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ABSTRACT
The combination of features from the convolutional layer and the
fully connected layer of a convolutional neural network (CNN) pro-
vides an effective way to improve the performance of crime scene
investigation (CSI) image classification. However, in existing work,
as the weights in feature fusion do not change after the training
phase, itmayproduce inaccurate image featureswhich affect classifi-
cation results. To solve this problem, this paper proposes an adaptive
feature fusion method based on an auto-encoder to improve classi-
fication accuracy. The method includes the following steps: Firstly,
the CNN model is trained by transfer learning. Next, the features of
the convolution layer and the fully connected layer are extracted
respectively. These extracted features are then passed into the auto-
encoder for further learning with Softmax normalisation to obtain
the adaptive weights for performing final classification. Experiments
demonstrated that the proposedmethod achieves higher CSI image
classification performance compared with fix weights feature fusion.
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1. Introduction

As criminal activities become increasingly sophisticated, technologies behind evidence col-
lection and criminal investigation process have to be kept up to pace. This is especially
important for solving repeat offenses by criminals with numerous priors. Being able to
narrow the scopes of investigation and to improve the efficiency of investigators are chal-
lenging tasks in the fieldof criminal investigation (Liu et al., 2018). Computer-aidedmachine
vision is an indispensable tool, although researchers in this field are facedwith the following
difficulties. Firstly, crime scene investigation (CSI) evidential images are greatly specialised
and highly confidential, which leads to the lack of large open-source datasets essential
in designing image classification algorithms. Secondly, most CSI images have complex
and cluttered background, whilst some objects-of-interest can be partially occluded or
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occupy small portions of the images. These problems make it hard to locate, segment, and
determine the characteristics of the target objects, which in turn pose a challenge to the
image feature extraction process. Nonetheless, researchers over the world have produced
some important results in this field of image retrieval and classification. Such works mainly
approach theproblem fromtwoangles, using (i) low-level spatial features, and (ii) high-level
semantic features. More recent works use a combination of both types of features.

In earlier years, pattern recognition algorithms for image retrieval and classification
make use of low-level image features such as colour, texture, shape and spatial relation-
ship. In (Zhao et al., 2014), the algorithm first extracts local binary pattern (LBP) andwavelet
texture feature of an image, and combines them as the final image feature, then fuzzy K-
Nearest-Neighbors algorithm is used for image classification. (Bulan et al., 2012) proposed
a method to extract low-level binary edge information of tire pattern images to improve
classification performance and to overcome the problem of motion-blur images in videos.
In (Lan et al., 2018), an image retrieval method based on texture and shape feature fusion
is proposed. Double-tree complex wavelet and grey-level co-occurrencematrix are used to
extract 24 coefficients to describe texture features, and seven HU invariant moments are
calculated as shape features. The texture and shape features are merged, and the Manhat-
tan distance (L1 norm) is used as the dissimilarity measure for the CSI image retrieval. In
(Liu et al., 2017), the authors proposed a texture analysis in discrete cosine transform (DCT)
domain. The GIST descriptors are used for the first time on CSI images, and are then com-
bined with the colour histogram and the DCT coefficients to jointly describe an image. In
(Liu et al., 2017), support vector machine (SVM) classification was added to the method
described in (Liu et al., 2017), and the retrieval accuracy was further improved by 3.1%.
Based on the speed up robust features (SURF), the authors in (Bai et al., 2016) proposed the
SURF based on Gaussian pyramid (GP-SURF). The core idea of this algorithm is to use the
Gaussianpyramidmodelwhen constructing the scale space, and then theGP-SURF features
are extracted. Finally, the Bag of Words (BoW)model is used to describe the image, and the
SVMclassifier is obtained through training to realise image classification. Tire pattern image
is a special type of CSI. In (Liu et al., 2020), the existing texture feature extraction algorithms
for tire pattern images are summarised. All the above methods are based on manually
designed low-level feature extraction, which fails to fully represent the characteristics of
the CSI images, thus limiting the effectiveness of the features obtained.

In recent years, the rise of deep learningusingdeepneural networks (DNN) has impacted
significantly in many research fields, and has attractedmuch attention. Compared to tradi-
tionalmachine learningmodels, DNNs arewell adapted todifferent datasets anddonot rely
on much prior information. In addition, the DNN features have been shown to be capable
of narrowing down the gap between low-level features and high-level semantics, and can
extract and represent more abstract information. In (Bai et al., 2018), the pyramid pooling
layer was introduced into the VGGNet and the ResNet for addressing the machine vision
needs of the criminal investigation and image classification applications. The two network
structures were customised and optimised on the CSI image datasets. Test results showed
that the modified VGGNet and ResNet outperform their original methods. The algorithm
proposed in (Ezeobiejesi & Bhanu, 2018) is a deep learningmodel for latent fingerprint qual-
ity assessment which contains two steps. In the first step, the proposed model uses deep
learning to segment a latent fingerprint. Then, in the second step, feature vectors computed
from the segmented latent fingerprint are sent to a multi-class perceptron to predict the
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quality of the fingerprint. In (Vagac et al., 2017), the Torch framework is used to implement
3×3 convolutional kernels and sigmoid functions for extracting edge information of the
sole patterns for matching of shoe prints. In (Liu et al., 2019), to describe CSI images more
effectively with multiple sources of information, HSV colour features, Gabor features, and
the deep inner-layer features of the convolutional neural network (CNN) are weighted and
fused. This method improves retrieval accuracy and recall rate of the CSI images. Liu et al.
(2018) use transfer learning toobtain tire surfacepattern image feature,which is aweighted
fusion of the features extracted from the sixth and the seventh fully connected layers in
AlexNet. In (Xu & Zhang, 2020), the proposed hand segmentation method made use of a
3-layers shallow CNN which is trained as a binary classification function to predict whether
the segmentation is a partition of hand.

The abovemethods use concatenation andweighted sum feature fusion. Although sub-
stantial performance improvements have been achieved, these methods do not leverage
on thenon-uniformity characteristic of the feature distributions. In addition, using the same
fixed weights to extract features from images with atypical characteristics will adversely
affect the CSI image classification task (Li et al., 2019). In order to address the above short-
comings, this paper proposes an adaptive weight learning strategy for multi-layer CNN
feature fusion. The proposed method is a two-stage algorithm involving:

(1) Transfer learning and feature extraction. The CNN model is pre-trained on the Ima-
geNet image dataset (Krizhevsky et al., 2012), and is refinedwith the CSI image dataset.
Two feature maps, one from a convolution layer and one from a fully connect layer are
extracted.

(2) Serial auto-encoder and feature refinement and fusion. Both bottom-up unsupervised
learning and supervised learning methods are applied to fine tune the entire network
parameters adaptively.

The rest of the paper is structured as follows. Section 2 describes the CNN, transfer
learning, auto-encoder and serial auto-encoder used in this paper. Section 3 describes the
adaptive weights learning (AWL) network model in detail. Section 4 presents our experi-
mental results in image classification testedonCSI imagedataset andnatural imagedataset
as well. Finally, Section 5 concludes the work and findings presented in this paper.

2. Related work

2.1. Convolutional neural networks

One of the original applications for the convolutional neural networks (CNN) is image clas-
sification. Although different versions of CNN have proven to be successful, they are essen-
tially composed of several to hundreds of interleaving convolution layers (with non-linear
activation functions), pooling layers, and normalisation layers chained together. These are
collectively termed the convolution layers, and are then followed by a few fully connected
layers which end up with a Softmax layer. The most primitive functional CNN classifier is
the VGGNet. Out of the three different VGGNet architectures (VGG-F, VGG-M and VGG-S)
proposed in (Chatfield et al., 2014), we use the VGG-S network as our pre-trainedmodel. As
shown in Figure 1, VGG-S contains 5 convolutional layers and 3 fully connected layers.
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Figure 1. The overall architecture of the VGG-S model.

The five convolution layers have filter kernel sizes, strides, and output sizes indicated in
the table below. Each convolutional layer uses the rectified linear unit (ReLU) as the non-
linear activation function:

ReLU(x) = max(0, x) (1)

Pool1, Pool2, and Pool5 are max-pooling layers after Conv1, Conv2, and Conv5 convo-
lution layers respectively, and a local response normalisation (LRN) layer is added after
Pool1 to locally normalise the feature map across neighbouring features, as expressed in
Equation (2).

bi,j,k = ai,j,k[
1 + (α/n)

∑min(N−1,k+(n/2))
q=max(0,i−(n/2)) (ai,j,k)

2
]β

(2)

In the aboveequation,ai,j,k andbi,j,k represent the k-th featuremapvalue at pixel location
of the pooling output before and after normalisation, respectively. i is the output of the i th
convolution kernel after using theactivation functionReLUatposition (x, y),N is thenumber
of feature maps in the Pool1 output, q is the square cumulative index, which represents
the sum of the squares of the pixel values q ∼ i, and n,α,βare hyper-parameters. In the
experiments described in this paper, these values are usedn = 5,α = 0.001,β = 0.75. The
output feature map of each layer is a three-dimensional vector of shape, where C is the
channel depth (number of features), H is the height of the feature map (number of rows),
and W is the width of the feature map (number of columns). Table 1 shows the network
parameters in VGG-S.

Table 1. VGG-S network parameters.

Layer name Convolution kernel/ Stride/ Padding Output size (C×H×W)

Data — 3×256×256
Conv1 7×7/2/0 96×109×109
Pool1 3×3/3/0 96×37×37
LRN — 96×37×37
Conv2 5×5/1/1 256×33×33
Pool2 2×2/2/0 256×17×17
Conv3 3×3/1/1 512×17×17
Conv4 3×3/1/1 512×17×17
Conv5 3×3/1/1 512×17×17
Pool5 3×3/1/1 512×6×6
FC-1 4096
FC-2 4096
FC-3 1000
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2.2. Transfer learning

Transfer learning addresses the problem of insufficient training data required for deep
learning (Tan et al., 2018). In transfer learning, model parameters are not trained from
scratch; instead, they are “transferred” froma similar network pre-trainedwith another, usu-
ally much larger training dataset. The new model with the transferred parameters is then
refined with the smaller, dedicated dataset. This approach can significantly reduce train-
ing time and the amount training data needed. Studies have shown that CNNs learned
with transfer learning can achieve significant accuracy improvements in various applica-
tions (Tan et al., 2018). Usually, the first few layers of any CNN containing low-level edge
and texture featureswhich are suitable formost generalmachine vision tasks can beported
directly over amongst different machine vision tasks. The deeper layers, on the other hand,
contain high-level semantic features which is specific to their respective tasks; so these are
not re-usable between applications. The combination of porting low-level parameters and
fine-tuning the higher-levels in transfer learning with a small training set avoids the prob-
lem of over-fitting neural networks due to the lack of sufficient training data, and has been
proved as a useful strategy for different types of computer vision tasks with a small amount
of training data available (Lima et al., 2017).

2.3. Auto-encoder

The basic auto-encoder (Bengio, 2009) is a three-layer unsupervised neural network struc-
ture which is divided into two halves – the encoder and the decoder. As shown in Figure 2,
each auto-encoder (AE) has three layers of data – an input layer, a hidden layer and an
output layer. The input and the output are represented as x = [xn] ∈ �N and y = [yn] ∈
�Nrespectively, whereN is the number of features per input andoutput sample. Thehidden
layer is the feature vector h = [hn] ∈ �H, where H is the number of features of the hidden
layer. Usually,H < N in order for the auto-encoder to compress data, suppress noise or sim-
plify data structure. In this paper, the number of features in the hidden layer is equal to the
number of input and output features, that is, H = N.

The encoding function and the decoding function are represented by f and g respec-
tively. The encoding function is expressed as:

h11 = fθ11(x) = s(W11x + b11) (3)

s(t) = 1
1 + e−t (4)

where s(t) is the activation function of the encoder performed element-wise, x is the fea-
ture vector of the convolutional layer, fθ11 represents the encoding function,W11 indicates
the weight matrix between the input layer and the hidden layer, b11 is the bias, and θ11 =
{W11, b11}means the connectionweights and bias parameters between the input layer and
the hidden layer. The decoder maps the hidden layer representation h to the output layer
y through the decoding function:

y = gθ (h) = s(WTh + b) (5)
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Figure 2. Structure of an auto-encoder.

The weight matrix representing the decoder isWT, the transpose of the encoder weight
matrix, while b ∈ �N is the decoder’s bias. The aimof this auto-encoder is to find the param-
eters θ = {W, a, b} which minimise the discrepancies between the inputs x ∈ �N and the
outputs y ∈ �N whose difference is given as:

J(x, y; θ) = −
N∑

n=1

[xn log(yn) + (1 − xn) log(1 − yn)] (6)

Auto-encoders can be concatenated one after another, where the outputs of the cur-
rent auto-encoder are used as inputs of the next encoder. These concatenated structures
are termed serial auto-encoders and can be used to extract features with progressive
abstractions.

2.4. Serial auto-encoder

An auto-encoder consists of three layers (input, hidden, and output) connected by an
encoder and a decoder. A series of auto-encoders can be concatenated back-to-back to
form a serial auto-encoder, which the current auto-encoder shares its output layer with the
next auto-encoder as input. Hence anM-length serial auto-encoderwith input x andoutput
y can be expressed asM auto-encoders.

y = AEM(. . .AE2(AE1(x; θ1); θ2) . . . ; θM) (7)

Alternatively, each jth auto-encoder can be expressed as:

mj = AEj(mj−1; θj) (8)

wheremjis the output of the jth auto-encoder andmj−1 is the input of the jth auto-encoder,
which is also the output of the (j-1)th auto-encoder. Note that the M hidden layers hj
can have different sizes Hj while the input (m0), output (mM), and every middle layer (mj,
j=1, . . . ,M-1) all have size N (Figure 3).
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Figure 3. An example of 3-serial auto-encoder.

3. Proposedmethod

This paper proposes an adaptive weights-learning network model (AWL), which combines:
(i) transfer learning of pre-trained VGG-S and feature extraction, and (ii) feature refinement
with dual serial auto-encoders and adaptive feature weights, to perform image classifica-
tion for CSI. The entire network is shown in Figure 4. Firstly, the VGG-S model is pre-trained
with the ImageNet image dataset, and a refined VGG-S networkmodel is obtained through
transfer learning using CSI image dataset. Then, for each training sample, a convolution
layer feature map and a fully connected layer features are extracted. A pair of AE network
is then constructed separately, one trained with the convolution layer features and the
other with the fully connected layer features. Finally, the obtained features are adaptively
weighted, merged and the test samples are classified by using the trained network.

3.1. CNN transfer learning and feature extraction

A traditional CNN-based classifier passes its activations as a feature map from its last con-
volutional layer into a series of fully connected classifier layers. However, as different layers
carry different aspects of the image information, every single layer of features on its own
is insufficient to represent the image. Hence the combination of a few layers of features

Figure 4. Adaptive weight learning network architecture.
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provides better representation (Xin et al., 2018). The low-level convolutional layers repre-
sent more primitive features such as edges, textures, contours and shapes. As we traverse
deeper into the network, the resolution of the featuremaps decreases while the amount of
high-level semantic information increases (Li et al., 2018). Hence, we extract features from
multiple layers of the neural network. The steps of the feature extraction based on transfer
learning are as follows:

(1) Initialise the VGG-S Model with parameters pre-trained with the ImageNet dataset.
(2) Freeze the parameters of the 5 convolution layers, and continue to train the 3 fully con-

nected layers using the CSI image dataset. The learning rate is set to 0.0005, and the
number of iterations is limited to 40.

(3) For each CSI dataset sample, extract the last pooled layer of the convolutional neural
network model (Pool5) as a convolution layer features, Fconv.

(4) For each CSI dataset sample, extract the second fully connected layer (FC-2) as the fully
connected layer features, FFC.

3.2. Adaptive weight learning

An important part of the AWL network model is a weight learning neural network module
composed of auto-encoders and Softmax activations, and the process of adaptive weight
learning based on featuremaps from the convolution and fully connected layers generated
by CSI Images. The steps of adaptive weight learning are summarised as follows:

(1) Extract Fconv, the feature maps from the max-pool layer after the 5th convolutional
layer and FFC, the 2nd fully connected layer of the final CNNmodel. Furthermore, Fconv
is flattened and dimensionally reduced via a single auto-encoder to generate F′

conv

which has the same shape as FFC.
(2) Build SAEconv, a serial auto-encoder consisting of 1–3 auto-encoders followed by a fully

connected classifier with the Softmax activation function. Input SAEconv with F′
conv.

(3) Build SAEFC, a serial auto-encoder consisting of 1–3 auto-encoders followed by a fully
connected classifier with the Softmax activation function. Input SAEFC with FFC.

(4) Pass the CSI image dataset images into the post-trained VGG-S Net to extract the set
F′

conv and FFC. Use these feature map sets to train SAEconv and SAEFC respectively.
Instead of using the trainedweights of SAEconv and SAEFC for subsequent classification
purposes, we obtain their corresponding aggregate classification losses generalised by
the following expression for the next stage:

Jagg(SAE) = − 1
M

[
M∑

m=1

J(xm, ym; θ)

]
(9)

In the above equation, M represents the total number of samples in the training set,
xm, ym is the inputs to the SAE and target classes respectively. J() is the loss func-
tion for individual sample. The two aggregate losses are termed as Jagg(SAEconv) and
Jagg(SAEFC).
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3.3. Feature fusion

In the above steps, the SAE model is trained with feature maps extracted from a convo-
lutional layer and a fully connected layer, and the network parameters are fine-tuned to
fully exploit the advantages of the convolutional layer and the fully connected layer which
are representative of different levels of abstraction. The extracted features Fconv and FFC
both are normalised, and then feature fusion is used based on the aggregate training costs
of SAEconv and SAEFC to form the final feature which is fed into a new classification layer
whose inputs are F′

conv and FFC:

Ffusion = 1
Jagg(SAECONV)

F′
CONV + 1

Jagg(SAEFC)
FFC (10)

Better classification of CSI evidential images is then achieved when the fused features
are used in the Softmax classifier.

4. Experiment results and analysis

4.1. Datasets and performance Indicators

4.1.1. Datasets
In order to verify the effectiveness of the proposedmethod on CSI image classification task
and its applicability on other image datasets, the experiments used images from three dif-
ferent sources – the CSI image dataset and two public datasets The detailed description of
each dataset is given in Table 2.

The CSI image dataset (CIIP-CSID) has been built by Center for Image and Information
Processing (CIIP) in Xi’an University of Posts and Telecommunications (XUPT). It contains
19,363 actual CSI case images in 17 categories, such as biological evidence, vehicles, tire
patterns, fingerprints, site plans, shoe prints, etc.

Atpresent, there is no standard, publicly recognised large-scale imagedataset in the field
of CSI image research. References show that the CIIP-CSID dataset is the largest multi-class
hybrid public CSI image dataset used by the academia. The images are all from real cases,
and have been pre-processed according to the data confidentiality requirements from the
police department. Figure 5 shows sample images in the CIIP-CSID dataset.

Table 2. Detailed description of the test datasets.

Name Description Class count Image counts

CIIP-CSID1 bloodstains, vehicles, fingerprints, site plans, shoe prints,
skin, tattoos, crime tools, windows, tire patterns

10 5000

CIIP-CSID2 biological evidence, bloodstains, vehicles, doors,
fingerprints, site plans, shoe prints, skin, tattoos, crime
tools, windows, tire patterns

12 9600

CIIP-CSID3 biological evidence, bloodstains, vehicles, doors,
fingerprints, site plans, shoe prints, skin, tattoos, crime
tools, windows, tire patterns

12 10600

GHIM-10K sunsets, fireworks, architectures, cars, dragonflies, snow
mountains, flowers, trees, fields, beaches, airplanes,
butterflies, the Great Wall, Forbidden City, motorcycles,
sailing boats, warships, chickens, insects, horses

20 10000

Corel-1K Africa, beaches, buildings, buses, dinosaurs, elephants,
flowers, horses, mountains, food

10 1000
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Figure 5. CIIP-CSID samples images.

In this experiment, three subsets CSI images of different scales are selected from CIIP-
CSID dataset, namely CIIP-CSID1, CIIP-CSID2, and CIIP-CSID3. The CIIP-CSID1 dataset con-
tains 5000 images in 10 categories, including bloodstains, vehicles, fingerprints, site plans,
shoe prints, skins, tattoos, crime tools, windows, and tire patterns. The CIIP-CSID2 dataset
contains 9600 images from 12 categories, such as biological evidence, bloodstains, vehi-
cles, doors, fingerprints, and so on. The CIIP-CSID3 dataset contains images from the same
12 categories as in CIIP-CSID2, but at larger scale, with the total amount of images as 10600.

The public datasets GHIM-10 K and Corel-1 K are used to test the applicability of the pro-
posed algorithm images with different contents. The GHIM-10 K dataset contains 10,000
natural images, divided into 20 categories such as sunsets, warships, flowers, architectures,
cars, snowmountains, insects, and so on. The Corel-1 K dataset have 1000 images in 10 cat-
egories, including Africa, beaches, buildings, buses, dinosaurs, elephants, flowers, horses,
mountains, and food. Figures 6 and 7 display sample images in GHIM-10 K and Corel-1 K,
respectively.

In the experiment part of this paper, 80% of the images in each category are selected as
the training set and 20% as the test set. The experiments in this paper usedMatConvNet to
implement our algorithm. MatConvNet is a MATLAB toolbox that provides CNN function,
many pre-trained CNN networks can be used. The experimental environment is Windows
10 operating system and the software programming environment is MATLAB R2016a.

4.1.2. Evaluation index
To evaluate the classification performance of the proposed algorithm, classification accu-
racy (Accuracy) and Average Accuracy (AA) are defined.

Accuracy = T i
Ni

× 100% (11)

AA = 1
N

N∑
i=1

(Accuracy)i (12)

In the above formula, Ni is the total number of samples in class i, Ti is the number of
correctly-classified samples in class i, and N is the total number of categories. The higher



CONNECTION SCIENCE 729

Figure 6. GHIM-10 K samples images.

Figure 7. Corel-1 K samples images.

the accuracy measure, the better the classification. The Accuracy value represents the pro-
portion of correctly classified images. The AA value indicates the average accuracy over all
N classes.
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4.2. Experimental results

Experiment 1: Comparisonof classificationperformancebetweendifferent networkmodels
and different network layers.

In order to validate the superiority of our proposed fine-tuned VGG-S network model,
this experiment compares its classification accuracy with those of VGG-S, VGG-F, VGG-M,
and AlexNet network models. The experimental results based on the CIIP-CSID3 dataset,
Corel-1 K and GHIM-10 K datasets are shown in Table 3.

As can be observed from the results in Table 3 above, different models have varying
classification performance on the same image dataset. Taking the CIIP-CSID3 dataset as
an example, the classification accuracy of the VGG-S model is 90.09%. The VGG-S-fine-
tuned model has about 2% performance margin over the VGG-S model. At the same time,
it is about 6% higher than the VGG-F model, and the performance is more prominent. In
addition, comparing the classification accuracy of different network models on the public
natural image datasets, our experimental results show that the VGG-Smodel performs best
for classification on the Corel-1 K dataset. The classification accuracy of VGG-S model on
Corel-1 K dataset is 96.35%, which is higher than 95.65% of VGG-S-fine-tuned model. The
experimental results on the GHIM-10k dataset show that the classification accuracy of VGG-
S – fine-tunedmodel is the highest, which can reach 96.0%, and is about 1% and 5% higher
than that of VGG-S model and VGG-F model respectively. The experimental results show
that since the Corel-1K dataset has small number of image categories and small amount
of data, the VGG-S model has higher classification accuracy than the VGG-S-fine-tuned
model. However, in the CIIP-CSID3 and GHIM-10K datasets which have lager training sam-
ples, the VGG-S-fine-tuned model performs better than the VGG-S model. In general, the
VGG-S-fine-tunedmodel can give better results in the datasets with large amounts of data.

Experiment 2: Comparison of classification results of SAEs with different depths in
various datasets.

In order to validate that AEs with various depths have different classification results,
we compare the classification results of Serial AEs of different depths. The experimental
results based on the CIIP-CSID1, CIIP-CSID2, CIIP-CSID3, Corel-1 K and GHIM-10 K datasets
are shown in Table 4.

Table 4 records classification performances of AEs with different depths in various
datasets. AEs in Table 4 represent the number of hidden layer features. 50/100 is the num-
ber of iterations. Results show that, the fine-tuned three-layer SAEhas thebest performance
on the CIIP-CSID1, CIIP-CSID2, CIIP-CSID3 and Corel-1 K datasets, reaching 95.21%, 96.33%,
97.41%, 100% respectively. As for the results on the GHIM-10 K dataset, the average classi-
fication accuracy of the two-layer SAE is the highest, which is up to 99.26%, and has about

Table 3. Classification accuracy of different models in different databases.

Accuracy (%)

Network model CIIP-CSID3 Corel-1K GHIM-10K

VGG-S 90.09 96.35 95.4
VGG-F 85.77 95.85 92.5
VGG-M 87.66 96.12 94.0
AlexNet 89.23 96.01 93.5
VGG-S-fine-tuned 91.83 95.65 96.0
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Table 4. Classification results of serial AEs of different depths.

Dataset
AE1 Iteration

(Times)
AE2 Iteration

(Times)
AE3 Iteration

(Times)
Softmax Iteration

(Times)
Fine-tuned

Iteration (Times) AA (%)

CIIP-CSID1 50 – – 100 – 94.86
50 50 – 100 – 94.88
50 50 50 100 – 95.02
50 50 50 100 100 95.21

CIIP-CSID2 50 – – 100 – 95.11
50 50 – 100 – 95.45
50 50 50 100 – 96.03
50 50 50 100 100 96.33

CIIP-CSID3 50 – – 100 – 96.01
50 50 – 100 – 96.82
50 50 50 100 – 97.12
50 50 50 100 100 97.41

GHIM-10K 50 – – 100 – 98.32
50 50 – 100 – 99.26
50 50 50 100 – 98.33
50 50 50 100 100 98.63

Corel-1K 50 – – 100 – 99.89
50 50 – 100 – 99.99
50 50 50 100 – 99.99
50 50 50 100 100 100

0.6% performance margin over the fine-tuned three-layer SAE. It can be seen that when
there are many categories of datasets, it is not necessary to use multi-layer encoder to
achieve good classification results. It can be seen from Table 4 that when the depths of the
AEs vary, the classification results in the respective datasets also differ. The trainings with
CSI images of different cardinalities yield different results. From the experimental results,
it can be seen that when the training samples get larger, the classification effect will get
better. In addition, we conclude from the classification results that the classification perfor-
mance of the fine-tuned three-layer SAE is the best. However, since the GHIM-10 K dataset
has the largest image category, it shows thebest classification in the two-layer Serial AE. The
Corel-1 K dataset has the highest average classification accuracy because of its small num-
ber of image categories and small amount of data. Therefore, depending on the dataset, its
settings for the Serial AE should also be adjusted.

Experiment 3: Comparison of classification results of different features in CIIP-CSID3
datasets.

In order to compare the classification performance of different CNN features on the CSI
images, we select the CIIP-CSID3 dataset and test the classification accuracy by using the
convolution layer feature in CNN (Conv5), the fully connected layer feature in CNN (FC7),
the fusion feature of convolution layer feature and fully connected layer feature in CNN
(Conv5+FC7), CNN feature (CNN) and the AWL weight fusion method proposed in this
paper. The results are displayed in Figure 8.

The results in Figure 8 tells that the proposed method improves the classification accu-
racy on the CSI image dataset, especially in “biological evidence”, “bloodstains”, “doors”,
and “windows” classes, whereby the classification accuracies have increased between 10%
and 20%. In addition, the classification accuracies of “site plans”, “tattoos”, “crime tools”,
and “tire patterns” have increased by 1%-5% only. It is observed that for classes with lower
within-class similarity (in other words, the content difference between images within the
class is greater) such as biological evidence and windows, the proposed method brings
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Figure 8. Classification results of different features on CIIP-CSID3.

more obvious performance improvement compared with other features. However, for
classes with higher within-class similarity such as tire patterns, all the tested features seem
to work well and the performance gain produced by the proposed method is little.

4.3. Discussion

The above three experiments have proved the effectiveness of the proposed algorithm.
The first experiment compared the classification performance between different network
models and different network layers. The results demonstrated that the classification per-
formance of VGG-S-fine-tunedmodel performs the best. The second experiment compared
the classification results of Serial AEs of different depths in different datasets. It is shown
that when the depths of the AEs vary, the classification results in the respective datasets
also differ. The third experiment compared the classification results of different features on
the CIIP-CSID3 dataset. The results showed that the AWL feature fusion method proposed
outperforms other features.

Attentionmechanism imitates human visual behaviour and can find the salient region of
an image. Therefore, researchers have introduced attentionmechanism into CNN to extract
image features with more powerful representation ability (Wang et al., 2017; Zhu et al.,
2019). Our future work intends to leverage on attention mechanism to further improve
the performance of CSI image classification. In (Wu, & Gao, 2018), the authors presented
a fully convolutional network (FCN)-based model to implement pixel-wise classifications
for remote sensing image, and an adaptive threshold algorithm is adopted to adjust the
threshold of Jaccard index in each class. The adaptive threshold methodology could be
further explored to enhance the performance of CSI image classification.

In practical application scenarios, some CSI images have complex and cluttered back-
ground, whilst the objects-of-interest can be partially occluded or occupy small portions of
the images. These problemsmake the process of image feature extraction and the recogni-
tion of similar small targets difficult. In (Srivastava & Biswas, 2020), a learningmethod based
on salient features is adopted. Only specific features are embedded in SVM classifier for
deep feature extraction, which can achieve better classification accuracy and reduce the
amount of calculation. In (Qian et al., 2020), a new feature detection method is proposed,
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which can extract rich semantic information from the edge and corner features of the tar-
get, and help to increase the number of effective feature points extracted from the image.
These two feature extractionmethods are worth trying in our future research. In (Zhu et al.,
2020), the authors proposed a modified region-based fully convolutional network, which
can identify out different leaves with similar characteristics in one scene. This method can
be used to identify small targets such as shoe prints and fingerprints in CSI images, which
is conducive to case analysis and comparison.

5. Conclusion

In this paper, a novel CSI image classification method has been proposed based on adap-
tive weighted fusion of multiple CNN feature layers. The method involves using transfer
learning to extract themulti-layer CNN features for CSI images. It also involves constructing
two serial auto-encoder networks for themulti-layer CNN features to obtain adaptive fusion
weights through network training and parameter fine-tuning. The experimental results
demonstrated the effectiveness of the proposedmethodonCSI image classification, aswell
as its applicability on other image data of different content.
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