
sustainability

Article

Resource Optimization-Based Software Risk Reduction Model
for Large-Scale Application Development

Basit Shahzad 1, Fazal-e-Amin 2,* , Ahsanullah Abro 3, Muhammad Imran 2 and Muhammad Shoaib 2

����������
�������

Citation: Shahzad, B.; Fazal-e-Amin;

Abro, A.; Imran, M.; Shoaib, M.

Resource Optimization-Based

Software Risk Reduction Model for

Large-Scale Application

Development. Sustainability 2021, 13,

2602. https://doi.org/10.3390/

su13052602

Academic Editor: Osama Sohaib

Received: 15 January 2021

Accepted: 22 February 2021

Published: 1 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Software Engineering, Faculty of Engineering and CS, National University of Modern
Languages, Islamabad 44000, Pakistan; bshahzad@numl.edu.pk

2 College of Computer & Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia;
cimran@ksu.edu.sa (M.I.); muhshoaib@ksu.edu.sa (M.S.)

3 Department of Computer Science, Sukkur IBA University, Sukkur 65200, Pakistan;
ahsanullah.abro@iba-suk.edu.pk

* Correspondence: famin@ksu.edu.sa; Tel.: +966-11-4698724

Abstract: Software risks are a common phenomenon in the software development lifecycle, and risks
emerge into larger problems if they are not dealt with on time. Software risk management is a strategy
that focuses on the identification, management, and mitigation of the risk factors in the software
development lifecycle. The management itself depends on the nature, size, and skill of the project
under consideration. This paper proposes a model that deals with identifying and dealing with the
risk factors by introducing different observatory and participatory project factors. It is assumed that
most of the risk factors can be dealt with by doing effective business processing that in response
deals with the orientation of risks and elimination or reduction of those risk factors that emerge over
time. The model proposes different combinations of resource allocation that can help us conclude a
software project with an extended amount of acceptability. This paper presents a Risk Reduction
Model, which effectively handles the application development risks. The model can synchronize its
working with medium to large-scale software projects. The reduction in software failures positively
affects the software development environment, and the software failures shall reduce consequently.

Keywords: large-scale project; large-scale risk; risk reduction model; software risk

1. Introduction

Software development consists of several phases with a clear definition of tasks to be
performed in each phase. Phase-wise distribution of software development decreases the
amount of burden that can be put on one specific development activity. In the analysis
phase, we gather and analyze the requirements, while in the design phase, the system
design is generated. Software is developed based on the system’s design, and later it is
tested to identify any possible errors. Testing software is done by using several methods to
decrease or eliminate all the possible errors. If all these phases are done according to the
schedule, the software can meet success, but this is usually not the case due to the diversity
in the development activity.

The scenario presented in the above paragraph presents a pleasant picture of the
software development lifecycle where there is no problem, and things are being executed
with perfection. However, the software development activity is not that easier, especially
when we are talking about large-scale application development. In fact, the determination
of the project scale in itself is not a very trivial task. Several segregated pieces of information
are present in literature [1], which guide us in qualitative terms on how small and large-
scale projects can be identified. However, there was lacking information about the scales of
the projects in absolute terms. Therefore, it is vital that we identify the project scale with
respect to the quantifiable data that we can use to gauge the scale of a software project.
In this regard, some work has been done that differentiates the projects based on the

Sustainability 2021, 13, 2602. https://doi.org/10.3390/su13052602 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-9800-8438
https://orcid.org/0000-0002-0051-6803
https://doi.org/10.3390/su13052602
https://doi.org/10.3390/su13052602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13052602
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/13/5/2602?type=check_update&version=3


Sustainability 2021, 13, 2602 2 of 17

quantitative values and identifies if a project is small-medium, or large [2]. The values are
in terms of the project factors, and these project factors are the building blocks. The values
are assigned to these building blocks (variables) for the resource allocation that these
projects will use during their development.

The orientation of risk is a byproduct of misappropriation of resources [3]. It is believed
that if the resource allocation can be improved, the orientation of risks and the impact of
risks can be reduced. In this research, the project factors work as a controlling segment
of the risk factors that can arise during the software development lifecycle. The Risk
Reduction Model is set to deal with the projects by improving resource allocation and
reducing/eliminating risks in software development. The objective of this research was to
enable the software practitioners to eliminate software risks and rationalize the resource
allocation by using the risk reduction model. This Risk Reduction Model is the main
contribution of this research which will help to optimize resource allocation and minimize
software risks.

A recent systematic review [4] has categorized the purpose of the risk management
activities in eight categories. According to their classification, the work presented in this
paper can be categorized as monitoring and reviewing the risk, and treatment of risk.

2. Literature Review

This section discusses state of the art in software risk management, and different
approaches are discussed in this section. To secure the software development life cycle
(SDLC) from risks, it is essential to consider project planning and to manage the risks that
are expected in the entire software development process. Most of the failures occur because
of poor risk management and identification. Therefore, considerable emphasis is given
on identifying the risk so that a safeguard strategy can be prepared for that purpose [5].
Benaroch [6] provides some guidelines about the handling of the risks based on their
impact. Miller [7] has presented a list of 60 risk factors, while Lin [8] has presented a
comprehensive list of the project scheduled risk factors that includes a checklist catalog
of 109 risk factors in 12 areas of software projects, including schedule, product, personnel,
or customers. A framework [9] presents 194 questions that can help identify the risk
factors, to exhibit the level of commitment in identifying, managing, handling, or avoiding
the risk factors that can be present in the software development life cycle. Software risk
management, over time, has evolved as a demanding discipline with respect to its influence
on the software project’s success.

Along with the initiative to address the risks, the right approach/model is to be
chosen accordingly. The word ‘approach’ is used to describe a way of handling an issue,
while a model provides a top-level view of addressing the issue by using some approach.
Sometimes these words are used interchangeably, e.g., Misra [10] has used the words
interchangeably for the software risk models. Some approaches are discussed here.

2.1. Halls P2I2 Approach

Hall [11,12] identified that four factors people, process, infrastructure, and implemen-
tation, are the core to define and implement the risk management strategy. The people
factor is as essential as any plan matters, not how good it is, has to be implemented by
the people working in a team. The process factor identifies the process that should be
considered to reduce the possible threats of the risk orientation. The infrastructure de-
termines the requirements, resources, and results to undertake risk management in an
organization. The implementation factor covers activities like identification, prioritizing,
handling, and mitigating the risks. As the model is based on four prime factors, there are
some limitations that this model possesses. There is a duplication of tasks in the process
and infrastructure and produces redundancy and wastage of resources. This model over-
emphasizes team communication, which is subjective in nature. The implementation phase
of the model can’t work independently and is based on the rest of the three factors delaying
the implementation until other factors are not synchronized.



Sustainability 2021, 13, 2602 3 of 17

2.2. Karolak’s Approach

It is a just-in-time approach and has [13] focus on managing the risks in the early
phases of software development activity to reduce the time and cost required to manage
risks. Karolak has identified some basic risk categories and associates risk factors with
them, which are linked with the risk metrics and the questions that belong to the said
risk factor and ultimately to the risk category. Miorando [14] has stated that the model is
oriented to certain limitations. The questionnaire used in the formation of the model is
isolated and not verified by the independent confirmatory studies. The model also lacks
the adequate involvement of the users and tries to predict the technology risks directly
without user involvement, which may provide inconsistent results.

2.3. Kontio Riskit Approach

The implementation of the Riskit framework [15] helps the individuals to identify and
communicate the information, opportunities, and risks to the concerned people to take
necessary and immediate actions for rectification. Riskit is also responsible for effectively
managing the risk portion of the project, starting from the identification to the monitoring
of the risk factors. Talet [16] has mentioned that Konito’s idea is to use the experience and
information gained from the previous project to manage risks in the current projects under
consideration effectively. Felderer [17] has mentioned that apart from meaningful usage,
the model has certain limitations. The model is dependent on the stakeholder’s intentions,
and the development activity is not free from their influence. The model also requires that
the ‘experience repository’ be well understood before applying this model.

2.4. Deursen and Kuiper’s Approach

Duerson and Kuiper [18] proposed an innovative risk identification approach by con-
sidering the project based on primary and secondary facts. Primary facts are relevant to the
system where the system is studied. In contrast, secondary facts are relevant to the stake-
holders where the requirement documents, contracts, and communications are evaluated to
identify any possible risk. After completing this phase, the primary and secondary lists are
matched to see if they are consistent with each other. This technique enjoys the benefit of
covering the risk both at the micro and macro level of the software system. Ghaleb [19] has
mentioned some limitations of this model. Among the model’s limitations, one is that the
model advocates the ‘viewpoints’ concept, while it does not broadly discriminate among
the system and user viewpoints. Like Kontio’s and Foo’s model, the data used in this mode
is non-confirmatory qualitative data. The system is bound to produce inconsistent results
when the users are interviewed from varying perspectives.

2.5. Roy’s Approach

Roy [20,21] developed a framework that is considered to have a pro-risk application
and is focused on two aspects, namely, business domain and operational domain. The busi-
ness domain measures the financial and other business points of the environment where
the project has to be developed. The operational domain considers the formal model-
ing of diversified aspects of risk management in the projects. The activities include, but
are not limited to, the calculation of risk values, risk assessment, mitigation plan, imple-
mentation of the mitigation plan, and continuous monitoring. The model is significantly
resource-intensive and observes considerable complexity.

2.6. Tiwana and Keil’s Approach

Tiwana and Keil [22,23] have proposed a swift technique that can help the risk man-
agers to quickly assess the project risks and their impact. The tool was developed as a
result of the data gathered from 60 companies based on the questionnaire that was sent to
them. This application has the advantage that instead of having the full-fledge detailed
application, this is cost-effective and quick in identifying the threats to the system. Along
with some features, the model has certain limitations. The model does not observe absolute



Sustainability 2021, 13, 2602 4 of 17

scaling and has been designed to provide quick and straightforward results. At the cost of
simplicity, the model may provide inconsistent results when the measuring scales are not
effectively used.

2.7. Misra et al.’s Approach

Misra [10] proposed an innovative idea for risk management, focusing on how the
risk origin can be identified very early while the software development starts. The models
discussed considers the ‘what’ question regarding the risk management process. At the
same time, this approach is inclined to find answers for ‘how’ the process can be detailed
enough to find the origin of risks and assess and mitigate them initially. Simultaneously,
they are identified to reduce the cost of the project, and the cost of mitigating risks by
exploring the strategic dependencies. The model’s application is limited because it is too
centric on the activities and does not focus on the people and processes that make these
activities work. Along with that, the mitigation support provided in this model is minimal
and not adequate in case of absolute disasters.

2.8. Foo and Muruganathan’s Approach

Foo [24] believes that the impact of any risk factor can be quantified, and thus, the uses
an approach that is based on a survey to seek opinion and impact of the risks. This way,
an ultimate threat level to the system can be defined. Their proposed model is called the
Software Risk Assessment Model (SRAM), which takes into consideration the risk at any
specific situation to predict the risks. By considering the nine risk factors, they provide a
list of three relevant categories, and the assessor chooses the most relevant in their opinion.
The prioritized list is prepared based on the assessor’s perception. Foo’s model has certain
limitations. The model is based on user feedback and accepts the results without any
validation of the results. Single source result accumulations are less authentic than the
mixed-method research, where a number of methods work together to confirm each other’s
findings. The factors based on which the model has been developed are vague in nature
and not well descriptive. It is hard to establish a meaningful understanding without a
thorough understanding of the model.

2.9. SEI’s Software Risk Management Approach

SEI’s (Software Engineering Institute) at Carnegie Melon University has elaborated a
risk management framework that comprises of three modules

a. Software risk evaluation deals with the identification, dealing, and mitigation of the
risk factors under consideration for the given projects [25,26]. The module uses a
structure called the risk taxonomy. The taxonomy is a defined structure that helps
in organizing and classifying the risks into their categories and has been extremely
helpful in classifying the risks into different phases like requirements engineering
and analysis, design, software development, software testing, contract risks, etc.

b. Continuous risk management is a principle-based approach that deals with the pro-
cess, methods, and tools to help in the continuous management of risks throughout
all phases of the software development lifecycle.

c. Team risk management is a team-based approach that focuses on developing the
process, methods, and tools to determine the relationship between the customer and
the teams and also the inter-team communication.

SEI’s model has certain features and limitations. The model is limited in its application
as it follows the waterfall approach, and consequent phases can’t be started until the initial
phase is completed, hence causes a lot of resources to be wasted. The model also over-
emphasizes the need for risk taxonomy and classification of the risks, instead of establishing
cohesive ways of addressing the risks in the early stages. It is evident from the presented
approaches that each approach has some features and limitations; it is, therefore, vital
to present a model that can manage the risks in large-scale application development.



Sustainability 2021, 13, 2602 5 of 17

In Section 3, Shahzad’s risk reduction model (S-RRM), specifically suitable/applicable to
large-scale applications, is presented.

3. Model Formulation

An overview of S-RRM is presented in this section. Risks are caused when anomalies
and inconsistencies in resource allocation are observed during the software development
activity. The crux of the study is to implement the findings of this research in a way that the
risks are reduced, and the resource allocation is rationalized in return. The implementation
of the core interests can be observed in the proceeding section, where the model’s applica-
tion demonstrates the risk reduction and effectiveness is resource allocation. The focus of
this study is to implement the findings with the least amount of complexity and a good
amount of understanding. This model defines two core objectives, i.e., to rationalize the
resource allocation and to minimize (eliminate) software risks.

3.1. Methodology

As depicted in Figure 1, for the introduction of risk reduction model, a survey was
conducted among experienced respondents in the form of a questionnaire. To validate
the findings of the survey, a qualitative research method was applied. In this qualitative
method, interviews of experienced respondents were conducted. After evaluation of
findings of interviews, a triangulation process was applied to the findings of both survey
and interviews. This triangulation process compares and evaluates both results and gives
the final more validated and justified results.

Sustainability 2021, 13, x FOR PEER REVIEW 6 of 17 
 

Table 2. Survey population details. 

Measure Number 
Confidence Level 95% 

Confidence Interval 5 
Population * 

Population accessed 300 
Sample Size 169 
percentage 50 

*Unknown population size 

 
Figure 1. Methodology. 

3.2. Components of the Model 
The basic components of the model are the project factors, risk factors, and the ge-

neric software development model. The model is based on the eight project factors. It is 
observed that the time, cost, team, and computational resources are four factors that par-
ticipate in the software development, and they make the lifecycle run by injecting the re-
sources, while the other four factors are observatory factors that observe that if the core of 
the model is working well or there is any inconsistencies that makes it difficult for the 
model to work properly. 

The software development takes place with the participatory factors, while the con-
tinuous external observation considers the development quality, e.g., if there are not suf-
ficient allocations for software development, they may be noticed and demonstrated in 
the working of the model. The inconsistencies have been channelized by partitioning them 
into specific risk factors. The proposed model uses the generic software development 
model by considering the analysis, design, development, testing, and deployment activi-
ties. Four participatory factors make this model work. The core of the model contains ge-
neric steps like Analysis, Design, Development, Testing, and Deployment. Four observa-
tory factors discriminate this model from the other the way that this model specifically 
represents this study on the resource rationalization by reducing the risks. 

Figure 1. Methodology.

Interviews were conducted with eight experts. Five of them were from industry,
and three of them were from academia. Details are presented in Table 1. The interpreted
results of the interviews were discussed with the respondents in re-interviews. A model
was formed on the basis of the findings of the interviews. The model was validated by a
survey. The population size of the survey was 169. Most of them were programmers, team
leads, and project managers. Details about the survey population are presented in Table 2.



Sustainability 2021, 13, 2602 6 of 17

Table 1. Respondents of interviews.

No.
Experience

Type Rank Experience
in Years

Development
Experience

Scale

S M L

1 Academic Professor 20 Yes
√ √

2 Academic Assistant Professor 6 Yes
√

3 Industry Team Leader 8 Yes
√ √

4 Industry Project Manager 12 Yes
√ √

5 Industry Team Leader 7 Yes
√ √

6 Academic Professor 17 Yes
√

7 Academic PhD student 2 Yes
√

8 Industry Software Developer 5 Yes
√ √

Table 2. Survey population details.

Measure Number

Confidence Level 95%
Confidence Interval 5

Population *
Population accessed 300

Sample Size 169
percentage 50

* Unknown population size

3.2. Components of the Model

The basic components of the model are the project factors, risk factors, and the generic
software development model. The model is based on the eight project factors. It is observed
that the time, cost, team, and computational resources are four factors that participate
in the software development, and they make the lifecycle run by injecting the resources,
while the other four factors are observatory factors that observe that if the core of the
model is working well or there is any inconsistencies that makes it difficult for the model
to work properly.

The software development takes place with the participatory factors, while the contin-
uous external observation considers the development quality, e.g., if there are not sufficient
allocations for software development, they may be noticed and demonstrated in the work-
ing of the model. The inconsistencies have been channelized by partitioning them into
specific risk factors. The proposed model uses the generic software development model by
considering the analysis, design, development, testing, and deployment activities. Four
participatory factors make this model work. The core of the model contains generic steps
like Analysis, Design, Development, Testing, and Deployment. Four observatory factors
discriminate this model from the other the way that this model specifically represents this
study on the resource rationalization by reducing the risks.

Among the observatory factors, the first is ‘requirement change.’ This process starts
from the mid of the analysis phase and continues itself until the testing phase. The reason
that it starts from the mid-of-analysis is that in the beginning, the requirements are decided,
and by the mid of that phase, the chances to change the requirements are extremely low.
The ‘requirement change’ can observe the software development that starts and ends with
the static requirements, although this is not probable.

Among the observatory factors, the second is ‘reusable code’ that determines that if,
at any point in time, there is a need for the reusable code? This begins from the analysis
and moves until the testing phase to determine that if such a need arises, the code may
be developed. Developing the reusable code can be extremely expensive in the way that
it increases the development activity and the cost to test and integrate the component.
The third observatory factor is ‘Software Risk Management (SRM)’; the SRM is a continuous
process and continues until the life of the process itself. Starting from the analysis phase
and moving through to the deployment, it continues observing that if there is any risk



Sustainability 2021, 13, 2602 7 of 17

factor being triggered and proposes the way to handle the risk. The last factor is ‘quality
focus’ that covers the whole process, and like the SRM, representing that the quality focus
is observed throughout the software development process.

The generic view of the model demonstrates the working of the model and highlights
the role of observatory factors in the model presented in Figure 2. The justification for
developing the model comes from the fact that it requires minimal user input and is
capable of doing the cost estimation very quickly. At the same time, the model allows
customization to be made in the quality process and leads to a rationalized solution based
on the given input values. The model can be executed without a deep knowledge of project
management, unlike other models. Other models in the domain are effort-intensive and
require a deep project management understanding, less customization, and very detailed
input for different scales of software.

Sustainability 2021, 13, x FOR PEER REVIEW 7 of 17 
 

Among the observatory factors, the first is ‘requirement change.’ This process starts 
from the mid of the analysis phase and continues itself until the testing phase. The reason 
that it starts from the mid-of-analysis is that in the beginning, the requirements are de-
cided, and by the mid of that phase, the chances to change the requirements are extremely 
low. The ‘requirement change’ can observe the software development that starts and ends 
with the static requirements, although this is not probable.  

Among the observatory factors, the second is ‘reusable code’ that determines that if, 
at any point in time, there is a need for the reusable code? This begins from the analysis 
and moves until the testing phase to determine that if such a need arises, the code may be 
developed. Developing the reusable code can be extremely expensive in the way that it 
increases the development activity and the cost to test and integrate the component. The 
third observatory factor is ‘Software Risk Management (SRM)’; the SRM is a continuous 
process and continues until the life of the process itself. Starting from the analysis phase 
and moving through to the deployment, it continues observing that if there is any risk 
factor being triggered and proposes the way to handle the risk. The last factor is ‘quality 
focus’ that covers the whole process, and like the SRM, representing that the quality focus 
is observed throughout the software development process.  

The generic view of the model demonstrates the working of the model and highlights 
the role of observatory factors in the model presented in Figure 2. The justification for 
developing the model comes from the fact that it requires minimal user input and is ca-
pable of doing the cost estimation very quickly. At the same time, the model allows cus-
tomization to be made in the quality process and leads to a rationalized solution based on 
the given input values. The model can be executed without a deep knowledge of project 
management, unlike other models. Other models in the domain are effort-intensive and 
require a deep project management understanding, less customization, and very detailed 
input for different scales of software.  

 
Figure 2. Generic software development cycle with observatory factors. SDLC, software develop-
ment life cycle; SRM, Software Risk Management. 

3.3. Logic 
The logic of the model is shown in Figure 3. The initial inputs are the Time, Team 

Size, and for observatory factors (quality focus, requirement change, software risk man-
agement, and availability of reusable code), the initial calculation of cost and computa-
tional resource is based on these six input values. The range of legitimate value for these 
six inputs, has already been identified as a result of a quantitative study, which is further 
solicited by the findings of the qualitative study, shown in Table 1 [27]. If the values of the 

Figure 2. Generic software development cycle with observatory factors. SDLC, software development
life cycle; SRM, Software Risk Management.

3.3. Logic

The logic of the model is shown in Figure 3. The initial inputs are the Time, Team Size,
and for observatory factors (quality focus, requirement change, software risk management,
and availability of reusable code), the initial calculation of cost and computational resource
is based on these six input values. The range of legitimate value for these six inputs,
has already been identified as a result of a quantitative study, which is further solicited
by the findings of the qualitative study, shown in Table 1 [27]. If the values of the four
observatory factors or the participatory factors are beyond range, the risks are associated
with them, and the threat level is immediately calculated. Based on the initial input, three
output values are generated, the total cost, threat level, and the risk factors. This estimate
demonstrates the number of risks that may be associated with software development if
the activity is started without a change of the input values. The user may like to change
the values to their near possible legitimate values, and the estimation can be improved.
Shahzad et al.’s work on software risk management [28–33] and on cost estimation [34–36]
present similar findings.



Sustainability 2021, 13, 2602 8 of 17

Sustainability 2021, 13, x FOR PEER REVIEW 8 of 17 
 

four observatory factors or the participatory factors are beyond range, the risks are asso-
ciated with them, and the threat level is immediately calculated. Based on the initial input, 
three output values are generated, the total cost, threat level, and the risk factors. This 
estimate demonstrates the number of risks that may be associated with software develop-
ment if the activity is started without a change of the input values. The user may like to 
change the values to their near possible legitimate values, and the estimation can be im-
proved. Shahzad et al.’s work on software risk management [28–33] and on cost estima-
tion [34–36] present similar findings. 

While participatory project factors like cost, time, team size, and computational re-
sources are deterministic and cover the complete software development cycle, the obser-
vatory project factors have limited scope in some cases. The ‘Requirement Change (RC)’ 
is the main resource consumer, it consumes mire resources than the ‘Quality Focus (QF)’, 
‘SRM’, and ‘Availability of Reusable Code (ARC).’ As the impact of poor ‘Requirement 
Change’ handling may be catastrophic, more resources are applied to manage the delayed 
changes.  

 
Figure 3. Shahzad’s risk reduction model’s (S-RRM’s) logic. 

Development Cost (DC) = (19 * 40 * Team Size * Time) (1)

Development Cost (DC) = (19 * 40 * Team Size * Time) (2)

Total Cost = CRC + DC + QF + RC + ARC + SRM (3)

SRM = (0.05 * DC * scale) (4)

QF = (0.05 * DC * scale) (5)

ARC = (0.05 * DC * scale) (6)

Figure 3. Shahzad’s risk reduction model’s (S-RRM’s) logic.

While participatory project factors like cost, time, team size, and computational re-
sources are deterministic and cover the complete software development cycle, the observa-
tory project factors have limited scope in some cases. The ‘Requirement Change (RC)’ is the
main resource consumer, it consumes mire resources than the ‘Quality Focus (QF)’, ‘SRM’,
and ‘Availability of Reusable Code (ARC).’ As the impact of poor ‘Requirement Change’
handling may be catastrophic, more resources are applied to manage the delayed changes.

Development Cost (DC) = (19 ∗ 40 ∗ Team Size ∗ Time) (1)

Development Cost (DC) = (19 ∗ 40 ∗ Team Size ∗ Time) (2)

Total Cost = CRC + DC + QF + RC + ARC + SRM (3)

SRM = (0.05 ∗ DC ∗ scale) (4)

QF = (0.05 ∗ DC ∗ scale) (5)

ARC = (0.05 ∗ DC ∗ scale) (6)

RC = (0.2 ∗ DC ∗ scale) (7)

Scale [0,1,2] (8)

In (1), the development cost is a multiple of the number of individuals and the time
required to develop software. The constant factors—19 represents the wage rate per hour,
while 40 is the average-working hour per week. The formulation of Equation (1) is based
on the findings of the study on the wage rate analysis [27]. The findings of the study
were verified by contemporary analysis. In (2), the cost of the computational resources is
set to 10% of the development cost. In (3), the total cost is determined as the sum of the
development cost, computational resources cost, and the sum of computational resources
cost. Along with this summation, the cost of ‘Requirement Change’, ‘Quality Focus’, ‘SRM’,



Sustainability 2021, 13, 2602 9 of 17

and ‘Availability of Reusable Code’ are also managed as in (4–7). The scale of the emphasis
is determined by (8) having possible values of 0, 1, or 2, depending on the need of the
development team. Tables 3 and 4 defines the equations.

Table 3. The range of legitimate values to reduce risk.

Factor Large-Scale

Time (weeks) 53–100
Team Size 26–50

Cost Time × Team Size × 19
Computational Resources 10% cost

Availability of reusable code 0,1,2
Quality Focus 0,1,2

Risk management 0,1,2
Requirement Change 0,1,2

Table 4. Explanation of the equations.

No. Equations Purpose Source

1

Development cost = (19 ∗ 40 ∗ Team size ∗
Time) The user inputs the variables, while the

constant 19 is the wage rate per hour;
40 means the total working hours in

a week

Study on wage rate analysis in Section 3.
Constant 19, 40

variable Team Size, Time

2

Computational Resources Cost (CRC) =
0.1 ∗ Development Cos Computational resource Cost is a

constant and is fixed at 10% of the
development cost

As mentioned in Section 3.Constant 0.1

Variable Computational
resource cost

3

SRM = (0.05 ∗ DC ∗ scale) The scale is a variable, and its value
varies from 0–2. Zero being no change

and 2 being massive changes, while
DC is also a variable. Constant is 0.05,
which shows the intensity of changes.

Software development is developed in 5
phases, meaning that each phase consumes

approximately 20% of resources. If the changes
are not major, the resources required to

complete them are 1
4 of the total time required

for one phase.

Constant 0.05

Variable Scale, DC

4

QF = (0.05 ∗ DC ∗ scale)
Each software development phase consumes

approximately 20% of resources. If the changes
are not major, the resources required to

complete them are 1
4 of the total time required

for one phase.

Constant 0.05

Variable Scale, DC

5 ARC=(0.05*DC*scale)

Software development is generally divided into
5 phases, meaning that each phase consumes

approximately 20% of resources. If the changes
are not major, the resources required to

complete them are 1
4 of the total time required

for one phase.

6

RC = (0.2 ∗ DC ∗ scale)
Software development is generally divided into
5 phases, meaning that each phase consumes

approximately 20% of resources.

Constant 0.20

Variable Scale, DC

7
Scale{0, 1, 2} Determines the intensity of change to

be done.

Variable 0,1,2

8
Total Cost =

CRC + DC + QF + RC + ARC + SRM

Adds cost of computational resources,
development cost, requirement change
cots, quality focus, and cost of doing

risk management.

Variable CRC, DC, QF, RC, ARC, SRM



Sustainability 2021, 13, 2602 10 of 17

Eight test cases have been prepared by deviating from the above parameters, and the
responses of the model have been recorded and demonstrated in ‘Iteration 2’ of each
test case.

3.4. Input and Output

Based on the logic of the model proposed and the results of the studies conducted,
especially in the domain of the project scaling and the wage rate study, have suggested the
following numeric parameters that can be considered for the large-scale projects (Figure 4).

Sustainability 2021, 13, x FOR PEER REVIEW 9 of 17 
 

RC = (0.2 * DC * scale) (7)

Scale [0,1,2] (8)

In (1), the development cost is a multiple of the number of individuals and the time 
required to develop software. The constant factors—19 represents the wage rate per hour, 
while 40 is the average-working hour per week. The formulation of Equation (1) is based 
on the findings of the study on the wage rate analysis [27]. The findings of the study were 
verified by contemporary analysis. In (2), the cost of the computational resources is set to 
10% of the development cost. In (3), the total cost is determined as the sum of the devel-
opment cost, computational resources cost, and the sum of computational resources cost. 
Along with this summation, the cost of ‘Requirement Change’, ‘Quality Focus’, ‘SRM’, 
and ‘Availability of Reusable Code’ are also managed as in (4–7). The scale of the emphasis 
is determined by (8) having possible values of 0, 1, or 2, depending on the need of the 
development team. Table 3 and Table 4 defines the equations. 

Table 3. The range of legitimate values to reduce risk. 

Factor Large-Scale 
Time (weeks) 53–100 

Team Size 26–50 
Cost Time × Team Size × 19 

Computational Resources 10% cost 
Availability of reusable code 0,1,2 

Quality Focus 0,1,2 
Risk management 0,1,2 

Requirement Change 0,1,2 

Eight test cases have been prepared by deviating from the above parameters, and the 
responses of the model have been recorded and demonstrated in ‘Iteration 2’ of each test 
case. 

3.4. Input and Output 
Based on the logic of the model proposed and the results of the studies conducted, 

especially in the domain of the project scaling and the wage rate study, have suggested 
the following numeric parameters that can be considered for the large-scale projects (Fig-
ure 4). 

 
Figure 4. Proposed model. Figure 4. Proposed model.

4. Model’s Behaviour

The model consists of the building blocks, shown in Section 3, and the set of values
that have been derived from the studies are given in Table 3. A detailed description of the
model’s behavior is exhibited by applying the test cases and the case studies using the
proposed model. However, it can be observed how the model is going to respond if based
on the set of values that are presented in the model as an input. Table 5 tries to model all
the possible causes of the set of legitimate and illegitimate values. The range of legitimacy
can be observed in Table 3.

The values for ‘Time’ and ‘Team size’ are mandatory, and no estimation can be made
without them. The model checks that if the values are in the range of the legitimate values
or not. If the fields are not empty, an estimation is made based on the values provided,
and if the value is not legitimate, the respective risk factors come into existence. In addition,
a respective threat level is introduced. The ‘development cost’ and ‘computational resource
cost’ are calculated from the ‘Time’ and ‘Team size’ values and don’t need a separate input.
The values for observatory factors cannot be null. A zero means that the concerning factor
is not being given any importance while the value like 1, 2 show the level of focus that is
being put for that specific observatory factor.



Sustainability 2021, 13, 2602 11 of 17

Table 5. Model’s behavior against a set of legitimate/illegitimate values.

Behavior
Factor Type Input Null Legitimate Illegitimate

Time (weeks) Direct Input Mandatory No Calculation
Total cost and the

resource allocation
for each factor

Total cost and the
resource allocation

for each factor
with risks and

threat level

Team Size Direct Input Mandatory No Calculation
Total cost and the

resource allocation
for each factor

Total cost and the
resource allocation

for each factor
with risks and

threat level

Dev. Cost
Calculated from
Time and Team

Size
Assertive Not Possible

Legitimate if the
time and team size

are legitimate

Illegitimate if
either time or team
size is illegitimate

Computational
Resources

Calculated from
Dev. Cost Not Possible

Legitimate if the
time and team size

are legitimate

Illegitimate if
either time or team
size is illegitimate

Availability of
reusable code Direct Input Default value is 0 Not Possible

0 is a legitimate
value but contains

the risk factors

1,2 are legitimate
values to eliminate

risks and the
threat level.

Quality Focus Direct Input Default value is 0 Not Possible
0 is a legitimate

value but contains
the risk factors

1,2 are legitimate
values to eliminate

risks and the
threat level.

Risk management Direct Input Default value is 0 Not Possible
0 is a legitimate

value but contains
the risk factors

1,2 are legitimate
values to eliminate

risks and the
threat level.

Requirement
Change Direct Input Default value is 0 Not Possible

0 is a legitimate
value but contains

the risk factors

1,2 are legitimate
values to eliminate

risks and the
threat level.

5. Objectives of the Model

The model serves two basic objectives that include the followings:

5.1. Optimize Resource Allocation

Spending on software development activity increases extensively when the devel-
opment of the lifecycle is de-tracked. It is important to determine the right and required
amount of resources to accomplish a given task. As the magnitude of the problem grows,
the resource requirement also grows, and effective management of resources helps to
improve the software development life cycle. It does this by reducing the utilization of
resources to an extent where the used resources exactly match the required resources.
The determination of required resources is provided in this study, taking into consideration
the literary arguments and the findings of this research.

5.2. Minimize Software Risks

Software risks are the signals that are sent to the software development individuals
through the software development lifecycle. It is important that the signal identification
mechanism is in place that can determine that the risks are present in the software develop-
ment lifecycle. Risks are handled based on the priority of handling and the resource of the
project under consideration. The risks are only handled if the software firm has sufficient



Sustainability 2021, 13, 2602 12 of 17

resources to handle them and if there is the awareness that there is a risk. Recognition of
the risk is out of the scope of the study, and it is believed that the software team developing
the project is well aware of the project risks, and then the decision is made that if the risk is
to be handled, avoided, or mitigated.

In broader terms, it can be concluded that the model is responsible for guiding the
software team by observing the quality and maturity of the process by compartmentalizing
the SRM, requirement change, and reusability issues. It can be concluded that the risks can
be decreased (if not eliminated), and as a result, the resources can be optimized to develop
the software within time and schedule.

5.3. Variables

The variables used in the introduced model are:

1. Time

The software must be completed within a specific time and schedule. To complete
software under given time-effective models can be used.

2 Team Size

Team size is the size of developers and all the members included in the process of
software development. Less team size will reduce the cost, but the team must be expert.

3. Dev. Cost

It is the cost spent in the development of overall software, including all resources.
The development cost should be according to budget.

4. Computational Resources

The resources which are necessary to develop software are called computational re-
sources.

5. Availability of Reusable Code

The code that is already developed and can be reused in the development of software
helps to reduce the cost and efforts.

6. Quality Focus

The quality rate of software must be checked and focused. The quality of software
increases its usability and reliability.

7. Risk Management

To identify, access, and control the risks in software development process is risk
management. Risk management helps to mitigate and prevent risks in software.

8. Requirement Change

It is the change in requirements according to the need for software. If the requirements
are non-functional or more ambiguous than there is a need for requirement change to
improve the quality of software.

6. Model Verification

The data presented in Table 5 presents the legitimate values that can help reduce risks.
It is obvious that risk comes into the system because of inconsistencies and anomalies that,
when reduced or eliminated, will help to reduce the risks.

The set of legitimate values has been identified. To validate the working of model
8, different test cases are run, where the data sets presented are unique and inconsistent.
The data for test cases were collected from the documents of two software companies.
The model in the first phase is capable of identifying the inconsistencies and overruns,
and in the second phase, it is capable of reducing the risks by the least possible cost
adjustments (sometimes positive and sometimes negative). The overall cost and risks are
presented at the end of first.



Sustainability 2021, 13, 2602 13 of 17

The model requires inconsistent data to be tested. Due to the nature of the data,
the actual development companies refrain from making their failures public; therefore,
similar test cases are prepared that, in some cases, are like the actual and officially unshared
data. The test cases identify the behavior of the model by deploying the inconsistencies.
Inconsistent values are presented in a data set to ensure that the model can manage the
inconsistencies and is capable of meeting its objectives. Test cases are used to verify
the model.

The legitimate ranges of values have been discussed in the previous section, while
several test cases have been developed to see the worth of the model. Software resources
are required to be placed to complete the software in time and within budget. This is
evident from the test cases that sometimes total budget increase from the initial allocations
and demonstrates an over allocation. These “over allocations” are the ‘right allocations’
in the perspective of this study, as initial cuts on resources may damage the process itself.
At the same time, the model brings over allocations to the right allocations where the
resources are being wasted. The concept is demonstrated in Figure 5.

Sustainability 2021, 13, x FOR PEER REVIEW 13 of 17 
 

5. Availability of Reusable Code 
The code that is already developed and can be reused in the development of software 

helps to reduce the cost and efforts. 

6. Quality Focus 
The quality rate of software must be checked and focused. The quality of software 

increases its usability and reliability. 

7. Risk Management 
To identify, access, and control the risks in software development process is risk man-

agement. Risk management helps to mitigate and prevent risks in software. 

8. Requirement Change 
It is the change in requirements according to the need for software. If the require-

ments are non-functional or more ambiguous than there is a need for requirement change 
to improve the quality of software. 

6. Model Verification 
The data presented in Table 5 presents the legitimate values that can help reduce 

risks. It is obvious that risk comes into the system because of inconsistencies and anoma-
lies that, when reduced or eliminated, will help to reduce the risks. 

The set of legitimate values has been identified. To validate the working of model 8, 
different test cases are run, where the data sets presented are unique and inconsistent. The 
data for test cases were collected from the documents of two software companies. The 
model in the first phase is capable of identifying the inconsistencies and overruns, and in 
the second phase, it is capable of reducing the risks by the least possible cost adjustments 
(sometimes positive and sometimes negative). The overall cost and risks are presented at 
the end of first. 

The model requires inconsistent data to be tested. Due to the nature of the data, the 
actual development companies refrain from making their failures public; therefore, simi-
lar test cases are prepared that, in some cases, are like the actual and officially unshared 
data. The test cases identify the behavior of the model by deploying the inconsistencies. 
Inconsistent values are presented in a data set to ensure that the model can manage the 
inconsistencies and is capable of meeting its objectives. Test cases are used to verify the 
model.  

The legitimate ranges of values have been discussed in the previous section, while 
several test cases have been developed to see the worth of the model. Software resources 
are required to be placed to complete the software in time and within budget. This is evi-
dent from the test cases that sometimes total budget increase from the initial allocations 
and demonstrates an over allocation. These “over allocations” are the ‘right allocations’ in 
the perspective of this study, as initial cuts on resources may damage the process itself. 
At the same time, the model brings over allocations to the right allocations where the re-
sources are being wasted. The concept is demonstrated in Figure 5. 

 
Figure 5. Under-over-and right allocations. 

The results of eight test cases have been presented in Table 6, where for 6 out of 10 
cases, the cost decreased, while the quality was improved, i.e., both objectives were com-

Figure 5. Under-over-and right allocations.

The results of eight test cases have been presented in Table 6, where for 6 out of
10 cases, the cost decreased, while the quality was improved, i.e., both objectives were
completely met. In 3 out of 10 cases, the cost was decreased, while the quality remained
constant, whereas in 1 case, the cost was increased by improving the quality. The model has
optimally performed in all cases and has provided good results. It can be identified that
the model proposed is capable of accurately identifying and eliminating the risk factors by
optimizing resource utilization. Table 6 provides the statistical evidence.

6.1. Comparison of S-RRM with Existing Models

The COCOMO (Constructive Cost Model) has strength in traceability and user-
friendliness, while in the core functions like risk analysis accuracy, it does not perform ade-
quate results, however it is highly effective when the historical data is available. The model
has not been tested for accuracy. The SLIM (software lifecycle management) model has its
strength in traceability and the input definition, and the model can adjust the objectives.
The model does not provide any support for Risk analysis. The model is equally strong
in user-friendliness, and in the definition of the model is well structured and descriptive.
The proposed model (as an outcome of this research) has the capability to be applied in the
initial stages of software development, and it is designed to be there in the initial phases
rather than later in the development activity. The model, however does not take into
consideration the historical data and estimates based on the available data. The model
can adjust to objectives. On test data, the model possessed the accuracy level (meeting to
objective) by 90%. The proposed model has extensive support for risk management and
is traceable with the extremely simple implementation by developing the risk correlation.
The model provides detailed output calculating the cost, risks, suggestions, and threat level
of the system. The model also bears the characteristics of being user-friendly.



Sustainability 2021, 13, 2602 14 of 17

Table 6. Test cases for large-scale projects.

Time TS Cost CR QF RC ARC SRM Risks Threat Total
Cost

Cost/
Quality

Test Case # 1 115 55 4,807,000 480,700 1 1 1 0
T [1,2,37],
TS [3,6,8],
SRM [3,6]

22.77
(8, 7.94,6.83) 6,729,800

RRM 100 50 3,800,000 380,000 1 1 1 1 Nil 0 5,510,000 D/I

Test Case # 2 40 40 1,216,000 106,400 1 1 1 0 T [1,2,37],
SRM [3,6]

15.86
(8,7.86) 1,687,200

RRM 53 26 1,047,280 106,704 1 1 1 1 Nil 0 1,520,532 D/I

Test Case # 3 55 60 2,508,000 250,800 2 2 2 0 TS [3,6,8],
SRM [3,6]

15.9
(7.94,7.86] 4,263,600

RRM 53 50 2,014,000 201,400 2 2 2 1 Nil 0 3,524,500 D/I
Test Case # 4 55 75 3,135,000 313,500 2 2 2 2 TS [3,6,8] 7.94 5,643,000
RRM 53 50 2,014,000 209,000 2 2 2 2 Nil 0 3,632,800 D/NC

Test Case # 5 115 23 2,010,200 139,840 0 2 2 2
T [1,2,37],
TS [3,6,8],
QF [2]

21.77
(8,7.94,5.83) 3,356,160

RRM 100 26 1,976,000 158,080 1 2 2 2 Nil 0 3,418,480 I/I

Test Case # 6 50 35 1,330,000 553,000 1 1 1 1 T [1,2,37],
CR [9]

12.08
(8,4.08) 2,348,500

RRM 53 35 1,409,800 143,640 1 1 1 1 Nil 0 2,046,870 D/NC

Test Case # 7 55 25 1,800,000 13,200 1 1 1 0

TS [3,6,8],
CR [9],
Cost
[8,9,37,38],
SRM [3,6]

26.8
(7.94,4.08,6.92,
7.86)

2,353,200

RRM 53 26 1,047,280 104,728 1 1 1 1 Nil 0 1,518,556 D/I

Test Case # 8 55 25 1,800,000 13,200 2 2 2 2

TS [3,6,8],
CR [9],
Cost
[8,9,37,38]

18.94
(7.94,4.08,6.92) 3,073,200

RRM 53 26 1,047,280 104,728 2 2 2 2 Nil 0 1,885,104 D/NC

Like SEER-SEM and COCOMO and unlike the SLIM model, the S-RRM provides an
effective risk management module integrated into the model itself to do the continuous
monitoring and resolution of the risks orienting to the system. Likewise, the model con-
tains the quality focus, availability of reusable code, and the requirement change factor
introduced that are governed throughout the software development life cycle, as shown in
Figure 4. Unlike SEER-SEM, COCOMO (who can be applied to medium scale software as
well) and the SLIM model, the S-RRM can be applied to the large-scale software develop-
ment process. There are a number of factors that make it suitable to address large-scale
software development.

6.2. Applicability of the Model

The model provides a solution following the generic software development lifecy-
cle. Thus, the model is applicable to the projects being completed in outsourced or in
freelancing models. This model can be used in a distributed environment—when the
software development activity being executed each geographically distinct location is
considered as a distinct unit of development. The model can also be applied within agile
environments—when each sprint-cycle is considered as a distinct activity.

7. Discussion

It has been observed that spending on software development activity increases ex-
tensively when the development lifecycle is de-tracked. It is important to determine the
right and required amount of resources to accomplish a given task. As the magnitude of
the problem grows, the resource requirement also grows, and effective management of



Sustainability 2021, 13, 2602 15 of 17

resources help improve the software development life cycle. It does this by reducing the
utilization of resources to an extent where the used resources exactly match the required
resources. The determination of required resources is provided in this study, considering
the literary arguments and the findings of this research. Software risks are signals sent to
software development individuals. It is important that the signal identification mechanism
is in place that can determine that the risks are present in the software development lifecy-
cle. The risk reduction model has been introduced in this study, where risks are handled
based on the priority of handling and the resource of the projects under consideration.
The risks are only handled if the software firm has sufficient resources to handle them and
if there is an awareness that there is a risk. In broader terms, it can be concluded that the
risk reduction model (RRM) can provide guidelines to the software teams by observing
the quality and maturity of the process by compartmentalizing the risk management,
requirement change, and reusability issues. It can be concluded that by deploying the
RRM, the risks can be decreased (if not eliminated), and as a result, the resources can be
optimized to develop the software within time and schedule.

8. Conclusions

It has been noted that investment in software development activities has increased
significantly as the development lifecycle is de-tracked. To achieve assigned tasks, it is
important to determine the right and required number of resources. With the extent of
problems, there is also an increase in the requirement of resources, and effective resource
management helps to improve the software development lifecycle. It does this by reducing
resource utilization, i.e. the resources used correspond exactly to the resources required.
The assessment of the resources required is given in this research, taking into account the
literary reasons and the results of this analysis. Software risks are a form of signals which
are sent to software developers. These signals must be efficient enough to determine if
there is any risk present in the software development life cycle to improve the quality of
risk identification mechanisms risk reduction model has been introduced in this research.
In the risk reduction model, the risks are handled according to their priority level. If the
organization knows about the presence of risk, or has a sufficient budget to handle the risks,
then the risks are handled. Thus, it can be inferred that the RRM can provide guidelines
to software development teams by tracking the maturity and quality of the process by
compartmentalizing risk management, reusability problems, and change of specifications.
It can be observed that the risks can be minimized (if not eliminated) by applying the
RRM, and as a result, developing the projects on schedule, on time, and under budget.
By following the generic software development lifecycle, the RRM model is introduced.
The projects that can be outsourced or freelance projects can also use RRM to improve
the quality of risk identification. The model can be extended to an agile environment,
where each sprint-cycle is perceived to be a distinct operation. This model can be used in a
distributed environment where the software development operation being carried out at
each geographically distinct location is perceived to be a different development entity.

The model provides a solution following the generic software development lifecy-
cle. Thus, the model is applicable to the projects being completed in outsourced or in
freelancing models. This model can be used in a distributed environment—when the
software development activity being executed, each geographically distinct location is
considered as a distinct unit of development. The model can also be applied within agile
environments—when each sprint-cycle is considered as a distinct activity. In the future,
this model will be applied to more cases to have more data, and a sensitivity analysis will
be conducted to observe the behavior of different variables.

Author Contributions: Conceptualization, B.S. and F.-e-A.; methodology, B.S., F.-e-A., and M.I.;
validation, A.A. and M.S.; data curation, M.S., A.A., and M.I.; writing—original draft preparation,
B.S., F.-e-A., and A.A.; writing—review and editing, B.S. and F.-e-A.; funding acquisition, F.-e-A. and
M.I. All authors have read and agreed to the published version of the manuscript.



Sustainability 2021, 13, 2602 16 of 17

Funding: This research was funded by Deanship of Scientific Research at King Saud University,
RG-1441-490.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at
King Saud University for funding this work through research group no. RG-1441-490.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Turner, J.R.; Ledwith, A.; Kelly, J. Project management in small to medium-sized enterprises: A comparison between firms by size

and industry. Int. J. Manag. Proj. Bus. 2009, 2, 282–296. [CrossRef]
2. Kozlowski, R.; Matejun, M. Characteristic features of project management in small and medium-sized enterprises. E+M Ékon.

Manag. 2016, 19, 33–48. [CrossRef]
3. Mustafa Bakri Haniza, H.; Mohamed, N.; Said, J. Mitigating asset misappropriation through integrity and fraud risk elements:

Evidence emerging economies. J. Finan. Crime 2017, 24, 242–255. [CrossRef]
4. Masso, J.; Pino, F.J.; Pardo, C.; García, F.; Piattini, M. Risk management in the software life cycle: A systematic literature review.

Comput. Stand. Interfaces 2020, 71, 103431. [CrossRef]
5. Shahzad, B.; Almiudimigh, A.S. Stress testing: Project parameters and limitations. In Proceedings of the Regional Conference on

Knowledge Integration in ICT, Kualalampur, Malaysia, 1–2 June 2010.
6. Benaroch, M.; Jeffery, M.; Kauffman, R.J.; Shah, S. Option-Based Risk Management: A Field Study of Sequential Information

Technology Investment Decisions. J. Manag. Inf. Syst. 2007, 24, 103–140. [CrossRef]
7. Miler, J.; Górski, J. Risk Identification Patterns for Software Projects. Found. Comput. Decis. Sci. 2004, 29, 115–131.
8. Lin, H.; Lai, A.; Ullrich, R.; Kuca, M.; McClelland, K.; Shaffer-Gant, J.; Pacheco, S.; Dalton, K.; Watkins, W. Cots software selection

process. In Proceedings of the 2007 Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software
Systems (ICCBSS’07), Banff, AB, Canada, 26 February–2 March 2007.

9. Roy, G.G.; Woodings, T.L. A framework for risk analysis in software engineering. In Proceedings of the Proceedings Seventh
Asia-Pacific Software Engeering Conference, APSEC 2000, Singapore, 5–8 December 2002; pp. 441–445.

10. Misra, S.C.; Kumar, U.; Kumar VShareef, M.A. Risk management models in software engineering. Int. J. Proc. Manag. Benchmarking
2007, 2, 59–70. [CrossRef]

11. Royce, W.W. Managing the Development of Large Software Systems (1970). In Proceedings of the Ideas That Created the Future;
The MIT Press: Cambridge, MA, USA, 2021; pp. 321–332.

12. Hall, A. Proceedings of the 9th international conference on Software Engineering; IEEE Computer Society Press: Monterey, CA, USA,
1987.

13. Karolak, D.W.; Karolak, N. Software Engineering Risk Management: A Just-in-Time Approach; IEEE Computer Society Press: Monterey,
CA, USA, 1995.

14. Miorando, R.F.; Ribeiro, J.L.D.; Cortimiglia, M.N. An economic–probabilistic model for risk analysis in technological innovation
projects. Technovation 2014, 34, 485–498. [CrossRef]

15. Kontio, J. Software Engineering Risk Management: A Method, Improvement Framework, and Empirical Evaluation; Helsinki University
of Technology: Espoo, Finland, 2001.

16. Talet, A.N.; Mat-Zin, R.; Houari, M. Risk management and information technology projects. Int. J. Dig. Inform. Wirel. Commun.
2014, 4, 1–10.

17. Felderer, M.; Schieferdecker, I. A taxonomy of risk-based testing. Int. J. Softw. Tools Technol. Transf. 2014, 16, 559–568. [CrossRef]
18. Deursen, A.v.; Kuipers, T. Identifying objects using cluster and concept analysis. In Proceedings of the 21st International

Conference on Software Engineering, Los Angeles, CA, USA, 22 May 1999; pp. 246–255.
19. Ghaleb, T.A.; Alsri, A.A.; Shabaneh, L.; Niazi, M. A Survey of Project Risk Assessment and Estimation Models. In Proceedings of

the World Congress on Engineering, London, UK, 2–4 June 2014.
20. Keil, M.; Cule, P.E.; Lyytinen, K.; Schmidt, R.C. A framework for identifying software project risks. Commun. ACM 1998, 41, 76–83.

[CrossRef]
21. Schmidt, R.; Lyytinen, K.; Keil, M.; Cule, P. Identifying Software Project Risks: An International Delphi Study. J. Manag. Inf. Syst.

2001, 17, 5–36. [CrossRef]
22. Tiwana, A.; Keil, M. Functionality Risk in Information Systems Development: An Empirical Investigation. IEEE Trans. Eng.

Manag. 2006, 53, 412–425. [CrossRef]
23. Tiwana, A.; Keil, M. The one-minute risk assessment tool. Commun. ACM 2004, 47, 73–77. [CrossRef]
24. Foo, S.-W.; Muruganantham, A. Software risk assessment model. In Proceedings of the Proceedings of the 2000 IEEE International

Conference on Management of Innovation and Technology. ICMIT 2000. ‘Management in the 21st Century’ (Cat. No.00EX457),
Singapore, 12–15 November 2000; p. 24.

http://doi.org/10.1108/17538370910949301
http://doi.org/10.15240/tul/001/2016-1-003
http://doi.org/10.1108/JFC-04-2016-0024
http://doi.org/10.1016/j.csi.2020.103431
http://doi.org/10.2753/MIS0742-1222240205
http://doi.org/10.1504/IJPMB.2007.013318
http://doi.org/10.1016/j.technovation.2014.01.002
http://doi.org/10.1007/s10009-014-0332-3
http://doi.org/10.1145/287831.287843
http://doi.org/10.1080/07421222.2001.11045662
http://doi.org/10.1109/TEM.2006.878099
http://doi.org/10.1145/1029496.1029497


Sustainability 2021, 13, 2602 17 of 17

25. Alberts, C.; Audrey, D. A Framework for Categorizing Key Drivers of Risk. In Technical Report CMU/SEI-2009-TR-007; Software
Engineering Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 2009.

26. Alberts, C.; Audrey, D. Risk Management Framework; Software Engineering Institute, Carnegie Mellon University: Pittsburgh, PA,
USA, 2010.

27. Shahzad, B.; Aziz, R.; Said, A. Using Wage Rate Analysis to Determine Software Project Scale. Res. J. Appl. Sci. Eng. Technol. 2014,
8, 221–225. [CrossRef]

28. Shahzad, B.; Safvi, S.A. Effective risk mitigation: A user prospective. Int. J. Math. Comput. Simul. 2008, 2, 70–80.
29. Lali, M.I.U.; Mustafa, R.U.; Saleem, K.; Nawaz, M.S.; Zia, T.; Shahzad, B.; Kalloubi, F.; Nfaoui, E.H.; El Beqqali, O. Finding

Healthcare Issues with Search Engine Queries and Social Network Data. Int. J. Semantic Web Inf. Syst. 2017, 13, 48–62. [CrossRef]
30. Shahzad, B.; Afzal, M.T. Optimized solution to shortest job first by eliminating the starvation. In Proceedings of the The 6th

Jordanian Inr. Electrical and Electronics Eng. Conference (JIEEEC 2006), Amman, Jordan, 14–16 March 2006.
31. Alwagait, E.; Shahzad, B. Maximization of Tweet’s viewership with respect to time. In Proceedings of the 2014 World Symposium

on Computer Applications & Research (WSCAR), Sousse, Tunisia, 18–20 January 2014.
32. Shahzad, B.; Afzal, M.T. Enhanced Shell Sorting Algorithm. Int. J. Computer Inform. Eng. 2007, 21, 528–532.
33. Shahzad, B.; Al-Ohali, Y.; Abdullah, A. Trivial model for mitigation of risks in software development life cycle. Int. J. Phys. Sci.

2011, 6, 2072–2082.
34. Yaseen, S.; Abbas, S.M.A.; Anjum, A.; Saba, T.; Khan, A.; Malik, S.U.R.; Ahmad, N.; Shahzad, B.; Bashir, A.K. Improved

Generalization for Secure Data Publishing. IEEE Access 2018, 6, 27156–27165. [CrossRef]
35. Al-Muhtadi, J.; Shahzad, B.; Saleem, K.; Jameel, W.; Orgun, M.A. Cybersecurity and privacy issues for socially integrated mobile

healthcare applications operating in a multi-cloud environment. Heal. Inform. J. 2017, 25, 315–329. [CrossRef]
36. Shahzad, B.; Ullah, I.; Khan, N. Software Risk Identification and Mitigation in Incremental Model. In Proceedings of the 2009

International Conference on Information and Multimedia Technology, Jeju, Korea, 16–18 December 2009; pp. 366–370.
37. Van Solingen, R.; Rico, D.F. Calculating Software Process Improvement’s Return on Investment. In Advances in Computers; Elsevier

BV: Amsterdam, The Netherlands, 2006; pp. 1–41.
38. Ma, X.; Fu, H. The Research on the Influence of Foreign Exchange Rate on the Outsourcing: Chinese Case Empirical Study.

In Proceedings of the 2011 International Conference on Management and Service Science, Wuhan, China, 12–14 August 2011;
pp. 1–4.

http://doi.org/10.19026/rjaset.8.963
http://doi.org/10.4018/IJSWIS.2017010104
http://doi.org/10.1109/ACCESS.2018.2828398
http://doi.org/10.1177/1460458217706184

	Introduction 
	Literature Review 
	Halls P2I2 Approach 
	Karolak’s Approach 
	Kontio Riskit Approach 
	Deursen and Kuiper’s Approach 
	Roy’s Approach 
	Tiwana and Keil’s Approach 
	Misra et al.’s Approach 
	Foo and Muruganathan’s Approach 
	SEI’s Software Risk Management Approach 

	Model Formulation 
	Methodology 
	Components of the Model 
	Logic 
	Input and Output 

	Model’s Behaviour 
	Objectives of the Model 
	Optimize Resource Allocation 
	Minimize Software Risks 
	Variables 

	Model Verification 
	Comparison of S-RRM with Existing Models 
	Applicability of the Model 

	Discussion 
	Conclusions 
	References

