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Generators of groups of Hamitonian maps
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Abstract

We prove that analytic Hamiltonian dynamics on tori, annuli, or Euclidean space can be
approximated by a composition of nonlinear shear maps where each of the shears depends only
on the position or only on the momentum.

1 Statement of the result.

Let T
n := R

n/Zn denote the n-torus. We endow the 2n torus V := T
n × T

n with the canonical
coordinates (q, p) = (q1, . . . , qn, p1, . . . , pn) and symplectic form ω =

∑

i dpi ∧ dqi. For a function
H ∈ C∞(V,R), the system of differential equations defined by the Hamiltonian H is given by

(1.1) q̇ = ∂pH, ṗ = −∂qH.

The corresponding vector field

XH := (∂p1H, . . . , ∂pnH,−∂q1H, . . . ,−∂qnH),

satisfies ω(XH , ·) = dH; it is called the symplectic gradient of H. The symplectic gradient defines
the Hamiltonian flow denoted by φt

H , the family of time-tmaps along the trajectories of system(1.1).
Similarly, given a continuous family of functions Ht ∈ C∞(V,R), t ≥ 0, one defines the time-
dependent Hamiltonian system

(1.2) (q̇, ṗ) = XH,t = (∂pHt, −∂pHt).

The trajectories of this system define the family of maps φs,t
H , 0 ≤ s ≤ t: the solution with the

initial condition (q, p) at time s arrives at the point φs,t
H (q, p) at time t. Such maps preserve the

symplectic form ω. The family of these maps is called the non-autonomous Hamiltonian flow of
H := (Ht)t≥0.

A symplectic map is called a Hamiltonian map if it is the map φ0,1
H for a time-dependent Hamil-

tonian H. We consider the spaces Ham∞(V ) of Hamiltonian C∞-diffeomorphisms and Hamω(V )
of diffeomorphisms defined by real-analytic Hamiltonians Ht which depend on t continuously in
Cω(V,R).

Recall that the base of the Cω-topology (the inductive limit topology) on space of real-analytic
functions is a collection, taken over all neighborhoods of V = R

2n/Z2n in its complexification
C
2n/Z2n, of C0-open sets of holomorphic functions on such neighborhoods. Thus, a sequence

of real-analytic functions φj converges to a real-analytic function φ on V in Cω iff there exists a
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neighborhood Vρ of V in the complexification C
2n/Z2n where φ and every φj for j large enough have

their analytic extensions well defined and supVρ
‖φj − φ‖ → 0 as j → +∞. The space Hamω(V ) is

formed by analytic mappings; it is considered with the inductive limit topology as described above.
Both Ham∞(V ) and Hamω(V ) are groups (this follows from the identity φ0,t

G ◦φ0,t
H = φ0,t

K where

Kt = Gt +Ht ◦ (φ0,t
H2

)−1).
The simplest examples of Hamiltonian maps are given by vertical and horizontal shear maps:

• a horizontal shear (q, p) 7→ (q +∇τ(p), p) is the time-1 map for the time-independent Hamil-
tonian H(q, p) = τ(p), where τ ∈ Cω(Tn,R);

• a vertical shear (q, p) 7→ (q, p−∇v(q)) is the time-1 map for the time-independent Hamiltonian
H(q, p) = v(q), where v ∈ Cω(Tn,R).

The system of differential equations defined by Hamiltonian H(q, p) = τ(p) is

q̇ = ∇τ(p), ṗ = 0;

its flow map φt
H : (q, p) 7→ (q + t∇τ(p), p) is a horizontal shear for every t ∈ R. Similarly, the flow

map φt
H : (q, p) 7→ (q, p − t∇v(q)) for H(q, p) = v(q) is a verticall shear for every t ∈ R. We see

that the vertical and horizontal shear maps form Abelian subgroups of Hamω(V ), which we denote
as V and, respectively, T .

Theorem. (Main) The group < V,T > generated by V and T is dense in Hamω(V ). In other
words, every real-analytic Hamiltonian diffeomorphism of V can be Cω-approximated by a compo-
sition SM ◦ . . . ◦ S1 where Sj ∈ T ∪ V, j = 1, . . . ,M .

The proof is given in the next Section. Since Hamω(V ) is C∞-dense in Ham∞(V ), we obtain

Corollary 1.1. The group generated by V and T is dense in Ham∞(V ).

Note that any real-analytic function on R
n can be arbitrarily well approximated, on any given

compact, by a periodic function with a sufficiently large period. Therefore, the lifts of Hamiltonian
maps of Tn × T

n approximate (on any given compact) Hamiltonian maps of an annulus T
n × R

n

or a ball Rn × R
n. This implies

Corollary 1.2. The theorem extends to the cases where V = T
n × R

n and V = R
n × R

n: every
Hamiltonian map is approximated by a composition of vertical and horizontal shears.

Along the proof of the main theorem, we will check that the “parametric version” of the results
also holds. Namely, we have the following

Corollary 1.3. Given a compact real-analytic manifold P, every analytic family fP = (fµ)µ∈P of
Hamiltonian diffeomorphisms of Tn×T

n, Tn×R
n or Rn×R

n can be arbitrarily well approximated
by analytic families of compositions of vertical and horizontal shears. For any compact set P, every
continuous family fP = (fµ)µ∈P of analytic Hamiltonian diffeomorphisms of Tn ×T

n, Tn ×R
n or

R
n×R

n can be arbitrarily well approximated by continuous families of compositions of vertical and
horizontal shears.

To be precise, we recall that a sequence of continuous families (fj,µ)µ∈P of analytic diffeomor-
phisms on V converges to (fµ)µ∈P if there exists a complex neighborhood Vρ of V such that for
every δ > 0, for every j large enough, sup(µ,x)∈P×Vρ

‖fµ(x) − fj,µ(x)‖ < δ. Also, we call a family
(fµ)µ∈P analytic if fµ(x) is a real-analytic function of µ and x; the convergence in Corollary 1.3 is
then in Cω(P × V, V ). These two settings (of continuous and analytic families) seem to be most
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natural. In order to consider them in a unified way, we adopt from now on a more general setting
where P denotes allways a product:

P = P1 × P2

of a compact set P1 and a compact analytic manifold P2. Also from now on, the considered
family fP = (fµ)µ∈P:=P1×P2 will be analytic in µ2 and continuous with respect to µ1. Each map
fµ(x) is the time-1 map of a time-dependent Hamiltonian Hµ,t(x); we assume that H is an analytic
function of (µ2, x) and a continuous (in the topology of Cω(P2 ×V,R)) function of (µ1, t), and say
that the family fP is generated by the family (Hµ,t)µ,t.

Remark 1.4. For the ease of presentation, the main theorem is given for Tn×T
n endowed with the

standard symplectic form ω =
∑

i dpi ∧ dqi, but the proof, with obvious modifications, works also
for any symplectic form of the form

∑

i ai dpi ∧ dqi, with constant ai > 0. A natural question is
how to extend the results to other symplectic forms on the torus or to other product symplectic
manifolds.

The main Theorem implies1 the work [Tur02] where symplectic maps of V = R
2n were consid-

ered in the smooth case. While we found a way to extend the method of [Tur02] to the annulus
case, we prefer to present here a more powerful approach, inspired by a technology developed
in [BGH22, §2.4-3.2 and app. A] for the non-symplectic case. Similar results for holomorphic
automorphisms of C

n, including the volume-preserving case, were obtained in [And90, AL92]
and have played an important role in solving several problems of complex analysis, see review
in [FK22]. The symplectic result of [Tur02] for V = R

2n was key for the proof of the gener-
icity of the “ultimately rich” (universal) dynamics for certain classes of symplectic and non-
symplectic maps [GTS07, GT10, Tur15, GT17] and for the proof of Herman’s metric entropy
conjecture [BT19]. It has also been used in algorithms for physics-informed machine learning
[JZZ+20, BTM20, VWT+22]. The current result and its short constructive proof for the annulus
V = T× R enabled to disprove the Birkhoff conjecture in [Ber22].

2 Proof of the main theorem

We use the Poisson algebra structure on Cω(V,R), which is the Hamiltonian counterpart of the Lie
algebra structure on the space of vector fields on V . Namely, given two functions f, g ∈ Cω(V,R)
the Poisson bracket {f, g} is the function defined by

{f, g} =
∑

i

∂qif · ∂pig − ∂qig · ∂pif .

It is easy to check that the Lie bracket of the Hamiltonian vector fieldsXf andXg is the Hamiltonian
vector field X{f,g}.

Cartan’s Theorem establishes a correspondence between closed subgroups and Lie sub-algebras
for finite-dimensional Lie groups. Certain aspects of this correspondence have been generalized in
[BGH22, Prop. B.1] for the group of compactly supported smooth diffeomorphisms. Below is the
counterpart for the group of analytic Hamiltonian diffeomorphisms:

Proposition 2.1. Let a set G be a closed subgroup of Hamω(V ). Let P(G) be the set of all
time-independent Hamiltonians H ∈ Cω(V,R) such that their flow maps φt

H belong to G for all
t ∈ R:

P(G) := {H ∈ Cω(V,R) : φt
H ∈ G, ∀t} .

1A shear map of R2n is the composition of two Hénon maps. So the main result implies that compositions of
Hénon maps form a dense set in Ham∞(R2n).
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Then P(G) is a closed Lie sub-algebra of Cω(V ). In other words, it is a closed vector subspace of
Cω(V ) and the Poisson bracket of any two functions from P(G) also belongs to P(G).

Proof. First note that P(G) is closed by continuity of H 7→ φt
H for every t ∈ R. Then the

proposition follows from the two lemmas below.

Lemma 2.2. The set P(G) is a vector space.

Lemma 2.3. The vector space P(G) is a Lie algebra.

Proof of Lemma 2.2. Let H ∈ P(G) and λ ∈ R. For every t ∈ R, the map φλt
H = φt

λH belongs to G
and so λH ∈ P(G). Hence, it suffices to show that H1 +H2 ∈ P(G), for every H1,H2 ∈ P(G). As
φt
H1+H2

= φ1
tH1+tH2

, and tH1, tH2 ∈ P(G) whenever H1,H2 ∈ P(G) as we just showed, it suffices
to check that φ1

H1+H2
∈ G for every H1,H2 ∈ P(G).

On a complex extension V0 of V , the following holds uniformly as t → 0:

φt
H1

◦ φt
H2

= id+ t · ∂t(φt
H1

◦ φt
H2

)t=0 +O(t2) = id+ t · (XH1 +XH2) +O(t2)

= id+ t · ∂t(φt
H1+H2

)t=0 +O(t2) = φt
H1+H2

.

In particular, there exists C > 0 such that for every N ≥ 1

(2.1) sup
V0

‖φ1/N
H1+H2

− φ
1/N
H1

◦ φ1/N
H2

‖ ≤ C ·N−2 .

Taking sufficiently small complex neighborhoods V2 ⋐ V1 ⊂ V0 of V and applying Discretization
Lemma 3.1, we infer from (2.1) that

sup
V2

‖φ1
H1+H2

− (φ
1/N
H1

◦ φ1/N
H2

)N‖ ≤ Cexp(L)N−1 ∀N ≥ N0

for some constants L and N0 (in the Discretization Lemma, put εN := C/N , φs,t := φt−s
H1+H2

, and

gj = φ
1/N
H1

◦ φ1/N
H2

for all j).

Thus φ1
H1+H2

is arbitrarily close to the element (φ
1/N
H1

◦ φ1/N
H2

)N of the group G. As G is closed,

it follows that φ1
H1+H2

∈ G, as required.

Proof of Lemma 2.3. It suffices to show that for any H1,H2 ∈ P(G), the function H3 = {H1,H2}
belongs to P(G). Since φt

H3
= φ1

{tH1,H2} and tH1 ∈ P(G) whenever H1 ∈ P(G), we only need to

show that φ1
H3

belongs to G. On a complex extension V0 of V , we have, uniformly as t → 0:

(2.2) φt
Hj

= id+ tXHj +
t2

2
DXHj ·XHj +O(t3) , j = 1, 2, 3.

So,

φ
t/N
H1

◦ φt/N
H2

= id+ t
N (XH1 +XH2) +

t2

2N2 (DXH1 ·XH1 +DXH2 ·XH2 + 2DXH1 ·XH2) +O(t3)

φ
−t/N
H2

◦ φ−t/N
H1

= id− t
N (XH1 +XH2) +

t2

2N2 (DXH1 ·XH1 −DXH2 ·XH2 + 2DXH2 ·XH1) +O(t3).

Thus, uniformly on V0 as t → 0,

(2.3) φ−t
H1

◦ φ−t
H2

◦ φt
H1

◦ φt
H2

= id+ t2(DXH1 ·XH2 −DXH2 ·XH1) +O(t3).
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One can check that DXH1(XH2)−DXH2(XH1) is the symplectic gradient of H3 = {H1,H2}. Thus
Eq. (2.2) at j = 3 and Eq. (2.3) imply the existence of C > 0 such that for N ≡ t−2 sufficiently
large,

(2.4) sup
V0

∥

∥

∥

φ
1/N
H3

− φ
−1/

√
N

H1
◦ φ−1/

√
N

H2
◦ φ1/

√
N

H1
◦ φ1/

√
N

H2

∥

∥

∥

≤ C
1

N3/2
.

From this, taking sufficiently small complex neighborhoods V2 ⋐ V1 ⊂ V0, one finds that the
assumptions of the Discretization Lemma 3.1 are satisfied with εN := C/

√
N , φs,t := φt−s

H3
, and

gj = φ
−1/

√
N

H1
◦ φ−1/

√
N

H2
◦ φ1/

√
N

H1
◦ φ1/

√
N

H2
for all j. This implies that for some L and N0

sup
V2

‖φ1
H3

− (φ
−1/

√
N

H1
◦ φ−1/

√
N

H2
◦ φ1/

√
N

H1
◦ φ1/

√
N

H2
)N‖ ≤ Cexp(L)N−1/2 , ∀N ≥ N0 .

Thus φ1
H3

is arbitrarily close to the element (φ
−1/

√
N

H1
◦ φ−1/

√
N

H2
◦ φ1/

√
N

H1
◦ φ1/

√
N

H2
)N of the group G.

As G is closed, it follows that φ1
H3

∈ G, as required.

The space of families of analytic Hamiltonian maps endowed with the composition rule (fµ)µ∈P◦
(gµ)µ∈P = (fµ ◦gµ)µ∈P is a group. One can check that the proof of the above proposition does not
alter as long as P is compact, by using the parametric counterpart Corollary 3.2 of Lemma 3.1.
Namely, we have

Corollary 2.4. If GP is a closed subgroup of the space of families of analytic Hamiltonian maps
then the following is a closed sub-algebra of the space of families of functions on V :

P(GP ) := {(Hµ)µ∈P : (φt
Hµ

)µ∈P ∈ GP , ∀t} .

We apply Proposition 2.1 to the group G obtained by taking the Cω-closure of the group
< V,T > generated by V and T :

G = cl(< V,T >) .

Recall that the groups V and T of vertical and horizontal shears consist of the time-1 maps for
the time-independent Hamiltonian functions which depend only on p or, respectively, only on q.
For such functions, the time-t map belongs to V or, respectively, T for all t ∈ R. Thus, the Cω

Hamiltonians of the form H(q, p) = τ(p) or H(q, p) = v(q) belong to the Lie algebra P(G). This
implies, by Proposition 2.1, that every Hamiltonian of the form

(2.5) H(q, p) = v0(q) +
∑

1≤r≤R

{wr(q), {vr(q), τr(p)}}

lies in P(G); here R ≥ 0 and τr, vr, wr ∈ Cω(Tn,R).
We denote the set comprised by Cω-functions T

n × T
n → R which can be represented in the

form (2.5) as P̊ . In short one can denote:

P̊ = V + {V, {V,T }} .

As we said, P̊ ⊂ P(G), i.e., for every H ∈ P̊ its flow maps φt
H can be arbitrarily well approxi-

mated by compositions of vertical and horizontal shears.

Proposition 2.5. The set P̊ is dense in Cω(V,R).
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Proof. By Fourier’s Theorem, any Cω function on the torus V can be approximated by a trigono-
metric polynomial, i.e., a function of the form

∑

maxj{|mj |,|kj|}≤K

Re(cm,ke
2πi(<m,q>+<k,p>)),

where m and k are integer-valued n-vectors, and < ·, · > denotes the inner product. Therefore, it
is enough to show that every trigonometric polynomial belongs to P̊ , i.e., it has the form (2.5) for
some choice of the functions v, w, and τ . Thus, we choose v0(q) =

∑

maxj |mj |≤K Re(cm,0e
2πi<m,q>),

and it remains to show that for every k and m such that k 6= 0 the term Re(cm,ke
2πi(<m,q>+<k,p>))

is a linear combination of terms which can be represented as {wr(q), {vr(q), τr(p)}.
This is done as follows. Since k 6= 0, there exists an index j such that kj 6= 0. Hence there is

σ ∈ {−1, 1} such that A = (
∑n

s=1msks)− σkj is not zero.
We denote m′ = (m′

1, . . . ,m
′
n), where m′

j = mj − σ and m′
s = ms if s 6= j. Then

e2πi(<m,q>+<k,p>) = e2πi<m′,q>e2πi<k,p>e2πiσqj ,

so Re(cm,ke
2πi(<m,q>+<k,p>)) is a linear combination of products of cosines or sines of 2π < m′, q >,

2π < k, p >, and 2πσqj . Hence, it suffices to show that for every (α, β, γ) there exist functions w,
v, and τ such that

(2.6) sin(2π < m′, q > +α) sin(2π < k, p > +β) sin(2πσqj + γ) = {w(q), {v(q), τ(p)}.

For that, we choose

v(q) =
cos(2π < m′, q > +α)

2πA
, τ(p) = −sin(2π < k, p > +β)

2π
, w(q) =

cos(2πσqj + γ)

4π2kjσ
.

Now, we have:

{v(q), τ(p)} =< ∇qv,∇pτ >=

n
∑

s=1

m′
sks
A

sin(2π < m′, q > +α) cos(2π < k, p > +β)

and as A =
∑n

s=1m
′
sks,

{v(q), τ(p)} = sin(2π < m′, q > +α) cos(2π < k, p > +β).

As w is a function of only one variable, qj, we have:

{w(q), {v(q), τ(p)}} = w′(qj)∂pj{v(q), τ(p)},

which gives Eq. (2.6) since ∂pj{v(q), τ(p)} = −2π · kj · sin(2π < m′, q > +α) sin(2π < k, p > +β)

and w′(qj) = − sin(2πσqj+γ)
2πkj

.

Proposition 2.5 implies that the flow maps φt
H of any time-independent Hamiltonian H ∈

Cω(V,R) can be arbitrarily well approximated by the flow maps of some Hamiltonians from P̊ .
Since P̊ ⊂ P(G) and P(G) is closed subset of Cω(V,R), this gives P(G) = Cω(V,R) and so:

Proposition 2.6. For every time-independent Hamiltonian H its time-t maps can, for every t, be
arbitrarily well approximated by compositions of vertical and horizontal shears.
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Using Corollary 2.4 and the fact that the approximation given by the proof of Proposition 2.5
is based on the Fourier’s decomposition which depends analytically on the function considered, we
obtain

Corollary 2.7. Every family of time-independent Hamiltonian functions (Hµ)µ∈P , the family of
its time-t maps can, for every t, be arbitrarily well approximated by families of compositions of
vertical and horizontal shears.

To finish the proof of the theorem, we now show that the same is true for time-dependent
Hamiltonians. First, we prove

Lemma 2.8. Every diffeomorphism f ∈ Hamω(V ) can be approximated by a composition of flow
maps defined by time-independent Hamiltonians. More precisely, if f is the flow map φ0,1

H of a
time-dependent Hamiltonian H = (Ht)t≥0, then there is a complex neighborhood W of V such
that for every η > 0, the holomorphic extension f |W is η-close, for all sufficiently large N , to the

composition of time-1/N maps φ
1/N
Hj/N

for the time-independent Hamiltonians Hj/N :

sup
W

∥

∥

∥
f − φ

1/N
H(N−1)/N

◦ . . . ◦ φ1/N
H1/N

◦ φ1/N
H0

∥

∥

∥
< η .

Proof. We have:

f = φ0,1
H = φ

(N−1)/N,1
H ◦ φ(N−2)/N,(N−1)/N

H ◦ . . . ◦ φ1/N,2/N
H ◦ φ0,1/N

H .

Using the compactness of the time interval [0, 1], there exists a complex neighborhood V0 of V and
a sequence εN → 0 such that the flow maps for time-independent Hamiltonians satisfy

sup
V0

∥

∥

∥

∥

φ
1/N
Ht

− id− 1

N
XHt

∥

∥

∥

∥

≤ εN
2N

, ∀0 ≤ t ≤ 1,∀N ≥ 1,

and the non-autonomous flow maps satisfy

sup
V0

∥

∥

∥

∥

φ
t,t+1/N
H − id− 1

N
XH,t

∥

∥

∥

∥

= sup
V0

∥

∥

∥

∥

∥

∫ t+1/N

t
XH,s ◦ φt,s

H ds− 1

N
XH,t

∥

∥

∥

∥

∥

≤ εN
2N

, ∀0 ≤ t ≤ 1− 1/N.

By Eq. (1.2), the vector fields XH,t and XHt are equal. Thus, summing these two estimates taken
at t = j/N , we obtain:

sup
V0

∥

∥

∥

φ
j/N,(j+1)/N
H − φ

1/N
Hj/N

∥

∥

∥

≤ εN
N

, ∀0 ≤ j ≤ 1− 1/N .

From this, it easy to find complex neighborhoods W = V2 ⋐ V1 ⊂ V0 which satisfy the assumptions

of Lemma 3.1 with φs,t := φs,t
H and gj := φ

1/N
Hj/N

. This implies the sought bound: there exists L > 0

such that for all N large enough

sup
V2

∥

∥

∥
φ0,1
H − gN−1 ◦ . . . ◦ g0

∥

∥

∥
≤ exp(L) · εN .

If, in the above proof, we consider parametric families and employ Corollary 3.3 instead of
Lemma 3.1, we obtain

7



Corollary 2.9. Every family of analytic Hamiltonian diffeomorphisms (fµ)µ∈P can be approxi-
mated by compositions of families of flow maps defined by time-independent Hamiltonians taken
from the family of Hamiltonians that generates (fµ)µ∈P .

Now, let f be the time-1 map for a time-dependent Hamiltonian (Ht)0≤t≤1. For every frozen
value of s ∈ [0, 1], consider the function Hs : V → R as a time-independent Hamiltonian and take
its time-t flow map. This defines a family of maps

(2.7) (φt
Hs

)0≤s,t≤1.

It is a continuous 2-parameter family of time-independent Hamiltonian flow maps; hence by Corol-
lary 2.7, there exists a complex neighborhoodW0 of V such that for every η > 0 there is a continuous
family (gts)0≤s,t≤1 of compositions of vertical and horizontal shears, such that:

sup
W0

‖φt
Hs

− gts‖ ≤ η , ∀0 ≤ s, t ≤ 1 .

Thus, for any complex neighborhood W1 ⋐ W0, if η is small enough, then the differences

(φ
1/N
H(N−1)/N

◦ . . . ◦ φ1/N
Hj/N

− φ
1/N
H(N−1)/N

◦ . . . ◦ φ1/N
H(j+1)/N

◦ g1/Nj/N ) ◦ g1/N(j−1)/N ◦ . . . g1/N0

are uniformly small (for all N and all j = 1, . . . , N − 1) on W1.

Summing this over 1 ≤ j ≤ N − 1, we obtain that φ
1/N
H(N−1)/N

◦ . . . ◦ φ1/N
H1/N

◦ φ1/N
H0

and g
1/N
(N−1)/N ◦

. . . g
1/N
0 are uniformly close on W1. Now, we invoke Lemma 2.8, which gives the existence of a

complex neighborhood W2 ⊂ W1 such that for every δ > 0, if N is sufficiently large, then f is δ/2

-close to φ
1/N
H(N−1)/N

◦ . . . ◦ φ1/N
H1/N

◦ φ1/N
H0

on W2. Thus, for N large enough, we have

sup
W2

∥

∥

∥

f − g
1/N
(N−1)/N ◦ . . . g1/N0

∥

∥

∥

≤ δ.

Since W2 does not depend on δ, it follows that φ0,1
H can be approximated arbitrarily well by a

composition of vertical and horizontal shears. This proves the theorem. Corollary 1.3 is proved
exactly in the same way, just the family (2.7) now also depends on the additional parameters µ ∈ P

and, instead of Lemma 2.8 we employ its prametric version Corollary 2.7.

3 Bounds on compositions

The following lemma was used several times in the proof above. It works actually on any analytic
manifold and the dynamics does not need to be Hamiltonian nor real. Let V0 be a complex manifold
and V1 a neighborhood of a compact subset V2 of V0: V2 ⋐ V1 ⊂ V0.

Lemma 3.1. (Discretization lemma) For any L > 0 and any positive sequence εN → 0, there
is N0 such that the following property holds true for every N ≥ N0.

(i) Let X := (Xt)t∈[0,1] be any time-dependent vector field, holomorphic on V0 and continuously
dependent on time, such that its flow (φs,t)0≤s≤t≤1 is defined on V1 and its derivative is
bounded by L:

V t
1 := φ0,t(V1) ⊂ V0 and sup

x∈V t
1

‖∂xXt‖ ≤ L ∀t ∈ [0, 1].
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(ii) Let any sequence of analytic maps gj , 0 ≤ j ≤ N − 1, be defined on V
j/N
1 and satisfying

(3.1) sup
V

j/N
1

∥

∥

∥

φj/N,(j+1)/N − gj

∥

∥

∥

<
εN
N

, ∀0 ≤ j < N .

Then the composition gN−1 ◦ . . . ◦ g0 is well-defined on V2 and satisfies

(3.2) sup
V2

∥

∥φ0,1 − gN−1 ◦ . . . ◦ g0
∥

∥ < exp(L) · εN .

Proof. We show, by induction in k, that for every k = 1, . . . , N the composition gk−1 ◦ . . . ◦ g0 is
well-defined on V2 and satisfies

(3.3) sup
V2

∥

∥

∥
φ0,k/N − gk−1 ◦ . . . ◦ g0

∥

∥

∥
<

1 + . . .+ exp(kL/N)

N
· εN

for all N ≥ N0. Obviously, this gives (3.2) at k = N .
Note that by Grönwall’s inequality

(3.4) sup
x∈V s

1

‖∂xφs,t‖ ≤ exp(L(t− s)), 0 ≤ s ≤ t ≤ 1.

In particular, the maps φs,t are uniformly continuous, hence there is η > 0 (depending only on L)
such that V t

1 contains the η-neighborhood of V t
2 := φ0,t(V2) for every 0 ≤ t ≤ 1.

Now, assume (3.3) is true for some k ≤ N (it is true at k = 1 by assumption). This implies

sup
V2

∥

∥

∥

φ0,k/N − gk−1 ◦ . . . ◦ g0
∥

∥

∥

< exp(L)εN ,

hence for all sufficiently large N :

sup
V2

∥

∥

∥

φ0,k/N − gk−1 ◦ . . . ◦ g0
∥

∥

∥

< η

Therefore, the image gk−1 ◦ . . . ◦ g0(V2) lies in the η-neighborhood of V
k/N
2 . This is a subset of

V
k/N
1 where gk is defined by assumption, so the composition gk ◦ . . . ◦ g0 is well-defined on V2, as

required. Since
φ0,(k+1)/N = φk/N,(k+1)/N ◦ φ0,k/N ,

it follows from (3.4) and (3.3) that

sup
V2

∥

∥

∥
φ0,(k+1)/N − φk/N,(k+1)/N ◦ gk−1 ◦ . . . ◦ g0

∥

∥

∥
< exp(L/N)

1 + . . .+ exp(kL/N)

N
· εN .

By (3.1) at j = k, we have

sup
V2

∥

∥

∥

(φk/N,(k+1)/N − gk) ◦ gk−1 ◦ . . . ◦ g0
∥

∥

∥

<
1

N
· εN .

Summing up these two inequalities, we obtain inequality (Eq. (3.3)) at k+1, i.e., we complete the
induction step.

Let us emphasis that the bound on the above lemma depends only on L and V2 ⋐ V1 ⊂ V0. So it
implies immediately the following for family parametrized by a set E (not necessarily topological).
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Corollary 3.2. For any L > 0 and any positive sequence εN → 0, there is N0 such that the
following property holds true for any N ≥ N0.

Let (Xµ)µ∈E be any families of time dependent vector fields Xµ and let (gj,µ)µ∈E , 0 ≤ j ≤
N − 1, be any families of maps such that Xµ and (gj,µ)0≤i≤N−1 satisfy assumptions (i) and (ii) of
Lemma 3.1 for every µ ∈ E. Then each of the composition gN−1,µ ◦ . . . ◦ g0,µ is well defined on V2

and satisfies the following estimate with the flow φ0,1
µ of Xµ:

sup
V2

∥

∥φ0,1
µ − gN−1,µ ◦ . . . ◦ g0,µ

∥

∥ < exp(L) · εN .

Now assume that V2 ⊂ V1 ⊂ V0 are complex extension of a compact real analytic manifold V
and that E is of the form E = P1 × P̃2 where P1 is a compact set and P̃2 a complex extension
of an analytic compact manifold P2. We obtain immediately

Corollary 3.3. For any L > 0 and any positive sequence εN → 0, there is N0 such that the
following property holds true for any N ≥ N0. Let (Xµ)µ∈P be any families of time dependent
Cω-vector fields on V and let (gj,µ)µ∈P , 0 ≤ j ≤ N − 1, be any continuous families of Cω maps of

V which all extend to P1 × P̃2 and such that Xµ and (gj,µ)0≤i≤N−1 satisfy assumptions (i) and
(ii) of Lemma 3.1 for every µ ∈ P1 × P̃2. Then each of the composition gN−1,µ ◦ . . . ◦ g0,µ is well

defined on V2 and satisfies the following estimate with the flow φ0,1
µ of Xµ:

sup
V2

∥

∥φ0,1
µ − gN−1,µ ◦ . . . ◦ g0,µ

∥

∥ < exp(L) · εN .
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