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With the rapid industrialization and urbanization, pattern mining of soil contamination of heavy metals is attracting increasing
attention to control soil contamination. However, the correlation over various heavy metals and the high-dimension
representation of heavy metal data pose vast challenges on the accurate mining of patterns over heavy metals of soil
contamination. To solve those challenges, a multiview Gaussian mixture model is proposed in this paper, to naturally capture
complicated relationships over multiviews on the basis of deep fusion features of data. Specifically, a deep fusion feature
architecture containing modality-specific and modality-common stacked autoencoders is designed to distill fusion
representations from the information of all views. Then, the Gaussian mixture model is extended on the fusion representations
to naturally recognize the accurate patterns of the intra- and inter-views. Finally, extensive experiments are conducted on the
representative datasets to evaluate the performance of the multiview Gaussian mixture model. Results show the outperformance
of the proposed methods.

1. Introduction

With the rapid industrialization and urbanization over the
world, environmental contamination is attracting increasing
attention nowadays, which is caused by unreasonable usage
of natural resources, such as the overuse of coal [1]. Among
the environmental contamination, the status of soil contam-
ination of heavy metals is the core concern of the public, with
the scare of the heavy metal security of agricultural products
that easily have a direct influence on our health [2]. A large
number of researchers force on the control of soil contamina-
tion of heavy metals by mining intrinsic patterns hidden over
various heavy metals which can do a favor to the contamina-
tion control and environmental protection. However, the

correlation over various heavy metals and the high-
dimension representation of heavy metal data pose vast
challenges on the accurate mining of patterns over heavy
metals of soil contamination. With the continuous develop-
ment of industrialization and urbanization, more research
is still required to capture effective patterns of high-
dimension representation of heavy metal data, to control
the soil contamination.

In recent years, large amounts of research have been
proposed to learn patterns of data to improve our lives [3-
8]. For example, Chen et al. used multivariate statistics and
geostatistics to explore distributions of heavy metals in the
soil of northwest China, which can capture pollution sources
of heavy metals based on patterns of distributions [9].
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Additionally, the chemical mass balance model, factor analy-
sis, target transformation factor analysis, and principal
component analysis are used to capture the complicated rela-
tionship of heavy metals [10-12]. Those statistical methods
are able to mine patterns of heavy metals in simple cases
where there are not many kinds of heavy metals. Also, they
can only mine contamination patterns in a single view. In
other words, those traditional statistical methods cannot well
learn complex contamination patterns of heavy metals in the
current soil, which are expressed by high-dimension data.
Thus, to explore the complicated patterns of various heavy
metals requires novel computing methods.

Clustering, as a fundamental approach to pattern mining,
divides data into several groups based on data similarity;
hence, data in the same group are more similar than data in
different groups [13]. It is widely used in various domains,
such as text recognition and image processing [14-17].
Among various clustering algorithms, the Gaussian mixture
model, as a generating method, captures each cluster by a
probability distribution, which well fit multiview characteris-
tics of data in a natural manner [18]. Inspired by this, a
Gaussian mixture model is introduced to mine the multiview
heavy metal data. However, the current Gaussian mixture
model-based methods neglect the multiview information of
data, especially the deep intrinsic fusion features of all views.

To solve those challenges, in this paper, a multiview
Gaussian mixture model is proposed to naturally capture
complicated relationships over multiviews on the basis of
deep fusion features of data, which can potentially mine
robust patterns of heavy metals in practice. In particular, a
deep fusion feature architecture with modality-specific and
modality-common stacked autoencoders is designed to distill
fusion representations from the information of all views.
Then, the Gaussian mixture model is extended on the fusion
representations to naturally recognize the accurate patterns
of the intra- and inter-views. Extensive experiments are
conducted on the representative datasets to evaluate the per-
formance of the multiview Gaussian mixture model. Results
show that the proposed method can greatly outperform the
compared methods.

Thus, the major contributions of this paper are threefold:

(i) To accurately capture complex patterns of heavy
metal data, a multiview Gaussian mixture model is
introduced based on the fusion representations,
which fully considers information of each view in a
nonlinear manner

(if) To distill fusion representations from the informa-
tion of all views, a deep fusion feature architecture
is designed, which consists of modality-specific and
modality-common stacked autoencoders

(iii) Extensive experiments with outperforming results
are conducted to assess the performance on the
representative datasets

The rest of the paper is organized as follows. Section 2
reviews common methods in statistical learning about the
pattern mining of heavy metals. Sections 3 and 4 are the fun-
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damentals of the proposed method. Section 5 describes the
details of the proposed method, and Section 6 validates the
proposed method. Finally, Section 7 concludes this work.

2. Related Works

To trace the source of the soil heavy metal pollution, a lot of
statistical methods were proposed. Most of all can be grouped
into the following:

Linear regression. Because of its simplicity and efficiency,
linear regression is a frequently used method [19]. It tries to
find the best linear projection function through updating
the parameters of the function using the least square method
or the gradient descent method. For example, Tian et al. [20]
improved the multiple linear regression (MLR) method to
quantitatively estimate relationships between soil properties
and sources of heavy metals. In MLR, heavy metal concentra-
tions were regarded as dependent variables while the scores
of soil properties and sources were independent variables.
However, due to the influence of various complex factors,
such as climate, parent material, topography, and human
activities, the linear projection cannot well model correla-
tions between the environmental parameters and the soil
properties in the practice of soil pollution research [21].

Decision tree. Decision tree methods such as classification
and regression tree (CART) and random forest (RF) use a
tree structure for deciding classification results by judging
from the root to leaves [22, 23]. For example, Qiu et al. [24]
applied stepwise linear regression (SLR), CART, and RF to
the prediction of the soil Cd’s spatial distribution. In that
article, RF was the best method for handling the nonlinear
and hierarchical relationships between soil Cd and influence
factors. Wang et al. [25] aimed to use RF and the stochastic
gradient boosting (SGB) method for identifying and appor-
tioning heavy metal pollution. Both RF and SGB showed that
the biggest reason for the concentrations of Pb and Cd was
anthropogenic sources.

Neural network. The neural network imitates the mecha-
nism of human brains, recombining the information of input
to extract some simple and fuzzy features, producing the
corresponding impression and judgment. Furthermore, non-
linear activation functions of each layer, such as the sigmoid
function and Rectified Linear Unit (ReLU) function, play a
great role in the nonlinear fitting ability. One representative
work is [26]. Specifically, neural networks with Monte Carlo
simulations are combined to address the uncertainties from
data quality and measurement errors in predicting the
copper’s phytoavailability in contaminated soils against the
soil input parameters.

Principal component analysis (PCA). The principal com-
ponent analysis uses the covariance matrix of data matrix
for choosing principal components of data so that it can
eliminate the less important properties for reducing the
dimension of data and extracting hidden subsets to detect
possible sources. For surveying the Chinese farmland soil
metal accumulation at the national scale, Niu et al. [27] per-
formed multivariate statistical analysis on soil properties and
metal concentrations using PCA and correlation analysis.
Research results on 11 metals showed that Pb, Cd, Zn, and
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Cu had the concentrations above reference values. At the
same time, results indicated that the 4 metals’ accumulation
may be associated with artificial fertilization. Also, Sun
et al. [28] used PCA and correlation coefficient analysis to
mine the agricultural soil major and trace element accumula-
tion in the Gannan area, China. More PCA-based research
includes [29, 30].

Cluster analysis (CA). CA classifies the data points into
several disjoint and nonempty clusters on the basis of the
similarity or distance among data points. There are various
clustering algorithms used in the heavy metal analysis, such
as spectral clustering, K-means, and hierarchical clustering.
For the characterization of heavy metals in soils, Chai et al.
[31] performed PCA and clustering analysis on data from
the surface and underlying horizons of grassland. Three prin-
cipal components were extracted, and hierarchical clustering
proved this result. Moreover, in the three clusters from hier-
archical clustering, clusters 1 and 2 were merged at a higher
level so that the heavy metals in clusters 1 and 2 had a similar
source. Similarly, Liu et al. [32] applied PCA and clustering
analysis on data from the outskirts of Changchun, China.
Results showed that Pb, Cu, and Zn were from human activ-
ities, while Cr and Ni were from natural sources.

In summary, the above methods can mine patterns of
heavy metals in soil in simple cases where there are not many
kinds of heavy metals. However, they neglect the multiview
characteristics of land data, leading to undesired result
patterns in complicated cases. Also, those methods cannot
capture intrinsic patterns within high-dimension representa-
tions of land data. To solve those challenges, a deep fusion
Gaussian mixture model for multiview land data clustering
is proposed in this paper.

3. The Deep Stacked Autoencoder

The deep stacked autoencoder is a neural network of the fully
connected paradigm on the basis of autoencoders, as shown
in Figure 1 [33-35]. It extracts instinct representations of
data by data reconstruction between an encoder and a
decoder where the encoder constructs deeper representations
layer by layer with the decoder reconstructing the input [36-
38]. The deep stacked autoencoder is trained by a greedy
layer-wise method in which each layer in the encoder and
the corresponding layer of the decoder are modeled as an
autoencoder to obtain the pretrained parameters followed
by an end-to-end fine-tuning training.

Specifically, in a deep stacked autocoder of / layers, the s
-th layer is modeled as an autoencoder with the (I-s+1)-
th layer to pretrain weights and biases in the following form:

W=f(woh™+b),

hl—s+l :f<wl—s+1 ok + bl—s+1) (1)

where w®, w1, b*, and b"" are the weights and biases of
the s-th layer and the (I —s+ 1)-th layer, respectively. © is
the matrix product. & denotes the hidden representation.

After the pretraining, each hidden layer in the deep
stacked autocoder is fine-tuned as follows:

K=f(w ok +b), (2)
which is based on the stochastic gradient descent algorithm.

4. The Gaussian Mixture Model

A Gaussian mixture model (GMM) is a generative probabi-
listic model with trainable parameters [16]. It uses several
basis Gaussian components to naturally represent multi-
modal characteristics of collected data by a weighted super-
position operation, where each Gaussian component
denotes a modal source. Generally, the Gaussian mixture
model is trained by the expectation-maximization method
by maximizing the likelihood function, where the expecta-
tion step computes probability distributions of each sample
generated from each basis component and the maximization
step learns the mean, covariance, and weight parameters of
each basis component. GMMs have been widely used in
various applications, such as text clustering and image
recognition.

Given a dataset X ={x,,x,,---xy} with x;€R?, the
Gaussian mixture distributions are denoted as

K
= Y weg(x;5 o Zp), (3)
k=1

where w,. is the weight of each basis Gaussian component
and g(x; ; ., 2, ) represents the basis distribution parameter-
ized by the mean vector y, and the covariance matrix ¥, with
the following form:

1 _
903,30 51) = exp {3 (=075 (5 ) |

(4)

The d is the dimension of data, and K is the number of
basis Gaussian components.

Thus, to fit the given dataset X = {x;,x,,"--,xy}, the
logarithm likelihood function of GMM is expressed in the
following form:

)
1

H wig(%; s e Zi)) ’k> (5)

(zﬂ)d/llzk‘l/z

log L =log

’:]z

Il
—_—

08

([
g

Il
—

£

K
Z z log (wy) + zj log (9(x;5 g Zi)))»

1 k=1

I
™M™=

where z, € {0,1}%, Y& z; = 1, denotes the component from
which x; is generated. Then, setting the derivates of log L to
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FIGURE 1: The computing paradigm of the stacked autoencoder.
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F1GURE 2: The computing paradigm of the multiview fusion Gaussian mixture model. Modality-specific encoders, modality-common encoder-
decoder, and modality-specific decoders are linked in a cascaded manner where data are transferred into hidden representations of each view by
modality-specific encoders; then, those hidden representations are concentrated, which are reconstructed via the modality-common encoder-
decoder, and finally, the reconstructed hidden representations are decoded into the original data space by modality-specific decoders.

be zero, we can get the computing equations of the mean,
covariance, and weight parameters of each basis component.
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Generally, the expectation-maximization method is used
to train GMM in an iterative maximization manner where
current parameters are employed to estimate future
parameters.

5. The Multiview Fusion Gaussian Mixture
Model Algorithm

To mine complicated fusion relationships over multiview
data, a deep fusion representation-based Gaussian mixture
model is proposed, which is composed of the deep fusion fea-
ture learning and the expectation-maximization clustering.
In the deep fusion feature learning, intrinsic view-specific
features are first extracted by each view-specific stacked auto-
encoder. Then, those view-specific features are concentrated
via a view-common stacked autoencoder, capturing fusion
representations of multiview data. In the expectation-
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maximization clustering, the Gaussian mixture model is used
to recognize structure patterns of complicated shapes.

5.1. The Deep Fusion Feature Learning. To obtain the
effective representations of multiview data, a deep fusion
architecture is designed on the basis of the unsupervised
encode-decode manner, which can avoid the dimensionality
curse of data. As shown in Figure 2, in the deep fusion archi-
tecture, all the views of data are simultaneously fed into the
corresponding view-specific stacked autoencoders, learning
intrinsic view-specific features.

In detail, given the multiview dataset {x;,X,,"-,Xy} in
which each sample x; is composed of v views x; = (x}, x7,-+-,
x!), each sample x; is mapped to the view-specific feature
space as follows:

=fi(Fa (- (A ()

) o

hi = fi (- (D))

where /! is the feature of the j-th view and f](f]_, (---(f1())))
is the corresponding encoding network function with the
trainable parameters wy/, ---,w,/ and b/, -, b. To train
those parameters, the features of all views are mapped to
original data space as follows:

% =91 (911 (- (91 (h))))»
(-G o

X =919 ((91(h))))>

where g)(g),(-+(41()))) denotes the decoding network
function. The view-specific encoder is cascaded by the corre-
sponding decoder to get the pretrained weights and biases
with the help of the stochastic gradient descent algorithm
via the end-to-end training.
After the view-specific intrinsic representations {}, h7,
--,h;} are obtained; they are concentrated in the followmg
form:

h, =con(h;, hi,---.h!), (10)

where con() is the linear concentration function. Then, a
view-common stacked autoencoder is used to transfer the
concentrated representations to a fusion feature space, learn-
ing fused representations of multiview data via

hifusion - encoder(hi)’

h; = decoder( h ( fusmn) ’ (11)

in which encoder() and decoder() are deep neural networks
with the same number of layers.

5.2. The Clustering Pattern Mining. Specifically, after obtain-
ing the fusion representations of the multiview dataset
{fi>»fr--f n)> the Gaussian mixture model with K basis
components is defined as follows:

= Y wg(fis o i), (12)

k=1

where w; denotes the weight of the k-th basis Gaussian
model, f, represents the i-th fusion representation, and
9(f;s 4> Zy) is the basis distribution parameterized by the
mean vector g, and the covariance matrix X with the follow-
ing form:

o(f;3 b0 %2) = {30 50—}

(13)

———— €X
(zn)dlz |Zk ‘ 172

The d is the dimension of fusion representations of data.
Thus, the logarithm likelihood function of the given data
is expressed in the following form:

log L =log <Hp( > Z;~)>
(HH w0 (fs o Z)) ) (19
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where z; € {0, 1}, ¥X_z; = 1, denotes the component from
which f, is generated.

Then, setting the derivates of log L to be zero, we can get
the computing equations of the mean, covariance, and weight
parameters of each basis component.
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The multiview fusion Gaussian mixture model algorithm.
Output: patterns of the input data

. To train each autoencoder layer by layer;

NN U W N

input data.

Input: the multiview dataset {x;,X,,---,Xy }, the number of component models K, the hyperparameters of deep fusion architecture
. To randomly initialize parameters of each autoencoder in the deep fusion architecture;

. To fine-tune the deep fusion architecture in an end-to-end manner;

. To randomly initialize model parameters and weight coeflicients of Gaussian models;

. To compute the probability of each sample generated from each Gaussian model;

. To compute the model parameters and weight coefficients of each Gaussian model;

. To update model parameters and weight coefficients of Gaussian models;

. Go to 5 until convergence, then output the probability of each data sample generated from each Gaussian model as patterns of the

ALGORITHM 1

TaBLE 1: ARI results of models on the basis of raw representations.

TaBLE 3: ARI results of models on the basis of deep representations.

Models GMM-M
ARI 0.36 0.24

K-means-M

TABLE 2: NMI results of models on the basis of raw representations.

Models K-means- GMM- K-means- GMM- Clustering-
DM DM DE DE DF
ARI 0.65 0.76 0.57 0.74 0.80

TaBLE 4: NMI results of models on the basis of deep representations.

Models K-means-M GMM-M
NMI 0.49 0.37
in which

wig(f s o 2i)

- . (16)
2 Wid (f 5 o Zi)

rae=P(Ex =111 we by Zy) =

5.3. The Multiview Fusion Gaussian Mixture Model
Algorithm. The multiview fusion Gaussian mixture model
algorithm consists of two steps, i.e., fusion feature learning
and pattern mining. In the former step, all view-specific
stacked autoencoders and view-common stacked autoenco-
ders are trained in a greedy layer-wise unsupervised manner.
Then, an end-to-end fine-tuning training is conducted on the
basis of SGD. In the latter step, the fusion features of multi-
view data extracted in the former step are fed into the multi-
view Gaussian mixture model with the predefined K. Then,
the parameters in each component Gaussian model and
weight coefficients between Gaussian models are learned
based on the expectation-maximization algorithm. The
details of the multiview fusion Gaussian mixture model
algorithm are shown in Algorithm 1.

6. Experiments

To evaluate the performance of the multiview fusion
Gaussian mixture model, extensive experiments are con-
ducted on two datasets. Those experiments are implemented
by Python, and the details of the experiments are described in
the following.

Models K-means- GMM- K-means- GMM- Clustering-
DM DM DE DE DF
NMI 0.71 0.81 0.62 0.80 0.85

6.1. Compared Methods. K -means. K-means is a typical clus-
tering method that is widely used in practice as a representa-
tive baseline.

Gaussian mixture model. The Gaussian mixture model is
a generative method based on the probability distribution. It
mines cluster patterns of data by multiple Gaussian
distributions.

In the experiments, the K-means and Gaussian mixture
model are used as the based model, which are extended to
modality-specific, modality-common, modality-fused methods
with respect to raw, shallow, and deep representations of data.

6.2. Datasets. MNIST-EMNIST. MNIST [39] and EMNIST
[40] are the representative datasets of images, which contain
images of numbers from 0 to 9. They are widely used in
image classification and image clustering. In the experiments,
MNIST and EMNIST are fed into a fully connected neural
network and a convolutional neural network, respectively,
in feature learning to represent different views. The results
are illustrated in Tables 1-4. Also, Figure 3 visualizes the fea-
ture learning processing.

6.3. Results. In the results of Tables 1-4, K-means-M and
GMM-M are the traditional K-means and GMM clustering
algorithms conducted on the raw representations of MNIST.
K-means-DM and GMM-DM denote the K-means and
GMM performed on the deep representations of MNIST,
which is extracted by the modality-specific stacked autoenco-
der. K-means-DE and GMM-DE are similar models
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F1GURE 3: The t-SNE figures of each view model and the fusion model.

performed on EMNIST. Clustering-DF denotes the results of
the proposed model.

From the above results, several observations can be con-
cluded. In raw representations of data, K-means produced
better results than GMM in terms of ARI and NML This is
because the less important properties in raw representations
are also modeled by the probability distributions of GMM,
decreasing the clustering performance. The second observa-
tion is that the deep feature-based methods (K-means-DM,
GMM-DM) outperform the shallow methods (K-means-M,
GMM-M), since the proposed modality-specific stacked
autoencoder can well extract intrinsic features of each view
of data. Additionally, the clustering results of GMM-DM
are better than those of K-means-DM, since the multiple
Gaussian distributions in GMM can better fit patterns of data
than the hard division in K-means with the clear features.
The third observation is that the proposed method achieves
the best results in terms of ARI and NM]I, since it can distill
information from all views by the designed deep fusion
network. The observations of the results demonstrate the
outperformance of the proposed method.

Figure 3 shows the ¢-SNE figures of the above models to
visualize features learned by each model. There are two
observations. First, the fusion model learns better representa-
tions than each single-view model. Specifically, the proposed
model produces features where the distance of similar data is

closer than that of dissimilar data, shown in the third col-
umn. Furthermore, the distance between different clusters
is further. Second, the proposed model learns data represen-
tations faster than single-view models. In detail, the represen-
tations produced by the fusion model are more disorderly
than those by the compared models at the beginning, while
the fusion model achieves better representations after the
same number of training epochs.

7. Conclusions

In this paper, a deep fusion Gaussian mixture model is pro-
posed for multiview data clustering based on deep fusion
representations, which can potentially capture intrinsic
patterns of heavy metal data. In this model, a deep fusion fea-
ture architecture of modality-specific and modality-common
stacked autoencoders is designed to merge fusion informa-
tion of all views of data, which can well capture deep intrinsic
fusion representations of data. Afterward, the Gaussian
mixture model is extended on the fusion representations to
naturally recognize the accurate patterns. Finally, results
show the outperformance of the proposed methods by exten-
sive experiments. In the future, more effective deep clustering
methods will be explored, which are trained in an end-to-end
manner.
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