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Timing of Head Turns to Upcoming Talkers in Triadic Conversation: Evidence for 
Prediction of Turn-Ends and Interruptions 
 

In conversation, people are able to listen to an utterance and respond within only a few hundred 
milliseconds. It takes substantially longer to prepare even a simple utterance, suggesting that interlocutors 
may make use of predictions about when the talker is about to end. But it is not only the upcoming talker 
that needs to anticipate the prior talker ending – listeners that are simply following the conversation could 
also benefit from predicting the turn end in order to shift attention appropriately with the turn switch. In 
this paper, we examined whether people predict upcoming turn ends when watching conversational turns 
switch between others by analysing natural conversations. These conversations were between triads of 
older adults in different levels and types of noise. The analysis focused on the observer during turn 
switches between the other two parties using head orientation (i.e., saccades from one talker to the next) 
to identify when their focus moved from one talker to the next.  

For non-overlapping utterances, observers started to turn to the upcoming talker before the prior talker 
had finished speaking in 17% of turn switches (going up to 26% when accounting for motor planning 
time).  For overlapping utterances, observers started to turn toward the interrupter before they 
interrupted in 18% of turn switches (going up to 33% when accounting for motor planning time). The 
timing of head turns was more precise at lower than higher noise levels, and was not affected by noise 
type. These findings demonstrate that listeners in natural group conversation situations often exhibit head 
movements that anticipate the end of one conversational turn and the beginning of another. 
Furthermore, this work demonstrates the value of analysing head movement as a cue to social attention, 
which could be relevant for advancing communication technology such as hearing devices.   

 

Introduction 
Turn taking in conversation  
One of the most impressive feats of human cognition is our ability to converse, spontaneously and easily, 
with familiar and unfamiliar interlocutors alike. In a conversation, individuals alternate between listening 
to speech: comprehending the intended message and monitoring for appropriate times to respond, and 
taking on the role of talker: producing a message while concurrently monitoring the listener’s 
understanding. The ability to coordinate utterances with others on the fly is a striking skill that even 
young children are able to grasp (Garvey & Berninger, 1981), in spite of the highly complex cognitive 
processes involved (Levinson & Torreira, 2015).  

Of particular note in conversation is the apparent seamlessness of turn taking, with the average gap 
between one talker ending and another beginning being less than 250 ms in English (Stivers et al., 2009). 
Given that it takes at least 600 ms to prepare even a simple utterance (Indefrey & Levelt, 2004), this speed 
of response suggests that a listener does not simply wait for a talker to finish before preparing to respond, 
but that they predict the talker’s end and prepare ahead of time. Indeed a range of evidence from speech 
listening studies suggest that listeners make and use predictions. One body of work has found that 
listeners predict the next word that a talker will say (Kuperberg & Jaeger, 2016), with neural responses to 
utterances that are lexically predictable vs unpredictable diverging more than a second before the end of 
an utterance (Magyari, Bastiaansen, de Ruiter, & Levinson, 2014). Another has found that listeners predict 
the time at which utterances will end, relying on both lexicosyntactic information (De Ruiter, Mitterer, & 
Enfield, 2006; Magyari & De Ruiter, 2012) and turn-end prosodic information (Bögels & Torreira, 2015, 
2021). Finally, predictable utterances have been shown to lead to quicker responses (Corps, Crossley, 
Gambi, & Pickering, 2018), potentially tying such findings to smooth turn taking. Yet most of the work 
on prediction has investigated isolated speech listening in lab-based situations, rather than conversation 
contexts. Real conversation includes not only vocal cues, but multi-modal cues from both the talker and 
the other listeners (Hadley, Naylor, & Hamilton, 2022), which provide an array of other potentially salient 
cues that could enable further predictions. 

Recently, there has been some criticism of the idea that short turn-taking gaps in conversation imply 
prediction, since in real conversation interlocutors may not always be directly responding to a prior turn, 



but instead continuing their point from several turns ago (Corps, Knudsen, & Meyer, 2022). In such 
cases, the interlocutor need not predict a partner’s speech content since they have more turn switches 
over which to prepare their response, and the timing of their response could be triggered by the 
interlocutor stopping (though even this could additionally involve use of turn-completion cues to avoid 
coming in during a pause – see Torreira & Bögels, 2022). Hence finding ways of measuring prediction in 
conversation that do not involve a focus on the gaps between turns, but rather that focus on the 
behaviour of the listening interlocutors, could be particularly valuable. 

Importantly, listeners that are simply following the conversation could also benefit from predicting the 
turn switch (from either the prior talker’s cues or the upcoming talker’s cues), in order to shift attention in 
time to follow the conversational flow. In a group conversation there are multiple possible targets when a 
floor change occurs, and a variety of cues indicate who is going to be the one to take the floor (from 
verbal signals, to gaze, to posture; Petukhova & Bunt, 2009; Weiß, 2018). By recognising that a switch in 
talker is about to occur, and accurately assessing cues to indicate the next speaker, the listener can orient 
their eyes and head to better see, hear, and engage with the upcoming speaker (rather than reactively 
responding once the new talker has begun). Indeed, given the importance of lip reading to speech 
intelligibility in background noise (Macleod & Summerfield, 1987), prompt reorientation of attention to a 
new speaker is probably vital to continued comprehension of a conversation in a noisy environment. An 
advantage of analysing the behaviour of third parties is that head and eye movements between the two 
speakers are not constrained by the need to avoid interruption; etiquette does not require the third party 
to wait until the current speaker has finished, so the behaviour can directly reflect the anticipated moment 
of the exchange of floor. 

 

Turn following in conversation 
While orienting to the upcoming talker proactively may benefit the listener as discussed above, most 
studies have shown listeners to predominantly shift their gaze only after the first talker has finished their 
turn. A number of studies have investigated this issue using a videoed conversation protocol (Casillas & 
Frank, 2017; Foulsham, Cheng, Tracy, Henrich, & Kingstone, 2010; Foulsham & Sanderson, 2013; 
Hidalgo, Mohamed, Zielinski, & Schön, 2022; Hirvenkari et al., 2013; Keitel, Prinz, Friederici, Von 
Hofsten, & Daum, 2013), in which a group of conversing interlocutors are filmed, and the video is then 
presented to experiment participants while their gaze is tracked. When watching either dyads (Casillas & 
Frank, 2017; Hidalgo et al., 2022; Hirvenkari et al., 2013; Keitel et al., 2013), or larger groups (Foulsham 
et al., 2010; Foulsham & Sanderson, 2013), the timing of adult observers’ looks to the upcoming talker 
has most commonly been reported to occur during the gap between the offset of talker one and the onset 
of talker two (Casillas & Frank, 2017; Foulsham et al., 2010; Hidalgo et al., 2022; Keitel et al., 2013), or 
even after talker two has already begun (Foulsham & Sanderson, 2013; Hirvenkari et al., 2013). As most 
of these studies investigated younger adult participants (with only Hidalgo and colleagues also including 
older adults), differences between studies could relate to the duration of the gaps: switches are more likely 
to occur in the gap when longer gaps are used (e.g., in studies with longer gaps such as Keitel et al., 2013: 
or Hidalgo et al., 2022); or to the content/quality of the turns: question-answer pairings lead to earlier 
switches than other types of turn (Casillas & Frank, 2017), and more degraded audio leads to a delay 
(Hidalgo et al., 2022). Furthermore, it is important to note that many studies do not appropriately account 
for chance in terms of when gaze switches occur: only two studies calculated a chance-level baseline 
against which to compare the distribution of gaze switches (Casillas & Frank, 2017; Hirvenkari et al., 
2013). In sum, videoed-conversation studies have not shown people to consistently orient to an 
upcoming talker before the prior talker is finished, though there is some evidence that they may 
nonetheless orient to the upcoming talker ahead of that talker’s utterance. But while the videoed 
conversation protocol benefits from the high level of constraint that can be applied to the conversation 
stimuli, it does designate the participant as a passive observer rather than an active interlocutor, 
potentially reducing their need (or motivation) to use conversational turn switch cues predictively. 

Only one prior study (Holler & Kendrick, 2015) has used a real conversation protocol to investigate 
orientation switches, and involved adults ranging from 19 to 68 years old. In this paradigm, a group of 
participants converse, and the one inactive participant’s behaviour at each relevant turn switch is analysed. 
While this paradigm is of course much less controlled, it is more naturalistic, and engages all participants 



as interlocutors in the conversation situation. In this paradigm the  ‘observer’ may receive quite different 
(and enhanced) cues to the turn switch, as the group of interlocutors know that they are being observed 
and may provide additional cues to who has/is taking the floor to avoid overlap and conversation 
breakdown. By investigating gaze behaviour in seven triads, specifically during question-answer pairings, 
Holler and Kendrick found the modal timing of orientation to the upcoming talker to be 50 ms before 
the end of the prior talker’s turn, with over 60% of looks being predictive. When overlapping turns were 
removed, head turns on average occurred slightly later, peaking at 105 ms after the end of the prior 
talker’s turn. However, given that eye movements typically take 200 ms to prepare (Salthouse & Ellis, 
1980), both of these findings were taken as evidence that interlocutors predict the end of a talker’s turn 
and pre-emptively shift attention to an upcoming talker.  

The work of Holler and Kendrick (2015) therefore revealed a substantial number of looks to upcoming 
answerers to occur before the end of a talker’s question. However, several elements of their design may 
have encouraged predictive looks. Question-answer turn pairs have previously been demonstrated to be 
more strongly anticipated than other types of turn switches (see Casillas & Frank, 2017), as they may 
provide specific prosodic and syntactic cues to turn ends and the requirement to respond (Karttunen, 
1977; Stivers & Rossano, 2010; Tomasello, Grisoni, Boux, Sammler, & Pulvermüller, 2022). Additionally, 
interlocutors were familiar, and such familiarity may have led to increased common ground (Fussell & 
Krauss, 1989), alignment or mimicry (Lakin & Chartrand, 2003), and thus prediction of their actions. 
Next, participants were conversing in ideal conditions: a quiet sound proof room. Work by Hidalgo and 
colleagues (2022) indicates that predictive looks decrease in degraded conditions, with the latency of the 
gaze switch increasing and relating to comprehension of the speech. Finally, gaze shifts were not assessed 
in relation to chance, and hence reported proportions may provide an overestimation of predictive looks 
to the upcoming talker. We addressed these possibilities by (1) analysing turns to upcoming talkers during 
all types of turn switches since question-answer pairs may make up only a minor proportion of turn 
switches (Forsyth & Martell, 2007), (2) analysing a dataset including only unfamiliar participants, (3) 
analysing the effect of noise level, and (4) including a measure of chance when assessing proportion of 
switches to the upcoming talker.   

 

Gaze vs head turn in conversation 
Both the head and the eyes can indicate an individual’s locus of social attention (Langton, Watt, & Bruce, 
2000; Nummenmaa & Calder, 2009), and while prior research has focused on gaze to identify which 
talker somebody is attending to, in this paper we focus on head orientation. Both the head and the eyes 
have been found to contribute to social attention, reflexively triggering shifts of an observer’s attention 
(Langton & Bruce, 1999; Pejsa, Andrist, Gleicher, & Mutlu, 2015), but there are a number of practical 
reasons to prefer use of head orientation to identify an interlocutor’s direction of attention. While the 
head and the eyes typically orient in the same direction during conversation (approximately 70% of the 
time, Stiefelhagen & Zhu, 2002), the eyes also have other social functions, such as signalling or 
influencing dominance, competence, intimacy, and liking (Hamilton, 2016; Kleinke, 1986; Kuzmanovic et 
al., 2009). Thus the orientation of the head may be a more consistent signal to social attention, and 
recordings of head movement are less prone to dropout (since gaze is not lost every time the participant 
blinks). Finally, the orientation of a listener’s head is already used to identify attention in hearing 
technology, with hearing aids in conversation situations prioritising sound coming from the front of the 
listener, demonstrating the practical importance of understanding head orientation behaviours.  

 

Predictive orientations 
During a conversational turn switch in which there is no overlap between talkers, the listener’s orientation 
from one talker to another can occur at one of three points: (1) before the prior turn ends, (2) during the 
gap between the prior and upcoming turns, or (3) after the upcoming turn has begun. Turns at different 
times may be driven by different processes. The simplest situation is (1), when the head turn occurs 
before the prior spoken turn ends. This provides clear evidence of the listener predicting the end of the 
talker’s turn and an imminent change of floor. The case of (2) is more complicated, and may or may not 
be considered evidence of prediction. If a listener turns their head during the time between the prior 
talker and the upcoming talker, i.e., during the gap, it could either indicate a prediction of the upcoming 



talker starting their turn: i.e., the listener using cues given by the person about to take the floor that signal 
they’re about to begin, or it could be a simple reaction to the end of the prior talker’s turn: i.e., the listener 
using turn end cues to recognise that a talker is done. Yet even in this reactive case, turning towards the 
‘correct’ upcoming talker may nonetheless still be considered to demonstrate the use of predictive cues to 
correctly identify who is going to start next (although this is less the case in a triad as there is only one 
possible responder aside from the participant themselves). Finally, situation (3) does not provide evidence 
for prediction, as it could be explained as a reactive response to the latter talker’s speech. 

When there is an overlap between the speech of the prior and the upcoming talker, the behaviour 
indicating prediction would differ from the non-overlapping case discussed above. In this case, a second 
talker ‘interrupts’, and prediction would be demonstrated specifically by head turns toward the interrupter 
prior to them starting to talk. Such head turns would suggest that the listener is using cues given by the 
interrupter that signal they’re about to begin, even though the prior talker hasn’t finished. Any head turns 
occurring after the interrupter had begun could be a simple reaction to the new talker speaking. 

 

Motivation for the current study 
Given prior evidence of prediction of speech, and the speed of conversational turn taking, interlocutors 
listening to a turn exchange may predictively orient to an upcoming talker to facilitate processing of their 
speech and thus more efficiently follow the conversation. In this study, we therefore investigate when 
unaddressed interlocutors shift their attention from one talker to another during a conversational turn 
switch. Since most prior work has focused exclusively on non-overlapping utterances and reported gaze 
switches typically occurring during the gap, with the only study demonstrating predictive gaze switches 
focusing exclusively on the more predictive question-answer pairings, there is currently no clear evidence 
regarding use of prediction across general conversational turn switches. We specifically analyse the 
unaddressed participant across a large number of triadic conversation turn switches to assess evidence for 
whether and how often unaddressed interlocutors predict the end of the prior talker’s turn (in the case of 
non-overlapping speech), or the start of an interrupter’s turn (in the case of overlapping speech).  

Furthermore, we analyse how background noise level affects predictive looks. Based on the recent work 
of Hidalgo et al. (2022), noise may reduce predictive orientations, with poorer or more effortful 
comprehension reducing the resources available for generating the predictions in the first place 
(Kuperberg & Jaeger, 2016). However, that study retrospectively degraded conversations that were 
recorded in quiet, yet it is possible that interlocutors holding real conversations in adverse conditions 
change their behaviours to emphasise turn-switch cues. If this is the case, observers may be able to make 
greater use of such cues, and may prioritise predictively turning to upcoming talkers in order to put 
themselves in the best position to process upcoming speech. We therefore compare predictive 
orientations across a range of noise levels reflective of conditions in which conversations are held in 
everyday life (Lebo et al., 1994). 

As there are some inherent differences when watching a turn switch in a videoed conversation, and 
watching a turn switch between members of one’s own conversational group , we re-analyse the data of 
Hadley et al. (2021), in which previously unfamiliar participants took part in relatively free conversations 
in groups of three (allowing one participant to ‘observe’ each turn switch). During conversations, noise 
level varied between 54 dB and 78 dB, therefore ranging from relatively quiet to relatively loud. We also 
explore the effect on the analysis of assuming 200 ms of motor planning time for a reorientation from 
one talker to another, as is common in studies of gaze switching (Salthouse & Ellis, 1980). We present 
data both in relation to turn end/start, as well as data in relation to the turn end/start plus 200 ms, to 
account for the fact that a movement would still have been ‘early’ with up to a 200 ms delay, when 
accounting for motor planning time.  

 

Method 
Dataset Details 
Hadley et al. (2021) recorded head movement and voice-activity detection data from free conversation in 
noise among 11 groups of three older adult participants arranged in an equilateral triangle (Ntriads = 11, 



Mage = 61, SDage = 11). Triads each engaged in four conversations lasting 12-16 minutes each: two in 
speech-shaped noise, and two in multi-talker babble noise. Noise level varied every 15-30s between 54dB, 
60dB, 66dB, 72dB, and 78dB, as the original study was already designed to address coping strategies when 
communication varied from easy to challenging. Participants were unfamiliar. Data was collected from all 
three participants concurrently using a level threshold to automatically record the voice activity and an 
infra-red motion tracking system to record the head movement. In total, this dataset included 43 
conversation recordings (one recording was lost due to technical difficulties); 22 in babble and 21 in 
speech-shaped noise with triads doing two sessions in each type of noise. With all three participants 
analysed of each triad, there are over 29 hours of data in all.  

Identification of turn taking and related head movement 
We extracted head movements consistent with conversation following from both datasets. An automatic 
algorithm developed in MATAB applied the following processing stages. Note that separate analyses were 
run on non-overlapping speech (in which the turn of the prior talker was followed by the turn of the 
upcoming talker either immediately or following a gap) and overlapping speech (in which the turn of the 
prior talker is still ongoing when the upcoming talker begins).  

Voice-activity detection 
The voice activity detection (VAD) data was based on sampled data from a close microphone The data 
were pre-processed so that relatively clean exchanges of the conversational floor could be detected. The 
pre-processing was done in two stages. First, uninterrupted pauses in voice activity from a particular 
talker were closed up so that they were recorded as talking continuously. Second, any remaining voice 
activity whose duration was less than 0.5 seconds was deleted as representing only momentary isolated 
vocalisation (i.e., backchannels such a ‘mmm hmm’, or ‘right’) or perhaps mechanical noise on the 
microphone rather than full possession of the conversational floor.  Speech onset and offset detection 
was then taken from the start and end points of each period of VAD. 

Saccade detection 
Head movement (HM) saccades were detected as movements of the head that exceeded 10° within a 400-
ms window (i.e., a rate of movement averaging at least 25°/s over at least 10°). Having detected the 
presence of a saccade, the initiation and termination were defined as the points in time where the rate of 
movement fell to less than 5°/s over a 40-ms window.  

Associations between saccades and exchanges of conversational floor were also identified automatically. 
A ±4-sec interval preceding and following a saccade initiation was scanned for the nearest VAD onsets 
and offsets by the other two participants that were consistent with the direction of head movement.   

The algorithm and its parameters were assessed for reliability by visual inspection of an automatically 
annotated visualisation. An example of such a visualisation is shown in Fig. 1. The three participants, 
colour-coded as Red, Green and Blue, and their locations have been mapped onto the vertical axis such 
that the HM lines will shift to and from the VAD lines of the speakers towards whom they have oriented. 
Detected saccades and their associations with exchanges of the conversational floor have been marked.  

In Fig. 1, Red makes a movement in response to the exchange of floor between Blue and Green, starting at 
53.7 s. Blue makes a movement in anticipation of an exchange from Green to Red at 58.7 s. The algorithm 
also detects Green moving between Blue and Red at 56.6 s. It is less clear that this is a true exchange of 
floor, because Green speaks during the gap between the other two voices. The algorithm accepts it, but 
the time intervals between the saccade and the associated offset and onset are both around 3 s, a time 
interval that tended to be classified as “coincidental” in the statistical analysis (see below). 

 



 
Fig. 1 Example of Hadley et al. data (group #1 session #2 in babble, analysis of non-
overlapping dialogue). Colour-coded VAD data (thick lines) with superimposed head-
yaw data (thin lines) using the same colours of a given interlocutor. Head yaw has been 
transformed so that the curve moves coherently between the three VAD data lines for 
the respective talker directions.  Detected head saccades are marked at their initiation 
(filled circles) and termination (open circles). Associations between saccade initiation 
and VAD offsets and onsets are marked by forward- and backward-pointing double-
headed arrows, respectively.  

Statistical Analysis 

To determine whether HMs were more frequent in time bins around the exchanges of floor than would 
occur by chance, the numbers of detected HMs were compared with mismatched VAD and HM data. 
Mismatched VAD and HM data were produced by pairing VAD and HM data from different sessions 
using all possible combinations with the same background noise type. The red lines in Figures 2-4 are 
thus the average numbers of head saccades associated with an exchange of conversational floor by 
chance, when the data are mismatched. The time bins are 200-ms in duration. The blue lines are the 
corresponding numbers of head saccades when the data are from the same session, so the difference 
between the two lines is the increase in head saccades caused by the corresponding exchanges of 
conversational floor, which we will term “associated” as opposed to “coincidental” HMs.  
To determine whether the excess of associated HMs was statistically significant within each time bin, the 
null hypothesis was adopted that HMs are randomly distributed in time, with equal probability at a given 
time unit. However, the probability of a coincidental HM varies with respect to the timing of VAD onsets 
and offsets (see Fig. 4) due to the saccade detection algorithm described above. The tail probability of a 
given number of head saccades in each time bin was calculated from binomial probability using the 
coincidental-HM probability for each time bin. The yellow lines in Fig 4 are the resulting critical number 
of head saccades for p<0.05 (one-tailed) in each time bin. 

The number of associated HMs in each time bin was estimated by subtracting the expected number of 
coincidental HMs (red lines) from the observed number of HMs (blue lines). These numbers were used to 
calculate the distribution in time of associated HMs. Negative values were discarded, because these may 
reflect a genuine suppression of movements prior to or following an onset or offset.  In the figures 
presented below, data from all participants is pooled. To conduct the inferential statistics, data from each 
triad were pooled, because data from one individual were too sparse to generate a histogram. Mean and 
standard deviations of the associated saccade timings with respect to a VAD onset or offset were 
reconstructed from the difference between the expected coincidental HMs and the observed numbers for 
each triad in each condition.  Two four-way repeated-measures ANOVAs were conducted; one addressed 
the mean timing of the HMs, and one addressed the standard deviation of their timing. The first was 
intended to detect whether any factor influenced how promptly an HM was made, while the second was 
intended to detect whether and factor made listeners less precise in the timing of their movements. Both 
ANOVAs examined the factors of noise level, noise type (babble vs. speech shaped noise), type of 



exchange (overlaping/non-overlapping) and event type (voice onset or voice offset). Follow-up statistics 
include simple main effects and Holm-corrected t-tests. 

Results 
Non-overlapping speech 
In exchanges with non-overlapping speech, the median duration of silence between talkers was 0.64 s for 
speech-shaped noise and 0.68 s for babble. Figures 2 and 3 show histograms of the timing of head 
movements with respect to offset and then onset of speech around these silences. The data are 
disaggregated by background noise level, for the speech-shaped noise (Fig. 2) and babble (Fig. 3). 
Elevation of the blue lines above the red indicate that the saccades in question are more frequent than 
might occur by chance and reflect, therefore, real reactions to exchanges of floor – associated HMs. The 
total estimate of associated HMs across the entire dataset exceeded 2,000. There tends to be evidence of 
associated HMs within about 2 seconds of an onset or offset. Outside this range, HMs are sometimes 
slightly below the expected chance level, particularly following an offset or preceding an onset.  

It is noticeable that the red curves for the coincidental rate of HM detection are not flat, but peak near to 
zero lag and are also skewed differently for the onsets and offsets. These effects are to be expected from 
the HM-detection algorithm. The distribution has a peak near zero delay, because only the HMs closest to 
zero delay are associated with a given onset or offset; if there is a second-nearest HM, it will be ignored. 
The different skews for association with onsets and offsets are caused by the rejection of overlapping 
dialogue; because the 4-second analysis window is centred on the saccade under examination and the 
onset must always follow offset, the eligible onsets are necessarily later in time that eligible offsets.  

The associated HM lags are predominantly positive for VAD offsets, suggesting that they are largely 
reactive or timed to occur at the moment a talker finishes saying something. The saccade lags are more 
evenly and precisely distributed around zero delay with respect to the VAD onsets, suggesting that they 
may be timed to coincide with the onset.  The ANOVA of standard deviation confirmed an interaction 
between type of exchange and event type [F(1,10)=10.2, p=0.01], wherein the standard deviation is 
smaller (the timing is more precise) for onsets than offsets in non-overlapping dialogue (t(10)=3.25, 
p<0.05), but not in overlapping dialogue. 

There is no obvious difference in the pattern of results as a function of noise level or noise type, but the 
ANOVA for the standard deviation of the HM timing (covering both overlapping and non-overlapping 
speech) revealed a small effect of noise level in which the timing was most precisely timed (i.e. a smaller 
standard deviation) at 60 dB (SPL) and became progressively less precise at higher noise levels 
[F(4,40)=2.97, p<0.05], reaching  10% larger at 78 dB. The only effect involving noise type was a four-
way interaction on the mean timing of HMs [F(4,40)=3.27, p<0.05], but the nature of this interaction is 
unclear. 



  

Fig. 2. The top row of panels are histograms of number of saccades made by the 
participants in speech shaped noise as a function of the time differences between these 
saccades and corresponding VAD onsets for the other two participants. Blue lines are 
for matched VAD and HM data. Red lines are for mismatched VAD and HM data, 
scaled to compensate for the number of different possible mismatches. Successive 
panels are for speech-shaped background noise at increasing sound levels. The bottom 
row are similar histograms for the VAD offsets. The dashed vertical lines divide 
responses that preceded the VAD offset or onset from those that followed it. 

 

Fig. 3. As Fig. 2, but with multi-talker babble as background noise.  



The five noise levels were then pooled in order to facilitate robust statistical analysis of anticipation. 
Fig. 4 shows the pooled data for speech-shaped noise and babble, respectively. In the pooled data, the 
distributions of associated HMs around offsets and onsets are clearer. In speech-shaped noise, we 
found that 18% of associated HMs around an offset were made in advance, while the corresponding 
figure for babble was 20%. Assuming a motor-planning time of 200 ms, the number of HMs planned 
in advance of offsets increases to 28% and 23% respectively.  

 

Fig 4 Histograms during non-overlapping utterances from Figs. 2 & 3.  

Blue and Red lines are for matched and mismatched VAD and HM data. Yellow lines are the 
threshold of statistical significance (p<0.05). The dashed vertical lines divide HMs that preceded 
the VAD offset or onset from those that followed it. The dotted vertical line is shifted by 200 ms 
in order to divide HMs that were planned before the VAD offset or onset from those that were 
planned after it. Elevations of the blue line above the yellow indicate a number of saccades that 
is significantly above chance.   

 

 



 Offsets Onsets 
 Noise  Babble Noise  Babble 

Noise 
level (dB) 

Mean 
(s) 

Std. dev. 
(s) 

Mean 
(s) 

Std. dev. 
(s) 

Mean 
(s) 

Std. dev. 
(s) 

Mean 
(s) 

Std. dev. 
(s) 

54 0.61 1.07 1.07 1.10 -0.18 1.31 -0.12 0.91 
60 1.00 1.3 0.81 1.02 -0.24 0.96 -0.54 1.28 
66 1.04 1.13 0.58 1.06 -0.47 1.13 -0.30 0.91 
72 0.68 1.13 0.98 1.48 -0.31 1.05 -0.33 1.13 
78 0.68 1.12 0.92 1.36 -0.74 1.37 -0.72 1.22 

Mean 0.81 1.16 0.87 1.21 -0.39 1.16 -0.40 1.09 

Table I. Mean and standard deviations for associated HM delays (seconds) relative to 
nearest speech onsets and offsets for non-overlapping speech. 

 

Overlapping speech 

When the new speaker begins before the first speaker has finished, it is impossible to know whether a 
HM that occurs after this interruption is made in response to the onset or in anticipation of the offset. 
However, HMs made before either event might be anticipating an interruption. In a real 3-way 
conversation, there may be many linguistic and visual cues that may lead the observing party to make such 
a prediction. It is still, of course, possible that these responses are making a longer-range anticipation of 
the offset of the first speaker.  

Figures 5, 6 and 7 show the distribution of responses with respect to onsets and offsets for cases of 
overlapping data, pooled across noise levels. Using a similar analysis of associated HMs, we found that 
16% of associated HMs preceded the onset of the new speaker in a speech-shaped noise and 20% in a 
babble noise. These numbers increase to 32% and 33% respectively, if it is assumed that listeners required 
200 ms of motor planning time to initiate the HM.  

 

Figure 5. As Figs. 2 and 3, but for overlapping dialogue in speech-shaped noise. 



Compared to the data for non-overlapping dialogue in Figs 2-4, the pattern of temporal skew is reversed 
for the overlapping dialogue in Figs 5-7. HM times now tend to follow offsets and precede onsets. This 
effect may be expected from the fact that the onsets and offsets have themselves have reversed order 
between the two types of exchange. The ANOVA of mean HM time confirmed a significant interaction 
between the type of exchange and event type [F(1,10)=1837, p<0.001]. In the interaction, simple main 
effects confirmed that head turns occurred earlier in relation to speech onset than offset for non-
overlapping speech (onset = -584 ms, offset = 904 ms; F(1)=362, p<0.001), and earlier in relation to 
offset than onset for overlapping speech (offset = −696 ms, onset = 740 ms; F(1)=488, (p<0.001). No 
other effects were statistically significant. 

 

Figure 6. As Figs. 2, 3 and 6, but for overlapping dialogue in babble noise.  

 



 

Figure 7. As Fig. 4, but for head turns during overlapping utterances 

  

Discussion 
By analysing real triadic conversations between unfamiliar older adult participants, we demonstrated that a 
substantial proportion of head saccades from the unaddressed interlocutor around a turn switch occurred 
predictively. When conversational turns did not overlap, an average of 17% of the listener’s head turns to 
the upcoming talker occurred before the prior spoken turn ended, increasing to 26% when motor 
planning time was taken into account. When conversational turns did overlap, an average of 18% of the 
listener’s head turns to the interrupter occurred before the interrupter interrupted, increasing to 33% 
when motor planning time was taken into account. This is strong evidence for prediction of the turn end 
and the turn start respectively. We did not see any substantial effects of noise level or type. 

It is important to acknowledge that whereas most work using videoed conversation shows reactive 
orientations to an upcoming talker (either occurring during the gap or after the upcoming talker has 
started), we and Holler and Kendrick (2015) showed a substantial proportion of predictive orientations. 
There are a few possible explanations for these differences between paradigms. First, in several of the 
studies using videoed conversations, the durations of the gaps were surprisingly long (Keitel et al., 2013: 
average gap 860-930 ms; and Hidalgo et al., 2022: average gap 500 ms), potentially reducing participants’ 
use of predictive turns since there is no need to orient quickly (and quickly turning from the current talker 
would in fact lead the participant to longer instances of boring/unanimated visual input). This is very 
different in a real conversation, when rapidly reorienting could support the listener to keep up and also 
convey a social function (of demonstrating attention). Second, when dyads are filmed and are only talking 
to each other (as used in many of the videoed-conversation studies), there is less need for a listener to 
signal that they want to take the floor since they have no other interlocutors to compete with. In a real 
group conversation on the other hand (i.e., triads or larger, in order to have an unaddressed interlocutor), 



it is critical for a listener to signal when they want to claim the floor ahead of time since they have at least 
one other listener to compete with. A further possibility is that the talker in a larger group emphasises 
their cues to turn ends since they are communicating to a range of individuals, consistent with the work 
of  Fay, Garrod, and Carletta (2000), who demonstrated that listeners show greater understanding for 
speech produced by talkers speaking in larger than smaller groups. Finally, we note that we specifically 
focused on older adults (and indeed Holler and Kendrick were one of few prior studies that also included 
older adults), and thus it is possible that older adults prioritise turning early more so than younger adults 
(for example as a strategy to facilitate turn following).  

Interestingly, while prior work using videoed conversation demonstrated that more degraded audio led to 
more delayed orientation to the upcoming talker (Hidalgo et al., 2022), but we did not see an effect of 
noise level on mean head turn timing. This may again be due to enhanced cues that talkers use to signal 
that they are ending/starting when talking in a real conversation in noise. Since the work by Hidalgo and 
colleagues used speech that had been recorded in an ideal environment but was subsequently manipulated 
to sound degraded to an observer, they would not have captured any compensatory behaviours that 
interlocutors naturally use to support conversation success (and potentially turn end/turn start 
prediction). Indeed in conversation, interlocutors have been shown to adjust both their speech level, 
known as the Lombard effect (Garnier, Henrich, & Dubois, 2010; Zollinger & Brumm, 2011), and their 
gesture, a potential multimodal variation of the Lombard effect  (Trujillo, Özyürek, Holler, & Drijvers, 
2020), to improve communication in noisy conditions. There is thus a large range of multimodal strategies 
that people can use to support communication in noise, and strategy use varies according to the acoustic 
environment (Hadley, Brimijoin, & Whitmer, 2019; Hadley et al., 2021). Such adjustments are not 
possible when audio is recorded in one environment and then subsequently manipulated – hence our 
participants may have used vocal and gestural adjustments to make turn following easier, while 
participants in Hidalgo et al. did not do so due to being recorded in quiet.  

However, while we did not see a slowing of head turns in noise, we did see an increase of variability; head 
movements had a 10% larger standard deviation at 78 dB than at 60 dB, meaning they were more spread 
around speech onsets/offsets when the noise level was higher. This distinction between the mean and the 
standard deviation of orientation timing could reflect that while predictions were made in a similar 
manner regardless of noise, the temporal precision of these predictions may have been reduced for 
degraded speech. Interestingly, this complements recent work demonstrating not only slower but also 
more variable timing of spoken turns in noise (i.e., focusing on the upcoming talker’s use of prediction 
rather than the observer), as well as more variable timing of spoken turns for people with hearing loss 
(who themselves experience degraded speech input, Sørensen, MacDonald, & Lunner, 2019). 

A rather similar experiment to that of Hadley et al (2021) has been reported by Lu, McKinney, Zhang, & 
Oxenham (2021). Although they used the same spatial configuration and also included a background 
noise manipulation, their paradigm differed in that head movement was only recorded from one 
interlocutor, as the other two were confederates. We have conducted a similar analysis on those data 
(presented in Figure 8 below). From a series of 20-minute conversations in different noise levels we saw 
qualitatively similar patterns in the data: in non-overlapping speech, the majority of head turns occurred 
in the gap between talkers, and there were a number of seemingly predictive turns. However, Fig. 8 shows 
that this data displays weaker trends, likely since their study (1) produced considerably less HM data (<10 
h of data from individuals, rather than 29 h), and (2) used lapel microphones requiring voice activity to be 
manually labelled (posing particular problems in noisy conditions). When comparing the number of HMs 
consistent with conversation following with the number required for statistical significance (Fig. 8, yellow 
lines), it is clear that while the Lu et al. data are consistent with those from Hadley et al., they do not 
provide independent statistical support. 



 

Fig. 8. As Fig. 5, but for the data from Lu et al. (2021). 

While analysis of the Hadley et al. data demonstrates predictive use of head turns in conversation, we 
cannot determine the signals that listeners used to identify that a turn was about to switch. Predictive 
turns could have been driven by a number of different cues, since during conversation the behaviour of 
each interlocutor feeds into the behaviour of every other interlocutor. For example, when one talker is 
coming to the end of their turn, they may convey signals that their turn is ending, leading a responder to 
prepare their retort. This would be a case of a prior talker signalling their turn end. An alternative is that 
while a turn is ongoing, a listening participant thinks of a point they want to insert, and that the listener’s 
signal that they want to jump in leads the current talker to yield the floor. Thus, in both cases a turn 
ended (potentially signalled by turn-end cues), but in the latter case this was a result of ‘floor request’ 
signals from a listener. Such a communication feedback loop (Beechey, Buchholz, & Keidser, 2020) 
makes it challenging to tie head turns to particular turn end/turn start cues. Nonetheless, the fact that 
there were up to 7% more anticipatory turns for overlapping speech (i.e., interruptions) than non-
overlapping speech suggests that the cues from the upcoming talker may be particularly salient. In 
addition, we did not use a linguistic analysis to tie orientation switch timing to specific types of turns. 
While prior work demonstrates that predictive turns occur more often for questions than other sorts of 
exchanges (Casillas & Frank, 2017), it is possible that features of other exchanges such as directly 
addressing a specific listener or referencing to a topic raised by somebody else would also increase 
predictive turns. Future studies with more constrained behaviour manipulation may elucidate such issues. 

In conclusion, this paper re-analysed an existing dataset of older adults engaged in triadic conversation to 
provide evidence that listeners can anticipate when a speaker will finish a conversational turn. This work 
demonstrates the value of head movements in assessing interlocutors’ focus of attention around a 
conversational turn switch, and indicates the propensity of listeners to orient toward an upcoming talker 
before they start talking. Such findings could be highly relevant for hearing technology. Hearing devices 
use beamformers to amplify specific regions around the wearer’s head while dampening others, and 
currently have a wide beam to amplify most of what is in front of the user. Recent work, however, has 
begun to explore the potential benefits of narrower beamformers (Best, Mejia, Freeston, Van Hoesel, & 
Dillon, 2015; Hládek, Porr, Naylor, Lunner, & Brimijoin, 2019; Soede, Berkhout, & Bilsen, 1993), 
increasing the importance of understanding head movements around turn switches (to avoid dampening 
critical information). Greater understanding of natural behaviour in conversation would therefore provide 
a foundation for such technological advances, while also providing insight into the cognitive processes 
that are involved in the complex task of holding a conversation.  
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