliminary work addressing this problem, but further work is still
required to make this approach practical. The conditioned network proposed by
Abels et al [1] may also provide the basis for a solution. This network takes as
input both the current state and also a set of values for the scalarisation function
parameters w. By varying the value of w during training, this single network
can learn to encode multiple policies. So far conditioned networks have only been
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implemented for linear scalarisation, but the method is potentially extensible to
non-linear scalarisation.

5.3.3 Model-based methods

As well as describing the difficulties faced by probabilistic planning, Bryce et al. [3]
also propose a search algorithm known as Multiobjective Looping AO* (MOLAO*)
to solve such tasks. As a planning method, this assumes an MOMDP with known
state transition probabilities and a finite and tractable number of discrete states. It
may be possible to extend this approach by integrating it within model-based RL
algorithms that can learn to estimate the transition probabilities and to generalise
across states. We are not aware of any prior work that has attempted to do so.
There has been a small amount of work in model-based MORL, but the approach of
Wiering et al. [38] is restricted to deterministic environments, while the algorithm
of Yamaguchi et al. [39] is designed for linear scalarisation and maximisation of
average per-step rewards. Therefore both approaches would require modification
or extension in order to provide a suitable basis for implementing a reinforcement
learning equivalent of MOLAO*.

5.3.4 Policy-search methods

An alternative to value-based approaches is to use policy-search approaches to
RL. As these directly maximise the policy as a whole as defined by a set of policy
parameters, they do not have the local decision-making issue faced by model-free
value-based methods. Multiple researchers have proposed and evaluated policy-
search methods for multiobjective problems [11, 13, 19, 22]. However these methods
most naturally produce stochastic policies and and so, like the mixture or non-
stationary approaches discussed in Section 5.3.1, may require modification to be
suitable for use in the context of reduced-variance SER.

6 Conclusion

Multiobjective extensions of value-based model-free methods such as Q-learning
have been widely used in the multiobjective reinforcement learning literature. This
paper has shown that the nature of the desired policy, and the ability of these
algorithms to achieve that policy, depend on two critical factors. The first factor
is the presence or absence of stochasticity within the environment, and whether
this applies to rewards or state transitions. The second factor is whether the agent
is intended to maximise the Expected Scalarised Return (ESR), the Scalarised
Expected Return (SER), or (as identified here for the first time in the MORL
literature), the SER with constraints on the variance between episodes.

For deterministic environments, the optimal deterministic policy will be the
same for both ESR and SER agents, while an SER agent that has no other con-
straints may favour a non-stationary or stochastic policy. However, if the envi-
ronment exhibits stochasticity in either its rewards or its state transitions, then
the deterministic policy that is optimal for SER may differ from that which is
optimal for ESR. As an initial exploration of variance-constrained SER optimisa-
tion we have presented a modified form of multiobjective Q-learning, conditioned
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on accumulated expected rewards, which can discover the deterministic policy
that produces the best SER outcomes in environments with stochastic rewards.
Variance-constrained SER MORL is closely related to prior work on risk-aware
RL ([6, 9, 21, 35]), and is a promising area for future work.

A key finding of this work is to establish that where state transitions are
stochastic, value-based model-free MORL algorithms may be unable to discover
the SER-optimal deterministic policy, and may converge to a policy that is not even
Pareto-optimal. While this issue with MOMDPs with stochastic state transitions
has previously been described in the context of probabilistic planning [3], this is
the first work to identify the implications for MORL. The combination of SER
optimisation, stochastic state transitions and the need for a deterministic policy
are likely to arise in a range of applications (particularly in risk-aware agents),
and so awareness of the limitations of some MORL methods to work under these
characteristics is important in order to avoid the use of inappropriate methods.

In addition the experimental results reported in this paper highlighted the
heightened susceptibility of agents based on TLO action-selection to noisy esti-
mates of action values, which are inevitable within stochastic environments. Fu-
ture work should examine whether more continuous non-linear functions such as
Chebyshev distance [34] may prove to be more robust to these noisy estimates.
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