
 

 Page 1 of 1 

Federation University ResearchOnline 
https://researchonline.federation.edu.au 
Copyright Notice 

 

This is the author’s version of a work that was accepted for publication in British Journal of 
Pharmacology, 2022.   Changes resulting from the publishing process, such as peer review, editing, 
corrections, structural formatting, and other quality control mechanisms may not be reflected in this 
document. 
 

Available online: https://doi.org/10.1111/bph.15260   

   
 
 
Copyright @ 2020 The British Pharmacological Society 

 

 

 

 

 

CRICOS 00103D RTO 4909   

See this record in Federation ResearchOnline at: 
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/186560  

https://researchonline.federation.edu.au/
https://doi.org/10.1111/bph.15260
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/186560


This article is protected by copyright. All rights reserved.  

Mouse models for abdominal aortic aneurysm 
 

Jonathan Golledge MChir FRACS1,2,3, Smriti Murali Krishna PhD1,2,3, Yutang Wang PhD4 
 
 

1 Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, 

James Cook University, Townsville, Queensland, Australia 

2 The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, 

Townsville, Queensland, Australia; 

3 The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, 

Queensland, Australia; 

4 Discipline of Life Sciences, School of Health and Life Sciences, Federation University Australia, 

Ballarat, VIC, Australia. 

Correspondence to: Professor Jonathan Golledge, Director, Queensland Research Centre for 

Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, 

Queensland, Australia, 4811. 

Fax +61 7 4796 1401 Telephone +61 7 4796 1417 Email Jonathan.Golledge@jcu.edu.au 
 

Funding 
 

This research was supported by grants from the National Health and Medical Research Council 

(1098717, 1079369 and 1062671), Townsville Hospital and Health Service Study, Education and 

Research Trust Fund and Queensland Government. JG holds a Practitioner Fellowship from the 

National Health and Medical Research Council (1117601) and a Senior Clinical Research Fellowship 

from the Queensland Government. 

Word count: Text 6,666 Abstract 150 3 tables 2 figures 1 supplementary table. 
 

Short title: Mouse and abdominal aortic aneurysm 
 

This is the author manuscript accepted for publication and has undergone full peer review but 
has not been through the copyediting, typesetting, pagination and proofreading process, which 
may lead to differences between this version and the Version of Record. Please cite this article 
as doi: 10.1111/bph.15260 

 
1 

mailto:Jonathan.Golledge@jcu.edu.au
http://dx.doi.org/10.1111/bph.15260
http://dx.doi.org/10.1111/bph.15260


This article is protected by copyright. All rights reserved.  

Abstract 
 

Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently 

the only treatment for AAA is surgical repair, however this is only indicated for large asymptomatic 

aneurysms, is not always durable and is associated with a risk of serious perioperative complications. 

As a result, patients with small aneurysms or who are otherwise unfit for surgery are treated 

conservatively, but up to 70% of small aneurysms continue to grow, increasing the risk of rupture. 

There is thus an urgent need to develop drug therapies effective at slowing AAA growth. This review 

describes the commonly used mouse models for AAA. Recent research in these models highlights 

key roles for pathways involved in inflammation and cell turnover in AAA pathogenesis. There is 

also evidence for long coding RNAs and thrombosis in aneurysm pathology. Further well-designed 

research in clinically relevant models is expected to be translated into effective AAA drugs. 
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Abbreviations 
 

AAA: Abdominal aortic aneurysm; 

CaCl2: Calcium chloride; 

TGFß: Transforming growth factor-beta; 

LOX: Lysyl oxidase; 

BAPN: ß3-aminopropionitrile; 

MRI: Magnetic resonance imaging; 

NLRP3: Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3; 

IL: Interleukin; 

COX: Cyclooxygenase; 

 
MMP: Matrix metalloproteinase; 

Ig: Immunoglobulin; 

LncRNA: Long non-coding RNA; 

FOXP3: Forkhead box P3; 

CTLA-4: Cytotoxic T-lymphocyte-associated protein 4; 

TFEB: Transcription factor EB; 

TNF: Tumour necrosis factor; 

 
PI3K: Phosphatidylinositol-3-kinase. 
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Introduction 
 

Abdominal aortic aneurysm (AAA) is a focal weakening and expansion of the main abdominal artery 

that affects about 2% of men and 0.5% of women aged over 60 years (Sampson et al., 2014a). The 

main complication of AAA is aortic rupture, which is responsible for about 200,000 deaths per year 

worldwide (Sampson et al., 2014b). AAA is usually asymptomatic prior to rupture and diagnosis 

therefore requires identification through clinical examination or abdominal imaging. In high-income 

countries, most AAAs are diagnosed through ultrasound, computed tomography and magnetic 

resonance imaging performed to investigate unrelated abdominal or back problems or via screening 

programs. To facilitate early identification of asymptomatic AAAs, ultrasound screening programs 

are offered to people at risk of AAA in a number of high-income countries, such as the USA, UK and 

Sweden (Force et al., 2019). Important risk factors for AAA include male sex, older age, smoking 

and family history and these are included as eligibility criteria for screening to varying degrees in 

different countries (Force et al., 2019; Golledge, Muller, Daugherty & Norman, 2006). Surgical repair 

is the only current treatment for AAA. Two types of operations are commonly used. Endovascular 

AAA repair involves placement and fixation of covered stents across the AAA from within the aorta 

using sheaths placed through a small puncture in the femoral arteries (Cao et al., 2011). Open surgical 

repair requires a laparotomy or retroperitoneal dissection of the abdominal aorta, clamping of the 

arteries above and below the aneurysm and the replacement of the AAA with a prosthetic graft 

(United Kingdom Small Aneurysm Trial et al., 2002). Both types of surgical repair are associated 

with short and long-term complications. Open AAA repair has a perioperative mortality rate of about 

5% and is frequently associated with other perioperative complications, such as myocardial 

infarction, respiratory infection, atelectasis and wound complications (Landry, Liem, Abraham, Jung 

& Moneta, 2019; Stather, Sidloff, Dattani, Choke, Bown & Sayers, 2013). Later complications of 

open repair include incisional hernia, graft infection and false aneurysm (Schermerhorn et al., 2015). 

In contrast, endovascular AAA repair has a perioperative mortality of around 2% but approximately 

20% of patients need re-intervention during long-term follow-up to correct continued perfusion of 
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the AAA sac (endoleak) and late AAA rupture has been reported in around 3% of patients (Antoniou 

et al., 2015; Rajendran & May, 2017; Schermerhorn et al., 2015; Stather, Sidloff, Dattani, Choke, 

Bown & Sayers, 2013). 

Due to these complications, surgical repair is only recommended for a patient with an AAA that is 

considered to be at moderate risk of rupture during the individual’s lifetime. The most established 

predictor of aneurysm rupture is maximum aortic diameter, with yearly rupture rates estimated as 1%, 

9%, 19% and 33% for <55, 55-64, 65-69 and ≥70mm AAAs respectively (Lederle et al., 2002; United 

Kingdom Small Aneurysm Trial et al., 2002). AAA diameter is therefore used in clinical practice to 

make decisions about when to recommend AAA repair. Randomised controlled trials have found that 

early elective repair of asymptomatic 40-54mm AAAs does not reduce mortality (Filardo, Powell, 

Martinez & Ballard, 2015). Current guidelines recommend that surgical repair is considered for 

asymptomatic AAAs that are ≥50mm in women and ≥55mm in men (Chaikof et al., 2018; Wanhainen 

et al., 2019). AAAs smaller than this are simply monitored by imaging surveillance, but up to 70% 

slowly increase in size and ultimately undergo surgical repair (United Kingdom Small Aneurysm 

Trial et al., 2002). In people for whom surgery is not recommended there are currently no established 

treatments for AAA (Golledge, 2019). 

A key deficiency in the current management of AAA is the absence of drug therapies that are effective 

in slowing AAA growth and preventing AAA rupture (Golledge, 2019; Golledge & Norman, 2011). 

Such medications could be used to treat patients with small AAAs or those unfit for surgical AAA 

repair and could also be an adjunctive therapy for people with endoleak after endovascular AAA 

repair. The use of animal models is an established way to further the understanding of pathogenesis, 

identify treatment targets and test potential drugs. This review summarizes available mouse models 

for studying AAA, and recent findings regarding AAA pathogenesis and drug targets. The key aspects 

of the most commonly used mouse models and findings from studies published since 2019 using such 

models are described. Findings from studies published prior to 2019 are described in multiple earlier 
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reviews (Daugherty A, 2004; Lysgaard Poulsen J, 2016; Patelis N, 2017; Sénémaud J, 2017; Wang 

Y, 2013a). 

Commonly used chemically induced mouse models of AAA 
 

Due to the availability of genetically modified animals, including gene knock-out, knock-in, 

transgenic and inducible strains, mice are the most commonly used animals in experimental AAA 

studies although other animals such as rats, rabbits, pigs and dogs have been examined in a smaller 

number of studies. Readers are referred to previous reviews for a discussion of these less commonly 

used animal models of AAA (Golledge, 2019; Lysgaard Poulsen J, 2016; Patelis N, 2017; Sénémaud 

J, 2017; Wang Y, 2013a). In mice, three agents, angiotensin II, elastase and calcium chloride (CaCl2; 

or phosphate), are commonly used to induce AAA (Golledge, 2019). Characteristics of these three 

different methods of inducing AAA are summarized in Table 1. 

Angiotensin II 

 
It was first reported in 2000 that subcutaneous infusion of angiotensin II at a dose of 0.5 or 1 

µg/min/kg for 28 days using a mini-pump implanted in the back of the neck of apolipoprotein E 

deficient mice induced thoraco-abdominal aortic aneurysm in 20% and 33% of mice, respectively 

(Daugherty A, 2000). Similar but smaller aneurysms were also reported in low density lipoprotein 

receptor mice similarly infused with angiotensin II (Cassis LA, 2007). Since that time, angiotensin II 

infusion has become the most common way of inducing AAA in animal model experiments, with 

many hundreds of studies reported (Daugherty A, 2004; Golledge, 2019; Patelis N, 2017). This 

popularity likely reflects both the technical simplicity of the model and the fact that angiotensin II 

induced aneurysms have some key features of human AAA (Table 1). Male sex is an important risk 

factor for human AAA (Golledge, Muller, Daugherty & Norman, 2006) and male mice are more 

susceptible than female mice to aneurysm induction by angiotensin II infusion (Alsiraj Y, 2017). 

Similar to human AAA, angiotensin II induced aneurysms have marked upregulation of 

inflammation, extracellular matrix remodeling and thrombosis-associated genes (Biros E, 2015; Rush 
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C, 2009). Similar to patients, angiotensin II induced aneurysms in mice also commonly rupture (Liu 

J, 2015). Some of the features of angiotensin II induced aneurysms are not typical of human AAA. 

Whilst inflammation, particularly macrophage recruitment, has been strongly implicated in the 

initiation of aneurysm in this model (Daugherty A, 2000), aortic dissection appears to be the key 

event (Saraff, Babamusta, Cassis & Daugherty, 2003). Histological examination of angiotensin II 

induced aneurysm walls demonstrates intra-mural haematoma (Daugherty A, 2000; Saraff, 

Babamusta, Cassis & Daugherty, 2003). Phase-contrast x-ray tomographic microscopy studies 

suggest that angiotensin II induces an intimal tear and bleed into the aorta wall typical of aortic 

dissection (Daugherty A, 2000; Trachet B, 2017). This limits the relevance to the usual presentation 

of human AAA in which dissection is rare and intra-luminal rather than intra-mural thrombus found 

(Golledge J, 2008). Furthermore, angiotensin II induced aneurysms develop in the supra-renal or 

thoracic aorta while in patients the most common site affected is the infra-renal aorta (Daugherty A, 

2000). Despite these limitations, the angiotensin II induced model remains the most commonly 

studied AAA model. 

Elastase 

 
Elastase is the second most commonly used agent for inducing AAA in mice (Busch A, 2016; Pyo R, 

2000). Porcine pancreatic elastase has been used to induce AAA using a number of methods including 

intra-luminal infusion and painting on the aortic adventitia (Lu G, 2017; Thompson RW, 2006). The 

original method involved dissecting out the infra-renal aorta, temporarily occluding it, infusing 

porcine elastase into the lumen of the artery for 5 to 30 minutes via an arteriotomy and then repairing 

the hole in the aorta and removing the aortic occluding clamps (Thompson RW, 2006). A simpler 

method of temporarily applying elastase to the adventitia of the infra-renal aorta has been recently 

used (Lu G, 2017). The intra-luminal elastase perfusion model is far more challenging to learn than 

the adventitial elastase application or angiotensin II infusion methods with surgery taking about twice 

as long (Busch A, 2016). Elastase induced aneurysms have true luminal aortic enlargement, in 

contrast to the dissection formed in the angiotensin II model (Busch A, 2016; Lu G, 2017; Saraff, 
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Babamusta, Cassis & Daugherty, 2003; Thompson RW, 2006). Both elastase induction methods 

cause aortic elastin degradation and induce a similar two-fold increase in infra-renal aortic diameter 

over 4 weeks (Busch A, 2016; Phillips EH, 2015). Inflammation has been reported to be more marked 

and angiogenesis less marked, after adventitial application than intra-luminal administration of 

elastase (Busch A, 2016) (Table 1). In contrast to human AAA, elastase induced AAAs do not rupture 

and there is limited evidence they progressively expand in the longer term. This means the standard 

elastase model is not useful for the study of advanced AAA pathology or the testing of medications 

in limiting AAA growth (Table 1). 

CaCl2 

 
Application of CaCl2 or calcium phosphate to the adventitia of the infra-renal aorta is another method 

of inducing AAA although the degree of aortic diameter expansion stimulated is less marked than 

that caused by angiotensin II or elastase (Phillips EH, 2015; Wang Y, 2013a). Histological 

examination of CaCl2 induced aneurysm demonstrates inflammation, angiogenesis, elastin breaks and 

calcification as found in human AAA samples (Chen HZ, 2016; Liu CL, 2016b; Wang Y, 2013a; 

Xiong W, 2009). CaCl2 induced aneurysms do not have some features of human AAA, such as intra- 

luminal thrombus and aortic rupture (Table 1) (Wang Y, 2013a). 

Recent modifications of the commonly used chemically induced mouse models 

 
A growing number of modifications of the classical mouse AAA models described above have now 

been reported (Table 1) (Busch A, 2018; Cooper HA, 2020; Kanematsu Y, 2010; Lareyre F, 2017; 

Lu G, 2017; Yue J, 2020). 

 
Transforming growth factor beta (TGFß) neutralisation 

 
TGFß is strongly implicated in thoracic and AAA pathogenesis, although the pathways involved 

appear divergent at the two sites (Angelov SN, 2017; Golledge, 2019; Wang Y, 2013b). A number of 

studies have now shown that systemic TGFß neutralisation, usually by repeated injection of a 
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blocking antibody, promotes development of more severe AAA within the angiotensin II model 

(Angelov SN, 2017; Wang Y, 2010). TGFß neutralisation has also been reported to promote more 

severe AAA within the adventitial elastase model (Lareyre F, 2017). Due to the high incidence of 

death within 14 days of commencing TGFß neutralization, these models are most appropriate for 

studying aneurysm rupture (Lareyre F, 2017; Wang Y, 2010). 

Inhibition of lysyl oxidase (LOX) 

 
LOX is the enzyme that cross-links collagen and elastin. Mice deficient in LOX develop spontaneous 

aortic aneurysms (Mäki JM, 2002). ß3-aminopropionitrile (BAPN) fumarate salt is a commonly used 

oral LOX inhibitor and has been combined with adventitial elastase (Lu G, 2017; Romary DJ, 2019) 

or subcutaneous angiotensin II infusion (Cooper HA, 2020; Kanematsu Y, 2010) to induce severe 

AAA. Many mice species, such as C57BL/6, are resistant to the pro-aneurysmal effects of angiotensin 

II, by comparison to mice with dyslipidemia, such as apolipoprotein E or low density lipoprotein 

receptor deficient mice (Daugherty A, 2004; Daugherty A, 2000; Kanematsu Y, 2010). This delays 

the assessment of the role of different genes and pathways in angiotensin II induced AAA, since mice 

with gene knock-outs or knock-ins need to be backcrossed with dyslipidemic mice prior to 

experimental testing (Cooper HA, 2020; Hiromi T, 2020). Oral or subcutaneously infused BAPN, 

like TGFß neutralization (Lareyre F, 2017; Wang Y, 2010), makes C57BL/6 more susceptible to 

angiotensin II infusion (Cooper HA, 2020; Kanematsu Y, 2010). A combination of angiotensin II 

infusion for six weeks and BAPN infusion for two weeks has been reported to induce AAA in about 

half of C57BL/6 mice, of which about one-quarter ruptured (Kanematsu Y, 2010). Like the classical 

angiotensin II model, aneurysms form in this model as a result of aortic dissection (Cooper HA, 2020; 

Kanematsu Y, 2010). One of the most promising new models of AAA is one combining adventitial 

elastase and oral BAPN (Lu G, 2017; Romary DJ, 2019). While so far this model has received limited 

study the reported findings suggest it has much promise as a clinically relevant AAA model. The 

model incorporates key features of human AAA including focal fusiform aneurysm formation, 

development of intra-luminal thrombus, marked inflammation and extracellular matrix remodeling 
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(Lu G, 2017). Most importantly, aneurysms in this model can be monitored over prolonged follow- 

up of up to 14 weeks (Lu G, 2017). During this time aneurysms progressively expand to a large size 

of up to 8-fold the starting aortic diameter and about half of them rupture during this time (Lu G, 

2017). This suggests the model is well suited to studying the effects of drugs on AAA growth and 

rupture. 

Modifications of the luminal elastase model 

 
Aneurysms within the luminal elastase model do not typical rupture, however, combining this model 

with subcutaneous angiotensin II infusion leads to a model with a high frequency of rupture of 

approximately twice that of angiotensin II infusion alone (Yue J, 2020). The luminal elastase model 

has also been modified by microsurgical manipulation to incorporate a proximal or distal stenosis that 

has been reported to promote formation of larger aneurysms (Busch A, 2018). Finally the same 

researchers have created more extensive aneurysms involving the juxta-renal aorta and iliac arteries 

through extending the arterial area over which the luminal elastase is infused (Busch A, 2018). These 

modifications enable the elastase luminal model to simulate some of the unique features of human 

AAA. 

Modification of angiotensin II model 

 
In order to make mice without congenital mutations causing dyslipidaemia susceptible to angiotensin 

II induced AAA, a number of modification have been proposed to the model (Cooper HA, 2020; 

Kanematsu Y, 2010; Lu H, 2020). These include feeding mice BAPN or injecting TGFß blocking 

antibody (as discussed above), as well as high fat feeding, increasing the dose of angiotensin II infused 

(from 1000 to 1500 or 2000 ng/kg/min) or using viral vectors to induce genetic mutations in lipid 

related genes, such as proprotein convertase subtilisin/kexin type 9.(Cooper HA, 2020; Kanematsu 

Y, 2010; Lareyre F, 2017; Lu H, 2020). 
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Assessing outcomes in mouse models of AAA 
 

A range of methods with various advantages and disadvantages are used to assess aneurysm severity 

in these mouse models (see Table 2). Commonly used laboratory methods to assess aneurysm severity 

include analysis of photographs (morphometry), histology, immunohistochemistry and molecular 

biology techniques such as Western Blotting and real time quantitative polymerase chain reaction 

(Chen C, 2020; Liu R, 2020; Ren P, 2020; Suh MK, 2020). AAA severity can be graded by maximum 

diameter of the aneurysm, degree of medial elastin fiber disruption and extracellular matrix 

degradation, and the degree of aortic inflammation but requires terminal samples (Figure 1). 

Ultrasound imaging is frequently used at different stages of experiments to monitor AAA size in vivo 

(Cooper HA, 2020; Hiromi T, 2020; Li Z, 2020; Sharma N; Shi X, 2020). High-resolution ultrasound 

can provide detailed morphological assessment capable of accurately defining AAA size, presence of 

intra-mural haematoma, dissection, intra-luminal thrombus and also assess wall biomechanical 

properties, such as circumference strain or pulse wave velocity (Cooper HA, 2020; Hiromi T, 2020; 

Li Z, 2020; Nandlall SD, 2016; Romary DJ, 2019; Sharma N; Shi X, 2020). A range of molecular 

imaging methods are increasingly being used to study AAA models (Brangsch J, 2019; Trachet B, 

2015). Imaging probes targeting mechanisms implicated in AAA, such as inflammation, extracellular 

matrix remodeling and thrombosis, (Adams LC, 2020; Botnar RM, 2018; Brangsch J, 2019; English 

SJ, 2020; Yao Y, 2020) are being used in combination with high resolution imaging, such as micro- 

computed tomography or magnetic resonance imaging (MRI; Table 2). A study of the angiotensin II 

model for example, quantified aortic macrophage infiltration and elastin using gadolinium- 

diethylenetriaminepentaacetic acid complex and ultrasmall superparamagnetic iron oxide enhanced 

MRI (Brangsch J, 2019). Angiotensin II-induced AAAs that subsequently ruptured had significantly 

higher iron oxide uptake and significantly lower elastin specific probe signal at one week after starting 

the angiotensin II infusion (Brangsch J, 2019). Another study reported that uptake of an albumin- 

binding probe designed to assess vascular permeability was also predictive of subsequent rupture of 

angiotensin II induced aneurysms (Adams LC, 2020). Use of these methods within the different 
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mouse models is providing increasing understanding of the stages of AAA development in vivo, 

which is of value for furthering understanding of the pathogenesis of AAA. 

Recent findings in mouse models of AAA 
 

It has been proposed that the mechanisms involved in AAA initiation and progression may be distinct 

(Sénémaud J, 2017). This has implications for the development of therapies that may prevent as 

opposed to treat AAA (Golledge, 2019; Sénémaud J, 2017). In order to summarise recent discoveries 

relevant to the development of drug therapies for AAA, the PubMed database was searched for studies 

in mouse models that have examined the impact of administered interventions on AAA development 

or progression. All included studies administered a drug or inhibited the expression of a gene or 

protein and examined how this impacted on the AAA development or progression. In order to focus 

findings on recent discoveries and in view of the timing of past reviews (Golledge, 2019; Sénémaud 

J, 2017), the search covered the period 1 January 2019 to 5 May 2020. The following two sections 

summarise the findings of these recent studies. The first section focused on studies that have 

examined the effect of interventions in which administration commenced prior to or at the same time 

as AAA induction commenced, i.e. effect on AAA initiation or development. The second section 

focused on interventions that were commenced after an AAA was established or at least some time 

after the AAA induction process began, i.e. effect on AAA growth or progression. 

The effect of interventions on AAA initiation in mouse models 

 
Forty-two published studies reporting that different interventions inhibited AAA initiation in mouse 

models were identified. The Supplementary Table summarizes these studies in terms of the AAA 

model studied, number of mice investigated in the intervention and control groups, length of time the 

intervention started before AAA induction commenced, intervention type, how outcome was 

assessed, the effect on AAA incidence, size and rupture, and effects attributed to the interventions. 

The interventions studied varied but overall four strategies were most commonly studied, namely 

modifying inflammation, cell turnover, thrombosis and haemostasis and epigenetic mechanisms. 
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Studies investigating the effect of modifying inflammation in AAA mice models 

 
Inflammation has long been strongly implicated in AAA (Golledge, 2019; Golledge, Muller, 

Daugherty & Norman, 2006). Examination of human AAA samples demonstrates an array of different 

inflammatory cells, including both those from the innate and adaptive immune systems, such as T, B 

and dendritic cells, natural killer cells, monocyte/ macrophages, neutrophils and mast cells (Dale MA, 

2015; Forester ND, 2005; Lindeman JH, 2009; Spear R, 2015; Tsuruda T, 2008). Analysis of relative 

gene expression at the main site of the AAA in comparison to samples from relatively non-diseased 

aortas or samples from people that do not have aneurysm, confirms the marked upregulation of an 

array of inflammation associated genes and pathways (Biros E, 2015; Biros E, 2014). All the mouse 

models discussed above show evidence of aortic inflammation. A micro-array study of the 

angiotensin II model, for example, found within aneurysms the transcriptome was enriched with 

genes involved in cytokine-cytokine receptor interaction, leukocyte transendothelial migration, 

natural killer cell mediated cytotoxicity and hematopoietic cell lineage (Rush C, 2009). 

An array of different inflammation modifying regimens have recently been reported to inhibit or 

promote the incidence and/ or rupture of AAAs formed in the different mouse models (Figure 2 and 

Supplementary Table 1) (Amin et al., 2019; Hiromi T, 2020; Krishna, Moran, Jose, Lazzaroni, Huynh 

& Golledge, 2019; Li et al., 2019a; Li et al., 2019c; Liu, Kong, An, Zhang, Qin & Meng, 2019; Liu 

et al., 2019a; Nie et al., 2019; Paige et al., 2019; Peshkova et al., 2019; Ren P, 2020; Sharma et al., 

2019a; Suehiro et al., 2019; Suh MK, 2020). The nucleotide-binding domain leucine-rich repeat 

(NLR) and pyrin domain containing receptor 3 (NLRP3)‐inflammasome plays an important role in 

innate immunity through controlling the secretion of pro-inflammatory cytokines. Interleukin (IL)- 

1β-induced neutrophil extracellular trap formation (NETosis) and circulating IL-1β have been 

detected in human AAA patients (Meher AK, 2018) (Ahmad M, 2018). MCC950, an NLRP3 

inhibitor, was reported to inhibit the incidence and size of AAAs induced by angiotensin II infusion 

associated with reduced elastin fragmentation and vascular smooth muscle cell apoptosis (Ren P, 

2020). Prostaglandin E2 is a key pro-inflammatory mediator generated from arachidonic acid by the 
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actions of cyclooxygenase (COX) 2. Upregulation of prostaglandin E2 has been reported in human 
 

AAA samples by comparison to non-diseased (Holmes DR, 1997) but not atherosclerotic aortas 

(Reilly JM, 1999). Samples of human AAA maintained in culture from people with ruptured AAA 

secreted greater amounts of prostaglandin E2 than samples from intact AAAs (Cheuk BL, 2007). 

Inhibition of prostaglandin E2 has been reported to limit angiotensin II induced AAA development 

(King VL, 2006; Wang M, 2008). Deficiency of prostaglandin E receptor 4 in bone marrow cells has 

also been reported to inhibit angiotensin II induced AAA (Tang EH, 2011). Recently it was reported 

that upregulation of prostaglandin E receptor 4 in vascular smooth muscle cells promoted AAA 

development in both the angiotensin II and CaCl2 models, associated with increased aortic 

inflammatory monocytes, IL-6, matrix metalloproteinase (MMP)-9 and elastin fragmentation, and 

decreased LOX (Hiromi T, 2020). Deficiency of prostaglandin E receptor 4 in vascular smooth 

muscle cells inhibited angiotensin II induced AAA development (Hiromi T, 2020). Administration 

of a prostaglandin E receptor 4 inhibitor has been reported to reduce AAA development in the 

angiotensin II model suggesting that this could be a legitimate target to prevent AAA (Yokoyama U, 

2012). A number of chemokines and cytokines have been reported to be upregulated in human AAA 

(Golledge AL, 2009). Inhibiting the chemokine CXC receptor 2 was recently reported to limit AAA 

development in the angiotensin II model through reducing aortic macrophage infiltration and elastin 

degradation (Nie et al., 2019). 

Airways disease is very common in people with AAA and this has been presumed to be due to 

smoking being an important risk factor for both conditions (Liu CL, 2016a). It was recently proposed 

that this association relates to direct involvement of immunoglobulin (Ig) E- mediated innate 

immunity in AAA (Liu CL, 2016b). Ovalbumin sensitization and challenge led to the development 

of allergic lung inflammation in mice and promoted angiotensin II induced AAA, which was inhibited 

by anti-IgE antibody administration (Liu CL, 2016b). Furthermore, IgE receptor deficiency was 

reported to inhibit the incidence and size of angiotensin II induced AAAs (Guo et al., 2019). IgE was 
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reported to promote expression of a long non-coding RNA (LncRNA-p21) which promoted vascular 

smooth muscle cell senescence (Guo et al., 2019). 

A large body of published research suggests that Foxp3+ regulatory T cells inhibit AAA development 

within both the angiotensin II and CaCl2 models (Golledge, 2019; Liu, Kong, An, Zhang, Qin & 

Meng, 2019; Suh MK, 2020; Yodoi K, 2015). Of potential clinical application, it was recently 

reported that ex vivo expansion and administration of Foxp3+ regulatory enriched T cells reduced the 

size of CaCl2 induced AAAs (Suh MK, 2020). One mechanism implicated in the benefit of regulatory 

cells is through inhibiting prostaglandin production by decreasing COX-2 expression (Suh MK, 

2020). Further supporting the role of adaptive immunity in AAA, a recent report showed that 

deficiency of antigen presenting CD11c+ dendritic cells limited angiotensin II induced AAA 

development associated with reduced circulating concentrations of effector CD4+ and CD8+ T cells 

and B cells (Krishna, Moran, Jose, Lazzaroni, Huynh & Golledge, 2019). Low–molecular mass 

protein 7 is a proteolytic subunit of the immunoproteasome that regulates the major histocompatibility 

antigen presenting pathway. In keeping with the importance of antigen presentation in AAA 

pathogenesis, it was recently reported that low–molecular mass protein 7 deficiency or inhibition 

reduced AAA development within the angiotensin II model (Li et al., 2019a). 

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is an immune check point important in 

downregulating the adaptive immune response. It was recently reported that transgenic over 

expression of CTLA-4 reduced the development and rupture of angiotensin II induced AAA 

suggesting it could be a strategy to prevent AAA (Amin et al., 2019). This finding also raises some 

potential concerns with how promotion of adaptive immunity, for example by immune check point 

inhibitors, as a treatment for cancer might affect people with concurrent AAA. 

A growing number of ILs are implicated in promoting or inhibiting AAA in mice models (Li et al., 

2019c; Paige et al., 2019; Peshkova et al., 2019; Sharma et al., 2019a; Suehiro et al., 2019). Blocking 

IL-6 has been reported to inhibit AAA development and rupture promoted by inhibiting TGFß in both 
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the angiotensin II and adventitial elastase models (Paige et al., 2019). Similarly, IL12p40, IL-18 and 

IL-27 have been reported to promote AAA development in mouse models (Peshkova et al., 2019; 

Sharma et al., 2019a; Suehiro et al., 2019). In contrast, IL-33, has been reported to inhibit calcium 
 

phosphate induced AAA development (Li et al., 2019c) by expanding Foxp3+ regulatory T cells. 

 
Overall these studies strongly implicate innate and adaptive immunity in AAA development based 

on studies in mouse models, although how these directly translate to patients remains controversial 

(Golledge, 2019). 

Studies investigating the effect of modifying cell phenotype and turnover in AAA mice models 

 
Turnover of resident aortic cells, such as vascular smooth muscle cells and endothelial cells, is a 

normal physiological process but in a diseased aorta it is believed phenotypic changes in resident 

cells contribute to AAA pathogenesis (Petsophonsakul P, 2019). Usually vascular smooth muscle 

cells have a contractile phenotype but when stimulated by growth factors, inflammatory cytokines 

and reactive oxygen species, the cells may switch to a synthetic form in which contractile genes are 

downregulated and proteolytic enzymes, proliferative and migratory genes are upregulated 

(Petsophonsakul P, 2019). Histological examination of human AAA biopsies typically demonstrates 

markedly medial thinning with a paucity of vascular smooth muscle cells (Figure 2). Normal cell 

turnover is controlled by programmed cell death processes called apoptosis and necroptosis, and 

clearance mechanisms such as autophagy (Gupta K, 2018; Petsophonsakul P, 2019). In AAA these 

processes are believed to be pathologically promoted by a range of changes in the cell 

microenvironment, such as the release of cytokines and reactive oxygen species (Gupta K, 2018; 

Petsophonsakul P, 2019). Studies in dyslipidemic mice that were rendered pro-apoptotic suggest that 

in areas of atherosclerotic plaque, apoptosis triggered medial thinning and wall degeneration 

contributes to AAA development (Clarke MC, 2008) 

Recent studies highlight that targeting these abnormal cellular changes has potential to prevent AAA 

(Supplementary Table 1). Transcription factor EB (TFEB) is a master regulator of autophagy. A 
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recent study found that vascular smooth muscle cell-specific deficiency of TFEB increased apoptosis 

and inhibited autophagy within experimental AAAs and promoted a greater incidence and size of 

AAA developed within both the angiotensin II and composite angiotensin II- BAPN models (Lu H, 

2020). Administration of hydroxypropyl-β-cyclodextrin (an agent used to dissolve drugs) activated 

TFEB, reduced apoptosis and reduced aneurysm incidence and size within the angiotensin II model 

(Lu H, 2020). 

Cell proliferation and function is dependent on mitochondrial metabolism (Lopez-Crisosto C, 2017). 

Mitochondrial turnover is a coordinated process involving binary fission and mitochondrial DNA 

replication under control of the guanosine triphosphate hydrolysing dynamin-related protein 1 (Peng 

W, 2019). Relative deficiency in dynamin-related protein 1 has been reported to limit cell senescence 

and reduce the size of AAAs induced by angiotensin II and BAPN (Cooper HA, 2020). 

Administration of a mitochondrial fission inhibitor was also reported to lead to significantly smaller 

AAAs in response to angiotensin II and BAPN, associated with reduced aortic macrophage 

infiltration, MMP-2 and -9 activity and lower oxidative stress (Cooper HA, 2020). 

The cellular function of invading inflammatory cells are also believed to play an important role in 

AAA pathogenesis. The CD95 receptor and its ligand, CD95L, are members of the tumour necrosis 

factor (TNF) receptor and TNF family. CD95 is classified as a death receptor involved in the control 

of apoptosis and is highly expressed on T cells (Seyrek K, 2019). The expression of CD95L has been 

reported to be significantly higher within human AAA samples by comparison to aortic tissue from 

age and sex-matched organ donors (Liu et al., 2019b). Mice totally deficient in CD95L have been 

reported to be relatively resistant to CaCl2 induced AAA, associated with reduced aortic macrophage 

and T cell infiltration and lower aortic MMP-2 and -9 activity (Liu et al., 2019b). Chimeric mice with 

bone marrow deficient in CD95L, not mice with systemic but not bone marrow CD95L deficiency, 

were resistant to CaCl2 induced AAA development (Liu et al., 2019b). CD95L deficiency was 

associated with caspase 8 deficiency, which is believed to play an important role in activation of the 

NLRP3 inflammasome through cleaving pro-IL-1β (Liu et al., 2019b). 
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Phosphatidylinositol-3-kinase (PI3K) plays a key role in cell growth, proliferation and migration. The 

PI3Kγ isoform is mainly found in myeloid cells (Fruman DA, 2017). PI3Kγ expression has been 

reported to be significantly greater in human AAA samples than aortic tissue from organ donors (Liu 

R, 2020). Administration of a PI3Kγ inhibitor lowers the incidence and size of aneurysms induced by 

intra-luminal elastase perfusion in mice (Liu R, 2020). This was reported to be secondary to reduced 

aortic infiltration by macrophages and T cells and reduced neo-angiogenesis (Liu R, 2020). 

Spermidine, is a histone acetyl transferase inhibitor that induces autophagy and stabilises DNA (Ren 

J, 2018). Oral administration of spermidine has been reported to reduce the size of AAAs that 

developed in mice following intra-luminal elastase infusion (Ren J, 2018). This was associated with 

reduced aortic accumulation of macrophages, T cells and markers of autophagy (Ren J, 2018). 

Overall, these studies suggest an important pathological role of vascular smooth muscle cell apoptosis 

and a protective role of autophagy. Furthermore, inhibiting mitochondrial fission, blocking the CD95 

death receptor, inhibiting PI3Kγ and promoting autophagy through spermidine are novel ways to limit 

aortic inflammation and potentially prevent AAA. 

Studies investigating the effect of modifying thrombosis and haemostasis in AAA mice models 

 
Most human AAAs have intra-luminal thrombus and the volume of this is strongly positively 

correlated with the maximum diameter of the aneurysm (Golledge J, 2008). Aortic thrombus contains 

a collection of products from leukocytes and platelets with the potential to promote extra-cellular 

matrix remodeling (Golledge, 2019). Circulating thrombus turnover markers, such as D-dimer, are 

increased in patients with AAA and people with higher levels have faster AAA growth (Golledge J, 

2011). Larger volume of intra-luminal thrombus has also been associated with faster aneurysm 

growth (Parr A, 2011). As a result of these findings, it has been proposed that anti-platelet agents and/ 

or anti-thrombotic drugs might inhibit AAA development and progression. A number of recent mice 

studies have reported that different methods of inhibiting thrombosis, such as factor XII deficiency 

or inhibition (Moran CS, 2020) or factor Xa inhibition (using rivaroxaban),(Allen-Redpath et al., 
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2019) reduce the incidence and size of AAAs induced by angiotensin II infusion (Supplementary 

Table 1). 

Studies investigating the effect of modifying epigenetic mechanisms in AAA mice models 

 
Twin studies suggest that over 70% of the variance in AAA penetrance is determined by genetic 

components as opposed to environmental determinates (Joergensen TM, 2016). A number of genetic 

risk alleles have been identified through genome wide association studies but it is believed epigenetic 

changes also likely contribute to the inherited risk (Golledge J, 2016). There has been particular 

interest in non-coding RNAs, including microRNAs and long coding RNAs. A wide range of different 

microRNAs have been reported to be differentially expressed in the aorta and blood of people with 

AAA (Golledge J, 2016; Iyer V, 2017). In mouse models, upregulating or antagonising a number of 

different microRNAs has also been reported to limit AAA development (Golledge J, 2016). Most 

recently it has been reported that microRNA-144-5p agomirs,(Shi X, 2020) silencing of long non- 

coding RNA plasmacytoma variant translocation 1 (Zhang et al., 2019) and downregulation of long 

noncoding RNAs GAS5 (He et al., 2019), limited AAA development induced by angiotensin II 

infusion. In addition, interfering RNA targeting Runt-Related Transcription Factor 2, which is 

strongly implicated in calcification, was reported to inhibit angiotensin II induced AAA development 

(Li Z, 2020). In the later study positron emission tomography-computed tomography was used to 

show the micro-calcification proceeded aneurysm formation in apolipoprotein e deficient mice 

infused with angiotensin II (Li Z, 2020). Peri-adventitial hydroxyapatite nanoparticles applied to the 

supra-renal aorta promoted aneurysm formation in response to angiotensin II infusion (Li Z, 2020). 

The findings are in keeping with those from a patient study reporting that uptake of fluorine-18- 

sodium fluoride on positron emission tomography-computed tomography, representative of micro- 

calcification, is predictive of subsequent AAA growth (Forsythe RO, 2018). 
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Miscellaneous other interventions recently investigated 

 
Supplementary Table 1 lists a number of other interventions that have recently been reported to 

promote or inhibit AAA development in mouse models. These include ulinastatin, a serine protease 

inhibitor,(Li G, 2020) probucol, a lipid lowering agents,(Chen et al., 2020) an apelin analogue,(Wang 

et al., 2019) a sodium-glucose cotransporter-2 inhibitor,(Ortega et al., 2019), niacin,(Horimatsu et al., 

2019) licochalcone A, a traditional Chinese medicine,(Hou, Yang & Zheng, 2019) and gambogic 

acid, a derivative of resin (Liu, Shan & Li, 2019) which inhibited AAA development. In contrast, 

vascular smooth muscle-specific deficiency of the alpha subunit of the heterotrimeric G stimulatory 

protein, responsible for receptor-stimulated cAMP generation and activation of protein kinase A 

pathway,(Qin et al., 2019) has been reported to promote AAA formation in mouse models . Similarly, 

liver kinase B1P, implicated in the activation of adenosine monophosphate kinase,(Li et al., 2019b) 

dihydrofolate reductase deficiency, which leads to hyper-homocysteinaemia,(Li, Youn, Siu, 

Murugesan, Zhang & Cai, 2019; Shao et al., 2019) caloric restriction,(Gao et al., 2019) and 

endothelial-specific deficiency of retinoblastoma protein, a tumour suppressor that controls cell 

proliferation,(Cao et al., 2019) have been reported to promote AAA formation in mouse models (see 

Supplementary Table 1 for details). 

The effect of interventions on AAA growth in mouse models 

 
The main therapeutic deficiency in the management of people with AAA is the absence of medication 

effective at limiting the growth of established AAAs and reducing the requirement for surgery or 

AAA rupture (Golledge, 2019; Golledge J, 2020b; Golledge, Muller, Daugherty & Norman, 2006; 

Golledge & Norman, 2011; Golledge J, 2017). In contrast to the large number of interventions 

reported to prevent AAA initiation in mouse models, relatively few investigators have studied the 

effects of pathways or drugs on progression of established AAAs (See Supplementary Table 1 and 

compare to Table 3). One problem is that most of the available mouse models cause acute aortic 

dilatation without progressive expansion making it difficult to study the effect of drugs on aneurysm 
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growth (Table 1). Table 3 lists recently published studies that investigated the effect of drugs, diets 

or cell depletion, which commenced after the aneurysm induction process started. The period given 

for aneurysms to establish prior to the intervention varied between 3 and 28 days (Dhital S, 2020; He 

Y, 2020; Krishna, Moran, Jose, Lazzaroni, Huynh & Golledge, 2019; Li G, 2020; Liu J, 2020; Liu S, 

2020; Lu H, 2020; Park, Hong, Kim, Jung, Kim & Choi, 2019; Sharma et al., 2019b; Tomimori, 

Manno, Tanaka, Futamura-Takahashi, Muto & Nagahira, 2019). The models used were either the 

angiotensin II or luminal elastase. Interventions reported to successfully limit AAA progression 

included a number also reported to prevent aneurysm initiation (discussed above), namely 

hydroxypropyl-β-cyclodextrin,(Lu H, 2020) spermidine,(Liu S, 2020) ulinastatin,(Li G, 2020) and 

depletion of CD11c+ dendritic cells,(Krishna, Moran, Jose, Lazzaroni, Huynh & Golledge, 2019). 

Other interventions successfully reported to limit AAA growth include kallistatin (via inhibition of 

the wingless pathway)(He Y, 2020), pentagalloyl glucose-loaded nanoparticle, a polyphenol that 

increases elastin deposition by vascular smooth muscle cells (Dhital S, 2020), an inhibitor of notch 

signalling (Sharma et al., 2019b), the beta-blocker carvedilol (Park, Hong, Kim, Jung, Kim & Choi, 

2019), the angiotensin converting enzyme inhibitor ramipril (Park, Hong, Kim, Jung, Kim & Choi, 

2019), and a chymase inhibitor (Tomimori, Manno, Tanaka, Futamura-Takahashi, Muto & Nagahira, 

2019) (Table 3). Mechanisms implicated in the ability of these interventions to limit AAA growth 

included reduced inflammation and extracellular matrix remodelling (Table 3). 

Clinical relevance and implications of mouse AAA research for the discovery of AAA drugs 

 
The clinical relevance and feasibility of translating the findings of AAA mouse model research to 

patients has been questioned (Golledge J, 2017). This concern has mainly been fueled by the finding 

that targeting a number of pathways, shown to be key in AAA pathogenesis in mouse models, has not 

slowed AAA growth in human randomized controlled trials (Golledge, 2019; Golledge J, 2017). 

Doxycycline, pemirolast, perindopril, telmisartan, ticagrelor and fenofibrate are examples of drugs 

that have been shown to be ineffective in human randomized controlled trials, after promising results 
 

in mouse models (Golledge, 2019; Golledge J, 2017). Doxycycline, a tetracycline antibiotic, mainly 
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became of interest as an AAA drug due to widespread reports that it was able to inhibit MMP activity 

(Thompson RW, 1999). MMP have been strongly implicated in AAA in studies using many of the 

mouse models mentioned in this review. Deficiency of tissue inhibitor of metalloproteinase-1, an 

MMP inhibitor, has been reported to promote spontaneous AAA formation in apolipoprotein e 

deficient mice (Silence J, 2002). Similarly, MMP-9 deficiency has been reported to inhibit luminal 

elastase induced AAA (Pyo R, 2000). Doxycycline has been reported to limit AAA development in 

the luminal elastase (Pyo R, 2000), CaCl2 (Prall AK, 2002) and angiotensin II (Manning MW, 2003) 

models. None of the three randomised controlled trials have found that doxycycline significantly 

reduced growth of small AAAs (Baxter BT, 2020; Meijer CA, 2013; Mosorin M, 2001). One trial 

actually reported that doxycycline significantly increased AAA growth (Meijer CA, 2013). Similar 

to this, promising results from mice studies related to pemirolast (Tsuruda T, 2008), perindopril 

(Inoue N, 2009), telmisartan (Xuan H, 2018), ticagrelor (Owens AP 3rd, 2015) and fenofibrate 

(Krishna SM, 2012) have not translated to positive results in human randomised controlled trials 

(Bicknell, Kiru, Falaschetti, Powell, Poulter & Collaborators, 2016; Golledge J, 2020a; Golledge J, 

2020b; Pinchbeck JL, 2018; Sillesen H, 2015; Wanhainen A, 2020). How much this reflects lack of 

clinical relevance of the mouse models used, poor design of prior mice studies or poor design of the 

clinical trials, remains uncertain (Golledge J, 2017). There is a need to use more clinically relevant 

designs of mouse model studies, for example by studying the effect of drugs on growth of established 

aneurysms rather than prevention of AAA development (Golledge, 2019). Pre-clinical research 

studies also need to be designed to reduce biases, through incorporation of blinding of outcome 

assessors, sample size estimates, randomisation of mice to different groups and intention to treat 

analyses, typical of human clinical trials. In addition human clinical trials need to be much larger to 

enable them to be sufficiently powered to test plausible moderate treatment effects (Golledge, 2019). 

It is hoped through using newer mouse models, which are more clinically relevant, and employing 

improved study design, it will be possible to identify drugs that can be translated to successful 

therapies in large clinical trials. 
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Conclusion 
 

A large range of different mouse models are now available to study AAA. Some models are better 

suited to the study of AAA initiation, others optimal for the investigation of aneurysm rupture and 

relatively few ideal for the study of AAA growth. So far, findings from mice models have not been 

translated into evidence from human randomized trials that a drug can successfully limit AAA 

growth. With the increasing understanding of the need to model the clinical situation more accurately 

and design pre-clinical studies with the same rigor as human clinical trials, it is expected that the 

discovery of translatable AAA drugs will be achieved in the coming decade. 
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Figure legends 
 

Figure 1: A schematic diagram illustrating outcome assessments that are commonly used in 

mouse models of AAA. Examples of outcome assessment in the different mouse models. 

Morphometry assessment showing the grading scale (Type 1-4) according to Daugherty A, et al, 

2001. Histology assessment using haematoxylin and eosin (H&E) stain is used to assess the severity 

of extracellular matrix degradation. Elastin degradation is assessed and graded (Grade 1-4) according 

to the degree of elastin fibre breaks evident by elastin Van Gieson (EVG) staining. Severity of 

inflammation is commonly measured using Immunohistochemistry (IHC) using antibodies staining 

macrophages or T lymphocytes. Protein assays commonly used include Western Blotting and ELISA 

assays. Molecular biology assessments employed include real time quantitative polymerase chain 

reactions using mRNA for differential expression. In vivo assessments include ultrasound 

measurements to measure diameter, intra-mural haematoma, intra-luminal thrombus and wall 

biomechanical properties. Micro-computed tomography and high sensitive magnetic resolution 

imaging coupled with imaging probes can be used to assess inflammation, extracellular matrix 

remodelling and thrombosis. AAA: abdominal aortic aneurysm; CT: computed tomography; ECM: 

extracellular matrix; IHC: immunohistochemistry; MRI: magnetic resonance imaging; RT-PCR: real 

time polymerase chain reaction; US: ultrasound; SRA: supra-renal aorta; IRA: infra-renal aorta. 

 
 

Figure 2: Cartoon illustrating the mechanisms implicated in AAA pathogenesis and recently 

discovered interventions effective at limiting AAA development or growth in mouse models. Both 

innate and adaptive immunity are strongly implicated in AAA and recent studies suggest that 

upregulating T regulatory (reg) cells or interleukin (IL) 33, blocking IL-6, upregulating cytotoxic T- 

lymphocyte-associated protein 4 (CTLA-4) and inhibitors of prostaglandin E receptor 4 (PgER4), C- 

X-C Motif Chemokine Receptor 2 (CXCR2) or Phosphatidylinositol-3-kinase (PI3K) γ inhibit AAA 

development in mouse models. Phenotypic changes in vascular smooth muscle cells (VSMCs) favour 

apoptosis, senescence and necroptosis. The damaged cells can be effectively cleared by autophagy. 
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Cyclodextrin, spermidine and mitochondrial fission inhibitors have been reported to aid autophagy 

and limit apoptosis thereby limiting AAA development in mouse models. Proteases, such as matrix 

metalloproteinases and chymase, are strongly implicated in remodeling of the extracellular matrix 

and fragmentation of the aortic media. The actions of these proteinases can be blocked by a range of 

novel agents that successfully limit AAA development in mouse models. Micro-calcification 

involving hydroxyapatite formation has been demonstrated in both experimental and human AAA 

and correlated with AAA progression. Small interfering RNA targeting Runt-Related Transcription 

Factor 2 (RTF2) is effective at limiting AAA development in mouse models. Epigenetic mechanisms 

implicated in AAA include long non-coding RNAs (Lnc-RNA) p21, GAS5 and plasmacytoma variant 

translocation 1 (PVT1). MicroRNA (miR)-144-5p has been reported to inhibit AAA development in 

mice. Intra-luminal thrombus is a consistent feature of human AAA and implicated in release of 

inflammatory cells and proteases that promote AAA. Blocking factors Xa or XII have been reported 

to limit AAA development in mice. Targeting these aspects has been shown to decrease AAA 

development in mouse models. NLRP3:nucleotide‐binding oligomerization domain–like receptor 

pyrin domain containing 3; SGLT-2: sodium-glucose cotransporter 2. Adapted from a previous 

published figure with permission {Golledge, 2019 #16}. 
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Model Sever 
ity of 
aorti 
c 
dilat 
ation 

Aort 
ic 
rupt 
ure 

Progr 
essive 
dilatat 
ion 

Abdo 
minal 
aorta 
dilatio 
n only 

Risk factor for AAA Histolo 
gical, 
genomi 
c and 
imaging 
features 

Lon 
gest 
peri 
od 
stud 
ied 
(wee 
ks) 

O 
ld 
a 
ge 

M 
ale 
se 
x 

Smo 
king 
or 
cigar 
ette 
prod 
ucts 

Dyslipid 
aemia 

AngII 
(subcutaneous) 
(Daugherty A, 
2000) 

Mode 
rate 

Com 
mon 

Yes No N 
o 

Ye 
s 

Yes Yes Aortic 
wall 
dissecti 
on and 
haemato 
ma; 
inflamm 
ation, 
angioge 
nesis 
and 
proteoly 
sis 

12 

Elastase 
(luminal)(Tho 
mpson RW, 
2006; Yue J, 
2020) 

Mode 
rate 

Rare Limite 
d 

Yes N 
R 

Ye 
s 

Yes No Transm 
ural 
inflamm 
ation, 
elastic 
fibre 
destructi 
on and 
angioge 
nesis 

8 

Calcium 
chloride or 
phosphate 
(adventitial)(W 
ang Y, 2013) 

Mild No No Yes N 
o 

N 
R 

NR Yes Aortic 
calcifica 
tion, 
inflamm 
ation, 
angioge 
nesis 
and 
proteoly 
sis 

6 

 

Table 1: Human relevant characteristics of commonly used and new mouse models of AAA 
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50 

Elastase 
(adventitial)(B 
usch A, 2016) 

Mode 
rate 

No No Yes N 
o 

No NR NR Adventi 
tial 
inflamm 
ation 
and 
mild 
elastic 
fibre 
thinning 
and 
inflamm 
ation 

14 

Elastase 
(adventitial) 
and BAPN 
oral(Lu G, 
2017; Romary 
DJ, 2019) 

Very 
sever 
e 

Com 
mon 

Yes Yes N 
o 

N 
R 

NR NR Intralum 
inal 
thrombu 
s 
formatio 
n, 
medial 
elastin 
fragmen 
tation, 
medial 
thinning 
, influx 
of T 
cells to 
the 
aorta 
and 
MMPs 

14 

Elastase 
(adventitial) or 
angiotensin 
(subcutaneous) 
and TGFβ- 
blocking 
antibody(Larey 
re F, 2017) 

Sever 
e 

Very 
com 
mon 

Yes Yes N 
R 

N 
R 

NR No Intralum 
inal 
thrombu 
s 
formatio 
n, 
medial 
elastin 
fragmen 
tation, 
angioge 
nesis, 
leukocyt 

2 
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         es and 
MMPs 

 

Angiotensin 
(subcutaneous) 
and TGFβ- 
blocking 
antibody(Wang 
Y, 2010) 

Sever 
e 

Very 
com 
mon 

Yes No N 
R 

N 
R 

NR NR Intramu 
ral 
haemato 
ma, 
aortic 
dissecti 
on, 
inflamm 
ation 
and 
extracell 
ular 
matrix 
degradat 
ion 

4 

Elastase 
(luminal) and 
Angiotensin II 
(subcutaneous) 
(Yue J, 2020) 

Sever 
e 

Very 
com 
mon 

NR No N 
R 

N 
R 

NR NR Upregul 
ation of 
cytokine 
s 

2 

AngII 
(subcutaneous) 
and BAPN oral 
or 
subcutaneous( 
Cooper HA, 
2020; 
Kanematsu Y, 
2010) 

Mode 
rate 

Com 
mon 

NR No N 
R 

N 
R 

NR NR Medial 
elastin 
fragmen 
tation, 
influx 
of 
macrop 
hages, 
upregul 
ation of 
markers 
of 
oxidativ 
e stress, 
inflamm 
ation 
and 
MMPs 

6 

Elastase 
(luminal) and 
flow restriction 
(Busch A, 
2018) 

Sever 
e 

NR Limite 
d 

Yes N 
R 

N 
R 

NR NR Presume 
d to be 
same as 
standard 
model 

4 
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Extended 
elastase 
(luminal)(Busc 
h A, 2018) 

Mode 
rate 

Rare Limite 
d 

Exten 
ded to 
Juxta- 
renal 
aorta 
or iliac 
arterie 
s 

N 
R 

N 
R 

NR NR Presume 
d to be 
same as 
standard 
model 

4 

 

BAPN: ß3-aminopropionitrile fumarate salt; MMP: Matrix metalloproteinase; NR: not reported; 
TGF: transforming growth factor-β. Adapted from a previously published table.(Golledge, 2019) 
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Outcome 
assessment 
method 

Adaptations Outcome 
measures 

Advantages Disadvantages Examples 
references 

Histology 
and 
molecular 
biology 
techniques 

Electron 
microscopy 
RNA 
sequencing 
Proteomics 

Morphometry 
Aortic 
inflammation 
Aortic matrix 
degradation 
Expression of 
genes and 
proteins 

Widely 
available 
Can assess 
wide range of 
molecular 
pathways 

Require 
terminal 
samples 

(Lareyre F, 
2017; 
Xiong W, 
2009; Yao 
Y, 2020) 

Ultrasound High Maximum AAA Assessment Measurement (Cooper 
 resolution diameter in vivo error HA, 2020; 
 Four Circumferential Easily  Hiromi T, 
 dimensional strain repeated  2020; Li Z, 
 Pulse wave  Rapid  2020; 
 imaging  Suitable  Nandlall 
   machines  SD, 2016; 
   commonly  Romary DJ, 
   available  2019; 
   Used in  Sharma N; 
   clinical  Shi X, 
   practice  2020) 
Magnetic Elastin- Maximum AAA Assessment Suitable (Adams 
resonance specific diameter in vivo machines not LC, 2020; 
imaging probe Intra-luminal or High widely available Botnar RM, 

 Iron oxide mural resolution Expensive 2018; 
 particles hematoma Wide ranging Time Brangsch J, 
 Fibrin- Aortic assessments consuming 2019; Yao 
 specific inflammation  Not widely Y, 2020) 
 probe Aortic matrix  available  
 MMP- degradation    
 specific Vascular    
 probe permeability    
 Albumin-     
 binding probe     
Computed Positron Maximum AAA Assessment Expensive (English SJ, 
tomography emission diameter in vivo Not widely 2020; 

 tomography Intra-luminal or Rapid to available Gandhi R, 
 CCR2- mural complete Require 2020; 
 targeted hematoma Wide ranging radiation Shannon 
 Gold Aortic assessments protection AH, 2020) 
 nanoparticles inflammation    
 conjugated Aortic matrix    
 with an degradation    
 elastin     
 antibody     
 (EL-GNP)     
 

Table 2: Methods of assessing outcomes in mouse models of AAA 
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MMP: matrix metalloproteinase; CCR-2: chemokine receptor type 2. 
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AAA 
induct 
ion 

Strai 
n 

N AAA 
establish 
ment 
period 
(days)* 

Monito 
ring 
period 
(days) 

Intervent 
ion 

Outcom 
e 
assessme 
nt 

Effect 
on 
AAA 
growt 
h 

Mechani 
sm 

Refere 
nce 

AngII Cre- 1 28 28 HPβCD US Reduc Activates (Lu H, 
 Lox 8     ed TFEB, 2020) 
 syste       reduced  
 m       elastin  
 plus       fragment  
 AAV-       ation and  
 PCSK       apoptosis  
 9 gain         
 of         
 functi         
 on         
AngII ApoE- 

/- 
2 
0 

7 21 Kallistati 
n 

NR Reduc 
ed 

Reduced 
Wnt 

(He Y, 
2020) 

        pathway  
        and  
        ICAM-1  
        expressio  
        n  
AngII LDL 

R-/- 
3 
1 

28 56 High fat 
diet 

US 
Morpho 

Prom 
otes 

NR (Liu J, 
2020) 

      metry    
Elasta C57B 1 3 11 Spermidi Morpho NSA NA (Liu S, 
se L/6 7   ne** metry   2020) 
(lumin          
al)          
Elasta C57B 2 14 14 pentagall US Reduc Decrease (Dhital 
se L/6 0   oyl Morpho ed d S, 
(lumin     glucose metry  macroph 2020) 
al)     (PGG)-   age  

     loaded   infiltratio  
     nanoparti   n &  
     cles‡   TGFß-1  
Elasta C57B 1 4 10 Ulinastati US Reduc Reduced (Li G, 
se L/6 6   n  ed elastin 2020) 
(lumin        degradati  
al)        on,  

        macroph  
        ages, T  
        & B cells  
        and  
        angiogen  
        esis  
AngII ApoE- 

/- 
3 
3 

14 4 Depletion 
of 

US, 
Morpho 

Reduc 
ed 

Down- 
regulated 

(Krishn 
a, 

     CD11c+ metry  circulatin Moran, 
 

Table 3: Studies examining mechanisms involved in AAA progression in mouse models 
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     dendritic 
Cells 

  g effector 
T cells 
and 
attenuate 
d matrix 
degradati 
on 

Jose, 
Lazzar 
oni, 
Huynh 
& 
Golled 
ge, 
2019) 

AngII ApoE- 
/- 

3 
6 

28 4 Notch 
inhibitor 

US, 
Morpho 
metry 

Reduc 
ed 

Reduced 
inflamma 
tory 
response 

(Sharm 
a et al., 
2019) 

AngII ApoE- 
/- 

3 
6 

28 8 Ramipril 
or 
Carvedilo 
l 

Micro- 
compute 
d 
tomograp 
hy 

Reduc 
ed 

Decrease 
d MCP-1 

(Park, 
Hong, 
Kim, 
Jung, 
Kim & 
Choi, 
2019) 

Ang II ApoE- 
/- 

2 
1 

3 28 Chymase 
Inhibitor 

Morpho 
metry 

Reduc 
ed 

Decrease 
d pro- 

(Tomi 
mori, 

        MMP9 Manno, 
         Tanaka, 
         Futamu 
         ra- 
         Takaha 
         shi, 
         Muto & 
         Nagahi 
         ra, 
         2019) 

 

* before intervention started; ** A natural polyamine; † definition of AAA varied; ‡ A natural 
polyphenol; AAA: abdominal aortic aneurysm; AAV: Adeno virus associated; AngII: angiotensin 
II; Cre-Lox: site-specific recombinase technology; ICAM: intercellular adhesion molecule; LDLR-/- 
: low density lipoprotein receptor deficient; ApoE-/-: Apolipoprotein E deficient; Morphometry 
include analysis of photographs of excised aortas or direct measurement at laparotomy; NA: not 
applicable; NR: not reported; NSA: No statistically significant effect of intervention, i.e. p≥0.05; 
PCSK9: Proprotein convertase subtilisin/kexin type 9; TGF: transforming growth factor; US: 
ultrasound; Wnt: wingless pathway. 
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Model Sever 
ity of 
aorti 
c 
dilat 
ation 

Aort 
ic 
rupt 
ure 

Progr 
essive 
dilatat 
ion 

Abdo 
minal 
aorta 
dilatio 
n only 

Risk factor for AAA Histolo 
gical, 
genomi 
c and 
imaging 
features 

Lon 
gest 
peri 
od 
stud 
ied 
(wee 
ks) 

O 
ld 
a 
ge 

M 
ale 
se 
x 

Smo 
king 
or 
cigar 
ette 
prod 
ucts 

Dyslipid 
aemia 

AngII 
(subcutaneous) 
(Daugherty A, 
2000) 

Mode 
rate 

Com 
mon 

Yes No N 
o 

Ye 
s 

Yes Yes Aortic 
wall 
dissecti 
on and 
haemato 
ma; 
inflamm 
ation, 
angioge 
nesis 
and 
proteoly 
sis 

12 

Elastase 
(luminal)(Tho 
mpson RW, 
2006; Yue J, 
2020) 

Mode 
rate 

Rare Limite 
d 

Yes N 
R 

Ye 
s 

Yes No Transm 
ural 
inflamm 
ation, 
elastic 
fibre 
destructi 
on and 
angioge 
nesis 

8 

Calcium 
chloride or 
phosphate 
(adventitial)(W 
ang Y, 2013) 

Mild No No Yes N 
o 

N 
R 

NR Yes Aortic 
calcifica 
tion, 
inflamm 
ation, 
angioge 
nesis 
and 

6 

 

 
Table 1: Human relevant characteristics of commonly used and new mouse models of AAA 
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         proteoly 
sis 

 

Elastase 
(adventitial)(B 
usch A, 2016) 

Mode 
rate 

No No Yes N 
o 

No NR NR Adventi 
tial 
inflamm 
ation 
and 
mild 
elastic 
fibre 
thinning 
and 
inflamm 
ation 

14 

Elastase 
(adventitial) 
and BAPN 
oral(Lu G, 
2017; Romary 
DJ, 2019) 

Very 
sever 
e 

Com 
mon 

Yes Yes N 
o 

N 
R 

NR NR Intralum 
inal 
thrombu 
s 
formatio 
n, 
medial 
elastin 
fragmen 
tation, 
medial 
thinning 
, influx 
of T 
cells to 
the 
aorta 
and 
MMPs 

14 

Elastase 
(adventitial) or 
angiotensin 
(subcutaneous) 
and TGFβ- 
blocking 
antibody(Larey 
re F, 2017) 

Sever 
e 

Very 
com 
mon 

Yes Yes N 
R 

N 
R 

NR No Intralum 
inal 
thrombu 
s 
formatio 
n, 
medial 
elastin 
fragmen 
tation, 
angioge 
nesis, 

2 
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         leukocyt 
es and 
MMPs 

 

Angiotensin 
(subcutaneous) 
and TGFβ- 
blocking 
antibody(Wang 
Y, 2010) 

Sever 
e 

Very 
com 
mon 

Yes No N 
R 

N 
R 

NR NR Intramu 
ral 
haemato 
ma, 
aortic 
dissecti 
on, 
inflamm 
ation 
and 
extracell 
ular 
matrix 
degradat 
ion 

4 

Elastase 
(luminal) and 
Angiotensin II 
(subcutaneous) 
(Yue J, 2020) 

Sever 
e 

Very 
com 
mon 

NR No N 
R 

N 
R 

NR NR Upregul 
ation of 
cytokine 
s 

2 

AngII 
(subcutaneous) 
and BAPN oral 
or 
subcutaneous( 
Cooper HA, 
2020; 
Kanematsu Y, 
2010) 

Mode 
rate 

Com 
mon 

NR No N 
R 

N 
R 

NR NR Medial 
elastin 
fragmen 
tation, 
influx 
of 
macrop 
hages, 
upregul 
ation of 
markers 
of 
oxidativ 
e stress, 
inflamm 
ation 
and 
MMPs 

6 

Elastase 
(luminal) and 
flow restriction 

Sever 
e 

NR Limite 
d 

Yes N 
R 

N 
R 

NR NR Presume 
d to be 
same as 

4 
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(Busch A, 
2018) 

        standard 
model 

 

Extended 
elastase 
(luminal)(Busc 
h A, 2018) 

Mode 
rate 

Rare Limite 
d 

Exten 
ded to 
Juxta- 
renal 
aorta 
or iliac 
arterie 
s 

N 
R 

N 
R 

NR NR Presume 
d to be 
same as 
standard 
model 

4 

 

BAPN: ß3-aminopropionitrile fumarate salt; MMP: Matrix metalloproteinase; NR: not reported; 
TGF: transforming growth factor-β. Adapted from a previously published table.(Golledge, 2019) 
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Outcome 
assessment 
method 

Adaptations Outcome 
measures 

Advantages Disadvantages Examples 
references 

Histology 
and 
molecular 
biology 
techniques 

Electron 
microscopy 
RNA 
sequencing 
Proteomics 

Morphometry 
Aortic 
inflammation 
Aortic matrix 
degradation 
Expression of 
genes and 
proteins 

Widely 
available 
Can assess 
wide range of 
molecular 
pathways 

Require 
terminal 
samples 

(Lareyre F, 
2017; 
Xiong W, 
2009; Yao 
Y, 2020) 

Ultrasound High Maximum AAA Assessment Measurement (Cooper 
 resolution diameter in vivo error HA, 2020; 
 Four Circumferential Easily  Hiromi T, 
 dimensional strain repeated  2020; Li Z, 
 Pulse wave  Rapid  2020; 
 imaging  Suitable  Nandlall 
   machines  SD, 2016; 
   commonly  Romary DJ, 
   available  2019; 
   Used in  Sharma N; 
   clinical  Shi X, 
   practice  2020) 
Magnetic Elastin- Maximum AAA Assessment Suitable (Adams 
resonance specific diameter in vivo machines not LC, 2020; 
imaging probe Intra-luminal or High widely available Botnar RM, 

 Iron oxide mural resolution Expensive 2018; 
 particles hematoma Wide ranging Time Brangsch J, 
 Fibrin- Aortic assessments consuming 2019; Yao 
 specific inflammation  Not widely Y, 2020) 
 probe Aortic matrix  available  
 MMP- degradation    
 specific Vascular    
 probe permeability    
 Albumin-     
 binding probe     
Computed Positron Maximum AAA Assessment Expensive (English SJ, 
tomography emission diameter in vivo Not widely 2020; 

 tomography Intra-luminal or Rapid to available Gandhi R, 
 CCR2- mural complete Require 2020; 
 targeted hematoma Wide ranging radiation Shannon 
 Gold Aortic assessments protection AH, 2020) 
 nanoparticles inflammation    
 conjugated Aortic matrix    
 with an degradation    
 elastin     
 antibody     
 (EL-GNP)     
 

Table 2: Methods of assessing outcomes in mouse models of AAA 
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MMP: matrix metalloproteinase; CCR-2: chemokine receptor type 2. 
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AAA 
induct 
ion 

Strai 
n 

N AAA 
establish 
ment 
period 
(days)* 

Monito 
ring 
period 
(days) 

Intervent 
ion 

Outcom 
e 
assessme 
nt 

Effect 
on 
AAA 
growt 
h 

Mechani 
sm 

Refere 
nce 

AngII Cre- 1 28 28 HPβCD US Reduc Activates (Lu H, 
 Lox 8     ed TFEB, 2020) 
 syste       reduced  
 m       elastin  
 plus       fragment  
 AAV-       ation and  
 PCSK       apoptosis  
 9 gain         
 of         
 functi         
 on         
AngII ApoE- 

/- 
2 
0 

7 21 Kallistati 
n 

NR Reduc 
ed 

Reduced 
Wnt 

(He Y, 
2020) 

        pathway  
        and  
        ICAM-1  
        expressio  
        n  
AngII LDL 

R-/- 
3 
1 

28 56 High fat 
diet 

US 
Morpho 

Prom 
otes 

NR (Liu J, 
2020) 

      metry    
Elasta C57B 1 3 11 Spermidi Morpho NSA NA (Liu S, 
se L/6 7   ne** metry   2020) 
(lumin          
al)          
Elasta C57B 2 14 14 pentagall US Reduc Decrease (Dhital 
se L/6 0   oyl Morpho ed d S, 
(lumin     glucose metry  macroph 2020) 
al)     (PGG)-   age  

     loaded   infiltratio  
     nanoparti   n &  
     cles‡   TGFß-1  
Elasta C57B 1 4 10 Ulinastati US Reduc Reduced (Li G, 
se L/6 6   n  ed elastin 2020) 
(lumin        degradati  
al)        on,  

        macroph  
        ages, T  
        & B cells  
        and  
        angiogen  
        esis  
AngII ApoE- 

/- 
3 
3 

14 4 Depletion 
of 

US, 
Morpho 

Reduc 
ed 

Down- 
regulated 

(Krishn 
a, 

     CD11c+ metry  circulatin Moran, 
 

Table 3: Studies examining mechanisms involved in AAA progression in mouse models 
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     dendritic 
Cells 

  g effector 
T cells 
and 
attenuate 
d matrix 
degradati 
on 

Jose, 
Lazzar 
oni, 
Huynh 
& 
Golled 
ge, 
2019) 

AngII ApoE- 
/- 

3 
6 

28 4 Notch 
inhibitor 

US, 
Morpho 
metry 

Reduc 
ed 

Reduced 
inflamma 
tory 
response 

(Sharm 
a et al., 
2019) 

AngII ApoE- 
/- 

3 
6 

28 8 Ramipril 
or 
Carvedilo 
l 

Micro- 
compute 
d 
tomograp 
hy 

Reduc 
ed 

Decrease 
d MCP-1 

(Park, 
Hong, 
Kim, 
Jung, 
Kim & 
Choi, 
2019) 

Ang II ApoE- 
/- 

2 
1 

3 28 Chymase 
Inhibitor 

Morpho 
metry 

Reduc 
ed 

Decrease 
d pro- 

(Tomi 
mori, 

        MMP9 Manno, 
         Tanaka, 
         Futamu 
         ra- 
         Takaha 
         shi, 
         Muto & 
         Nagahi 
         ra, 
         2019) 

 

* before intervention started; ** A natural polyamine; † definition of AAA varied; ‡ A natural 
polyphenol; AAA: abdominal aortic aneurysm; AAV: Adeno virus associated; AngII: angiotensin 
II; Cre-Lox: site-specific recombinase technology; ICAM: intercellular adhesion molecule; LDLR-/- 
: low density lipoprotein receptor deficient; ApoE-/-: Apolipoprotein E deficient; Morphometry 
include analysis of photographs of excised aortas or direct measurement at laparotomy; NA: not 
applicable; NR: not reported; NSA: No statistically significant effect of intervention, i.e. p≥0.05; 
PCSK9: Proprotein convertase subtilisin/kexin type 9; TGF: transforming growth factor; US: 
ultrasound; Wnt: wingless pathway. 
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