

University of Bath

PHD

Cooperative Autonomous Marine Vehicles for Adaptive Passive Acoustic Monitoring

Rossides, George

Award date:
2022

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

Copyright of this thesis rests with the author. Access is subject to the above licence, if given. If no licence is specified above,
original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC-ND 4.0) Licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). Any third-party copyright
material present remains the property of its respective owner(s) and is licensed under its existing terms.

Take down policy
If you consider content within Bath's Research Portal to be in breach of UK law, please contact: openaccess@bath.ac.uk with the details.
Your claim will be investigated and, where appropriate, the item will be removed from public view as soon as possible.

Download date: 02. Dec. 2022

https://researchportal.bath.ac.uk/en/studentTheses/b6065219-fd87-47ce-af26-89e51735aea4

Cooperative Autonomous Marine Vehicles
for Adaptive Passive Acoustic Monitoring

submitted by

George Rossides
for the degree of Doctor of Philosophy

of the

University of Bath
Department of Electronic and Electrical Engineering

December 2021

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with the author. A
copy of this thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with the author and that they must
not copy it or use material from it except as permitted by law or with the consent of

the author.

This thesis may be made available for consultation
within the University Library and may be

photocopied or lent to other libraries for the purposes
of consultation with effect from (date)

Signed on behalf of the Faculty of Engineering and Design .

Swarm behavior ... emerges naturally from
simple rules of interaction, as happens
with a wave generated by a crowd of

spectators at a football game.

The wave might look to a visiting Martian
like a complicated exercise in logistics, but
its dynamic pattern emerges from a simple
rule: stand up and stick your hands in the
air as soon as you see your neighbor doing

it.

LEN FISHER − The Perfect Swarm (2009)

Acknowledgements

Firstly, I would like to thank my doctoral supervisors, Dr. Benjamin Metcalfe and
Dr. Alan Hunter for their continuous guidance and support throughout this whole
experience. This work would have not been possible without their knowledge, patience
and great amount of time spent on guiding me and it has been a great pleasure working
with them.

Additionally, I would like to thank the organisers, management team and people of
the NEXUSS CDT program of the University of Southampton for funding this work
and providing me with valuable training, networking opportunities and overall good
experiences.

Finally, I would like to thank my family and friends for their continuous support. Among
them special thanks should go to my friend and fellow student Stefan Chindea for his
invaluable help at all difficult times. Moreover I would like to thank my housemate
Marios Mouzouras and my friends Panos Koulountzios and Rafaella Antoniou for always
being there until the very end.

Summary

In the quest for the exploration and study of the vast and complex oceanic environments
and the biological species that inhabit them, a variety of different methodologies and
techniques are currently employed. Among them, the ability to localise and monitor un-
derwater acoustic sources by passively observing the signals that they emit was proven
to be a valuable asset for the study of both biological entities (e.g. marine mammals) as
well as anthropogenic ones (e.g. transportation vessels, off-shore drilling processes etc.).
Traditional marine environment monitoring systems employ a single oceanographic re-
search vessel, equipped with all the necessary sensors for the acquisition of data. This
method of study of marine environments is expensive, time-consuming and unable to
study efficiently the large areas that need to be explored. Therefore, recent research
turned towards the employment of low-cost, semi-disposable, distributed sensing nodes
for simultaneous data collection over large distances. The large numbers of nodes used
in such systems, combined with their simple, low-cost, decentralised nature matches the
ethos of another engineering field - that of swarm robotics. Therefore, it has recently
been proposed that swarm intelligence algorithms and techniques could be used for the
control of the movement of such marine systems.

This thesis introduces several novel swarm intelligence algorithms for use for the control
of marine distributed sensor networks with passive acoustic capabilities. This is achieved
through the modification of a prevalent swarm intelligence algorithm, particle swarm
optimisation (PSO), originally used in numerical optimisation applications. The first
half of the thesis is concerned with adapting PSO for the accurate low-level motion
control of robotic swarms with the task of source localisation, while also allowing for
the inclusion of alternative swarm robotic tasks like obstacle avoidance and aggregation.
Afterwards, the thesis focuses on combining PSO with wavefield correlation techniques,
currently used in marine passive acoustic systems such as multi-hydrophone arrays.
In the end, it is demonstrated how the proposed algorithms can be combined together,
enabling a robotic swarm of marine surface vehicles to localise a marine acoustic source,
approach and encircle it and continue monitoring it while maintaining a minimum
distance from it. All of the presented algorithms are implemented and tested using
MATLAB simulations, while some of them are also further validated using Gazebo
simulations employing detailed robot models.

3

Contents

1 Introduction 18
1.1 Thesis Motivation . 18
1.2 Covid-19 Pandemic Impact . 20
1.3 Contributions . 20

2 Introduction to Swarm Robotics 24
2.1 Swarm Intelligence Algorithms . 27

2.1.1 Particle Swarm Optimisation . 28
2.1.2 Ant Colony Optimisation . 31
2.1.3 Artificial Bee Colony Optimisation 31
2.1.4 Glowwarm Swarm Optimisation 31
2.1.5 Firefly Algorithm . 32
2.1.6 Potential Fields . 33
2.1.7 SIA Applications to Swarm Robotics 35

2.2 Swarm Robotic Tasks . 41
2.2.1 Aggregation . 43
2.2.2 Flocking . 43
2.2.3 Target Entrapment . 46
2.2.4 Multi-Target Tracking . 47

2.3 Discussion of Current Literature . 48
2.4 Conclusion . 50

3 Adapted Particle Swarm Optimisation 58
3.1 Particle Swarm Optimisation Theory . 59

3.1.1 Parameter Tuning . 60
3.2 Adaptation of PSO for Swarm Robotics 62

3.2.1 Updated Parameter Stability Criteria 64

4

3.3 Control of Velocity and Acceleration . 65
3.3.1 State model . 66
3.3.2 State Space Analysis . 68
3.3.3 Derivation of Extreme Cases . 70

3.4 Guidelines . 73
3.5 Simulations . 74

3.5.1 Constant Parameters . 75
3.5.2 Variable Parameters . 77

3.6 Discussion . 79
3.7 Generalised Adapted PSO . 80
3.8 Conclusions . 81

4 Obstacle Avoidance and Dynamic Velocity Control Strategies 85
4.1 Robotic Particle Swarm Optimisation 86
4.2 Adapted Robotic Particle Swarm Optimisation 88

4.2.1 Calibration of Individual Accelerating Terms 89
4.2.2 Implementation of Dynamic Velocity Control Strategy 90

4.3 Simulations . 92
4.3.1 World description . 95
4.3.2 Robot description . 96
4.3.3 Gazebo Simulations . 98

4.4 Results . 102
4.5 Discussion and Comparison with other SIA 104
4.6 Conclusions . 107

5 Robot-Centred Reference Frame and the Non-Omnidirectional PSO
Controller 109
5.1 Robot-Centred Reference Frame . 110

5.1.1 Robot-Centred Reference Frame Generalised Adapted PSO . . . 111
5.2 Obstacle Avoidance and Dynamic Velocity Control 114

5.2.1 Non-Omnidirectional PSO Velocity Update Equation 117
5.2.2 Dynamic Velocity Control Strategy for Non-Holonomic Robots . 119

5.3 Simulations and Results . 122
5.3.1 Obstacle course simulations . 123

5.4 Non-omnidirectional PSO Controller with Minimum Turning Radius . . 125
5.5 Conclusions . 126

6 Marine Acoustics and Acoustic Signal Processing 130

5

6.1 Underwater Sound Propagation . 130
6.2 Marine Acoustic Sources . 133

6.2.1 Marine Mammal Sounds . 133
6.2.2 Anthropogenic Sounds . 134
6.2.3 Ambient Noise . 134
6.2.4 Signal-to-Noise Ratio Calculation 135

6.3 Wavefield Correlation . 137
6.3.1 The Two-Hydrophone Receiver Model 138
6.3.2 Ambiguities . 139
6.3.3 Extended Multi-Hydrophone Configurations 141

6.4 Conclusion . 142

7 Wavefield Correlation-Enhanced Particle Swarm Optimisation 148
7.1 Amplitude-Particle Swarm Optimisation (A-PSO) 148

7.1.1 Forgetting Function . 149
7.1.2 A-PSO Weaknesses . 150

7.2 Wavefield Correlation PSO . 151
7.2.1 Cross-Correlation Particle Swarm Optimisation (X-PSO) 152
7.2.2 Bearing Particle Swarm Optimisation (B-PSO) 154
7.2.3 Cross-Correlation-Bearing Particle Swarm Optimisation (XB-PSO)157

7.3 Simulated Environment . 159
7.3.1 Robots . 159
7.3.2 Source . 161
7.3.3 Normalised Units and Parameter Values 162

7.4 Results . 162
7.4.1 Generalised Results . 165

7.5 Conclusions . 169

8 Generalised Triangulation PSO and Source Entrapment/Escorting 173
8.1 Generalised Triangulation PSO . 174

8.1.1 Comparison with XB-PSO . 179
8.2 Source Entrapment/Escorting . 182

8.2.1 Simulations . 183
8.2.2 Results . 184

8.3 Conclusions . 189

9 Conclusions and Future Work 192
9.1 Conclusions . 192

6

9.2 Future Work . 193

Appendices 196

A Adapted PSO Order-1 and Order-2 Stability 197
A.1 References . 199

B Lemma 1 200

C Lemma 2 201

D Theorem 1 203

E Theorem 2 204

7

List of Figures

2-1 Schematic of field delimitation for Mobile Robotics, Multi-Robot Sys-
tems, and Swarm Robotics. (Dias et al. 2021). 25

2-2 Graphical representation of the optimisation process of a particle swarm
in a 2-dimensional search space (i.e. two tunable parameters). The verti-
cal dimension represents the cost of locations and the red spheres repre-
sent the particle swarm. The eventual goal of the swarm is to converge to
the global minimum of the cost function. Images (a) to (c) show differ-
ent stages of the optimisation process, from early to late stages (Tehrani
et al. 2017). 29

2-3 Functions defining the magnitudes of virtual force vectors exerted on the
robots of the swarm. In (a), the forces are exerted by the targets and
they are primarily attractive forces. The region between distances do2

and do3 describes the ideal range that the robot needs to maintain from
the target. The distance described as "predictive tracking range" signifies
the limit beyond which, the target will not attract the robot. At do1,
the attractive force (positive force) becomes repulsive (negative force), to
prevent collision of the robot with the target. In (b), the virtual forces are
exerted by other robots in the swarm. These forces are always repulsive.
Up until distance dr1, such a force has constant repulsive effect. Beyond
this distance, the magnitude of the force drops linearly and becomes 0 at
distance dr2, signifying the maximum distance at which robots can exert
forces on other robots. 34

8

2-4 Results of the experiments carried out to assess the performance of the
dPSO algorithm, using 1 robot, without obstacles. The black lines rep-
resents the route followed by the robot and the red square is the global
maximum of the fitness function (brightest spot). The red points repre-
sent consecutive desired locations towards which the robot needs to move
and which are calculated using dPSO. The circular shape of the robot’s
route is the result of its motion limitations (i.e. limited turning radius)
(Hereford et al. 2007). 37

2-5 Two different taxonomies used to define swarm robotic tasks/behaviours.
The taxonomy presented in (b) is an adapted version of the one presented
in (a). Primary tasks such as aggregation, pattern formation, coordinated
motion and task allocation appear in both taxonomies, but several new
tasks are also introduced in (b) such as self-assembly, collective locali-
sation and human-swarm interaction. These new behaviours signify the
research advancements and the appearance of new questions regarding
this field in recent years. 42

2-6 The ψα action force function is used to calculate the forces between agents
of the swarm, based on the distance z between pairs of agents, in order
to maintain the desired spatial separation (Olfati-Saber 2006). 44

2-7 Instances of an obstacle avoidance simulation. In (a), the swarm is ini-
tialised and the agents have not yet formed a solid group. In (b) and
(c), the agents begin to come together, maintaining constant distance
from neighbours and velocity consensus. In the presence of obstacles
the agents separate to avoid collision. In (d) to (f), the agents rejoin
together into a solid group after the obstacles have been successfully
avoided. (Olfati-Saber 2006). 45

2-8 Implicit Formation Pattern Function that surrounds all targets (Zhang
et al. 2018) . 47

3-1 The safe operating regions defined by allowable values of ω, ĉ that guar-
antee order-1 and order-2 stability. 62

3-2 The phase-space graph for three different cases: (a) ω = 0, (b) 0 ≤ ω < 1

(in this specific case ω = 0.6), (c) ω = 1. In all three cases the system is
stable. Also, in (a) (extreme case) and (b) (normal case), the system is
asymptotically convergent towards the origin. 69

9

3-3 Example that shows the deterministic effect of M̂ (left) and the stochastic
effect of b̂j [k] (right) on a random position of ẑj [k], for ω = 0.6, ĉ = 4 and
∆t = 1. No matter the location of ẑj [k], the point M̂ẑj [k] will always be
located closer to the origin, lying on a1. The point ẑj [k + 1] will always
be located in-between the lines a2 and a3. The vector b̂j [k] is always
parallel to the hatching lines of the shaded-hatched region, which have
gradient 1

∆t . The shaded-hatched region represents all possible states
ẑj[k + 1]. For this system, A+

j = 4 m/s2, A−j = 8 m/s2 and Uj = 10 m/s. 71

3-4 The maximum observed velocities at each second, for swarms of 10, 100
and 1000 particles (in order from darker green to lighter green regions).
The blue solid line represents the value of the desired maximum velocity
U and the red dashed line represents the value of the Acceleration-Time
product (A+ × ∆t. The yellow solid line is the velocity of a random
particle. In (a) and (d), the simulations have the same sensitivity factor
β = 1 and showcase similar maximum observed velocities. Similarly, in
(b) and (c), the sensitivity factor is β = 0.2 and the simulations showcase
similar maximum observed velocities. 76

3-5 The maximum observed velocities at each second, for swarms of 10, 100
and 1000 particles (in order from darker green to lighter green regions).
The blue solid line represents the value of the desired maximum velocity
U and the red dashed line represents the value of the Acceleration-Time
product (A+ × ∆t. The yellow solid line is the velocity of a random
particle. In (a), the desired maximum velocity U decreases at 34 s and
increases again at 67 s varying β from low to high to low. In (b), both
the desired maximum velocity U and acceleration A+ decrease at 34 s

and increase again at 67 s varying β from high to low to high. In (c),
both the desired maximum velocity U and acceleration A+ decrease at
34 s and increase again at 67 s while β remains high at all times. 78

4-1 The obstacle map used in both MATLAB and Gazebo simulations. The
blue square on the left shows the starting area where robots are initialised
and the red square on the right shows the position of the source. The
obstacles become denser the closer to the source. 96

10

4-2 (a) shows the real Robotnik Summit XL Steel platform (Robotnik Au-
tomation S.L.L. n.d.), while (b) shows a simulated modified model of
the platform used in some of the following simulations. The robots are
equipped with mecanum wheels for holonomic motion and a contact sen-
sor (green link) to detect collisions. 97

4-3 The three possible cases that are covered by the calibration strategy dur-
ing DVC. The green circle represents the robot and the red crossed circles
are the obstacles. The dotted lines show how the six sensing regions are
separated and the dashed circle represents the maximum detection range
of the robot. If no obstacle is present, as in (a), c1 + c2 (blue region) is
maximised and c3 = 0. If one obstacle is present, as in (b), c1 + c2 is
limited by the distance to the obstacle; c3 (orange region) is increased
to cover the extra potential for movement. If two or more obstacles are
present, as in (c), c1 + c2 is limited by the distance to the closest ob-
stacle and c3 (orange region) is increased to cover the extra potential
for movement but it is also limited by the distance to the second closest
obstacle. 99

4-4 Image of the Gazebo environment during the operation of the obstacle
course simulations. The global minimum of the fitness function (source)
is assumed to be located on the right side of the image outside the obstacle
course (the source is not represented by an actual object in order to avoid
collisions with the robots). The grey cylinders are the obstacles while
the green and red circles are the robots. The green robots are currently
operational while the red robot has collided with an obstacle. 100

4-5 Graph of the flow of information between ROS nodes (circles) and ROS
topics (rectangles) for a swarm of 2 robots, during the obstacle course
simulations. For the operation of the PSO algorithms, each robot main-
tains four nodes (PSO_control, check_pbest, mecanum_control and
produce_avoid_vectors) and four local topics (odom, avoid_agents, pso_vel
and cmd_vel). There also exist two global topics that can be accessed by
all robots (all_pos which contains the current positions of all robots and
p_best which contains the current personal best locations of all robots). 101

4-6 Median CoM fitness over time results for different cases. The dotted lines
represent the obstacle layers of the obstacle course. 103

4-7 The expected number of collided vs operational robots at the end of the
median simulation for different cases. 104

11

5-1 Visualisation of the PSO particles for the 2D and the 3D case. The
particles tend to gather on the global coordinate axes, forming cross-
shaped patterns. This is understood to be the result of the decoupling
of the velocity components, along with the use of global coordinate axes.
(Spears et al. 2010) . 111

5-2 Schematics that show the separation of the velocity components for a
robot-centred frame of reference, where the green circle is the robot and
the yellow arrow indicates its orientation. In (a), the velocity compo-
nents v1 and v2 represent the longitudinal and lateral linear velocities
of the robot respectively, while in (b), the velocity components v and w
represent the linear and angular velocities of the robot respectively. . . . 113

5-3 Schematics that explain the DVC tuning strategy for the control of non-
holonomic vehicles. The vehicle is described by the centred circle, where
the arrow describes its orientation. The numbered areas represent the
sensing regions of the vehicle and the circular dashed line represents its
maximum sensing range. The red circles represent obstacles. In (a), the
sensing regions are numbered. In (b), one obstacle is detected on the
front left of the robot. This will cause a decrease in the linear velocity
(represented by a decrease in the green region) and it will cause the robot
to rotate rightwards. Furthermore, the linear velocity of the robot will
be limited. In (c), There exist two obstacles, one on the left and one on
the right, at an equal distance from the robot. This will limit the linear
velocity of the robot but it will not cause any rotation. 120

5-4 A simulated swarm of 20 robots (green circles) that are controlled by
the non-omnidirectional PSO controller. The red lines indicate the past
positions of each robot in the last 15 seconds. The robots never stop
moving while no collisions occur between them. 123

5-5 Median CoM fitness over time results for the non-omnidirectional and
the omnidirectional PSO controllers. The transparent areas also show
the 5th and 95th percentile CoM fitnesses of each controller. The dotted
lines represent the obstacle layers of the obstacle course. 124

6-1 Schematics that describe the two main types of signal propagation, using
a ship-mounted SONAR as an acoustic source example. 132

6-2 Composite of ambient-noise spectra, summarizing results and conclu-
sions about spectrum shape, level, and probable sources of ambient noise
between 1 Hz and 100kHz (Wenz 1962). 136

12

6-3 Schematic that describes how an incoming signal emitted by an external
wavefield source (ship) is received by a pair of hydrophones (black circles).
In this case, the signal is first received by the right-most hydrophone and
after time τlag, it is received by the left-most one. The angle α is the
AOA of the signal (i.e. direction towards the source). 138

6-4 Schematics that describe the two problems of directional ambiguity, where
the black circles represent the pair of hydrophones. In (a), the angle α is
the calculated angle of arrival of the signal. The solid and dashed green
lines are the leftward and rightward candidate directions towards the
source respectively. In (b), the green (middle) signal represents the sig-
nal emitted by the source, while the red and blue (side) signals represent
ambiguities caused by the hydrophone separation. The corresponding
red, green and blue phase profiles show how all three signals can result
in the same phase difference for the two hydrophones (arrows on the
phase-distance graph). 140

6-5 Normalised polar sensitivity pattern for hydrophone arrays with different
number of elements. The hydrophone arrays are placed vertically (i.e.
the −90o to 90o line) and consecutive hydrophones are separated by a
distance of λ/2, where λ is the wavelength of the received signal. The
figures were obtained using the MATLAB Phased Array System Toolbox. 142

6-6 Simulated performance results for two different hydrophone configura-
tions, for the task of source localisation. In (a) and (b), even though a
third non-colinear hydrophone is used, its improper placement does not
fully resolve ambiguities. In (c) and (d), a fourth hydrophone is used and
the hydrophones are more uniformly distributed and therefore ambigu-
ities are fully resolved. The simulated signal used was broadband with
frequencies in the range 1 kHz to 10 kHz, the signal propagation speed
was 1500 m/s and the SNR of the hydrophone signal readings was 10 dB

(Wang et al. 2019). 143

7-1 A swarm of robots (white rectangles) that uses B-PSO to estimate the
location of an acoustic source (ship). Solid rays are source rays and
dashed rays are ambiguous rays. The numbers next to each ray intersec-
tion (circles) represent the type of intersection. The red circles indicate
the intersections that would likely be selected by at least one robot (i.e.
furthest intersection from the robot). In this way, selected intersections
are more likely to be intersections of source rays. 154

13

7-2 Distances of CoM to source at different initial SNR values (SNR0) for
the tested algorithms. The solid lines represent the median distance from
source over 100 simulations and the transparent areas the 90% percentile
range. 163

7-3 Graphical representation of the routes followed by the CoM of 100 swarms
for each method. The image at the bottom plane of each graph shows
contours of the number of swarms (CoM) that passed from different lo-
cations. The red, green and blue lines represent the routes followed by
three randomly selected swarms with respect to time. The corresponding
dashed lines represent the 2D projections of these routes on the Timesteps
vs Spatial-steps vertical plane. 164

7-4 Normalised time needed for the CoM of a swarm to reach convergence
(distance dc from the source) for each algorithm, for different values of
Q and D/λc . Each point represents the median performance over 100
swarms. The red lines represent the locations where the Q-factor is 1
and 10. The vertical blue solid line represents the simulations of Figure
7-2. The vertical black dashed and cyan dashed-dotted lines represent
the Q-factors of the sound generated by two electrically-propelled UUVs,
REMUS-100 and Odyssey IIb respectively (Gebbie et al. 2012, Zimmer-
man et al. 2005, Holmes et al. 2010). Note that although a D/λc axis
is included for A-PSO, it does not affect the position of the hydrophone,
since only one is used for that algorithm, located in the middle of the
robot. 167

7-5 Normalised time needed for the CoM of a swarm to reach convergence
(distance dc from the source) for each algorithm, for different values of U
and Q. Each point represents the median performance over 100 swarms.
The red lines represent the locations where the Q-factor is 1 and 10. The
vertical blue solid line represents the simulations of Figure 7-2. The ver-
tical black dashed and cyan dashed-dotted lines represent the Q-factors
of the sound generated by two electrically-propelled UUVs, REMUS-100
and Odyssey IIb respectively (Gebbie et al. 2012, Zimmerman et al. 2005,
Holmes et al. 2010). 168

14

8-1 Schematics that explain the operation of Generalised Triangulation PSO.
The red spheres represent the locations of robots and the green sphere
represents the location of the source. The height of each robot’s position-
intensity (black spheres) represents the average intensity of the sensor
readings of the corresponding robot. The blue triangle is the position-
intensity plane and the red arrow represents its normal. The dashed red
arrow is the projection of the normal on the xy-plane and it is collinear
with the source. In (a), the z-component of the normal is negative
and therefore its projection points towards the source. In (b), the z-
component of the normal is positive and therefore its projection points
away from the source. 175

8-2 Percentile Distances of CoM to source at different SNR0 for the tested
algorithms. The solid lines represent the median route over 100 simula-
tions, the 50% transparent areas represent the 50% percentile range and
the 90% transparent areas the 90% percentile range. 181

8-3 Instances of the simulations carried out for the task of source entrap-
ment/escorting. In the simulations, a swarm of robots (white rectangles)
is tasked to maintain a minimum distance r, represented by the red
ring, from the source (red target). In (a), the source is stationary while
in (b), the source is moving towards the right with normalised velocity
vn = 0.25. In both simulations, the number of robots in the swarm is
40 and the power spectral density of the emitted signal at source level is
120 dB re 1µPa2/Hz. The blue lines represent the path of each robot in
the last 15 timesteps. 184

8-4 Probabilistic distribution of the swarm relative to a stationary source
(red dot). The source emits a signal with constant power spectral density
PSDs that the robots can detect. The swarm consists of N robots that
are required to maintain a specific distance r (red ring) from the source.
The shaded regions represent the probability that a robot will be found
in a specific location at any given point. The black outline represents
the locations where, there exists a 0.1% probability that a robot will be
found there at any point. 185

15

8-5 Probabilistic distribution of the swarm relative to a source (red dot).
The source is moving with normalised velocity vn towards the right and it
emits a signal with constant power spectral density PSDs that the robots
can detect. The robots are required to maintain a specific distance r (red
ring) from the source. The shaded regions represent the probability that
a robot will be found in a specific location at any given point. The black
outline represents the locations where, there exists a 1% probability that
a robot will be found there. 187

9-1 Flow chart that explains which of algorithms proposed in this thesis
could be used for the control of a robotic swarm, based on the motion
characteristic of the robots in the swarm and the source that needs to be
localised. 194

16

List of Tables

4.1 Table of values used for different parameters 95

5.1 Table of values used for different parameters of the two PSO controllers
for the obstacle course simulations. 124

7.1 Selected parameter values to approximate a marine source localisation
scenario . 160

8.1 Selected parameter values to approximate a marine source localisation
scenario . 180

17

Chapter 1

Introduction

1.1 Thesis Motivation

The oceans cover more than 70% of the earth’s surface and they contain around 97%
percent of its resources in water. They also comprise over 90% of the planet’s living
space and they play a significant role in the regulation of the earth’s environmental
balance, either by the massive contribution of oxygen into the planet’s atmosphere
through phytoplankton photosynthesis or the large amounts of evaporated water that is
then transported to land through precipitation (Jonasdottir 2016). Throughout history,
humans have made use of the sea as a means for sustenance, transport, commerce,
growth, and inspiration.

With the advancement of society and technology, the increasing number of human
activities in oceanic and marine environments has gradually affected their natural bal-
ance, through the introduction of noise and chemical pollution, which can eventually
lead to catastrophic consequences (Hildebrand 2005). Significant research is therefore
currently focused on understanding the impact that human activities have on oceanic
environments and marine life, in order to allow proper regulations and measures to
be introduced. Despite the commonly acknowledged importance of oceans, more than
80% of them is yet to be observed, mapped or explored. This number does not only
include the underwater landscape, but also life below the ocean surface. To properly
understand how anthropogenic pollution affects marine life, it is therefore important to
also study the different marine environments and species themselves.

Traditional marine environment monitoring systems employ a single oceanographic re-
search vessel, equipped with all the necessary sensors for the acquisition of data (Wüst

18

1964). This method of study of marine environments is expensive, time-consuming and
unable to study efficiently the large areas that need to be explored. Furthermore, its
measurements often have very low resolution in both time and space (Xu et al. 2014).
To address this, recent research has focused on the development of wireless sensor net-
works, which can be low-cost, semi-disposable and enable the distribution of sensors over
large areas for simultaneous data collection and higher resolution measurements. Such
networks typically consist of a large number of dedicated sensor nodes capable of sens-
ing the environment around them and limited processing of the collected data, before
they are transmitted to a central location (Xu et al. 2014). In the last decade, wireless
sensor networks have been successfully used in applications such as water monitoring
(Jiang et al. 2009, Pérez et al. 2011), animal behaviour monitoring (Cedeño-Antunez
et al. 2019), disaster prevention (Iacono et al. 2010) etc.

Despite their advantages, wireless sensor networks also come with several disadvan-
tages. Namely, they require higher water resistance and stronger robustness to ensure
survival and proper operation in aggressive and dangerous environments, higher energy
consumption due to communication and data transmission and they are susceptible to
measurement disturbances that can be caused by the interference from antennas used
for communication. Additionally, static networks (e.g. ones that employ buoy devices
as sensor nodes) can be negatively affected by the unintentional movement of the sen-
sors or they may be incapable of studying moving targets (e.g. marine species)(Xu et al.
2014).

To address this last disadvantage, the research community has focused on the intro-
duction of autonomous movement capabilities into wireless sensor networks, which can
enable the individual nodes to be used for the localisation of marine species and their
continuous monitoring. A research field that offers methodologies particularly suitable
for the decentralised control of a large number of low-cost, semi-disposable nodes is that
of swarm robotics. The emergent swarm behaviours of robotic swarms are inherently
characterised by scalability, adaptability and robustness, thereby satisfying several of
the requirements of wireless sensor networks (Couceiro et al. 2013, Shin & Lee 2020).

Swarm robotics is a relatively new field of study. What differentiates it from other
cooperative robotic systems is that cooperative behaviour is not explicitly programmed
in the control algorithms of the robots. Instead, it emerges from the decisions of in-
dividual robots, thereby allowing the control of an arbitrarily large number of robots
without increasing computational complexity. Additionally, no single robot is crucial
for the correct operation of a swarm. This makes robotic swarms particularly suitable
for use in dangerous and unexplored environments where the loss of several robots may

19

be unavoidable. While the field of swarm robotics has seen significant advancement in
recent years, standardisation of its methodologies is a milestone that has not yet been
achieved (Nedjah & Junior 2019). The inherent complexity of swarm behaviours makes
swarm control algorithms difficult to be implemented. Additionally, the need to acquire
and maintain a large number of individual robots makes the real-world testing of robotic
swarm systems difficult. For this reason, validation of generalisable swarm control al-
gorithms is usually limited to the use of simulations, while the small number of tested
real-world swarm robotic systems are typically application specific (Hamann 2018).
Therefore, to open the way towards the implementation of real-world autonomous ma-
rine swarms, it is first desirable to show how swarm control algorithms could achieve
their proper control.

This thesis will focus on the study and development of algorithms for the control of
marine robotic swarms with the task of underwater acoustic source localisation and
monitoring. Marine acoustic sources that can be localised and monitored using such
a system mainly include biological sources (e.g. marine mammals) and anthropogenic
sources (e.g. transportation vessels, unmanned underwater vehicles etc.). The thesis
will aim for the development of generalised algorithms in order to contribute towards
the standardisation of the field of swarm robotics with specific focus on the tasks of
source localisation and monitoring.

1.2 Covid-19 Pandemic Impact

The project described in this thesis was affected by the 2020 Covid-19 pandemic lock-
down. The presented algorithms and simulation results were planned to be validated
using real-world experiments that would take place during the 2020-2021 period and
which were ultimately not carried out. Instead, the MATLAB simulations were vali-
dated using Gazebo, a realistic robot simulation software that benefits from a detailed
physics engine.

1.3 Contributions

The contributions of this thesis to the fields of swarm and marine robotics are:

1. A novel control algorithm is introduced by modifying a prevalent swarm intelli-
gence algorithm (particle swarm optimisation), allowing low-level motion control
of robotic swarms. The algorithm offers the following advantages that are cur-
rently not shared by other swarm intelligence algorithms:

20

• It enables direct control of the motion of the robots by taking into account
kinematic and dynamic constraints posed by the robot.

• It allows consideration of the refresh rate of each robot’s controller, resulting
in the proper synchronisation of the controller with the physical robotic
platform.

• It enables the merging of a large number of swarm robotic off-the-shelf algo-
rithms and techniques, meant to address different swarm robotic tasks, while
maintaining their scalability, adaptability and robustness - a milestone that
has not yet been reached in the swarm robotic literature.

• Its inherent functionality allows it to be adapted for use in a variety of swarm
robotic scenarios, beyond source localisation and monitoring.

These capabilities of the algorithm are demonstrated in Chapters 3 to 5 using
MATLAB and Gazebo simulations for robots with both omnidirectional and non-
omnidirectional motion.

2. Through further modifications of particle swarm optimisation, three additional
algorithms are introduced in Chapter 7 that enhance its source localisation capa-
bilities using wavefield correlation techniques currently used in multi-hydrophone
array systems. The proposed algorithms achieve improved localisation range and
faster and more consistent convergence towards the source. The algorithms are
tested using MATLAB simulations and the results are generalised for use in acous-
tic source localisation of various signal characteristics.

3. Finally, Chapter 8 demonstrates how the algorithms introduced in the rest of the
thesis can be combined to allow interaction with the source. In this way, the swarm
can avoid, encircle and follow the source, allowing its continuous monitoring. This
capability, demonstrated through MATLAB simulations for both stationary and
moving sources, is not offered by current source localisation algorithms used in
swarm robotics and it is crucial for the implementation of a real-world system
capable of source monitoring.

Some of the work presented in this thesis is based on the following publications:

• Rossides G, Metcalfe B, Hunter A. Particle Swarm Optimization − An Adaptation
for the Control of Robotic Swarms. Robotics, 10(2), 2021.

• Rossides G, Hunter A, Metcalfe B. Source Localisation using Wavefield Correla-
tion enhanced Particle Swarm Optimisation. Robotics, 11(2), 2022.

21

References

Cedeño-Antunez, U., Carvajal-Gamez, B. E. & Pallares-Calvo, A. E. (2019), Wire-
less System Based in Cellular Network for Monitoring Marine Mammals at Mexican
Coast, in ‘2019 IEEE 8th International Workshop on Advances in Sensors and Inter-
faces (IWASI)’, pp. 251–254.

Couceiro, M. S., Rocha, R. P. & Ferreira, N. M. F. (2013), ‘A PSO multi-robot explo-
ration approach over unreliable MANETs’, Advanced Robotics 27(16), 1221–1234.
URL: https://doi.org/10.1080/01691864.2013.819605

Hamann, H. (2018), Introduction to Swarm Robotics, Springer International Publishing,
Cham, pp. 1–32.
URL: https://doi.org/10.1007/978-3-319-74528-2_1

Hildebrand, J. (2005), Impacts of Anthropogenic Sound.

Iacono, M., Romano, E. & Marrone, S. (2010), Adaptive monitoring of marine disasters
with intelligent mobile sensor networks, in ‘2010 IEEE Workshop on Environmental
Energy and Structural Monitoring Systems’, pp. 38–45.

Jiang, P., Xia, H., He, Z. & Wang, Z. (2009), ‘Design of a water environment monitoring
system based on wireless sensor networks.’, Sensors (Basel, Switzerland) 9(8), 6411–
6434.

Jonasdottir, S. (2016), State of the earth´s oceans. Sustain Abstract S-3; Sustain-ATV
Conference 2016 : Creating Technology for a Sustainable Society ; Conference date:
30-11-2016 Through 30-11-2016.
URL: http://www.sustain.dtu.dk/about/sustain-2016

Nedjah, N. & Junior, L. S. (2019), ‘Review of methodologies and tasks in swarm robotics
towards standardization’, Swarm and Evolutionary Computation 50, 100565.

Pérez, C. A., Jiménez, M., Soto, F., Torres, R., López, J. A. & Iborra, A. (2011), A
system for monitoring marine environments based on Wireless Sensor Networks, in
‘OCEANS 2011 IEEE - Spain’, pp. 1–6.

Shin, C. & Lee, M. (2020), ‘Swarm-Intelligence-Centric Routing Algorithm for Wireless
Sensor Networks’, Sensors 20(18).
URL: https://www.mdpi.com/1424-8220/20/18/5164

Wüst, G. (1964), ‘The major deep-sea expeditions and research vessels 1873-

22

1960. A contribution to the history of oceanography’, Progress in Oceanography
2, 1,3,IN1,7,IN6,11,IN9,15,IN13,19–1,6,IN4,10,IN7,14,.

Xu, G., Shen, W. & Wang, X. (2014), ‘Applications of Wireless Sensor Networks in
Marine Environment Monitoring: A Survey’, Sensors 14(9), 16932–16954.
URL: https://www.mdpi.com/1424-8220/14/9/16932

23

Chapter 2

Introduction to Swarm Robotics

Swarm robotics is a part of the umbrella of cooperative robotics and Multi-Robot Sys-
tems (MRS), as shown in Figure 2-1. The main difference between swarm robotics and
other MRS approaches is that it aims to achieve control of large numbers of robots
(tens to thousands) that can collaboratively achieve a specific goal. More specifically,
it is defined by Şahin (2005) as:

"The study of how a large number of relatively simple, physically embodied agents
can be designed such that a desired collective behaviour emerges from the local
interactions among agents and between the agents and the environment."

From here, several characteristics emerge that can be used to differentiate a robotic
swarm from other MRS (Şahin 2005, Senanayake et al. 2016):

• The robots that consist the swarm should be autonomous agents that can move
and sense the real-world. Alternatively, particles that exist in a simulation and
are controlled by a specific algorithm could also be considered a swarm as long
as the algorithm treats them as individual particles that move using information
that they have obtained on their own or have been shared by other particles in
the swarm.

• The algorithm that controls the robots must be designed to control large swarms.
Note that this does not prohibit the use of a small number of robots in a swarm,
as long as the emergent behaviour is scalable to large numbers. This is often a
source of confusion, as people can be mislead to think that robotic swarms must
necessarily be large. In fact, the phrase "graceful performance degradation" can
be used to describe how the performance of robotic swarms degrades gracefully

24

Figure 2-1: Schematic of field delimitation for Mobile Robotics, Multi-Robot Systems,
and Swarm Robotics. (Dias et al. 2021).

with a smaller number of robots, in contrast to other cooperative robotic schemes
that may completely stop operating as soon as a single robot is lost (Portugal &
Rocha 2016).

• Even though heterogeneous swarms can exist (i.e. swarms that consist of different
types of robots), each heterogeneous swarm must consist of homogeneous groups
(i.e. groups that consist of the same type of robots), where each homogeneous
group must have a fair number of robots to ensure scalability. In other words, a
heterogeneous swarm must consist of at least one homogeneous sub-swarm.

• The individual robots must be relatively incapable of achieving the overall goal on
their own. The goal should only be achievable through the emergent collaborative
behaviour of the whole swarm.

• The robots should make their decisions based on local information collected by
themselves or communicated by other robots. This is an important characteris-
tic that aims to simplify the control algorithms and promote scalability. As the
goals of individual swarm robotic systems become more complicated, the prac-
titioner may be tempted to achieve them by supplying the individual robots of
the swarm with more information. This bears the risk of making the control
algorithm application-specific or even non-scalable. Instead, the abilities of the
individual robots should be kept constrained and if necessary, a larger number of

25

robots should be introduced.

The term swarm intelligence was first proposed by Beni & Wang (1993) and it is con-
sidered to be a subset of artificial intelligence. When it comes to robotics, it refers to
the algorithms used for the control of robotics swarms (Beni 2005, Sharkey 2007), but
it has been also successfully used in a number of other applications, including numeri-
cal optimisation. In engineering disciplines, swarm engineering (Kazadi 2000, Winfield
et al. 2005) refers to the discipline that aims to combine dependable systems and swarm
intelligence.

Systems that employ swarm intelligence share the following three main characteristics
(Bayindir & Sahin 2007, Senanayake et al. 2016):

• Scalability: The ability of an algorithm to control the behaviour of an arbitrary
number of individuals. The number of individuals should not affect the perfor-
mance of the algorithm considerably. In swarm robotics, this ensures that the
same algorithm can be used on a large swarm of 1000 robots and a small swarm
of 10 robots, with the overall emergent behaviour being fairly similar.

• Adaptability: The ability of the system to adapt to different environmental
conditions. In swarm robotics, this is achieved through the constraint that is
applied on the robots to only be able to sense their local environment. As long
as each robot is capable of reacting correctly to different local factors, it does not
matter how the overall global environmental factors change over time - the swarm
will be able to adapt correctly.

• Robustness: The ability of a system to continue operating correctly, even in the
presence of partial failures or imperfect environmental conditions. Robustness
is a direct by-product and an extension of scalability. In swarm robotics for
example, even if a number of individual robots break down during operation, the
performance of the swarm will degrade gracefully, due to its inherent scalability,
making the overall system also more robust. On the other hand, robustness also
adds the condition that if a small number of robots end up supplying the swarm
with bad information (e.g. due to faulty sensor readings), the swarm should still
be able to achieve its goal.

Based on these characteristics of swarm intelligence, several other characteristics can
be derived that are inherent to swarm robotics systems, such as the use of simple, low-
cost, semi-disposable robots and derivative-free optimisation control (i.e. optimisation
of the swarm behaviour without the need for complex higher-order information about

26

the environment). In turn, these characteristics of swarm robotics systems make them
perfect candidates for applications that require operation in large, unexplored and pos-
sibly dangerous areas, where the landscape is unknown, various threats can exist and
the loss of individual robots may be unavoidable.

The rest of this chapter will aim to present in depth, the algorithms and methodologies
that constitute the fields of swarm intelligence and swarm robotics. Example applica-
tions will also be presented for each algorithm. Section 2.1 will present existing swarm
intelligence algorithms, Section 2.2 will describe a number of swarm robotic tasks and
behaviours, relevant to the overall goal of this thesis. In the end, Section 2.3 will discuss
gaps in the literature and opportunities that can be identified from the current state of
the field.

2.1 Swarm Intelligence Algorithms

Swarm Intelligence Algorithms (SIAs) were initially almost exclusively bio-inspired.
Nature has provided a plethora of examples of cooperative and swarm behaviour and
researchers have drawn inspiration from these for the development of early SIAs. Some
examples of biological sources of cooperative and swarm behaviour are ants, bees, fire-
flies, glow-worms, bats, monkeys, lions and wolves (Chakraborty & Kar 2017).

With the passing of time and the advancement of swarm intelligence studies, several
key concepts were extracted from the bio-inspired algorithms and were used for the
creation of new SIAs that could no-more be characterised as bio-inspired (Senanayake
et al. 2016). Such concepts include:

• stigmergy (Grassé 1959, Theraulaz & Bonabeau 1999), where robots exchange
information through the use of artificial pheromones that they leave behind at
locations from which they have passed.

• potential fields (Khatib 1985), which make use of global, virtual force vector fields
for the coordination and movement control of robots.

• physics-based laws to compute local virtual forces (Spears et al. 2004), where
instead of global virtual force fields, each robot computes the virtual forces on its
own, based on local information that it has collected.

• flocking (Reynolds 1987), which concerns itself with the coherent coordination
and movement control of the swarm, so that it can travel efficiently over long
distances.

27

• population-based stochastic optimisation (Nayak et al. 2019), where a large num-
ber of robots are used to identify the global extremum of a fitness/cost function.

The rest of this section will present a number of the most popular SIAs and control
techniques currently provided in the literature (both bio-inspired and non-bio-inspired).
Since the overall goal of this thesis is the development of a system used for source
localisation and area searching, the following presentation of SIAs will focus on the
ones that are mostly related to these tasks. Applications of these algorithms will also
be presented.

2.1.1 Particle Swarm Optimisation

One of the most popular and widely-used SIA is Particle Swarm Optimisation (PSO)
(Kennedy & Eberhart 1995). It is a population-based stochastic optimisation algorithm
that was inspired from the behavioural model of Reynolds (1987), created to describe the
collective behaviour of bird flocks and fish schools. PSO was created with simplicity in
mind and for use in multi-dimensional numerical optimisation tasks, where a population
of virtual particles explore the problem space, evaluating the fitness/cost of different
locations (corresponding to tunable parameter values). Its inherent scalability and
bio-inspired nature eventually motivated its proposal for use for the control of robotic
swarms (Hereford et al. 2007, Pugh & Martinoli 2007). This is achieved by equating
the behaviours of real-world robots of a swarm to the behaviours of PSO particles.

The fundamental aim of PSO is to identify the location inside a multi-dimensional space
that minimises a cost function (or maximises a fitness function) through the use of a
swarm of virtual particles. At each timestep, every particle calculates the cost of its
current location. Each particle remembers its past location that resulted in the lowest
cost (personal best location). The particles share their personal best locations with the
rest of the swarm and the one with the lowest cost is selected (global best location).

The motion of each particle is described by the velocity update equation

ui[k + 1] = ωui[k] + c1r1 ◦ (yi[k]− xi[k]) + c2r2 ◦ (yg[k]− xi[k]), (2.1)

and the position update equation

xi[k + 1] = xi[k] + ui[k + 1], (2.2)

where ui[k] and xi[k] are the velocity and position of particle i at timestep k. The ◦
operator denotes element-wise multiplication and the vectors r1 and r2 are vectors of

28

random components in the range [0,1). The locations yi and yg are the personal best
location for particle i and the global best location respectively. The PSO parameters
ω, c1 and c2 are known as the inertia weight, the cognitive coefficient and the social
coefficient respectively (Cleghorn & Engelbrecht 2018). Alternatively, c1 and c2 are
known as the accelerating coefficients and their corresponding terms in (2.1) are known
as the accelerating terms.

After initialising the particle swarm inside a multi-dimensional environment, the par-
ticles will make use of their own measured location costs as well as the ones commu-
nicated by other particles to converge towards locations of low cost. The purpose of
the algorithm is for the swarm to eventually converge on the global minimum of the
cost function, as shown in Figure 2-2. Swarm robotic applications of PSO are typically
source localisation applications, where the fitness/cost function is defined with respect
to properties of the signal emitted by the source (e.g. signal intensity). In this way, the
global extremum of the fitness/cost function (e.g. location of maximum signal intensity)
is the location of the source.

Figure 2-2: Graphical representation of the optimisation process of a particle swarm
in a 2-dimensional search space (i.e. two tunable parameters). The vertical dimension
represents the cost of locations and the red spheres represent the particle swarm. The
eventual goal of the swarm is to converge to the global minimum of the cost function.
Images (a) to (c) show different stages of the optimisation process, from early to late
stages (Tehrani et al. 2017).

By adjusting the value of the inertia weight ω, the convergence rate of the swarm is
controlled (Juneja & Nagar 2016), such that, small values of ω will result in steady and
rapid convergence towards the currently known minima of the cost function, while large
values of ω will cause the particles to overshoot as they pass from the known maxima,
thereby promoting exploration but slowing the convergence of the swarm.

29

The values of the cognitive coefficient c1 and the social coefficient c2 can be adjusted to
further control the exploration/exploitation tendencies of the swarm (Juneja & Nagar
2016). When c1 � c2, the particles will prioritise movement towards their own personal
best locations y, with the aim to spend more time exploring the different areas of the
simulated environment for the identification of minima. Conversely, when c1 � c2, the
particles will prioritise movement towards the current global best location yg. This will
cause the whole swarm to converge quickly towards a single location, exploring the area
in its way. After convergence to a location has been achieved, further exploration is
very limited - this is known as the Diversity Loss problem (Blackwell 2007).

PSO is widely used and there have been numerous studies about its different character-
istics, behaviours and variations. Despite its popularity, to date it has not been possible
to prove mathematically that PSO will eventually converge to the global minimum of its
cost function. In recent stability analyses (Ozcan & Mohan 1999, Trelea 2003, Liu 2014,
Bonyadi & Michalewicz 2016, Cleghorn & Engelbrecht 2018), it has been possible to
show that PSO particles will always remain stable (i.e. will not diverge uncontrollably)
when certain PSO parameter values are used, but all of these analyses use simplifying
assumptions.

Most of the PSO variants are specifically created for use in numerical optimisation
problems. That said, some of these variants can be applied to swarm robotic applica-
tions. Some of the most important variants (Eberhart & Shi 2001) replace the global
best location yg of the original PSO with a neighbourhood best location yn, which is
calculated using the personal best locations y of surrounding robots instead of all the
robots in the swarm. This can be especially useful in swarm robotics, since physical
robots typically have a limited communication range and they may only be able to
communicate with a limited number of other robots in the swarm.

Other useful variants are concerned with the use of dynamic cost functions (Carlisle
& Dozier 2000, Fernandez-Marquez & Arcos 2009). The original PSO requires an im-
mutable environment (i.e. when personal best location yi is selected by robot i, it is
assumed that the cost of that location does not change over time). This can be a prob-
lem when noisy or dynamic cost functions are used (i.e. the cost of a location changes
over time) - this is known as the Outdated Memory problem of PSO (Blackwell 2007).
In the real-world, cost functions are expected to be both noisy (e.g. noise in the signal
readings of a robot) and dynamic (e.g. if the source moves, the cost at certain locations
will change). Therefore, PSO variants that deal with dynamic cost function can be
especially useful in swarm robotics (Zhang et al. 2019, 2020).

30

2.1.2 Ant Colony Optimisation

Another popular swarm intelligence algorithm is Ant Colony Optimisation (ACO)
(Dorigo et al. 2006). ACO was inspired from the foraging behaviour of ants. In nature,
ants employ the concept of stigmergy to minimise the travelling distance to sources
of food. As the individual ants roam randomly in search of food, they leave trails of
pheromones that fade away over time. When other ants detect the trail of pheromones,
they follow it, enhancing it with their own pheromones. Over time, the ants tend to fol-
low and enhance shorter trails, while the longer ones are left to fade away. In this way,
the shortest route to the food source is identified. The algorithm has been successfully
used to tackle a variety of problems including data mining (Abraham & Ramos 2003),
the travelling salesman problem (Gambardella & Dorigo 1996) and the vehicle routing
problem (Bullnheimer et al. 1999).

2.1.3 Artificial Bee Colony Optimisation

Artificial Bee Colony Optimisation (ABC), is a numerical optimisation algorithm pro-
posed by Karaboga (2005), which aims to emulate the foraging behaviour of honeybees.
In nature, honeybees employ the waggle-dance (Biesmeijer & Seeley 2005) to communi-
cate the location of discovered food sources to other members of the colony. In ABC, the
individuals in the swarm are separated into three categories: the scouts, the onlookers
and the employed bees. The scouts randomly search the environment for food sources
(locations of high fitness). As soon as a scout discovers a source of food, it becomes an
employed bee, executing a virtual waggle-dance to communicate its location to other
bees. At that point, a number of onlookers that were waiting at the hive are assigned
to the source and begin exploiting it. If the source runs out of food (i.e. fitness of
location decreases), the onlookers return to the hive and the employed bee associated
with the source becomes a scout again. ABC has several important advantages over
other algorithms. Due to the way that it operates, exploration and exploitation happen
simultaneously and never stop. Furthermore, since it considers that sources of food can
eventually run out, it can be used for mutable problems and environments.

2.1.4 Glowwarm Swarm Optimisation

Glowworm Swarm Optimisation (GSO) (Krishnanand & Ghose 2009) is a bio-inspired
population-based stochastic optimisation algorithm designed to emulate the behaviour
of glowworms. In GSO, each individual glowworm emits a virtual luminescence quan-
tity called ’luciferin’, which increases or decreases gradually as the glowworm passes
from locations of high fitness or low fitness. At each timestep, each glowworm chooses

31

probabilistically another glowworm and moves towards it and glowworms with higher
luciferin have higher probability to be selected. The algorithm works in two stages for
each timestep k. In the first stage, the luciferin li[k] of glowworm i is updated using
the luciferin update rule

li[k + 1] = (1− ρ)li[k] + γJ i[k], (2.3)

where ρ is the luciferin decay constant (0 < ρ < 1), γ is the luciferin enhancement
constant and J i[k] is the output of the fitness function at the location of glowworm i

at timestep k. The second stage is the movement-phase, where each glowworm selects
another glowworm based on its ’luciferin’ value and moves towards it. A number of
different functions can be used for the selection step. Typically, these functions focus
on locality. In other words, each glowworm makes selects among its neighbouring glow-
worms and not the whole swarm. This allows GSO to be used in multi-modal problems,
where the swarm can be split into different groups, each one representing a different
local maximum of the fitness function. As soon as glowworm i selects to move towards
glowworm j, its position xi[k] at timestep k is updated using the position update rule

xi[k + 1] = xi[k] + s
xj [k]− xi[k]

‖xj [k]− xi[k]‖
, (2.4)

where s is the step size, which controls the maximum change in position that can occur
for each glowworm. This is one main difference that GSO has from PSO, where the
change in position for each particle is unbounded. This difference, along with GSO’s
ability to detect multiple local maxima can give GSO an advantage over PSO when it
comes to the control of robotic swarms for the source localisation.

2.1.5 Firefly Algorithm

The Firefly Algorithm (FA) is another bio-inspired population-based stochastic opti-
misation algorithm that aims to approximate the behaviour of fireflies in nature. In
this algorithm, each firefly emits a virtual glow that represents the fitness of its current
location. FA is very similar to GSO, in the sense that the fireflies in the swarm are
attracted to brighter fireflies and that it employs locality in order to be able to detect
multiple local minima. The difference is that while in GSO, the locality is enforced by
the selection process which forces a glowworm to move towards one of its neighbours,
in FA, a firefly moves towards all other fireflies. That said, the virtual glow of each fire-
fly diminishes with distance. Therefore, if all fireflies have the same fitness (i.e. same
brightness), a firefly will be more attracted towards fireflies that are closer to it, rather

32

than fireflies that are far away, thereby achieving locality. The rate that the brightness
β of a firefly diminishes with distance r is given by

β = β0e
−γr2 , (2.5)

where β0 is the brightness at distance r = 0 and γ is called the light absorption co-
efficient. Therefore, the change in position xi[k] of firefly i at timestep k, due to the
attraction towards firefly j is given by

xi[k + 1] = xi[k] + β0e
−γr2ij (xj [k]− xi[k]) + αεi[k], (2.6)

where rij is the distance between the fireflies i and j. The vector ε is a random vector
while the parameter α is a tunable parameter that controls the magnitude of ε. The
whole term αεi[k] is therefore a stochastic component added to the position update
equation, to promote exploration. This is another main difference between GSO and
FA. In GSO, all stochastic effects exist in the selection process of the neighbouring
glowworms. As soon as a neighbouring glowworm is selected though, the position update
rule becomes highly deterministic. The stochastic component in FA is an important
part of a swarm intelligence algorithm, because it can get the individual unstuck, from
situations where a more sophisticated deterministic path planning algorithm would be
required. Such stochastic components can be also seen in the position update equation
of PSO.

2.1.6 Potential Fields

The term potential fields refers to a family of non-bio-inspired techniques that are gain-
ing momentum in the search for control algorithms for swarm robotic applications. In
general, these algorithms treat sources of information in the environment (i.e. targets,
obstacles, other robots in the swarm etc.) as objects that exert forces (either attrac-
tive or repulsive) on each robot of the swarm, guiding its movements. The magnitude
of a force is usually dependent on the distance between the robot and the object of
interest. One of the first examples of such an algorithm (Parker 2002) aimed to ad-
dress the problem of Cooperative Multi-Robot Observation of Multiple Moving Targets
(CMOMMT). The algorithm is therefore named A-CMOMMT where the letter A stands
for ALLIANCE; a formalised approach for the implementation of force vector-fields by
the same author (Parker 1994).

The aim of A-CMOMMT is to guide the motion of the swarm, in order to maximise
the number of targets that are directly observed by at least one robot in the swarm

33

at all times. The direction of motion of each robot is calculated using a combination
of two different types of forces. Attractive forces are used to guide the robots towards
targets, while repulsive forces are used to guide the robots away from other robots of
the swarm. Figure 2-3a shows how an attractive force fi,t, exerted by target t on robot
i is calculated. Similarly, Figure 2-3b shows how a repulsive force gi,j exerted by robot
j on robot i is calculated.

(a)

(b)

Figure 2-3: Functions defining the magnitudes of virtual force vectors exerted on the
robots of the swarm. In (a), the forces are exerted by the targets and they are primarily
attractive forces. The region between distances do2 and do3 describes the ideal range
that the robot needs to maintain from the target. The distance described as "predictive
tracking range" signifies the limit beyond which, the target will not attract the robot. At
do1, the attractive force (positive force) becomes repulsive (negative force), to prevent
collision of the robot with the target. In (b), the virtual forces are exerted by other
robots in the swarm. These forces are always repulsive. Up until distance dr1, such a
force has constant repulsive effect. Beyond this distance, the magnitude of the force
drops linearly and becomes 0 at distance dr2, signifying the maximum distance at which
robots can exert forces on other robots.

34

The direction of motion of robot i is therefore given by

T∑
t=1

wi,tfi,t +

J∑
j=1

gi,j , (2.7)

where T is the number of targets around robot i and J is the number of other robots
around robot i. The parameter wi,t represents a weight, used to signify the intention of
robot i to move towards target t. In contrast to previous SIA that employed parameters
which were only tuned once, prior to the operation of the algorithm, the weights in A-
CMOMMT are meant to be dynamically altered during the operation of the swarm.

2.1.7 SIA Applications to Swarm Robotics

So far this chapter has presented the most relevant SIAs for the tasks of source locali-
sation and area searching. The rest of this section will present different swarm robotic
variations of these SIA and how they have been applied to different source localisation
and area searching scenarios.

Modelling the Individual Behaviours

SIAs can be used for the control of robotic swarms, by associating the motion of sim-
ulated agents (e.g. particles, ants, bees etc) of a simulated swarm, with the motion
of individual robots in a physical swarm. That said, since many SIA were originally,
designed for use in numerical optimisation tasks, they may not be readily applicable to
real-world robotic applications in their original form. Therefore, several variations have
been proposed that have been applied to different robotic scenarios. An overview of
ways that SIAs have been modified and used to directly control the motion of robotic
swarms will now be introduced.

dPSO: Hereford et al. (2007) tried to control a physical swarm of up to three robots
(mitEBots), using a modified version of PSO, called distributed-PSO (dPSO), with the
aim to detect the brightest spot of light in a room. The robots were equipped with
light sensors and the fitness of each location was selected based on the light intensity
observed at that location.

Hereford et al. (2007) recognise an important problem of the original PSO algorithm
that prevents it from directly being used to control physical swarms. In the original
algorithm, the motion of particles is assumed to be unconstrained (e.g. the velocities
of particles are unbounded both in terms of magnitude and direction). The physical
robots used on the other hand, have limited mobility (e.g. a limited turning radius, a

35

small maximum velocity and cannot move backwards) and therefore they may not be
able to react in the way requested by the PSO algorithm. To address this, dPSO does
not directly control the velocity of the robots. Instead, the output of dPSO is used to
determine a desired location that the robot tries to move towards in the next timestep
and the robot moves as close to it as it is permitted by its physical limitations.

A modification is also employed to limit the amount of communication needed by the
robots. In original PSO, each particle shares its personal best location with the rest
of the swarm at every timestep. This can result in a demand for a large exchange
of information that the swarm may not be able to support. To address this, a robot
will refrain from sharing its personal best location, if it is the same as in the previous
timestep. In other words, a specific personal best location is only shared the first time
it is selected by the robot.

Additionally, to further limit the amount of information exchanged, a soon as a new
personal best location is identified, only its fitness is shared with other robots (i.e. the
actual location is not shared yet). The other robots then examine whether this new
personal best location fitness is higher than the global best location fitness that they
currently know about and if it is, they request for the actual location information to be
transmitted.

Finally, the original PSO does not describe collision avoidance or how the robots should
behave if a collision happens. To address this, a behaviour was hardwired when a
collision occurred - the robots were programmed to back up and turn rightwards.

The experiments were performed using parameter values of c1 = 2, c2 = 2 and ω = 1.
Different experiments were run using different number of robots (1 to 3 robots) and
both with and without obstacles. Each experimental case was repeated 10 times and in
all cases, the swarms had from 60% to 100% success rate in finding the brightest spot.
The time taken to find the brightest spot varied significantly for different repetitions of
the same case. Figure 2-4 shows the results of one of the experiments carried out using
a single robot. In the figure, another difference of dPSO with the original PSO can be
seen. Since the robot is not able to move straight towards its personal best location,
due to its limited limited turning radius, it needs to execute a circular manoeuvre to
align itself properly with it. During this process, the robot explores the search space
further allowing it to discover new locations on its own. In this way, a single robot is
capable of exploring the search space and localising the global maximum of the fitness
function on its own.

In contrast, in the original algorithm, a particle moves straight to the personal/global

36

best location and as soon as it reaches it, has no reason to move away, needing to
wait for other particles to explore the search space and provide it with a new global
best location. Therefore, the original PSO is incapable of proper exploration when the
number of particles is very small. This is a useful capability of dPSO that could be
utilised in the future to enhance exploration. Nevertheless, such capability should be
realised in a predictable and controllable manner and not as a result of the robot not
being able to directly follow the commands of the PSO controller (as it is the case with
dPSO).

Bot start position

x (cm)

y
 (

cm
)

120

100

80

60

40

20

0
20 40 60 80 100 120 140 160 180 200

Figure 2-4: Results of the experiments carried out to assess the performance of the
dPSO algorithm, using 1 robot, without obstacles. The black lines represents the route
followed by the robot and the red square is the global maximum of the fitness function
(brightest spot). The red points represent consecutive desired locations towards which
the robot needs to move and which are calculated using dPSO. The circular shape of
the robot’s route is the result of its motion limitations (i.e. limited turning radius)
(Hereford et al. 2007).

Apart from the described experiments, other variations of dPSO were further used for
the control of robotic swarms in simulated environments. One variant (Perreault et al.
2014) shows how dPSO could be adapted for use in scenarios where communication

37

with all robots of the swarm is not always possible, while a second variant (Du 2020)
extends this approach to also achieve efficient communication with a stationary base
and multi-source tracking.

Modified-PSO: Pugh & Martinoli (2007) created a modified-PSO algorithm for use
in multi-robot stationary source searching, which was tested in 2D simulations, using
the robotic simulator Webots (Michel 2004). The fitness of each location is calculated
based on the intensity of the received signal. Like Hereford et al. (2007), they also
recognised that PSO assumes unconstrained motion of particles. However they chose to
ignore this and assume that the robots can move towards a new direction immediately.

They also identified an additional ambiguity in original PSO that they call Discrete
versus Continuous Time. PSO particles move in discrete timesteps, while real-world
robots move in continuous motion and a PSO timestep can correspond to different time
intervals in the real-world. The behaviour of the swarm can therefore change depending
on the real-world time interval associated with a PSO timestep.

As in (Hereford et al. 2007), the modified-PSO algorithm, acts more like a high-level
trajectory planning search algorithm rather than a low-level motion controller. The
algorithm provides the robot with a velocity and the robot is given a pre-set time
duration (corresponding to a single timestep) to move towards that direction. At the
end of each timestep, the robots check if they have collided with something. Also, in a
similar manner to (Hereford et al. 2007), the robots react to collisions, using pre-defined
behaviours, independent of the PSO algorithm.

The simulated environment used is of size 8×8 m and the robots have diameter 0.0265 m.
Finally, the algorithm is tested for different numbers of robots in the swarm (1-20) and
different maximum communication range values. The results successfully show that
the performance of the swarms (average distance from the target after 100 seconds)
improves with a larger number of robots and increased communication range.

RPSO and RDPSO: Robotic-PSO (RPSO) (Couceiro et al. 2011) is a novel algo-
rithm that was created in an attempt to incorporate collision avoidance directly into
PSO. The algorithm achieves this through the introduction of an additional accelerating
term in the PSO velocity update equation, which in turn takes the following form

u[k + 1] = ωu[k] + c1r1 ◦ (y[k]− x[k]) + c2r2 ◦ (yg[k]− x[k]) + c3r3 ◦ (Ft[k]).︸ ︷︷ ︸
new term

(2.8)

38

Here, c3 is called the obstacle susceptibility coefficient and each element of r3 is drawn
from the uniform distribution U(0, 1). The vector Ft is used to point the robot away
from obstacles and other robots. The rest of the parameters are identical to the ones
used in original PSO.
In contrast to the cognitive coefficient c1 and social coefficient c2, the obstacle suscep-
tibility coefficient c3 is not meant to have a constant value throughout the operation
of the algorithm. Instead, its value varies from 0 when the robot is far away from
obstacles, to a maximum value as the robot gets closer to an obstacle.

The algorithm was tested in 2D simulations with simplified physics, where the robots
are assumed to be capable of unconstrained movement. From the simulations, it was ob-
served that when a robot is close to obstacles (i.e. c3 is maximised), if c3 � max{c1, c2},
the first two accelerating terms of (2.8) (i.e. the cognitive and social terms), overshadow
the effect of the last term (i.e. the obstacle susceptibility term), resulting in collisions.
On the other hand, if c3 � max{c1, c2}, collisions are successfully avoided but the
robots find it hard to pass through openings and progress towards the source.

To address these problems, Couceiro et al. (2011) make use of another PSO variant,
called Darwinian-PSO (DPSO) (Tillett et al. 2005), which is used in numerical optimi-
sation. In DPSO, at every timestep, particles with low fitness have a chance of being
removed from the simulation, while particles with the high fitness have a chance of
spawning another particle in their general area. When RPSO is combined with DPSO,
the Robotic-Darwinian-PSO (RDPSO) is formed.

In RDPSO, instead of being deleted, robots with low fitness are being "socially ex-
cluded". In this state, the robots do not try to converge to the source and instead roam
randomly in the environment. At the same time, socially excluded robots with high
fitness can be again "socially included", at which point they stop roaming randomly and
start converging towards the source. In this way, social exclusion/inclusion becomes an
exploration mechanism that can also serve to get the robots unstuck from local minima.

The use of RDPSO on robotic swarms has been demonstrated in real-world experiments
using a swarm of 12 small robots (eSwarBots) (Couceiro et al. 2013) and simulations
of a marine robotic environment exploration scenario where the algorithm is used to
control a swarm of autonomous mobile nodes in a mobile ad hoc network (Couceiro
et al. 2013, Griffiths Sànchez et al. 2018).

MGSO: In the original GSO algorithm the velocity of glowworms changes using a
constant step-size s. This is used to limit the maximum acceleration and velocity that

39

the algorithm can request from the robots, thereby avoiding the problems of PSO that
were previously described. That said, maintaining this constant step-size throughout
the operation of the system may not be always desirable. When s is large, the swarm
can cover large distances quickly, but after partial convergence to the source has been
achieved, it may be impossible to converge fully, since the robots may end up oscillating
on top of the source. On the other hand, when s is small, it can take a lot of time for
the swarm to converge to the source.

To address these problems, modified-GSO (MGSO) was introduced, that aims to incor-
porate a variable step-size s into GSO. Zhang et al. (2011) proposed a searching method
based on MGSO for plume tracing and odor source localisation. Gupta & Bayal (2020)
made use of a similar MGSO algorithm, for the detection of oil spills, using a swarm of
marine robots.

Behavioural Parameter Optimisation using Swarm Intelligence Algorithms

The previous section described applications where SIAs were directly controlling the be-
haviour of each individual robot. Another way to use SIAs is to optimise the parameters
of other heuristic algorithms. In other words, since many SIAs were originally designed
for numerical optimisation, they can be used in this way to optimise the parameters
of other heuristic algorithms, which are in turn used to control the behaviour of the
robots. This is a perfectly valid way of using the SIAs but an important disadvan-
tage of such methods needs to be noted. When SIAs are used like this, their inherent
scalability, adaptability and robustness characteristics are not inherited by the physi-
cal swarm. Furthermore, numerical optimisation in such techniques is not limited to
SIAs and other algorithms that are traditionally used in numerical optimisation, such
as Genetic Algorithms (GA), can also be used here. This section will describe such
approaches for the control of robotic swarms.

Meng & Gan (2008) proposed a collective construction task, where building blocks
are randomly distributed in the environment. The robots need to search for the blocks
efficiently (each robot searches sub-areas that have not been searched by another robot)
and need to cooperate to transport the blocks in predefined locations. Robots share
information about discovered blocks by leaving pheromone trails. The robots explore
the Grid-based map, identify the location of blocks and assign a utility to each block
based on its size. Each robot then selects a block to move, using a modified PSO
algorithm that considers the pheromone trail-based utility value of each block. The
modified PSO algorithm used (called MS-PSO) was shown to perform better in this
dynamically changing environment (when a block has been moved, the information

40

about its previous position should be ignored, which is represented by the pheromone
trail fading out over time).

Pugh & Martinoli (2008) introduced an adaptive strategy for localisation of multiple
targets. For this method, each source emits artificial pheromones that fade out as
they get further away from the source. The strategy uses several parameters which are
optimised using a noise-resistant version of the PSO algorithm that averages the current
and previous fitness values to obtain a more robust representation of the actual fitness.
The authors ran three different tests to explore how the particle neighbourhood size
can affect the performance of the PSO algorithm, by replacing the global best location
of the original PSO algorithm with other variables obtained from a predefined number
of closest neighbours:

• gbest: all robots are considered as neighbours

• lbest: only the two closest robots are neighbours

• ibest: the 5 closest robots at each side (10 in total) are considered as neighbours

Their results showed that no specific neighbourhood outperforms the rest in the long
run.

Oh & Suk (2010) proposed the use of an Artificial Neural Network Controller optimised
using a Genetic Algorithm, in order to avoid the difficulties that arise with a logical
approach for the implementation of behavioural rules. The network was shown to
exceed in performance behaviour-based heuristic controllers. For the basic travelling
behaviour of simulated unmanned air vehicles (UAVs), a UAV dynamics model was
designed based on a 3 degrees-of-freedom point mass model (forward linear motion,
vertical angular motion and horizontal angular motion).

2.2 Swarm Robotic Tasks

The SIAs described in Section 2.1 are algorithms that were designed to be used for the
general control of robotic swarms in several different scenarios. SIAs are designed to be
operationally simple; a necessary characteristic to maintain operational efficiency and
adaptability to several different scenarios, while also avoiding excessive complexity so
that scalability and robustness can be ensured. For this reason though, SIAs cannot
be expected to provide full control of the robots for all different types of tasks that
the swarm may need to address. Therefore, SIAs need to be combined with other
heuristic algorithms that are specifically designed to address certain tasks. Numerous

41

swarm robotic tasks have been identified including aggregation, flocking or coordinated
motion, pattern formation, task allocation, collective transport of objects, collective
mapping/exploration etc. (Bayindir & Sahin 2007, Bayindir 2015, Nedjah & Junior
2019, Dias et al. 2021). Due to the relatively recent formation of swarm robotics as
an engineering discipline, there does not exist a single clear taxonomy of all swarm
robotic tasks and collective behaviours. Figure 2-5 shows two different taxonomies
that have been proposed in the literature. The taxonomy shown in Figure 2-5b is an
adapted version of the one shown in Figure 2-5a. The two taxonomies share many tasks
such as aggregation, pattern formation, coordinated motion and task allocation that are
classified in the same way. That said, with the advancement of the field, new tasks have
also been introduced that were found to be useful in different swarm robotic scenarios,
such as self-assembly, collective localisation (i.e. localisation of robots relative to each
other) and human-swarm interaction. The rest of this section will describe the tasks
that are mostly relevant to scenarios of source localisation and monitoring.

(a) Brambilla et al. (2013)

(b) Schranz et al. (2020)

Figure 2-5: Two different taxonomies used to define swarm robotic tasks/behaviours.
The taxonomy presented in (b) is an adapted version of the one presented in (a).
Primary tasks such as aggregation, pattern formation, coordinated motion and task
allocation appear in both taxonomies, but several new tasks are also introduced in
(b) such as self-assembly, collective localisation and human-swarm interaction. These
new behaviours signify the research advancements and the appearance of new questions
regarding this field in recent years.

42

2.2.1 Aggregation

One of the most important tasks of a robotic swarm is aggregation, i.e. the ability to
form and maintain groups of robots that remain close while avoiding collisions with
each other (Bayindir & Sahin 2007, Nedjah & Junior 2019). For example, when two
robots are too close to each other, an aggregation algorithms will cause them to drift
apart. On the other hand, when a robot is too far away from the rest of the swarm,
aggregation forces will pull it back towards the rest of the robots, before it is too far
away and out of communication range.

2.2.2 Flocking

Flocking of coordinated motion focuses on the collective movement of the swarm, ef-
ficiently, over large distances. The techniques that are used for flocking can be often
similar to the ones used for aggregation in the sense that artificial physics may be used
to keep the robots close to each other. An important component of flocking that does
not exist in aggregation is velocity consensus (i.e. the robots of the swarm collectively
decide on and share the same velocity magnitude and direction), while it can also some-
times incorporate some type of pattern formation technique. Flocking is important in
source tracking, since it can allow the swarm to cover the search area more efficiently
and chase the source easily if it moves away.

Olfati-Saber (2006) initially tried to create a flocking algorithm that follows the three
rules required for flocking behaviour to emerge, as stated by Reynolds (1987), using
principles of graph theory. The three rules are:

• Flock Centring: Maintaining close proximity to nearby members of the flock.

• Collision Avoidance: Avoiding collision with nearby objects.

• Velocity Consensus: Matching velocity with nearby members of the flock.

After trying to express the three rules in a mathematical form, as part of the control
protocol of an algorithm, they showed that they are insufficient for flocking behaviour to
emerge. Instead, they propose a new algorithm that includes one additional navigational
feedback term to ensure that all agents in a flock have a common target objective.

The control protocol of the proposed algorithm is shown in Equation (2.9), where the
first term

∑
j∈Ni

φα(||rj − ri||σ)eij is a gradient-based portion that applies the first two
rules, the second term

∑
j∈Ni

aij(vj − vi) achieves the velocity consensus of the third
rule and the last term c1(rt − ri) + c2(vt − vi) is the navigational feedback term.

43

ui =
∑
j∈Ni

φα(||rj − ri||σ)eij +
∑
j∈Ni

aij(vj − vi) + c1(rt − ri) + c2(vt − vi), (2.9)

where ui is the control input, Ni is the set of neighbouring agents, ri is the position
vector and vi is the velocity vector of agent i, rt and vt are the position vector and ve-
locity vector of the target and φα is the action-force function shown in Figure 2-6, where
rα and dα are constant parameter representing the ideal separation between adjacent
agents and the maximum communication range of an agent respectively. Additionally,
aij is a binary variable that has value 1 when the agents i and j are part of the same
flock and 0 otherwise. c1 > 0 and c2 > 0 are constants.

Figure 2-6: The ψα action force function is used to calculate the forces between agents
of the swarm, based on the distance z between pairs of agents, in order to maintain the
desired spatial separation (Olfati-Saber 2006).

The proposed algorithm was tested in both 2-D and 3-D simulations, for target tracking
and obstacle avoidance scenarios. It was shown to be capable of quick self-organising of
the flock, smooth de-aggregation and re-aggregation during obstacle avoidance, squeez-
ing to pass through narrow gaps, all while avoiding fragmentation into smaller groups
when this is not desirable. Figure 2-7 shows six instances of an obstacle avoidance
simulation where the swarm is required to split in order to avoid obstacles and rejoin
afterwards.

Huiqin et al. (2015) recognised that the algorithm proposed by Olfati-Saber (2006) does
not allow flocking while tracking multiple targets, because the whole swarm cannot be
separated into smaller groups. To address this problem they incorporated anti-flocking
behaviour (Miao et al. 2010) to the algorithm as a means to encourage exploration of
other targets. In more detail, each agent can be in one of the two states 1) flocking,
where the agent will aim to become part of a flock that follows a target by being
attracted to its closest targets, as in (Olfati-Saber 2006) and 2) anti-flocking, where

44

Figure 2-7: Instances of an obstacle avoidance simulation. In (a), the swarm is initialised
and the agents have not yet formed a solid group. In (b) and (c), the agents begin to
come together, maintaining constant distance from neighbours and velocity consensus.
In the presence of obstacles the agents separate to avoid collision. In (d) to (f), the
agents rejoin together into a solid group after the obstacles have been successfully
avoided. (Olfati-Saber 2006).

45

if an agent is not in a close distance to a target, it is greedily attracted towards its
closest target, without trying to maintain flock centring and velocity consensus with
other robots. Aggregation dynamics are also applied to this latter state in order to
avoid collision with other explorers.

2.2.3 Target Entrapment

The escort/entrapment problem, also known as catch problem, is a task of multi-robot
systems that revolves around entrapping a moving target by reducing the separation
between robots, in order to prevent it from escaping or protect it from intruders (An-
tonelli et al. 2007). This is a crucial task after localisation of the source has been
achieved, since it can allow the swarm to encircle and monitor it from a safe distance.
The number of papers that aimed to solve this problem in the past are limited, and
most of the earlier literature addressed it by aiming to achieve group formations based
on ordinary shapes like circles, ellipses and rectangles (Antonelli et al. 2007)(Barnes
et al. 2009)(Escobedo et al. 2014). This results in major disadvantages because it limits
the pattern-formation flexibility of the system, especially during obstacle avoidance and
multi-target entrapment.

Zhang et al. (2018) proposed a novel heuristic solution to the target entrapment prob-
lem. Their method allows a swarm of robots to trap single targets or aggregated targets
effectively by generating an implicit function that aims to describe an entrapment for-
mation pattern of irregular shape. The shape should not contain unnecessary empty
space, while including all targets. It should also be adjustable to exclude possible ob-
stacles. Figure 2-8 shows an example of such an entrapment formation. To achieve this,
the algorithm creates three sets of points (internal, boundary and external points). The
implicit pattern function f(g) is calculated using a modification of the Gene Regula-
tory Network (GRN) controller, which is borrowed from the field of life sciences and
it is used to describe mathematically the relationship of genes to proteins, during the
process of morphogenesis, i.e. the process of growing natural tissue and organs into
specific shapes.

The algorithm was tested on both static and moving targets (including de-aggregation
and re-aggregation of targets), as well as on obstacle avoidance scenarios, with seemingly
good results. The swarm is capable of splitting into different groups during the de-
aggregation of the trapped targets and merge back to a single group when the targets
re-aggregate. It is also capable of "squeezing" appropriately to pass through narrow
openings, while maintaining the entrapment shape. That being said, the authors point
to room for improvement with regards to the uncontrollable number of robots required

46

Figure 2-8: Implicit Formation Pattern Function that surrounds all targets (Zhang et al.
2018)

to form the formation pattern, which can result to more robots than necessary being
used.

2.2.4 Multi-Target Tracking

Multi-target tracking is an important task in source localisation, as it allows a source
localisation system to identify multiple sources. In real-world scenarios it can be rarely
guaranteed that only a single source will exist inside the search area. Most of the SIAs
presented in Section 2.1 have variants that can allow them to perform multi-modal
searching (i.e. multi-source localisation). Alternatively, a number of other interesting
techniques exist outside the field of swarm robotics, which can be used to provide more
information about the individual sources. However, it should be pointed out that the
following techniques were not designed to be inherently scalable, adaptable and robust
and therefore their adaptation to robotic swarms may not be readily achievable.

Multiple-Input-Multiple-Output (MIMO) systems are multi-target detection and classi-
fication systems that recently have been receiving increasing attention from the marine
engineering community for their ability to detect and track multiple targets in a clut-
tered environment by differentiating them from false positives as well as being able to
classify them.

In order to correctly carry out the data association tasks required for the correct op-
eration of these systems, several sophisticated algorithms have been proposed. One
of the most successful was the Multiple Hypothesis Tracking (MHT) (Blackman 2004)

47

algorithm, an algorithm tracker that performs data association probabilistically. The
disadvantage of MHT and in general most algorithms that build on Kalman Filters is
that they rely on heuristics. Another algorithm called the Probability Hypothesis Den-
sity (PHD) (Vo et al. 2003, Vo & Ma 2006, Mahler 2007) algorithm, relies on spatial
statistic tools such as point processes, without requiring any use of heuristics but with
the shortcoming that the algorithm cannot provide target classification.

To overcome the limitation of both algorithms, while maintaining their advantages, a
novel algorithm called the Hypothesised filter for Independent Stochastic Populations
(HISP) (Houssineau 2015) was introduced. The HISP filter follows the ideas of op-
eration of the PHD filter, but target detection and localisation are performed while
distinguishing the targets. This allows target classification to be added to the algo-
rithm naturally, without further required processing. HISP is a relatively recent filter
so further research needs to be done on its performance but its operational capabilities
have already been studied for different applications (McKenna et al. 2015) (Pailhas
et al. 2017).

2.3 Discussion of Current Literature

So far, this chapter has presented the core concepts of swarm robotics and swarm
intelligence that can be used to design and implement a robotic swarm for the task of
source localisation and monitoring. In general, it is expected that a fully functioning
robotic swarm would need to combine several different methods, namely a SIA for the
localisation of a source, as well as techniques such as aggregation and collision avoidance
to keep the robots close to each other while avoiding collisions, flocking to allow the
robots to travel efficiently over long distances and some type of source entrapment
technique to encircle the source and allow its monitoring from a safe distance. Ideally,
the system should also be capable of multi-source tracking, either through the use of an
appropriately modified SIA or any other technique from the ones discussed in Section
2.2.4.

The literature offers several examples where 2 or 3 techniques may be combined together
(typically aggregation or flocking are combined with another technique) (Olfati-Saber
2006, Olfati-Saber & Jalalkamali 2011). That said, there exist no studies, where robotic
swarms (either simulated or physical) are shown to be able to combine 4 or more tasks
as would be ideally required by the scenario studied in this thesis. A reason behind this
is given by Bayindir (2015):

The possibility to achieve global objectives at the swarm level by means of dis-

48

tributed algorithms acting at the individual level comes at a price: it is often
difficult to design the individual robot behaviour so that the global performance
is maximized.

In other words, the ability to achieve emergent collective global behaviour out of indi-
vidual local decisions adds complexity into the methodologies used in swarm robotics.
When different techniques are merged together, this complexity can increase signifi-
cantly and extra effort is required to ensure that all techniques remain operational as
well as scalable, adaptable and robust. An example of this problem can be seen in
RPSO (Couceiro et al. 2011) (see Section 2.1.7), where it is described how a perfect
balance is required between the RPSO parameters to ensure that both the source lo-
calisation and obstacle avoidance properties of RPSO can be utilised properly, without
interfering with each other.

Another similar problem can be also seen from the use of SIA. In Section 2.1.7, all of the
reported studies mention that SIA do not consider the movement limitations that may
restrict the motion of the physical robots. As a result, SIA are typically used as high-
level trajectory planning algorithms, rather than actual low-level motion controllers.
This can further interfere with the operation and scalability of the SIA.

Based on the aforementioned problems, it can be concluded that a low-level motion
controller for robotic swarms is required, which will allow both the easy merging of
different techniques while also taking into consideration the physical limitations of the
robots. Such a controller could eventually lead to the standardisation of swarm robotic
techniques, a milestone that has not been achieved yet by the current literature.

Another problem that prevents techniques from being merged together can be seen when
comparing source localisation and target entrapment methods. In theory, these two
types of methods should be designed to operate together, in the sense that the swarm
makes use of a SIA for collaborative source localisation and as the swarm gets close to
the source, a target entrapment technique such as the ones presented in Section 2.2.3
can be employed so that the robots maintain a secure distance from the source while
monitoring it. The problem, as stated by Pugh & Martinoli (2007), is that, in order
for a SIA to know the location of the source, a robot must pass over it. On the other
hand, all of the target entrapment techniques provided, either assume prior knowledge
of the source location, or that the robots can identify the source location on their own
in a simple way. Therefore, current SIAs and target entrapment techniques cannot be
combined together at this point. To solve this problem, a SIA needs to be modified in
a way that will allow it to identify the location of the source, without the need for a

49

robot to pass on top of it (i.e. localise the source from far away).

2.4 Conclusion

This chapter has presented swarm robotic control algorithms and methodologies that
are relevant to the scenario of source localisation and monitoring. The types of method-
ologies presented are swarm intelligence algorithms, that can be primarily used for the
task of source localisation, aggregation and flocking techniques which are mainly con-
cerned with keeping the robots of the swarm close to each other and target entrapment
techniques that are used to encircle a localised source and maintain a specific distance
from it. Multi-target tracking techniques were also presented. Finally, several problems
and gaps that exist in the literature were identified and discussed. Namely, there is
a lack of a SIA capable of accurate motion control of the robots by considering their
movement limitations, a way to readily merge a large number of swarm robotic tasks for
applications that require it, and a SIA capable of localising a source from far away to
allow its merging with current source entrapment techniques. It is believed that solving
these problems will open the way for the design of a fully functioning robotic swarm
capable of underwater source localisation and monitoring, at least from the robotic
swarm control perspective. This thesis will focus on addressing these problems through
the modification of a SIA.

50

References

Abraham, A. & Ramos, V. (2003), Web usage mining using artificial ant colony clus-
tering and linear genetic programming, in ‘The 2003 Congress on Evolutionary Com-
putation, 2003. CEC ’03.’, Vol. 2, pp. 1384–1391 Vol.2.

Antonelli, G., Arrichiello, F. & Chiaverini, S. (2007), The entrapment/escorting mission
for a multi-robot system: Theory and experiments, in ‘2007 IEEE/ASME interna-
tional conference on advanced intelligent mechatronics’, pp. 1–6.

Barnes, L. E., Fields, M. A. & Valavanis, K. P. (2009), ‘Swarm Formation Control
Utilizing Elliptical Surfaces and Limiting Functions’, IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 39(6), 1434–1445.

Bayindir, L. (2015), ‘A Review of Swarm Robotics Tasks’, Neurocomputing 172.

Bayindir, L. & Sahin, E. (2007), ‘A review of studies in swarm robotics’, Turkish Journal
of Electrical Engineering and Computer Sciences 15, 115–147.

Beni, G. (2005), From Swarm Intelligence to Swarm Robotics, in ‘Swarm Robotics’,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–9.

Beni, G. &Wang, J. (1993), Swarm Intelligence in Cellular Robotic Systems, in P. Dario,
G. Sandini & P. Aebischer, eds, ‘Robots and Biological Systems: Towards a New
Bionics?’, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 703–712.

Biesmeijer, J. C. & Seeley, T. D. (2005), ‘The use of waggle dance information by
honey bees throughout their foraging careers’, Behavioral Ecology and Sociobiology
59(1), 133–142.
URL: https://doi.org/10.1007/s00265-005-0019-6

Blackman, S. S. (2004), ‘Multiple hypothesis tracking for multiple target tracking’,
IEEE Aerospace and Electronic Systems Magazine 19(1), 5–18.

Blackwell, T. (2007), Particle Swarm Optimization in Dynamic Environments, in
S. Yang, Y.-S. Ong & Y. Jin, eds, ‘Evolutionary Computation in Dynamic and Un-
certain Environments’, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 29–49.

Bonyadi, M. R. & Michalewicz, Z. (2016), ‘Stability Analysis of the Particle Swarm
Optimization Without Stagnation Assumption’, IEEE Transactions on Evolutionary
Computation 20(5), 814–819.

51

Brambilla, M., Ferrante, E., Birattari, M. & Dorigo, M. (2013), ‘Swarm Robotics: A
Review from the Swarm Engineering Perspective’, Swarm Intelligence 7, 1–41.

Bullnheimer, B., Hartl, R. F. & Strauss, C. (1999), Applying the ANT System to the
Vehicle Routing Problem, in S. Voß, S. Martello, I. H. Osman & C. Roucairol, eds,
‘Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization’,
Springer US, Boston, MA, pp. 285–296.

Carlisle, A. & Dozier, G. (2000), ‘Adapting Particle Swarm Optimization to Dynamic
Environments’, Proc of Int Conf on Artificial Intelligence .

Chakraborty, A. & Kar, A. K. (2017), Swarm Intelligence: A Review of Algorithms,
in S. Patnaik, X.-S. Yang & K. Nakamatsu, eds, ‘Nature-Inspired Computing and
Optimization: Theory and Applications’, Springer International Publishing, Cham,
pp. 475–494.

Cleghorn, C. W. & Engelbrecht, A. P. (2018), ‘Particle swarm stability: a theoret-
ical extension using the non-stagnate distribution assumption’, Swarm Intelligence
12(1), 1–22.

Couceiro, M. S., Rocha, R. P. & Ferreira, N. M. F. (2011), A novel multi-robot explo-
ration approach based on Particle Swarm Optimization algorithms, in ‘2011 IEEE
International Symposium on Safety, Security, and Rescue Robotics’, pp. 327–332.

Couceiro, M. S., Rocha, R. P. & Ferreira, N. M. F. (2013), ‘A PSO multi-robot explo-
ration approach over unreliable MANETs’, Advanced Robotics 27(16), 1221–1234.

Dias, P. G. F., Silva, M. C., Rocha Filho, G. P., Vargas, P. A., Cota, L. P. & Pessin,
G. (2021), ‘Swarm Robotics: A Perspective on the Latest Reviewed Concepts and
Applications’, Sensors 21(6).

Dorigo, M., Birattari, M. & Stutzle, T. (2006), ‘Ant colony optimization’, IEEE Com-
putational Intelligence Magazine 1(4), 28–39.

Du, Y. (2020), ‘A Novel Approach for Swarm Robotic Target Searches Based on the
DPSO Algorithm’, IEEE Access 8, 226484–226505.

Eberhart & Shi, Y. (2001), Particle swarm optimization: developments, applications
and resources, in ‘Proceedings of the 2001 Congress on Evolutionary Computation
(IEEE Cat. No.01TH8546)’, Vol. 1, pp. 81–86 vol. 1.

Escobedo, R., Muro, C., Spector, L. & Coppinger, R. P. (2014), ‘Group size, individ-

52

ual role differentiation and effectiveness of cooperation in a homogeneous group of
hunters’, Journal of The Royal Society Interface 11(95).

Fernandez-Marquez, J. L. & Arcos, J. L. (2009), An Evaporation Mechanism for Dy-
namic and Noisy Multimodal Optimization, in ‘Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation’, GECCO ’09, Association for
Computing Machinery, New York, NY, USA, pp. 17–24.

Gambardella, L. M. & Dorigo, M. (1996), Solving symmetric and asymmetric TSPs
by ant colonies, in ‘Proceedings of IEEE International Conference on Evolutionary
Computation’, pp. 622–627.

Grassé, P.-P. (1959), ‘La reconstruction du nid et les coordinations interindividu-
elles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Es-
sai d’interprétation du comportement des termites constructeurs’, Insectes Sociaux
6(1), 41–80.

Griffiths Sànchez, N. D., Vargas, P. A. & Couceiro, M. S. (2018), A Darwinian Swarm
Robotics Strategy Applied to Underwater Exploration, in ‘2018 IEEE Congress on
Evolutionary Computation (CEC)’, pp. 1–6.

Gupta, R. & Bayal, R. K. (2020), Source Detection of Oil Spill using Modified Glow-
worm Swarm optimization, in ‘2020 5th International Conference on Computing,
Communication and Security (ICCCS)’, pp. 1–6.

Hereford, J. M., Siebold, M. & Nichols, S. (2007), Using the Particle Swarm Optimiza-
tion Algorithm for Robotic Search Applications, in ‘2007 IEEE Swarm Intelligence
Symposium’, pp. 53–59.

Houssineau, J. (2015), Representation and estimation of stochastic populations, PhD
thesis, Heriot-Watt University.

Huiqin, P., Shiming, C. & Qiang, L. (2015), ‘A local flocking algorithm of multi-agent
dynamic systems’, International Journal of Control p. 1.
URL: http://dx.doi.org/10.1080/00207179.2015.1039595

Juneja, M. & Nagar, S. K. (2016), Particle swarm optimization algorithm and its pa-
rameters: A review, in ‘2016 International Conference on Control, Computing, Com-
munication and Materials (ICCCCM)’, pp. 1–5.

Karaboga, D. (2005), ‘An Idea Based on Honey Bee Swarm for Numerical Optimization,
Technical Report - TR06’, Technical Report, Erciyes University .

53

Kazadi, S. (2000), Swarm engineering, PhD thesis, California Institute of Technology.

Kennedy, J. & Eberhart, R. (1995), Particle swarm optimization, in ‘Proceedings of
ICNN’95 - International Conference on Neural Networks’, Vol. 4, pp. 1942–1948 vol.4.

Khatib, O. (1985), Real-time obstacle avoidance for manipulators and mobile robots,
in ‘Proceedings. 1985 IEEE International Conference on Robotics and Automation’,
Vol. 2, pp. 500–505.

Krishnanand, K. N. & Ghose, D. (2009), ‘Glowworm swarm optimization for simulta-
neous capture of multiple local optima of multimodal functions’, Swarm Intelligence
3(2), 87–124.

Liu, Q. (2014), ‘Order-2 Stability Analysis of Particle Swarm Optimization’, Evolution-
ary computation 23.

Mahler, R. (2007), ‘PHD filters of higher order in target number’, IEEE Transactions
on Aerospace and Electronic Systems 43(4), 1523–1543.

McKenna, I., Tonolini, F., Tobin, R., Houssineau, J., Bridle, H., McDougall, C.,
Schlangen, I., McGrath, J. S., Jimenez, M. & Clark, D. E. (2015), Observing the
Dynamics of Waterborne Pathogens for Assessing the Level of Contamination, in
‘2015 Sensor Signal Processing for Defence (SSPD)’, pp. 1–5.

Meng, Y. & Gan, J. (2008), A distributed swarm intelligence based algorithm for a coop-
erative multi-robot construction task, in ‘2008 IEEE Swarm Intelligence Symposium’,
pp. 1–6.

Miao, Y., Khamis, A. & Kamel, M. S. (2010), Applying anti-flocking model in mobile
surveillance systems, in ‘2010 International Conference on Autonomous and Intelli-
gent Systems, AIS 2010’, pp. 1–6.

Michel, O. (2004), ‘WebotsTM: Professional Mobile Robot Simulation’, International
Journal of Advanced Robotic Systems 1.

Nayak, B., Dash, S. K. & Sahu, J. B. (2019), Validation of Well-Known Population-
Based Stochastic Optimization Algorithms Using Benchmark Functions, in J. C.
Bansal, K. N. Das, A. Nagar, K. Deep & A. K. Ojha, eds, ‘Soft Computing for
Problem Solving’, Springer Singapore, Singapore, pp. 731–744.

Nedjah, N. & Junior, L. S. (2019), ‘Review of methodologies and tasks in swarm robotics
towards standardization’, Swarm and Evolutionary Computation 50, 100565.

54

Oh, S. H. & Suk, J. (2010), Evolutionary design of the controller for the search of area
with obstacles using multiple UAVs, in ‘ICCAS 2010’, pp. 2541–2546.

Olfati-Saber, R. (2006), ‘Flocking for multi-agent dynamic systems: algorithms and
theory’, IEEE Transactions on Automatic Control 51(3), 401–420.

Olfati-Saber, R. & Jalalkamali, P. (2011), Collaborative target tracking using dis-
tributed Kalman filtering on mobile sensor networks, pp. 1100–1105.

Ozcan, E. & Mohan, C. K. (1999), Particle swarm optimization: surfing the waves, in
‘Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406)’, Vol. 3, pp. 1939–1944 Vol. 3.

Pailhas, Y., Houssineau, J., Petillot, Y. R. & Clark, D. E. (2017), ‘Tracking with MIMO
sonar systems: applications to harbour surveillance’, IET Radar, Sonar Navigation
11(4), 629–639.

Parker, L. E. (1994), ALLIANCE: an architecture for fault tolerant, cooperative control
of heterogeneous mobile robots, in ‘Proceedings of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS’94)’, Vol. 2, pp. 776–783 vol.2.

Parker, L. E. (2002), ‘Distributed Algorithms for Multi-Robot Observation of Multiple
Moving Targets’, Autonomous Robots 12(3), 231–255.

Perreault, L., Wittie, M. P. & Sheppard, J. (2014), Communication-aware distributed
PSO for dynamic robotic search, in ‘2014 IEEE Symposium on Swarm Intelligence’,
pp. 1–8.

Portugal, D. & Rocha, R. P. (2016), ‘Cooperative multi-robot patrol with Bayesian
learning’, Autonomous Robots 40(5), 929–953.

Pugh, J. & Martinoli, A. (2007), Inspiring and Modeling Multi-Robot Search with Parti-
cle Swarm Optimization, in ‘2007 IEEE Swarm Intelligence Symposium’, pp. 332–339.

Pugh, J. & Martinoli, A. (2008), Distributed Adaptation in Multi-robot Search Using
Particle Swarm Optimization, in M. Asada, J. C. T. Hallam, J.-A. Meyer & J. Tani,
eds, ‘From Animals to Animats 10’, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 393–402.

Reynolds, C. W. (1987), ‘Flocks, Herds and Schools: A Distributed Behavioral Model’,
SIGGRAPH Comput. Graph. 21(4), 25–34.
URL: http://doi.acm.org/10.1145/37402.37406

55

Schranz, M., Umlauft, M., Sende, M. & Elmenreich, W. (2020), ‘Swarm Robotic Be-
haviors and Current Applications’, Frontiers in Robotics and AI 7, 36.

Senanayake, M., Senthooran, I., Barca, J. C., Chung, H., Kamruzzaman, J. & Murshed,
M. (2016), ‘Search and tracking algorithms for swarms of robots: A survey’, Robotics
and Autonomous Systems 75, 422–434.

Sharkey, A. J. C. (2007), ‘Swarm robotics and minimalism’, Connection Science
19(3), 245–260.

Spears, W. M., Spears, D. F., Hamann, J. C. & Heil, R. (2004), ‘Distributed, Physics-
Based Control of Swarms of Vehicles’, Autonomous Robots 17(2), 137–162.

Tehrani, K. F., Zhang, Y., Shen, P. & Kner, P. (2017), ‘Adaptive optics stochastic
optical reconstruction microscopy (AO-STORM) by particle swarm optimization’,
Biomed. Opt. Express 8(11), 5087–5097.

Theraulaz, G. & Bonabeau, E. (1999), ‘A brief history of stigmergy.’, Artificial life
5(2), 97–116.

Tillett, J., Rao, T., Sahin, F. & Rao, R. (2005), Darwinian Particle Swarm Optimiza-
tion., pp. 1474–1487.

Trelea, I. C. (2003), ‘The particle swarm optimization algorithm: convergence analysis
and parameter selection’, Information Processing Letters 85(6), 317–325.

Vo, B. . & Ma, W. . (2006), ‘The Gaussian Mixture Probability Hypothesis Density
Filter’, IEEE Transactions on Signal Processing 54(11), 4091–4104.

Vo, B.-N., Singh, S. & Doucet, A. (2003), Sequential monte carlo implementation of the
phd filter for multi-target tracking, in ‘Sixth International Conference of Information
Fusion, 2003. Proceedings of the’, Vol. 2, pp. 792–799.

Winfield, A. F. T., Harper, C. J. & Nembrini, J. (2005), Towards Dependable Swarms
and a New Discipline of Swarm Engineering, in ‘Swarm Robotics’, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 126–142.

Zhang, J., Chen, J. & Che, L. (2020), Hybrid PSO Algorithm with Adaptive Step
Search in Noisy and Noise-free Environments, in ‘2020 IEEE Congress on Evolution-
ary Computation (CEC)’, pp. 1–8.

Zhang, J., Zhu, X., Wang, Y. & Zhou, M. (2019), ‘Dual-Environmental Particle Swarm

56

Optimizer in Noisy and Noise-Free Environments’, IEEE Transactions on Cybernetics
49(6), 2011–2021.

Zhang, S., Liu, M., Lei, X., Huang, Y. & Zhang, F. (2018), ‘Multi-target trapping
with swarm robots based on pattern formation’, Robotics and Autonomous Systems
106, 1–13.
URL: http://www.sciencedirect.com/science/article/pii/S0921889017306024

Zhang, Y., Ma, X. & Miao, Y. (2011), Localization of multiple odor sources using
modified glowworm swarm optimization with collective robots, in ‘Proceedings of the
30th Chinese Control Conference’, pp. 1899–1904.

Şahin, E. (2005), Swarm Robotics: From Sources of Inspiration to Domains of Applica-
tion BT - Swarm Robotics, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 10–20.

57

Chapter 3

Adapted Particle Swarm
Optimisation

The use of swarm intelligence algorithms (SIAs) as low-level motion controllers for
robotic swarms has been so far difficult and instead they have been limited to being
used only for high-level trajectory planning. As discussed in Chapter 2, there are many
reasons and limitations that prevent SIAs from being used in this way. Namely, the
inability to consider the physical limitations of the individual robots (e.g. maximum
velocity, maximum acceleration etc.) and the high complexity that comes with merging
an SIA with other techniques. The next three chapters of this thesis will aim to modify
an SIA, in order to address these limitations. Later, Chapters 7 and 8 will show how
an SIA can be further modified to address additional problems, specific to source local-
isation scenarios, such as the inability of SIAs to work together with target entrapment
techniques.

Due to its popularity and the large number of studies that explain its behaviour, PSO
(Kennedy & Eberhart 1995) was selected to be the algorithm that will be used through-
out this thesis. A close alternative would have been GSO (Krishnanand & Ghose 2009),
as several studies exist about how it could be used in swarm robotics. That said, GSO
only makes use of the current location of other robots in the swarm (i.e. robots move
towards other robots) and therefore it only allows interaction with other robots. On the
other hand, PSO considers specific locations in the world (i.e. personal and global best
locations), which if associated correctly with the location of the source, could allow the
swarm to interact with the source through the use of a target entrapment technique. It
should be noted though that some of the SIAs presented in Chapter 2 (including GSO)

58

share several similarities with PSO and therefore the results of this chapter may be
extendable to them as well. Taking GSO as an example, its position update equation is
similar to PSO in the sense that the next position is equal to the previous position plus
a single additive term. By controlling the magnitude of the additive term it is therefore
possible to control the maximum velocity of the robot. Furthermore, more additive
terms can also be included, representing other tasks (e.g. obstacle avoidance). In this
case, controlling the combined magnitude of all additive terms allows the limitation of
the maximum velocity of the robot. These are the basic ideas that will be explored in
the next chapters.

This chapter will introduce a novel PSO variant, modified to address the following
problems that prevent the original algorithm from directly controlling the motion of
robotic swarms:

1. As recognised by Hereford et al. (2007) and Pugh & Martinoli (2007), the particles
in PSO are assumed to be physically unconstrained (i.e. unconstrained velocity
and acceleration); an assumption that does not hold for physical robots.

2. As recognised by Pugh & Martinoli (2007), the amount of time (in seconds) that
corresponds to one PSO iteration (i.e. one timestep), is currently arbitrarily
defined. This can result in different swarm behaviours for different timestep sizes,
making them difficult to predict and control.

The next section will introduce the relevant PSO theory in detail, before modifications
are introduced to address both problems.

3.1 Particle Swarm Optimisation Theory

PSO aims to identify the location inside a multidimensional space that maximises a
fitness function by using a swarm of particles. Let f : Rd → R be the fitness function
that needs to be maximised, where d is the number of dimensions. Let the particle
swarm Ω[k] be a set of N particles located in Rd, at timestep k. Each particle computes
the cost of its current location using f . The movement of the particles is then determined
by the position update equation (2.2) and the velocity update equation (2.1) where ui[k]

and xi[k] are the velocity and position of each particle i at timestep k, respectively. The
◦ operator represents element-wise multiplication (the Schur product). Each element
of the vectors r1 and r2 is drawn from the uniform distribution,

r1,j , r2,j ∼ U(0, 1) 1 ≤ j ≤ d. (3.1)

59

The location yi is the personal best location for particle i, such that, for any timestep
l ∈ Z+, l ≤ k

f(yi[k]) ≤ f(xi[l]). (3.2)

Similarly, yg is the global best location, such that, for any particle i ∈ [1 : N]

f(yg[k]) ≤ f(yi[k]). (3.3)

The parameters ω, c1 and c2 are the inertia weight, the cognitive coefficient and the so-
cial coefficient respectively (Cleghorn & Engelbrecht 2018). Alternatively, c1 and c2 are
known as the accelerating coefficients and their corresponding terms in Equation (2.1)
are known as the accelerating terms.

The inertia weight ω prevents the particles of the swarm from diverging uncontrollably
from either their personal or the global best location. The cognitive coefficient c1 and
social coefficient c2 control the rate of convergence towards the personal best (y) or
the global best (yg) location. Improper tuning of the PSO parameters can affect the
stability of the algorithm (i.e. the particles may diverge uncontrollably) and there have
been numerous studies on the parameter values that can guarantee PSO stability. These
will be discussed in the following sub-section(Clerc & Kennedy 2002, Kennedy 2010,
Shi & Eberhart 1998).

3.1.1 Parameter Tuning

As discussed in Chapter 2, to date it has not been possible to prove mathematically that
PSO will eventually converge to the global extremum of its fitness function. That said,
several stability analyses have shown that PSO will eventually stochastically converge
inside an arbitrary region (i.e. will not diverge uncontrollably) when certain PSO pa-
rameter values are used, under simplifying assumptions (Ozcan & Mohan 1999, Trelea
2003, Liu 2014, Bonyadi & Michalewicz 2016, Cleghorn & Engelbrecht 2018).

In the traditional sense, convergence is defined as (Cleghorn & Engelbrecht 2018)

Definition 3.1.1. The sequence (st) in Rd is convergent if there exists an s ∈ Rd such
that

lim
t→∞

st = s (3.4)

This definition of deterministic convergence implies complete convergence in the sense
that the particles will eventually stop moving. Due to the stochastic nature of PSO
combined with the existence of two different locations of attraction (personal best and

60

global best locations) this type of convergence cannot be guaranteed. Instead, PSO
stability analyses typically aim to guarantee order-1 and order-2 stability. Order-1
stability is defined as (Cleghorn & Engelbrecht 2018)

Definition 3.1.2. The sequence (st) in Rd is order-1 stable if there exists an sE ∈ Rd

such that
lim
t→∞

E[st] = sE (3.5)

where E[st] is the expected value of st.

On the other hand, order-2 stability is defined as (Cleghorn & Engelbrecht 2018)

Definition 3.1.3. The sequence (st) in Rd is order-2 stable if there exists an sV ∈ Rd

such that
lim
t→∞

V [st] = sV (3.6)

where V [st] is the variance of st.

In other words, order-1 and order-2 stability can be conceptually understood to imply
that the particles will converge and oscillate around a location while the amplitude
of the oscillations will eventually settle to a constant value (i.e. the particles will not
diverge uncontrollably).

The aforementioned stability analyses showed that PSO is order-1 and order-2 stable,
using simplifying assumptions. According to these studies, order-1 stability is guaran-
teed for PSO for the following parameter values

−1 < ω < 1 0 < ĉ < 4(ω + 1), (3.7)

where ĉ is the behaviour coefficient and is given by

ĉ = c1 + c2. (3.8)

On the other hand, order-2 stability is guaranteed by

−1 < ω < 1 0 < ĉ <
24(1− ω2)

7− 5ω
. (3.9)

These safe operating regions are visualised in Figure 3-1.

Order-1 and order-2 stabilities are important parts of the original PSO algorithm be-
cause they provide a range of parameter values under which the algorithm remains
stable. It is therefore crucial to show that any modifications made to the original PSO

61

0 1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3-1: The safe operating regions defined by allowable values of ω, ĉ that guarantee
order-1 and order-2 stability.

algorithm do not violate its order-1 and order-2 stabilities. With these restrictions in
place, the next section will introduce modifications to address the problems of the orig-
inal PSO discussed in the beginning of this chapter. The modifications will allow PSO
to consider the maximum velocity and maximum acceleration limitations of the robots
as well as the timestep size of the controller (i.e. controller refresh rate).

3.2 Adaptation of PSO for Swarm Robotics

The modifications introduced in this section will enable the PSO algorithm to consider
the physical limitations of the robot (e.g. maximum velocity, maximum acceleration
etc.). This can be achieved by re-defining the velocity and position update Equa-
tions (2.1) and (2.2).

First, a modified form of the position update Equation (2.2) is introduced,

x[k + 1] = x[k] + ∆t u[k + 1], (3.10)

where ∆t represents the discrete timestep of the PSO controller, which is the real-
world time in seconds that corresponds to one PSO iteration. Delays caused by inter-
robot communication and processing of sensor input will lead to larger values of ∆t.
The robot may employ other low level local controllers for tasks that require a higher
refresh rate (e.g. motor controllers, data collection and data fusion controllers etc).
The introduction of ∆t allows the study of how different timestep sizes can affect the

62

operation of PSO, in order to address the second of the PSO problems outlined at the
beginning of this chapter.

When it comes to Equation (2.1), the terms (y[k]−x[k]) and (yg[k]−x[k]) are uncon-
strained, producing what was called Acceleration by Distance by Kennedy & Eberhart
(1995). Due to these unconstrained terms, PSO does not have a maximum velocity and
acceleration that can be equated to the maximum velocity and acceleration of the phys-
ical robots. Constraints can be introduced into these terms by replacing Equation (2.1)
with

u[k + 1] = ωu[k] + c1r1 ◦ sgn(y[k]− x[k]) + c2r2 ◦ sgn(yg[k]− x[k]), (3.11)

where the sgn function is given by

sgn(x) =

1, x > 0

0, x = 0

−1, x < 0

 (3.12)

and it is used to limit the maximum acceleration caused by each accelerating term. Since
the deceleration caused by the decelerating term ωu[k] increases with velocity u[k], a
point will be eventually reached where the acceleration caused by the accelerating terms
will be cancelled out by the deceleration of ωu[k] and therefore, maximum velocity will
be achieved.

It should be noted that in the original PSO work, Kennedy & Eberhart (1995) start with
this velocity update equation (implied through the use of algorithms), before switching
to the currently known PSO velocity update equation of Equation (2.1). This is done in
order to remove the maximum acceleration constraint from particles, allowing them to
cover arbitrarily large distances - an ability that is desirable in parameter optimisation
to reduce operational time. In swarm robotics on the other hand this is not desirable
since the physical robots are not capable of covering arbitrarily large distances. Instead,
the PSO velocity and acceleration limitations can be synchronised with the velocity
and acceleration limitations of the physical robots, resulting in more accurate control.
Therefore, this modification aims to address the first of the PSO problems outlined at
the beginning of this chapter.

The resulting modified version of PSO will be referred to as the Adapted PSO algorithm
for the rest of this thesis. With Adapted PSO introduced, it is important to identify
the range of parameter values that will ensure order-1 and order-2 stability, which will
be discussed in the next section.

63

3.2.1 Updated Parameter Stability Criteria

The stability criteria of Equation (3.7) and Equation (3.9) must now be redefined for
Adapted PSO to ensure stability. It can be shown that the criteria for both order-1 and
order-2 stability are

−1 < ω < 1 ĉ > 0. (3.13)

For proof see appendix A. Even though the criteria of Equation (3.13) ensure stability,
using negative values of ω is nonsensical for swarm robotic applications, since it would
result in the velocity of the robot changing direction at every timestep. Therefore, the
rest of this thesis will consider the subset

0 ≤ ω < 1 ĉ > 0. (3.14)

Apart from the parameter tuning criteria, one further conclusion can be made about
the behaviour of Adapted PSO by observing Equation (3.11). The sgn function is not
a smooth function and may result in what is known as chattering (Utkin 2011) under
certain conditions. Chattering is often considered a harmful phenomenon characterised
by oscillations of constant amplitude that can result in wear of moving mechanical parts
and heat loses in electrical power circuits and it is described by the position and velocity
equations (Utkin 2011)

x = g(x, t) + bu g, b ∈ Rd (3.15)

and
u = −Lsgn(s(x)), (3.16)

where L > 0 is a constant.

The Adapted PSO position update equation (3.10) is already in the same form as (3.15).
When u[k] ≈ 0 and y ≈ yg, the Adapted PSO velocity update equation (3.11) takes
the form

u[k + 1] ≈ −ĉr ◦ sgn(x[k]− yg[k]), (3.17)

which is a stochastic form of the velocity update chattering equation (3.16) (i.e. (3.16)
with an additional random variable r ∈ [0, 1]). These conditions generally occur after
the swarm has converged to the source and therefore they do not affect the convergence
behaviour of Adapted PSO or its stability. If chattering needs to be avoided, a smooth
function can be used instead of the sgn function (e.g. tanh or some type of a logistic
function with outputs in the range (-1,1)).

64

Taking tanh as an example, if |(y[k]− x[k])| � 0, then

tanh(y[k]− x[k]) ≈ sgn(y[k]− x[k]).

On the other hand, if |(y[k]− x[k])| ≈ 0, then

tanh(y[k]− x[k]) ≈ y[k]− x[k].

In this way, when the swarm is far away from its personal and global best locations,
where chattering is not a problem, the velocity update equation will behave like the
Adapted PSO velocity update equation (3.11). On the other hand, as the swarm gets
closer to convergence, where chattering can occur, the velocity update equation will
behave like the original PSO velocity update equation (2.1), which is not affected by
chattering. This thesis considers the sgn function for simplicity but all of the results of
the following analysis can be applied to the aforementioned smooth functions as well.

Based on the criteria of Equation (3.14), the next section will present an analysis that
will aim to describe how the velocity of an Adapted PSO particle may change at each
timestep. The analysis will derive expressions of maximum velocity and maximum ac-
celeration in terms of the inertia weight ω, the behaviour coefficient ĉ and the timestep
size ∆t. In this way by properly tuning these parameters it will be possible to fully syn-
chronise Adapted PSO with the motion of the physical robots, addressing the problems
outlined at the beginning of this chapter.

3.3 Control of Velocity and Acceleration

The stability analyses of PSO described in Section 3.1.1 focus on studying the long
term behaviour of PSO but they do not try to understand the timestep-to-timestep
behaviour of the particles. This is because in parameter optimisation, practitioners are
not concerned with the short-term behaviour of the particles but are instead interested
about the final convergence location of the swarm at the end of the simulation.

In order to simplify the following analysis, and in line with assumptions made in previous
analyses, yg will be drawn from a distribution with well-defined mean µ and variance
σ (Bonyadi & Michalewicz 2016, Cleghorn & Engelbrecht 2018). Note that since only
a single particle is considered, the index i will be omitted.

First, assume that the personal best location y and the global best location yg lie to-
wards the same general direction relative to the particle. In these extreme conditions,

65

the accelerating terms act constructively (i.e. they do not cancel each other out) result-
ing in maximum acceleration, while in all other cases, the acceleration is not maximised.
Under these conditions, Equation (3.11) can be simplified based on the stability study
of Trelea (2003) so that

u[k + 1] = ωu[k] + ĉr̂ ◦ sgn(ŷ[k]− x[k]), (3.18)

where ŷ[k] is the weighted average of y[k] and yg[k] as shown below

ŷ[k] =
c1

c1 + c2
y[k] +

c2

c1 + c2
yg[k].

In this way, the cognitive and social coefficients (c1 and c2) are replaced with the
behaviour coefficient ĉ of Equation (3.8). The vector r̂ is a random vector of which,
each component rj is drawn from the uniform distribution such that

r̂j ∼ U(0, 1), 1 ≤ j ≤ d.

Building on Equations (3.10) and (3.18), the following analysis will consist of three
stages: Firstly, a state model will be derived in matrix form that describes the particle’s
motion at each timestep, secondly the state model will be decomposed to understand
how the state changes from one timestep to another, and finally expressions for the
maximum velocity and acceleration of the particle will be derived in terms of ω and ĉ.

3.3.1 State model

This section will introduce a state model that will describe how the velocity and accel-
eration of a single particle vary at each timestep. In control theory, the state of a body
may be described by its position and velocity at a specific timestep. The state vector
z[k], which describes the state of motion of the particle in each of the d dimensions, is
given by

z[k] =

z1[k]

z2[k]
...

zd[k]

 (3.19)

where zj [k] describes the state of motion in only a single dimension j such that

zj [k] =

[
x j [k]

u j [k]

]
, (3.20)

66

where xj [k] and uj [k] are the jth components of position (x[k]) and velocity (u[k]). PSO
algorithms have no interdependency between dimensions, therefore it is possible to use
the single-dimension state vector zj [k] as a general description of every dimension of
z[k]. Therefore, Equations (3.10) and (3.18) can be written in matrix form for each
dimension j as

zj [k + 1] = Mzj [k] + bj [k], (3.21)

where, the right-hand-side consists of a deterministic term Mzj [k] and a stochastic term
bj [k], such that

M =

[
1 ∆t

0 ω

]
, bj [k] = ĉ× sgn(ŷj [k]− xj [k])

[
0

1

]
× rj .

This is a second order system in terms of position and velocity. However, as the objective
is to understand how ω and ĉ will affect velocity and acceleration, acceleration will be
included as a state variable. By differentiating Equation (3.18), the acceleration is given
by

a[k + 1] =
(ω − 1)u[k] + ĉr̂ ◦ sgn(ŷ[k]− x[k])

∆t
. (3.22)

Furthermore, since the analysis focuses on the timestep-to-timestep behaviour of the
particles, position is of low importance and both the velocity and the acceleration are
linearly independent of the position. Therefore for the sake of simplification position
will be removed from the state. Thus, a new single-dimension state vector ẑ is defined
as

ẑj [k] =

[
uj [k]

aj [k]

]
, 1 ≤ j ≤ d.

Using Equation (3.18) and Equation (3.22), the new state model is given by

ẑj [k + 1] = M̂ẑj [k] + b̂j [k], (3.23)

where, the right-hand-side consists of a deterministic term M̂ẑj [k] and a stochastic term
b̂j [k], such that

M̂ =

[
ω 0

(ω−1)
∆t 0

]
, b̂j [k] = ĉ× sgn(ŷj [k]− xj [k])

[
1
1

∆t

]
× rj .

This new state model can now be analysed using control theory and linear algebra
techniques to determine the timestep-to-timestep behaviour of a single particle. The
next stage will show how this can be done.

67

3.3.2 State Space Analysis

As explained in Section 3.3.1, Equation (3.23) describes only a single dimension j.
This is because each dimension of PSO is decoupled from the rest (i.e. there is no
interdependency between dimensions) and can be analysed individually. In the same
manner, the following analysis will initially be performed on a single dimension j and
at the end all dimensions will be combined to describe the behaviour of the full velocity
and acceleration vectors.

Figures 3-2a to 3-2c are phase-space plots that describe the effect of the linear depen-
dencies of the state model of Equation (3.23) (i.e. the deterministic term M̂ẑj [k]) for
ω = 0, 0 ≤ ω < 1 and ω = 1 respectively. In other words, these plots show how the
velocity and acceleration of the particle change due to the effect of the decelerating
term ωuj [k] of Equation (3.18).

In these plots, each state vector (e.g. ẑj [k], M̂ẑj [k] etc.) describes a single point. The
arrows in the phase-space plots show the direction of change from ẑj [k] to M̂ẑj [k] and
the length of the arrows is proportional to the magnitude |M̂ẑj [k]− ẑj [k]|. The arrows
in the phase-space plots show that the linear dependencies described by M̂ always cause
the state vector ẑj to asymptotically converge towards the origin for 0 ≤ ω < 1.

The phase-space plots show the direction towards M̂ẑj [k] but the do not show its exact
location on the plots. It can be shown that M̂ẑj [k] always lies on the line

a1(u, ω,∆t) =
ω − 1

ω∆t
u, (3.24)

(i.e. the dashed line shown in the plots). For proof, see Appendix B. Combining this
information with the direction of the arrows in Figures 3-2a to 3-2c, it is possible to
completely predict the location of M̂ẑj [k] for any ẑj [k], as shown in Figure 3-3a.

The location of ẑj [k + 1] can be found by adding the stochastic term b̂j [k] to M̂ẑj [k]

as shown in Equation (3.23). It is possible to show that ẑj [k+ 1] always lies in between
the lines

a2(u, ω,∆t, ĉ) = a1(u− ĉ, ω,∆t) +
ĉ

∆t

a3(u, ω,∆t, ĉ) = a1(u+ ĉ, ω,∆t)−
ĉ

∆t
.

(3.25)

For proof, see Appendix C. An example of this can be seen in Figure 3-3b, where the
red arrow represents the vector b̂j [k] (i.e. the change from M̂ẑj [k] to ẑj [k + 1]).

To understand the figure more intuitively, note that the hatching lines of the green-

68

-10 -5 0 5 10

Velocity (ms-1)

-10

-5

0

5

10

A
cc

el
er

at
io

n
(m

s-2
)

(a)

-10 -5 0 5 10

Velocity (ms-1)

-10

-5

0

5

10

A
cc

el
er

at
io

n
(m

s-2
)

(b)

-10 -5 0 5 10

Velocity (ms-1)

-10

-5

0

5

10

A
cc

el
er

at
io

n
(m

s-2
)

(c)

Figure 3-2: The phase-space graph for three different cases: (a) ω = 0, (b) 0 ≤ ω < 1
(in this specific case ω = 0.6), (c) ω = 1. In all three cases the system is stable. Also,
in (a) (extreme case) and (b) (normal case), the system is asymptotically convergent
towards the origin.

69

shaded region have gradient 1
∆t and that the red arrow is always parallel to them (as it

can be also seen by the definition of b̂j [k] under Equation (3.23)). Additionally, b̂j [k]

can have a maximum magnitude of ĉ2(1 + 1
∆t2

), which can allow it to span the distance
from the line a1 to either of the lines a2 and a3. Therefore, ẑj [k+ 1] must always lie in
between the lines a2 and a3.

The behaviours explained by Figures 3-3a and 3-3b describe every possible change in the
velocity and acceleration of a particle controlled by the PSO velocity update equation
Equation (3.11). Using these figures, it is now possible to derive expressions for the
maximum velocity, maximum acceleration and maximum deceleration of the particle in
terms of ω and ĉ.

3.3.3 Derivation of Extreme Cases

The purpose of this analysis was to identify the relationship between maximum velocity
and acceleration and the values of ω and ĉ. It can be shown that there will always exist
an asymptotically maximum velocity Uj ≥ 0 given by

Uj =
ĉ

1− ω
(3.26)

such that |uj [k]| ≤ Uj . For proof see Appendix D. Figure 3-3b (green/shaded region)
illustrates all of the possible locations of ẑj [k + 1], when −Uj ≤ uj [k] ≤ Uj . The stars
(H) represent the locations with velocity Uj or −Uj . In these locations, the effect of
the deterministic term M̂ẑj [k] (i.e. blue arrow in Figure 3-3a) may cancel out with the
effect of the stochastic term b̂j (i.e. red arrow in Figure 3-3b when its magnitude is
maximised), resulting in ẑj [k] = ẑj [k + 1].

Similarly, it can be shown that there will always exist a maximum acceleration A+
j ≥ 0

given by

A+
j =

ĉ

∆t
, (3.27)

and an asymptotically maximum deceleration A−j ≥ 0 given by

A−j =
2ĉ

∆t
= 2A+

j . (3.28)

For proof see Appendix E. The squares (n) in Figure 3-3b represent the points of
maximum deceleration A−j and the diamonds (u) the points of maximum acceleration
A+
j .

So far, the analysis was performed on an arbitrary single dimension j. Now, all dimen-

70

-10 -8 -6 -4 -2 0 2 4 6 8 10

Velocity (ms
-1

)

-10

-8

-6

-4

-2

0

2

4

6

8

10

A
c
c
e
le

ra
ti
o
n
 (

m
s

-2
)

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10

Velocity (ms
-1

)

-10

-8

-6

-4

-2

0

2

4

6

8

10

A
c
c
e
le

ra
ti
o
n
 (

m
s

-2
)

Stochastic Component

Max Velocity

Max Deceleration

Max Acceleration

(b)

Figure 3-3: Example that shows the deterministic effect of M̂ (left) and the stochastic
effect of b̂j [k] (right) on a random position of ẑj [k], for ω = 0.6, ĉ = 4 and ∆t = 1.
No matter the location of ẑj [k], the point M̂ẑj [k] will always be located closer to the
origin, lying on a1. The point ẑj [k + 1] will always be located in-between the lines a2

and a3. The vector b̂j [k] is always parallel to the hatching lines of the shaded-hatched
region, which have gradient 1

∆t . The shaded-hatched region represents all possible states
ẑj[k + 1]. For this system, A+

j = 4 m/s2, A−j = 8 m/s2 and Uj = 10 m/s.

71

sions can be combined to identify the overall maximum velocity U , maximum acceler-
ation A+ and maximum deceleration A−. To find the maximum magnitude U of the
velocity vector u it is necessary to equate each of its components to Uj , such that

U = Uj
√
d =

ĉ
√
d

1− ω
. (3.29)

Similarly, the maximum acceleration A+ and the maximum deceleration A− are given
by

A+ = A+
j

√
d =

ĉ
√
d

∆t
, (3.30)

A− = A−j
√
d =

2ĉ
√
d

∆t
= 2A+. (3.31)

Finally, it is now possible to find expressions for the behaviour coefficient ĉ and inertia
weight ω in terms of A+, A−, U , d and ∆t

ĉ =
A+(∆t)√

d
=
A−(∆t)

2
√
d

, (3.32)

ω = 1− A+(∆t)

U
= 1− A−(∆t)

2U
. (3.33)

These expressions can be used to tune Adapted PSO based on the physical limitations
of the robotic platform.

Equation Equation (3.33) can be difficult to use in its current form. To simplify it, a
new parameter is introduced, called the sensitivity factor

β =
A+ ×∆t

U
=
A− ×∆t

2U
(3.34)

such that
ω = 1− β. (3.35)

Therefore, in order for 0 ≤ ω < 1 to be satisfied, the sensitivity factor β must be always
limited to β ∈ (0, 1]. From Equation (3.34) it can be also seen that if the maximum
acceleration A+ is too large compared to the maximum velocity U , the timestep ∆tmust
be decreased (i.e. a faster controller must be used), in order to ensure that β ∈ (0, 1] is
satisfied. The sensitivity factor β is an important tool in Adapted PSO that can be used
to describe several of its behaviours and it will be studied further in the simulations of
Section 3.5. The next section will provide general tuning guidelines for Adapted PSO,
based on the outcomes of the analysis of this section.

72

3.4 Guidelines

Section 3.3 showed how expressions of the inertia weight ω and behaviour coefficient
ĉ were derived, in terms of the maximum velocity U , the maximum acceleration and
deceleration A+ and A−, the timestep size ∆t and the number of dimensions of the
environment d. This section will provide a set of design guidelines for the application
of the Adapted PSO to swarm robotic tasks, using these expressions.

The parameter selection steps are as follows:

1. Identify ∆t: The timestep size needs to be large enough to accommodate the
time delay introduced by computationally expensive tasks and communications
between robots.

2. Identify U : The desired maximum speed of the robot. It must be made sure
that this does not exceed the actual maximum speed that the robot can achieve.

3. Calculate either A+ or A−: The desired maximum acceleration or deceleration
using Equation (3.34). It must be made sure that they do not exceed the actual
maximum acceleration or deceleration that the robot can achieve and that the
sensitivity factor β is in the range (0,1].

4. Calculate ω and ĉ: Use Equation (3.35) and Equation (3.32) respectively.

5. Ensure that ω and ĉ satisfy the criteria of Equation (3.14): If not, then
a faster controller is required (i.e. smaller ∆t)

6. Select appropriate values for c1 and c2: The sum of the accelerating coeffi-
cients is given by ĉ = c1 + c2.

Control of Exploration/Exploitation Tendencies: Traditional guidelines for PSO
tuning in parameter optimisation tasks aim to control the convergence properties of the
swarm (e.g. faster convergence, exploration/exploitation tendencies etc.). This is be-
cause in PSO the parameters are directly linked to the convergence behaviour of the
swarm. In Adapted PSO however, the PSO parameters are primarily used to provide
optimal control of the motion of robots. The guidelines provided ensure that the values
of ω, c1 and c2 are properly tuned to provide the desired maximum velocity U and
acceleration A+, which can be associated to the physical maximum velocity and accel-
eration of the robot. Therefore, increasing the values of these parameters further will
not result in faster convergence, and it can cause de-synchronisation between the PSO
controller and the robot, resulting in poor control. Therefore, if faster convergence

73

is required, robots with higher maximum velocity and acceleration need to be used.
The practitioner can still control the exploration/exploitation tendencies of the swarm,
by adjusting the ratio c1

c2
, like in the original PSO, but the limitations and guidelines

provided in this chapter should also be followed.

Timestep Size Selection: Computationally intensive tasks may interfere with the
operation of Adapted PSO. To avoid this, the value of ∆t needs to be carefully selected.
The timestep size ∆t is a powerful feature of Adapted PSO that allows the robot to
accurately predict its state in the next timestep. Therefore, as long as ∆t accommodates
all possible delays, it can ensure successful control of the swarm (by accommodating for
the maximum velocity and acceleration of the physical robots). The next section will
study further how different values of ∆t can affect control.

Dynamic Velocity Control: Lastly, it should be noted that the desired maximum
velocity U and desired maximum acceleration A+ do not necessarily need to be equated
to the actual maximum velocity and acceleration of the physical robot. Instead, they can
have any value desired by the practitioner as long as this does not exceed the actual
physical limitations of the robot. This implies another powerful feature of Adapted
PSO that is not shared by most other PSO versions. The guidelines presented in this
section can be used to dynamically control the maximum velocity and acceleration of
the robot by re-tuning the PSO parameters at each timestep. Therefore, the robots can
be forced to slow down when desired (e.g. in the presence of obstacles or when close to
the source) and speed up when larger distances need to be covered. Dynamic Velocity
Control (DVC) will be studied in the rest of this chapter through the use of simulations
and more extensively in the following chapters.

3.5 Simulations

Two sets of simulations were carried out to study whether the behaviour of PSO particles
matches the behaviour described by the analysis of Section 3.3. The simulations were
run in MATLAB, using a 1D environment (i.e. the particles were only allowed to move
in a single dimension). Since there is no inter-dependency between the dimension of
PSO, the behaviour of the particles in a single dimension can be readily extended to
any number of dimensions.

In the following simulations, all of the simulated particles were initialised around the
origin and collisions were ignored to allow the particles to move freely. The fitness f of
each location was given by its position on the x-axis (i.e. f(x) = x1) and the particles

74

were controlled by the Adapted PSO update Equations (3.10) and (3.11). This results
in the swarm constantly moving towards the right indefinitely. The simulation time
for all of the following simulations was 100 s, allowing enough time to clearly identify
trends in the behaviours of the swarms.

The purpose of these simulations is to observe how the velocity of the particles changes
for different values of U , A+ and ∆t. At each second, the velocities of all particles in
the swarm are compared and the highest velocity is recorded. Note that the values of
U , A+ and ∆t used in the simulations are chosen to clearly show the differences in the
behaviours of the particles and they do not necessarily correspond to values that would
be encountered in the real world.

Since PSO is a stochastic algorithm (i.e. it makes use of random components), the
velocity of the particles is rarely maximised. Therefore, the more particles that are
included in the swarm, the more probable it becomes that one particle will be observed
moving at a velocity close to the maximum. In order to understand the relationship
between this probability and the number of particles, all of the following simulations
are repeated with swarms of 10, 100 and 1000 particles. Furthermore, the velocity of a
random single particle is also included to offer a visual understanding of the behaviour
of individual particles.

3.5.1 Constant Parameters

The first set of simulations was performed for constant values of U , A+ and ∆t (through-
out each simulation) resulting in constant PSO parameters ω and ĉ. Figure 3-4 shows
the results of four different simulations run for different values of A+ and ∆t, where
U = 20 m/s. The sensitivity factor β (see Section 3.3.3) is also provided, to study how
it can be used to describe the behaviour of the swarm.

In Figure 3-4a, A+ × ∆t = U , resulting in sensitivity factor β = 1. The maximum
observed velocities of all swarms appear to be close to the desired maximum velocity
U but they never exceed it. The maximum velocity that is observed through the whole
simulation is 19.9 m/s. This validates the conclusions of the analysis of Section 3.3,
that U represents the maximum velocity that Adapted PSO can achieve.

In Figure 3-4b, the same simulations were repeated as in Figure 3-4a but the desired
maximum acceleration A+ is 5 times smaller. Similarly, in Figure 3-4c, the same sim-
ulations are repeated but in this case, the timestep size ∆t is 5 times smaller. In both
cases, β = 0.2. In these figures, the maximum velocities observed drop significantly (the
maximum velocity observed through the whole simulation is 12.4 m/s for the former fig-

75

0

5

10

15

20

V
el

oc
ity

 (
m

s-1
)

(a) U = 20 m/s, A+ = 20 m/s2, ∆t = 1 s, β = 1

0

5

10

15

20

V
el

oc
ity

 (
m

s-1
)

(b) U = 20 m/s, A+ = 4 m/s2, ∆t = 1 s, β = 0.2

0

5

10

15

20

V
el

oc
ity

 (
m

s-1
)

(c) U = 20 m/s, A+ = 20 m/s2, ∆t = 0.2 s, β = 0.2

0 20 40 60 80 100

Time (s)

0

5

10

15

20

V
el

oc
ity

 (
m

s-1
)

(d) U = 20 m/s, A+ = 100 m/s2, ∆t = 0.2 s, β = 1

U

A
+

t

Single Particle Velocity

Max Observed Speed (1000 robots)

Max Observed Speed (100 robots)

Max Observed Speed (10 robots)

Figure 3-4: The maximum observed velocities at each second, for swarms of 10, 100
and 1000 particles (in order from darker green to lighter green regions). The blue solid
line represents the value of the desired maximum velocity U and the red dashed line
represents the value of the Acceleration-Time product (A+ ×∆t. The yellow solid line
is the velocity of a random particle. In (a) and (d), the simulations have the same
sensitivity factor β = 1 and showcase similar maximum observed velocities. Similarly,
in (b) and (c), the sensitivity factor is β = 0.2 and the simulations showcase similar
maximum observed velocities.

76

ure and 13.4 m/s for the latter). This can be intuitively understood by considering what
happens as A+ and ∆t decrease. As these values drop, a particle requires more con-
secutive timesteps to reach maximum speed. Due to the stochastic nature of Adapted
PSO, it is very rare that a particle will accelerate fully for several consecutive timesteps.
This makes it more difficult to achieve maximum speed for smaller values of A+ and
∆t.

An interesting observation is that Figures 3-4b and 3-4c exhibit very similar observed
maximum velocity behaviours. Furthermore, the two figures share the same Acceleration-
Time product (A+ ×∆t) and therefore the same sensitivity factor β. Therefore it can
be hypothesised that the value of β indicates how likely it is that a particle will manage
to reach maximum velocity. To test this, the fourth simulation was run with five times
smaller ∆t than in Figure 3-4a but with five times larger A+, resulting in the same value
of β = 1. The results of Figure 3-4d show that indeed the particles manage to reach
maximum velocity, suggesting that the value of β can be used to predict the behaviour
of the swarm (i.e. its ability to maximise its velocity).

3.5.2 Variable Parameters

As explained in Section 3.4, Adapted PSO offers the capability to dynamically control
the maximum velocity of the particles through the process of DVC, by re-tuning the
inertia weight ω and the accelerating coefficients c1 and c2 during the operation of
the swarm. The second set of simulations ran, aimed to study how the Adapted PSO
particles respond to such changes. The following simulations are identical to the ones
presented in Figure 3-4 but the values of U and A+ were altered at 34 s and 67 s, to
study the step response of the swarm when the particle velocities need to either increase
or decrease. Furthermore, different simulations aim to alter the value of the sensitivity
factor β in different ways to observe how this affects the response of the swarm. The
value of the timestep size ∆t was 1 s for all simulations and the results are shown in
Figure 3-5.

In Figure 3-5a, the desired maximum acceleration A+ is constant at 4 m/s2 and the
desired maximum velocity U varies. During the first and third time intervals (0-33 s

and 67-100 s), U is at 20 m/s, resulting in a sensitivity factor β = 0.2. During the
second time interval (34-66 s), U drops to 4 m/s, resulting in β = 1. In the figure, it
can be seen that when U drops at 34 s (high β), all of the maximum observed speeds
follow immediately, resulting in a critically damped response. On the other hand, when
U increases at 67 s (low β), the maximum observed speeds follow more slowly (it takes
6 seconds for the maximum observed speed of 1000 robots to exceed 9.5 m/s - the

77

0

5

10

15

20

V
e
lo

c
it
y
 (

m
s

-1
)

(a) A+ = 4 m/s2, U = 20→ 4→ 20 m/s, β = 0.2→ 1→ 0.2

0

5

10

15

20

V
el

oc
ity

 (
m

s-1
)

(b) A+ = 20→ 0.8→ 20 m/s2, U = 20→ 4→ 20 m/s, β = 1→ 0.2→ 1

0 20 40 60 80 100

Time (s)

0

5

10

15

20

V
el

oc
ity

 (
m

s-1
)

(c) A+ = 20→ 4→ 20 m/s2, U = 20→ 4→ 20 m/s, β = 1

U

A
+

t

Single Particle Velocity

Max Observed Speed (1000 robots)

Max Observed Speed (100 robots)

Max Observed Speed (10 robots)

Figure 3-5: The maximum observed velocities at each second, for swarms of 10, 100
and 1000 particles (in order from darker green to lighter green regions). The blue solid
line represents the value of the desired maximum velocity U and the red dashed line
represents the value of the Acceleration-Time product (A+ ×∆t. The yellow solid line
is the velocity of a random particle. In (a), the desired maximum velocity U decreases
at 34 s and increases again at 67 s varying β from low to high to low. In (b), both the
desired maximum velocity U and acceleration A+ decrease at 34 s and increase again
at 67 s varying β from high to low to high. In (c), both the desired maximum velocity
U and acceleration A+ decrease at 34 s and increase again at 67 s while β remains high
at all times.

78

lowest maximum observed speed in Figures 3-4b and 3-4c), resulting in an overdamped
response. The same behaviour can be also seen at the beginning of the simulation,
where it takes 8 seconds for the maximum observed speed of 1000 robots to exceed
9.5 m/s.

In Figure 3-5b, both A+ and U vary in such a way that in the first and third time
intervals, β = 1 and in the second time interval, β = 0.2. In this case, when U and
A+ drop at 34 s (low β), the overdamped response of the system is much more clear
(this is due to the large velocity change demanded), where it takes 11 seconds for the
maximum observed speed of 1000 robots to fall below 3 m/s. Conversely, when U and
A+ rise at 67 s (high β), the system response is critically damped.

Finally, in Figure 3-5c, both A+ and U vary in such a way that the sensitivity factor
β = 1 throughout the whole simulation. In this case, the response is critically damped,
both at 34 s and at 67 s. The following section will discuss the results of the simulations
presented in this section.

3.6 Discussion

The results presented in Section 3.5 show that the individual values of U , A+ and ∆t

do not provide enough information about the behaviour of the Adapted PSO algorithm
on their own. Instead, it is possible to better predict the behaviour of the algorithm
by considering the sensitivity factor β. The results show that a high value of β allows
the Adapted PSO to maximise its velocity (both average and maximum) and respond
quickly to changes in the values of the desired maximum velocity U and acceleration
A+.

Since U and A+ are limited by the physical limitations of the robot, the conclusions of
these simulations primarily concern the selection of a timestep size ∆t. In other words,
the timestep size ∆t should be selected by the practitioner to maximise the sensitivity
factor β. As the value of ∆t decreases (i.e. faster controller), the sensitivity factor β
decreases as well, which could result in sub-optimal operation of Adapted PSO, both
in terms of average and maximum velocity output and control. At first this may seem
counter-intuitive, since faster controllers are typically associated with better system
control (faster response to errors). That said, it should be understood that the aim of
the simulations presented in this section was to study how the Adapted PSO controller
responds to the values of U , A+ and ∆t (i.e. how the velocities outputted by the
controller vary) and not how the physical robots responds to them.

79

To explain this further, consider the example of a robot with relatively low maximum
acceleration compared to its maximum velocity (e.g. a vehicle moving on ice). In this
case, if a small ∆t is selected, the controller will quickly update its velocity outputs,
before the robot manages to respond to them in any significant way. If a large ∆t is used
instead, it can allow enough time for the robot to accelerate towards a specific direction
building up significant speed before the controller issues a new command. Alternatively,
a large ∆t value that was specifically selected to optimise β, allows the controller to
know how quickly the robot will respond to its commands. This information can then
be used to issue better timed commands, improving control.

In other words, Adapted PSO does not just consider the physical limitations of the
robot, in terms of maximum velocity and acceleration output; it also considers this
information to optimise the frequency that new commands are being issued, thereby
synchronising further the controller with the physical platform. This way of employing
∆t and β, along with the DVC process to achieve optimal motion control of a robot
will be studied further in the following chapter.

3.7 Generalised Adapted PSO

Section 3.5 introduced a number of different useful properties and characteristics of the
Adapted PSO that were derived from the analysis presented in this chapter. Apart
from these, it is possible to recognise one further extension of the Adapted PSO that is
implied by the presented analysis.

So far, Adapted PSO made use of two accelerating terms (i.e. cognitive and social),
primarily because these terms are used by original PSO. The analysis merges these
terms by adding their corresponding accelerating coefficients (c1 and c2) to form the
behaviour coefficient ĉ. From there, all conclusions and resulting expressions are derived
in terms of ĉ.

That said, there is no reason that Adapted PSO be limited to only two accelerating
terms. Instead, the analysis presented can be applied to a more general velocity update
equation that has an arbitrary number of n accelerating terms, resulting in the velocity
update equation of the Generalised Adapted PSO

u[k + 1] = ωu[k] + c1r1 ◦ sgn(y1[k]− x[k])

+ c2r2 ◦ sgn(y2[k]− x[k])

+ ...+ cnrn ◦ sgn(yn[k]− x[k]), (3.36)

80

where y1, y2, ..., yn are locations in the real world and

r1,j , r2,j , ... , rn,j ∼ U(0, 1) 1 ≤ j ≤ d. (3.37)

In a similar manner to Equation (3.8), the behaviour coefficient can be calculated by
adding all accelerating coefficients

ĉ = c1 + c2 + ...+ cn, (3.38)

Lastly, if it is assumed that all locations y1, y2, ..., yn lie towards the same general
direction relative to the particle, thereby maximising acceleration, Equation (3.36) can
take the form of Equation (3.18), where ŷ[k] is now given by

ŷ[k] =
c1

c1 + c2 + ...+ cn
y1[k] +

c2

c1 + c2 + ...+ cn
y2[k] + ...+

cn
c1 + c2 + ...+ cn

yn[k].

From here, it is now possible to apply the analysis presented in this chapter, starting
from Section 3.3, to the Generalised Adapted PSO algorithm, including all properties
and behavioural characteristics described in Section 3.5.

The additional accelerating terms of Generalised Adapted PSO can be used to incor-
porate additional tasks into Adapted PSO such as obstacle avoidance, aggregation,
flocking and target trapping etc. This can be achieved by replacing the input of the
sgn function in each term, with the directional output (e.g. a virtual force or a tra-
jectory direction) of other techniques and algorithms, designed to carry out specific
individual tasks. Chapter 4 will show how this idea, combined with DVC can be used
to incorporate obstacle avoidance and aggregation into Adapted PSO.

3.8 Conclusions

This chapter has introduced a modified version of the original PSO algorithm called
Adapted PSO, that introduces maximum velocity and maximum acceleration limita-
tions. It is shown that Adapted PSO is order-1 and order-2 stable, which are necessary
requirements imposed by the literature. A timestep-to-timestep analysis is then pre-
sented that concludes with the derivation of expressions for the maximum velocity and
maximum acceleration in terms of the inertia weight ω, the cognitive and social coef-
ficients c1 and c2 and the timestep size ∆t. In this way, Adapted PSO considers the
physical limitations of the robots, addressing the first problem of PSO (see Section 3.1),
while also considering the refresh rate of the controller, addressing the second problem.

81

Simulations were carried out to study the resulting behaviour of Adapted PSO and
show that the behaviour in terms of maximum and average velocity output and re-
sponse to input changes can be accurately described by the value of the sensitivity
factor β. Lastly, a generalised extension of the algorithm called Generalised Adapted
PSO is introduced, which can allow the incorporation of additional tasks into Adapted
PSO, such as obstacle avoidance.

82

References

Bonyadi, M. R. & Michalewicz, Z. (2016), ‘Stability Analysis of the Particle Swarm
Optimization Without Stagnation Assumption’, IEEE Transactions on Evolutionary
Computation 20(5), 814–819.

Cleghorn, C. W. & Engelbrecht, A. P. (2018), ‘Particle swarm stability: a theoret-
ical extension using the non-stagnate distribution assumption’, Swarm Intelligence
12(1), 1–22.

Clerc, M. & Kennedy, J. (2002), ‘The particle swarm - explosion, stability, and con-
vergence in a multidimensional complex space’, IEEE Transactions on Evolutionary
Computation 6(1), 58–73.

Hereford, J. M., Siebold, M. & Nichols, S. (2007), Using the Particle Swarm Optimiza-
tion Algorithm for Robotic Search Applications, in ‘2007 IEEE Swarm Intelligence
Symposium’, pp. 53–59.

Kennedy, J. (2010), ‘Particle swarm optimization’, Encyclopedia of machine learning
pp. 760–766.

Kennedy, J. & Eberhart, R. (1995), Particle swarm optimization, in ‘Proceedings of
ICNN’95 - International Conference on Neural Networks’, Vol. 4, pp. 1942–1948 vol.4.

Krishnanand, K. N. & Ghose, D. (2009), ‘Glowworm swarm optimization for simulta-
neous capture of multiple local optima of multimodal functions’, Swarm Intelligence
3(2), 87–124.

Liu, Q. (2014), ‘Order-2 Stability Analysis of Particle Swarm Optimization’, Evolution-
ary computation 23.

Ozcan, E. & Mohan, C. K. (1999), Particle swarm optimization: surfing the waves, in
‘Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406)’, Vol. 3, pp. 1939–1944 Vol. 3.

Pugh, J. & Martinoli, A. (2007), Inspiring and Modeling Multi-Robot Search with Parti-
cle Swarm Optimization, in ‘2007 IEEE Swarm Intelligence Symposium’, pp. 332–339.

Shi, Y. & Eberhart, R. C. (1998), Parameter selection in particle swarm optimization,
in ‘Evolutionary Programming VII’, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 591–600.

83

Trelea, I. C. (2003), ‘The particle swarm optimization algorithm: convergence analysis
and parameter selection’, Information Processing Letters 85(6), 317–325.

Utkin, V. (2011), ‘Chattering Problem’, IFAC Proceedings Volumes 44(1), 13374–13379.
URL: https://www.sciencedirect.com/science/article/pii/S147466701645771X

84

Chapter 4

Obstacle Avoidance and Dynamic
Velocity Control Strategies

Chapter 3 introduced Adapted PSO, a variant of the original PSO algorithm that
allows consideration of the physical movement limitations of the individual robots like
maximum velocity and maximum acceleration. The chapter also introduced the concept
of Dynamic Velocity Control (DVC). Lastly, a generalised version of the algorithm
was introduced, called Generalised Adapted PSO, which is described by the following
velocity update equation

u[k + 1] = ωu[k] + c1r1 ◦ sgn(y1[k]− x[k])

+ c2r2 ◦ sgn(y2[k]− x[k])

+ ...+ cnrn ◦ sgn(yn[k]− x[k]). (4.1)

where y1, y2, ..., yn are locations in the real world.

While original and Adapted PSO make use of only two accelerating terms, Generalised
Adapted PSO allows the use of n terms. These terms can be utilised to incorporate
additional functionality such as obstacle avoidance, aggregation and flocking behaviours.
This chapter will show how these concepts can be used to create a low-level motion
controller for the control of robotic swarms.

85

4.1 Robotic Particle Swarm Optimisation

The idea of adding additional terms into the PSO velocity update equation to incorpo-
rate additional tasks into the algorithm has been previously explored in the literature,
for example in Robotic Particle Swarm Optimisation (RPSO) (Couceiro et al. 2011).

RPSO aims to incorporate obstacle avoidance into PSO, by adding a third accelerating
term. Therefore, the original PSO velocity update equation takes the following form

u[k + 1] = ωu[k] + c1r1 ◦ (y[k]− x[k]) + c2r2 ◦ (yg[k]− x[k]) + c3r3 ◦ (Ft[k]) (4.2)

where c3 is the obstacle susceptibility coefficient and each element of r3 is drawn from
the uniform distribution U(0, 1). Note that Equation (4.2) does not make use of a sgn
function and therefore it does not inherit the capabilities of Generalised Adapted PSO
presented in Chapter 3 (e.g. maximum velocity and acceleration).

The vector Ft is described as the direction of motion that optimises a monotonically
decreasing sensing function (e.g. a function that depends on the output signal of prox-
imity sensors). In this way, the third term always tries to move the particle away from
nearby obstacles. A possible alternative definition of Ft is that of a virtual force used
to push the robot away from surrounding obstacles, given by

Ft =
P∑
p=1

Fp, (4.3)

where P is the total number of obstacles around the robot and Fp is a virtual re-
pulsive force exerted by obstacle p ∈ {1 , ... , P}. Virtual forces are well-studied in
swarm robotics and are generally used to control the position of a robot relative to its
direct surroundings (e.g., obstacles, targets or other robots). There exist many differ-
ent ways of defining a virtual force, ranging from simple position-dependent functions
to more complex functions that are typically inspired from real-world physical forces
(e.g., spring-damper systems) (Spears et al. 2004, Khaldi & Cherif 2016, Garone et al.
2018, Hosseinzadeh & Garone 2020). This chapter will make use of a simple position-
dependent virtual force definition, but more complex definitions could also be used. Let
s be a vector of distances between the robot and surrounding obstacles, such that, at
sp = 0 the robot has collided with obstacle p. A virtual repulsive force Fp exerted by
obstacle p on robot i is defined as

Fp =
γ

sp

(xi − xp)

|xi − xp|
(4.4)

86

where xi is the position of the centre of the robot and xp is the position of the centre of
obstacle p. The parameter γ > 0 is the avoidance sensitivity parameter and adjusts the
intensity of the repulsive force. Note that (4.4) is undefined for sp = 0 and xi−xp = 0.
Nevertheless, such conditions occur only after a collision has happened and therefore
they are assumed to not affect the operation of the system in practical applications.

Much like other modified versions of PSO, RPSO can be used as a trajectory planning
algorithm, indicating the direction of motion of the robot. Therefore, the individual
values of c1, c2 and c3 do not matter, since the resulting velocity will typically exceed
the maximum velocity of the robot. Instead, Couceiro et al. (2011) focused on the
relationship between c3 and max{c1, c2}. When c3 � max{c1, c2}, the effect of the last
term of Equation (4.2) may not be sufficient to force the robot to avoid an obstacle and
if the cognitive and social terms happen to point towards the obstacle, the robot will
collide with it. On the other hand, when c3 � max{c1, c2}, the robot becomes overly
sensitive to obstacles. In this case, the obstacle susceptibility term overshadows the
other terms, making it difficult for the robot to pass through small openings towards
the source. Furthermore, all three accelerating terms are unbounded (i.e. a sgn function
is not used) and can increase arbitrarily, leading to further collisions.

Couceiro et al. (2011) proposed that the value of c3 could be dynamically recalibrated at
each timestep, in a similar manner to the concept of DVC, seemingly in an attempt to
improve the aforementioned RPSO behaviour. When no obstacles are present, c3 tends
to 0, but it grows the closer the robot is to an obstacle. However, the unbounded nature
of the accelerating terms of RPSO means that each term can grow arbitrarily, no matter
what the value of its accelerating coefficient is. For example, even if c3 is large when
close to an obstacle, the effect of the other accelerating terms may still end up being
larger (if the personal and global best locations are far away from the robot), resulting in
collisions. This weakness of RPSO can be explained mathematically as the accelerating
terms having no expected magnitude. Therefore, to achieve control of the accelerating
terms through the calibration of the accelerating coefficients, it is important to adapt
the accelerating terms so that they have well-defined expected magnitude that depends
on their corresponding accelerating coefficients. In Generalised Adapted RPSO, each
arbitrary nth accelerating term has an expected magnitude of cn

2 and therefore, it can
be used to overcome this weakness of RPSO. The rest of this chapter will show how
this can be done.

87

4.2 Adapted Robotic Particle Swarm Optimisation

Generalised Adapted PSO can take a similar structure to the RPSO algorithm of Equa-
tion (4.2) by using three accelerating terms, resulting in the Adapted RPSO algorithm

u[k + 1] = ωu[k] + c1r1 ◦ sgn(y[k]− x[k])

+ c2r2 ◦ sgn(yg[k]− x[k]) + c3r3 ◦ sgn(Ft[k]). (4.5)

The position update equation is the same as in Adapted PSO of Chapter 3

x[k + 1] = x[k] + ∆t u[k + 1], (4.6)

In contrast to Equation (4.2), Adapted RPSO makes use of a sgn function in each
accelerating term. Therefore, it inherits all of the characteristics of Generalised Adapted
PSO presented in Chapter 3, such as a desired maximum velocity U , a desired maximum
acceleration A+ and a desired maximum deceleration A− = 2A+ given by

U =
ĉ
√
d

1− ω
A+ =

ĉ
√
d

∆t
A− =

2ĉ
√
d

∆t
. (4.7)

where ∆t is the timestep size and ĉ = c1 + c2 + c3. A sensitivity factor 0 < β ≤ 1 is
also given by

β =
A+ ×∆t

U
=
A− ×∆t

2U
, (4.8)

and therefore, the parameters ω and ĉ are given by

ω = 1− β ĉ =
A+(∆t)√

d
. (4.9)

Furthermore, the parameter selection guidelines presented in Chapter 3 also apply to
it. As a reminder, these guidelines are presented again for Adapted RPSO:

1. Identify ∆t: The timestep size needs to be large enough to accommodate the
time delay introduced by computationally expensive tasks and communications
between robots.

2. Identify U : The desired maximum speed of the robot. It must be made sure
that this does not exceed the actual maximum speed that the robot can achieve.

3. Calculate either A+ or A−: The desired maximum acceleration or deceleration
using Equation (4.8). It must be made sure that they do not exceed the actual
maximum acceleration or deceleration that the robot can achieve and that the

88

sensitivity factor β is in the range (0,1]. Ideally, β should be as high as possible
as concluded from the results of Chapter 3.

4. Calculate ω and ĉ: Use Equation (4.9).

5. Select desired values for c1, c2 and c3: The sum of the accelerating coefficients
is given by ĉ = c1 + c2 + c3.

4.2.1 Calibration of Individual Accelerating Terms

The last step of the tuning guidelines specifies that the sum of the accelerating coeffi-
cients should satisfy ĉ = c1 + c2 + c3, but a way to select the value of each individual
coefficient is not provided. As described in Section 4.1, the coefficients could be cali-
brated in such a way that c3 increases and c1 and c2 decrease as the robot gets closer
to the closest obstacle and vice versa as the robot moves away from it. That said, it is
still unclear how much the increase or decrease should be depending on the distance to
the obstacle.

This can be problematic, since if c1 and c2 are not sufficiently decreased when the robot
is close to an obstacle, they may end up overshadowing the obstacle susceptibility term
(third accelerating term), resulting in collisions. Furthermore, due to the stochastic
component r of each term, the obstacle susceptibility term may end up being very
small, even if c3 is large, resulting in further collisions. Therefore, it is needed to
provide a relationship between the distance to an obstacle and the new values of the
accelerating coefficients that will ensure effective collision avoidance.

According to Equation (4.7), the maximum acceleration of Adapted RPSO is provided
by

A+ =
(c1 + c2 + c3)

√
d

∆t
. (4.10)

Equation (4.10) is linear and therefore the maximum acceleration that can be caused by
each accelerating term can be calculated using a weighted average of the corresponding
accelerating coefficient, such that

A+
1 =

c1 ×
√
d

∆t
A+

2 =
c2 ×

√
d

∆t
A+

3 =
c3 ×

√
d

∆t
. (4.11)

Similarly, based on Equation (4.8), the maximum velocity that can be caused by each
accelerating term is given by

U1 =
A+

1 ×∆t

β
U2 =

A+
2 ×∆t

β
U3 =

A+
3 ×∆t

β
. (4.12)

89

This concept can be extended to any combination of accelerating terms, by setting
ĉ equal to the sum of their corresponding accelerating coefficients in Equations (4.7)
and (4.8). Therefore, it is now possible to use the maximum velocity caused by any
combination of terms to limit them accordingly. For example the cognitive and social
coefficients (c1 and c2) can always be limited such that the maximum velocity caused
by them will never be enough to cause a collision with the closest obstacle, even if the
obstacle susceptibility term happens to be small at that point.

This concept can be used to design a DVC strategy that will control the value of each
accelerating coefficient at each timestep. The next section will describe how Adapted
RPSO combined with a properly designed DVC strategy can be used to overcome the
limitations of original RPSO, discussed in Section 4.1.

4.2.2 Implementation of Dynamic Velocity Control Strategy

The following DVC strategy will aim to dynamically adjust the RPSO parameters at
each timestep to control the maximum velocity of each robot. The parameters are
adjusted so that convergence to the personal and global best locations is prioritised
when the robot is far away from obstacles, while obstacle avoidance is prioritised when
an obstacle is nearby. When implemented correctly, this can prevent collisions with
obstacles and other agents, while also achieving convergence of the swarm to the source.

Since Generalised Adapted PSO is a modified version of the original PSO, it inherits its
scalability characteristics. That said, it is important that the DVC strategy is designed
in such a way as to ensure that the overall control process remains scalable. To achieve
this, the DVC strategy is designed to ensure that a single robot will be able, at any
point, to avoid collision with its surroundings (both obstacles and other robots), while
still being able to converge towards its personal best and global best locations. As long
as this is true, the DVC strategy will be scalable to any number of robots. The rest of
this section will describe the DVC strategy used.

Let s be the list of distances to the nearest obstacles, sorted in order from smallest to
largest, such that s1 is the distance to the closest obstacle. Similarly, let

ν =
s

∆t
, (4.13)

be a vector of speeds, such that ν1 is the minimum speed required for the robot to
collide with the closest obstacle in the next timestep. The value νp can be used to
prevent collision with obstacle p by selecting a desired maximum speed U smaller than

90

νp using
U = α× νp, (4.14)

where 0 < α < 1. The value of α can be reduced to accommodate for a larger error in
odometry and distance measurements.

Lastly, the following DVC strategy only requires the use of a desired maximum velocity
U (i.e. it does not need a desired maximum acceleration A+ or deceleration A− to be
set). On the other hand, the parameter tuning guidelines presented require the use of a
desired maximum acceleration A+ or deceleration A− to calculate ĉ. This requirement
can be bypassed by combining Equations (4.7) and (4.8), such that

ĉ =
β × U√

d
. (4.15)

Note that, since this approach does not take into account a desired maximum accelera-
tion A+ or deceleration A−, it assumes that the maximum acceleration and deceleration
of the physical robots are very large and will not affect the control of the robot in any
way. If this is not the case, then the parameter tuning guidelines should be instead
used as presented.

The DVC strategy follows three main steps:
Step 1: As it was previously discussed, since each accelerating term contains a random
parameter r, the obstacle susceptibility term can end up being small while the robot
is close to an obstacle. If that happens while the other accelerating terms are large,
collisions with obstacles can occur. Therefore, the first step aims to address the case
where the robot is not repelled by the closest obstacle at a given timestep, because r3

happens to be small. To avoid collision, the effect of the cognitive and social terms
(first and second accelerating terms) must be small enough to ensure that at least for
the next timestep, it will be impossible for the robot to collide with the closest obstacle.
In this case, c3 is ignored (since the obstacle susceptibility term is assumed to be small)
and ĉ = c1 + c2.

• Calculate the desired maximum speed U1,2 = α× ν1 that will ensure no collision
with the closest obstacle.

• Using (4.15), calculate ĉ, where d = 2.

• Using ĉ = c1 + c2, calculate c1 and c2 based on the desired ratio c1
c2
.

Step 2: Another problematic case can be identified where, while the robot is repelled
by the closest obstacle, it ends up colliding with another obstacle. To avoid this, the

91

effect of all three accelerating terms needs to be small enough to ensure that at least for
the next timestep, it will be impossible for the robot to collide with the second closest
obstacle. In this case, ĉ = c1 + c2 + c3. As before,

• Calculate the desired maximum speed U = α × ν2 that will ensure no collision
with the second closest obstacle due to the effect of all accelerating terms.

• Using (4.15), calculate ĉ, where d = 2.

• Finally, since c1 and c2 are already known, c3 = ĉ− c1 − c2.

Step 3: The inertia weight ω can be calculated using (4.9).

One important characteristic of this calibration strategy is that when s1 = s2, then
c3 = 0. This means that when the robot is at an equal distance from two obstacles,
there is no repulsive effect on the robot, allowing it to pass through the obstacles. This
will happen no matter how big the opening is between the obstacles, as long as the
robot can fit through it.

4.3 Simulations

To demonstrate the performance of Adapted RPSO and the DVC strategy proposed in
Section 4.2.2, a number of simulations were performed in MATLAB and Gazebo (Koenig
& Howard 2004). The MATLAB simulations were idealised, whereas the Gazebo simu-
lations included a more detailed real-time physics model where the inertia of the robots
is applied.

Firstly, the tested RPSO variants will be described. The cognitive coefficient c1 allows
the robot to explore the environment around it and overcome obstacles, while the social
coefficient c2 encourages the robot to move towards the global best location yg. As
both coefficients are of importance in source localisation tasks it is assumed in all of
the following simulations that

c1 = c2. (4.16)

This provides the ratio c1
c2

required in Step 1 of the DVC strategy. The values for c1, c2

and c3 can be either constant (calibrated at the beginning of the simulation) or dynamic
(i.e. re-calibrated at every timestep using the DVC strategy). Both scenarios will be
studied in the following simulations. The algorithms compared in the simulations are
described below.

92

Original RPSO with constant values For the original RPSO algorithm, the mag-
nitudes of the single values c1, c2 and c3 rarely matter. This is because it is very easy
for the resulting velocity of the algorithm to be higher than the maximum velocity of
the robot (since the accelerating terms are unbounded). Instead, what matters is the
ratio c3

c1+c2
, since this will control the direction of the requested velocity, which will be

either away from close obstacles or towards the personal and global best locations. For
the following simulations, three cases will be tested: c3 ≈ c1 + c2, c3 � c1 + c2, and
c3 � c1 + c2.

Adapted RPSO with constant values In Adapted RPSO, all of the terms of the
velocity update equation are bounded using the sgn function. Therefore, it is possible
to tune the parameters using Equation (4.9). The parameters are tuned so that the
desired maximum velocity U is always equal to the physical maximum velocity of the
robots. From here, it is now possible to calculate the values of c1, c2 and c3, based on
the desired value of the ratio c3

c1+c2
. In order to allow direct comparison between the

algorithms, the same cases will be used for the Adapted RPSO with constant values, as
for the original RPSO, where it will be ensured that different values of c3

c1+c2
are tested.

Adapted RPSO with DVC For Adapted RPSO with DVC, c1, c2 and c3 will be re-
calibrated at every timestep for each robot, depending on its current state as explained
in Section 4.2.2. By running Adapted RPSO twice, once with constant parameters
and once with DVC, it will be possible to understand the effect that DVC has on the
performance of the algorithm.

The Adapted PSO controller with the DVC strategy used in the simulations is shown
in Algorithm 1, where f refers to the fitness of the personal best location of a robot
and fg refers to the fitness of the global best location. For Adapted PSO with constant
parameters, the same controller was used but without recalibration of the PSO param-
eters (lines 12-18 in Algorithm 1), while for original PSO with constant parameters, the
PSO parameters are not recalibrated and the PSO velocity updated equation (line 19)
is replaced by the original PSO equation.

The simulations were created to resemble typical real-world robotic applications (e.g.
a swarm of drones navigating through a forest or a city). The values of some of the
parameters used (α, β, γ, ∆t and ω) were selected heuristically to match such appli-
cations. Changing the value of the parameters β, γ, ∆t and ω is expected to affect
all cases in the same way. In the case of α, it is only used by one of the tested cases
(Adapted RPSO with DVC) and it is used to accomodate for errors in odometry and

93

Algorithm 1: Robot Control using Adapted PSO with DVC
1 foreach robot do
2 robot.UpdatePersonalBestLocation(source_position);
3 if robot.f < fg then
4 fg ← robot.f ; // Update global best location fitness
5 yg ← robot.y; // Update global best location
6 end
7 end
8 foreach robot do
9 s[]← robot.GetDistanceToSurroundings(6); // 6 sensing regions

10 F[]← robot.GetForcesFromSurroundings(s[]);
11 Ft ← sum(F[]);
12 s[].sort();
13 ν[]← s[]/∆t;
14 U1,2 ← α× ν[1]; U ← α× ν[2];
15 ĉ← β ∗ U1,2/

√
2; // First Step: ĉ = c1 + c2

16 c1 ← ĉ/2; c2 ← ĉ/2; // In this case c1/c2 = 1

17 ĉ← β ∗ U/
√

2); // Second Step: ĉ = c1 + c2 + c3

18 c3 ← ĉ− c1 − c2;
19 ω ← 1− β; // Third Step: ĉ = c1 + c2 + c3

20 robot.v← ω ∗ robot.v + c1 ∗ rand(1, 2) ∗ sgn(robot.y − robot.x) + c2 ∗
rand(1, 2) ∗ sgn(robot.yg − robot.x) + c3 ∗ rand(1, 2) ∗ sgn(Ft);

21 end

22 Function UpdatePersonalBestLocation(self, source_position) :
23 self.x← self.GetCurrentPosition();
24 f = |self.x−source_position|; // Assign distance-based cost to location
25 if f < self.f then // Update personal best location
26 self.f ← f ;
27 self.y← self.x;
28 end
29 end

94

Table 4.1: Table of values used for different parameters

Algorithm Case α β γ ∆t c1 = c2 c3

DVC 0.9 0.9 1 1 - -
c3 � c1 + c2 0.2864 1.1455
c3 ≈ c1 + c2 0.4296 0.8591Adapted RPSO

c3 � c1 + c2

- 0.9 1 1
0.5728 0.5728

c3 � c1 + c2 0.2864 1.1455
c3 ≈ c1 + c2 0.4296 0.8591Original RPSO
c3 � c1 + c2

- 0.9 1 1
0.5728 0.5728

distance measurements. In the following simulations it is assumed that such errors are
small and therefore a large value of α is used. Further tests with sensors of larger error
would be useful but are beyond the scope of this thesis. Table 4.1 shows the values
assigned to these parameters throughout all of the simulations, along with the values
of the parameters c1, c2 and c3 for each tested case.

4.3.1 World description

The world used in all simulations is shown in Figure 4-1. In the figure, the blue square
is the area where the robots are initialised, the red square is the source (global minimum
of the cost function, where the cost is equal to the distance between the robot and the
source) and the circles are obstacles. The obstacles become denser the closer to the
source.

The robots can move within the two-dimensional world, are assumed to have unlimited
communication range and bandwidth, and each robot can communicate with every
other robot in the swarm at all times. To assess the performance of each swarm, the
fitness of the swarm is calculated using

fitness =

∑M
i=1 x

i
1

M
, (4.17)

whereM is the total number of robots in the swarm and xi1 is the horizontal component
of the position of robot i. Therefore, the right-hand side of the equation is the horizontal
distance from the origin to the Centre of Mass (CoM) of the swarm. Therefore, the
further a swarm manages to navigate inside the obstacle course (higher fitness), the
more capable the control algorithm is to deal with smaller openings. Furthermore,
collisions with obstacles or other robots can occur and if a collision occurs the robot is
considered to become disabled and cannot move any further. Apart from the fitness of
the swarm, the percentage of robots that have collided by the end of the simulation is

95

0 10 20 30 40 50 60 70

Distance (m)

-25

-20

-15

-10

-5

0

5

10

15

20

25

D
is

ta
n

c
e

 (
m

)

Figure 4-1: The obstacle map used in both MATLAB and Gazebo simulations. The
blue square on the left shows the starting area where robots are initialised and the red
square on the right shows the position of the source. The obstacles become denser the
closer to the source.

also used as a secondary metric.

4.3.2 Robot description

Although all tested algorithms are inherently scalable, a minimum number of robots is
required for the swarm to be effective. In this simulations, it was chosen to demonstrate
the algorithms on a small swarm of 6 robots. The robots of the swarm are based on
the Robotnik Summit XL Steel platform (Robotnik Automation S.L.L. n.d.), a popular
robotic platform shown in Figure 4-2 with available specifications and simulation models
(e.g. Gazebo models (The Construct 2021)).

The robots detect nearby obstacles using a LiDAR sensor. A low-cost obstacle-detection
short-range LiDAR sensor can have maximum range starting from 4 m (Benewake (Bei-
jing) Co. Ltd 2017), so the obstacle detection range of each robot was set to 3 m, to
avoid operating at the sensor’s maximum range. Due to the way that both the MAT-
LAB and Gazebo simulations operate, a robot can detect obstacles in its detection
range even if they are "hidden" behind other obstacles (in the Gazebo simulations, the
robots are already aware of the location of the obstacles). This contradicts how a Li-
DAR would detect obstacles and it can result in multiple repulsive forces being exerted
from the same direction. To avoid this, each robot separates its surroundings into six
equally-sized radially-separated regions, as shown in Figure 4-3. Only the repulsive

96

(a)

(b)

Figure 4-2: (a) shows the real Robotnik Summit XL Steel platform (Robotnik Automa-
tion S.L.L. n.d.), while (b) shows a simulated modified model of the platform used in
some of the following simulations. The robots are equipped with mecanum wheels for
holonomic motion and a contact sensor (green link) to detect collisions.

97

forces exerted by the closest body in each region are accounted for the calculation of
the total repulsive force. The sensing regions along with the operation of the proposed
DVC strategy are illustrated in Figure 4-3.

The tested Adapted RPSO algorithms needed to be properly tuned to match the phys-
ical limitations of the robots. Therefore, the maximum desired velocity U is limited to
3 m/s (the actual maximum speed of the Summit XL Steel). The sensitivity parameter
β is set to 0.9 (as shown in Chapter 3, a large β can allow more effective control of the
robot). The actual maximum acceleration of Summit XL Steel is not available but it is
assumed to be high, since it uses electric motors that are characterised by high acceler-
ation and therefore it is assumed that it does not interfere with the control of the robots
in any significant way (i.e. the motion of the robot can be adequately modelled using
a kinematic motion model instead of requiring a dynamic one). Since the maximum
acceleration can be ignored, the accelerating coefficients are tuned using only U , as in
Equation (4.15).

4.3.3 Gazebo Simulations

The MATLAB simulations were inherently simplistic, to allow for a large number of
simulations to be run, in order to obtain strong statistical significance of the behaviour
of each algorithm. The position and velocity of the robots are calculated in every
timestep using the velocity and position update Equations (4.5) and (4.6) respectively.
Therefore, the simulations assume that the robots behave like perfect PSO particles. To
validate these simplistic simulations, a number of more realistic simulations were run in
Gazebo (benefiting from a detailed Physics Engine). An instance of such a simulation
is shown in Figure 4-4. In these simulations, the RPSO controller outputs a specific
velocity demand, calculated using Equation (4.5) and the robot actuates itself to meet
this demand. The robots move by forces being applied on them and they have inertia.

In Gazebo, the robots are equipped with contact sensors to detect collisions (green
links shown in Figure 4-2b). Furthermore, since the demanded velocity can have any
direction, the robots are equipped with mecanum wheels to allow for holonomic motion.
The motion of the robots is governed by the forward and inverse kinematic equations
of the Mecanum wheels (Taheri et al. 2015)

vxvy
wz

 =
r

4

 1 1 1 1

−1 1 1 −1
−1

(lx+ly)
1

(lx+ly)
−1

(lx+ly)
1

(lx+ly)

w1

w2

w3

w4

 (4.18)

98

(a)

Obstacle1

(b)

Obstacle1

Obstacle2

(c)

Figure 4-3: The three possible cases that are covered by the calibration strategy during
DVC. The green circle represents the robot and the red crossed circles are the obstacles.
The dotted lines show how the six sensing regions are separated and the dashed circle
represents the maximum detection range of the robot. If no obstacle is present, as in
(a), c1 + c2 (blue region) is maximised and c3 = 0. If one obstacle is present, as in (b),
c1 +c2 is limited by the distance to the obstacle; c3 (orange region) is increased to cover
the extra potential for movement. If two or more obstacles are present, as in (c), c1 +c2

is limited by the distance to the closest obstacle and c3 (orange region) is increased
to cover the extra potential for movement but it is also limited by the distance to the
second closest obstacle.

99

and
w1

w2

w3

w4

 =
1

r

1 −1 −(lx + ly)

1 1 (lx + ly)

1 1 −(lx + ly)

1 −1 (lx + ly)

vxvy
wz

 , (4.19)

where vx and vy are the forward/backward and lateral velocities of the robot, wz is its
angular velocity, w1, w2, w3 and w4 are the angular velocities of each wheel and r is the
radius of the wheels. The distance lx is half the distance between the two front wheels
and ly is half the distance between the front wheel and the rear wheel of a given side,
such that

√
l2x + l2x is the distance of each wheel from the centre of the robot.

It should be noted that Mecanum wheels do not offer perfect holonomic motion. The
maximum possible velocity that the robot can achieve depends on its direction of mo-
tion, maximised when the robot moves forwards/backwards or laterally. As the direction
of motion becomes more diagonal (i.e. 45o, 135o,−135o or −45o relative to the orien-
tation of the robot), the maximum possible velocity decreases. Therefore, for some
directions of motion, the robots may not be capable of meeting the RPSO controller’s
velocity demands. When such a case is detected, the robot instead moves with the
largest velocity that it can achieve. This limitation of the maximum speed of the
Gazebo robots can result in slower convergence of the Gazebo swarms compared to the
MATLAB ones.

Figure 4-4: Image of the Gazebo environment during the operation of the obstacle
course simulations. The global minimum of the fitness function (source) is assumed to
be located on the right side of the image outside the obstacle course (the source is not
represented by an actual object in order to avoid collisions with the robots). The grey
cylinders are the obstacles while the green and red circles are the robots. The green
robots are currently operational while the red robot has collided with an obstacle.

100

Figure 4-5: Graph of the flow of information between ROS nodes (circles) and ROS
topics (rectangles) for a swarm of 2 robots, during the obstacle course simulations. For
the operation of the PSO algorithms, each robot maintains four nodes (PSO_control,
check_pbest, mecanum_control and produce_avoid_vectors) and four local topics
(odom, avoid_agents, pso_vel and cmd_vel). There also exist two global topics that
can be accessed by all robots (all_pos which contains the current positions of all robots
and p_best which contains the current personal best locations of all robots).

In Gazebo, the robot controller is implemented using the Robot Operating System
(ROS) framework. Figure 4-5 shows the nodes and topics used by ROS. For simplicity
only the nodes and topics of two robots are included in the figure. The PSO_control
node is the main node where the RPSO controller is implemented and all decisions are
made. The check_pbest node is the node responsible for assigning a cost to the current
location of the robot and the produce_avoid_vectors node calculates the virtual forces
F exerted on the robot by nearby bodies. Lastly, the mecanum_control node converts
the velocity demand outputted by the RPSO controller into the corresponding values
of vx and vy and then into the power output for each wheel, using Equation (4.19). All
nodes responsible for the operation of a robot are local to the robot and therefore, all
decision making, collection of data and actuation happens on the individual level.

Most topics used by ROS are local to each robot, used for the communication of the
nodes of the robot. For inter-robot communications, two global topics are used, the
all_pos topic and the p_best topic. The former is responsible for storing the current
locations of all robots, while the latter is responsible for storing the current personal
best locations of all robots.

One advantage that is offered by ROS is that it can easily allow the control of the

101

timestep size ∆t. This is achieved through the use of the ROS Rate command with
input 1

∆t . Since the RPSO controller is implemented in the PSO_control node, the
refresh frequency of this node is controlled in this way. The rest of the nodes operate at
a refresh frequency ten times larger than PSO_control, to ensure that all information
required by the main node are up-to-date at all times.

4.4 Results

The previous section described in detail both the MATLAB and Gazebo simulations
used. This section will present the results from both of these simulations. First, the
results from the MATLAB simulations will be presented fully and discussed to draw
conclusions about the behaviour of each individual algorithm. Then the Gazebo results
will be presented for comparison.

MATLAB was used to simulate the performance of the swarm over 100 repeats, to
obtain clear behavioural patterns for each algorithm. Figure 4-6a shows the median
CoM fitness over time for each algorithm and Figure 4-7a shows the median number of
collided vs operational robots at the end of the simulation. As it can be seen from the
results of Figure 4-6a, with Adapted RPSO with DVC, the CoM of the average swarm
manages to pass through the fifth layer of obstacles (fifth dotted line) before the end
of the simulation. This is in contrast to the other algorithms that do not manage to
pass through the third layer. All cases of the original RPSO appear to progress quickly
at the beginning. This is in fitting with the fact that the original RPSO almost always
operates at the maximum velocity permitted by the physical constraints of the robot.
On the other hand, all cases of the Adapted RPSO (including DVC) progress more
slowly.

In Figure 4-7a, it can be seen that all cases of both the original RPSO and the Adapted
RPSO follow the predicted behaviour. That is, as c3 gets larger compared to c1 +c2, the
number of collisions decreases. For small c3, Adapted RPSO results in only collisions,
while for large c3, it results in no collisions. All the cases of original RPSO however
have very low survivability.

Lastly, the only cases that end up with absolutely no collisions are the Adapted RPSO
with large c3 and the Adapted RPSO with DVC. Comparing the two cases in Figure 4-
6a, it can be seen that the Adapted RPSO with large c3 has the lowest overall fitness out
of all cases. In contrast, the Adapted RPSO with DVC has the highest overall fitness.
This shows that the Adapted RPSO with DVC completely overshadows all other cases,
both in terms of fitness and robot survivability. This is attributed to the DVC strategy

102

used. The strategy makes use of the velocity boundaries introduced by Adapted RPSO,
to slow down a robot in the presence of an obstacle, making it unlikely to collide with
any obstacles or other agents. At the same time, the robot is still capable of navigating
through small openings; a capability that is not shared by the other two algorithms.

0 5 10 15

0

10

20

30

40

50

60

M
e
d
ia

n
 C

o
M

 F
it
n
e
s
s

Time (min)

(a) MATLAB (100 simulations per case)

0 5 10 15

0

10

20

30

40

50

60

Time (min)

M
e
d
ia

n
 C

o
M

 F
it
n
e
s
s

(b) Gazebo (10 simulations per case)

Figure 4-6: Median CoM fitness over time results for different cases. The dotted lines
represent the obstacle layers of the obstacle course.

Figures 4-6b and 4-7b show the median CoM fitness over time and the median number
of collided vs operational robots for each tested case respectively, for the Gazebo simula-
tions. Comparing Figures 4-6a and 4-6b, it can be seen that there are small differences.
Namely, there is a small reduction in the overall performance of the Adapted RPSO
cases, which can be probably attributed to the imperfect motion of mecanum wheels
(i.e. the maximum speed of the robot is limited when it is moving towards certain
directions). However, the Adapted RPSO with DVC performs better than the other al-
gorithms, reaching an average fitness of 47 by the end of the simulation. When it comes
to Figures 4-7a and 4-7b, the results look almost identical for all cases. The original
RPSO with c3 � c1 + c2 appears to have limited survivability that is not observed in
the MATLAB simulations.

103

A
d
a
p
te

d
 R

P
S
O

O
ri
g
in

a
l
R
P
S
O

DVC

Collided Robots (%) Operational Robots (%)

(a) MATLAB (100 simulations per case)

A
d
a
p
te

d
 R

P
S
O

O
ri
g
in

a
l
R
P
S
O

DVC

Collided Robots (%) Operational Robots (%)

(b) Gazebo (10 simulations per case)

Figure 4-7: The expected number of collided vs operational robots at the end of the
median simulation for different cases.

4.5 Discussion and Comparison with other SIA

The results of Section 4.4 show that Adapted RPSO offers more reliable and predictable
control over the original RPSO. This can be seen from the results of Figure 4-7a where
changing the ratio c3

c1+c2
results in large predictable changes in the behaviour of Adapted

RPSO. By using c3 � c1 + c2, Adapted RPSO results in full collisions, while for c3 �
c1 + c2, it results in no collisions. On the other hand, for the same values, the original
RPSO algorithm exhibits smaller differences in its behaviour, which suggests that it is
more difficult for this algorithm to control effectively the behaviour of the robots.

That said, the main advantage of Adapted RPSO is its ability to use a DVC strategy.
This allows the control of the individual terms of Adapted RPSO, resulting in more
flexible motion control. Therefore, it can be concluded that, like Adapted RPSO, any
version of Generalised Adapted PSO will be more capable of robotic motion control
than any equivalent version of the original PSO algorithm (i.e. for any number of
accelerating terms).

Apart from the original PSO, it is also desirable to compare Generalised Adapted PSO
to all other SIA discussed in Chapter 2. Qualitative comparisons will be offered in the
rest of this section.

Glowworm Swarm Optimisation: Apart from PSO, GSO is the SIA that was
mostly studied for use in robotic swarms, as discussed in Chapter 2. This is because
GSO was designed to address some of the main problems of PSO, like its lack of a
maximum velocity limitation. As a reminder, the motion of a glowworm in GSO is

104

described by the following position update rule

xi[k + 1] = xi[k] + s
xj [k]− xi[k]

‖xj [k]− xi[k]‖
, (4.20)

where s is the step size, which controls the maximum change in position that can occur
for each glowworm. Therefore, provided that the GSO timestep size ∆t is constant, s
can be used to control the maximum velocity of the glowworm. That said, the way that
GSO addresses this problem, introduces other weaknesses into the algorithm. GSO
lacks a stochastic component in its position update equation, which is an important
part of swarm optimisation algorithms to allow the individual to escape local minima.
On the other hand, Generalised Adapted PSO maintains stochastic components in all
of its accelerating terms.

Additionally, the parameter s is the only parameter in GSO and it controls both the
maximum velocity and maximum acceleration of the glowworm. In this way, a single
value of s corresponds to only a specific pair of maximum velocity and maximum acceler-
ation (their relationship depends on the timestep size ∆t), which reduces the flexibility
of the algorithm and prevents it from being properly synchronised with different robotic
platforms.

Firefly Algorithm: FA was introduced to address the lack of stochastic components
in GSO. The motion of a firefly in FA is described by

xi[k + 1] = xi[k] + β0e
−γr2ij (xj [k]− xi[k]) + αεi[k], (4.21)

The vector ε is a random vector while the parameter α is a tunable parameter that
controls the magnitude of ε. The term αεi[k] is therefore a stochastic term added to
the position update equation, while other terms are fully deterministic.

As discussed in Chapter 2, the stochastic component of FA can affect the quality of
control that the algorithm can offer. This is because the stochastic term has random
direction, which can either accelerate or decelerate the firefly towards any given di-
rection. Therefore, the maximum velocity and acceleration of the algorithm may be
exceeded thereby resulting in unpredictable behaviour and collisions. On the other
hand, each stochastic component in Generalised Adapted PSO can only reduce the ac-
celerating effect of its corresponding term, thereby maintaining the maximum velocity
and acceleration limitations as defined by U and A+.

105

A-CMOMMT: This SIA was designed to consider virtual forces exerted by multiple
targets and robots of the swarm, by summing them up using the following equation

T∑
t=1

wi,tfi,t +

J∑
j=1

gi,j , (4.22)

where T is the number of targets around robot i, J is the number of other robots around
robot i and fi,t and gi,j are the functions that calculate the virtual forces. As discussed
in Chapter 2, the problems of A-CMOMMT are that, like GSO, it does not include any
stochastic components and that it is important to properly tune fi,t and gi,j , so that
one does not overshadow the other.

This chapter has shown how Generalised Adapted PSO can be used to avoid collisions
with multiple obstacles and other robots using virtual forces, through the use of an
additional accelerating term. An equivalent way could be used to sum up forces exerted
by multiple targets. Alternatively, Generalised Adapted PSO can take a similar form to
A-CMOMMT by dedicating one accelerating term to each virtual force (either exerted
by a target or another robot), with the difference that each term will also include a
stochastic component.

When it comes to the merging of the forces, in Generalised Adapted PSO each force is
passed through the sgn function before any other operation is carried out on it. This
normalises the magnitude of each virtual force, while maintaining its direction. There-
fore, there is no risk that one type of virtual force will overshadow another. Instead, the
effect of each individual force will be controlled by a properly designed DVC strategy,
similar to the one presented in this chapter.

This last concept can be extended beyond the use of simple virtual forces, to any
function that outputs a direction of motion. In a similar manner to how obstacle
avoidance was implemented in this chapter, other tasks can be also incorporated as
additional accelerating terms. In this way, Generalised Adapted PSO can take the form
of a task managing framework, where off-the-shelf algorithms responsible for different
swarm robotic tasks can be merged together, without the need for any additional tuning
and modifications. This can allow the inclusion of a large number of tasks into the swarm
control algorithm; a capability that has not been possible so far in swarm robotics, as
discussed in Chapter 2.

106

4.6 Conclusions

This chapter has described how the Generalised Adapted PSO algorithm can be used to
incorporate aggregation and obstacle avoidance into PSO through the use of an addi-
tional accelerating term. The results of the presented simulations show that Generalised
Adapted PSO offers more reliable and predictable control than original PSO. Further-
more, the capability of Generalised Adapted PSO to make use of a DVC strategy, greatly
increases the flexibility of the algorithm.

Section 4.5 presented a comparison of Generalised Adapted PSO with other SIA. Over-
all, Generalised Adapted PSO shares all of the discussed advantages of other SIA, while
also addressing all of their disadvantages. In the end, it is also discussed how Gen-
eralised Adapted PSO can be used to incorporate other swarm robotic tasks, beyond
obstacle avoidance and aggregation into PSO, thereby addressing a major gap in the
swarm robotic literature, the appropriate merging of a large number of different tasks.

107

References

Benewake (Beijing) Co. Ltd (2017), ‘CE30 3D obstacle-avoidance LiDAR’.
URL: http://en.benewake.com/product/detail/5c34571eadd0b639f4340ce5.html

Couceiro, M. S., Rocha, R. P. & Ferreira, N. M. F. (2011), A novel multi-robot explo-
ration approach based on Particle Swarm Optimization algorithms, in ‘2011 IEEE
International Symposium on Safety, Security, and Rescue Robotics’, pp. 327–332.

Garone, E., Nicotra, M. & Ntogramatzidis, L. (2018), ‘Explicit reference governor for
linear systems’, International Journal of Control 91(6), 1415–1430.
URL: https://doi.org/10.1080/00207179.2017.1317832

Hosseinzadeh, M. & Garone, E. (2020), ‘An Explicit Reference Governor for the Inter-
section of Concave Constraints’, IEEE Transactions on Automatic Control 65(1), 1–
11.

Khaldi, B. & Cherif, F. (2016), A virtual viscoelastic based aggregation model for
self-organization of swarm robots system, in ‘Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics)’, Vol. 9716, pp. 202–213.

Koenig, N. & Howard, A. (2004), Design and use paradigms for Gazebo, an open-source
multi-robot simulator, in ‘2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566)’, Vol. 3, pp. 2149–2154
vol.3.

Robotnik Automation S.L.L. (n.d.), ‘SUMMIT-XL STEEL MOBILE ROBOT’.
URL: https://robotnik.eu/products/mobile-robots/summit-xl-steel-en/

Spears, W. M., Spears, D. F., Hamann, J. C. & Heil, R. (2004), ‘Distributed, Physics-
Based Control of Swarms of Vehicles’, Autonomous Robots 17(2), 137–162.
URL: https://doi.org/10.1023/B:AURO.0000033970.96785.f2

Taheri, H., Qiao, B. & Ghaeminezhad, N. (2015), ‘Kinematic model of a four mecanum
wheeled mobile robot’, International journal of computer applications 113(3), 6–9.

The Construct (2021), ‘Exploring the World with Mecanum Wheels: Introduction to
Mecanum Wheels’.
URL: https://app.theconstructsim.com/#/l/4236960c/

108

Chapter 5

Robot-Centred Reference Frame
and the Non-Omnidirectional PSO
Controller

The previous chapters have shown how a robotic swarm can be controlled by merging
different tasks using Generalised Adapted PSO and assigning priority to them using a
properly designed DVC strategy, while considering the physical limitations of the robots.
That said, one limitation can be seen from the way Generalised Adapted PSO is used in
Chapter 4. One main characteristic that is inherited from the original PSO algorithm
is that velocity outputs can have any arbitrary direction. Therefore, to achieve optimal
motion control, the robots used need to be capable of holonomic motion (i.e. fully-
actuated robots such as robots that use Mecanum wheels like in the simulations of
Chapter 4).

This approach can be limiting, considering the large number of non-holonomic robots
(i.e. underactuated robots). Especially in the case of marine robotics, robotic platforms
tend to be separated into two main categories, 1) Autonomous Underwater/Surface Ve-
hicles (AUV/ASV) that are generally faster but non-holonomic (underactuated) and
2) Remotely Operated Vehicles (ROV) that can be holonomic (fully-actuated) but are
usually much slower (Nad et al. 2015, Njaka et al. 2020). Due to these characteris-
tics, the former category is typically used in applications where large areas need to be
searched (Robbins et al. 2006), including applications of target detection (Figueiredo
et al. 2014), while the latter is usually restricted for use in small areas or confined
spaces like harbours (Choi et al. 2017) or for localised tasks like underwater infras-

109

tructure inspections (Macreadie et al. 2018, Batlle et al. 2003). Moreover, due to the
differences in capabilities of the two classes, research organisations are looking for ways
to implement hybrid control strategies where both classes can be used simultaneously
(Ludvigsen et al. 2013). Since this thesis is primarily concerned with underwater source
localisation over large areas, it is desirable to show how Generalised Adapted PSO can
be used in non-holonomic robotic platforms such as AUVs and ASVs. This chapter will
aim to address this by adapting the algorithm for use in non-holonomic robots with
limited degrees of freedom (e.g. differential drive (Rubio et al. 2019, Bräunl 2008)). To
achieve this, the chapter will delve deeper into the particular characteristics of PSO,
recognising some inherent problems of the algorithm and it will show how they can be
addressed.

5.1 Robot-Centred Reference Frame

As explained in Chapter 3, PSO is an algorithm created for use in numerical optimisa-
tion tasks and therefore it has several characteristics specifically selected to simplify its
operation by reducing the number and complexity of computational operations. One
of these characteristics is its use of a global reference frame (inertial frame) for velocity
description and updating. In other words, each particle’s velocity components are de-
scribed with respect to global coordinate axes. Furthermore, each velocity component
is decoupled from the others and therefore it is not affected by changes to them. This
lack of motion constraints allow for the updating of the velocity components to happen
without taking the orientation of the robot into account. As a result, the movement
of all particles in the swarm is expressed using only the two relatively simple position
and velocity update equations, which are presented below as a reminder for robot i at
timestep k,

xi[k + 1] = xi[k] + ui[k + 1], (5.1)

ui[k + 1] = ωui[k] + c1r1 ◦ (yi[k]− xi[k]) + c2r2 ◦ (yg[k]− xi[k]). (5.2)

In a simulation environment this can end up saving considerable operational time. On
the other hand, the use of a global reference frame along with the decoupling of the
velocity components can introduce disadvantages to the algorithm. One trend that is
well known is that the particles tend to move along the global coordinate axes (Janson
& Middendorf 2007, Spears et al. 2010). This effect is visualised in Figure 5-1, where
the simulated particles of PSO can be seen to form cross-shaped structures around the
location of the global extremum.

When a global frame of reference is used for the control of robotic swarms, it can cause

110

Figure 5-1: Visualisation of the PSO particles for the 2D and the 3D case. The particles
tend to gather on the global coordinate axes, forming cross-shaped patterns. This is
understood to be the result of the decoupling of the velocity components, along with
the use of global coordinate axes. (Spears et al. 2010)

the swarm to move collectively along the direction of one global coordinate axis until
it is forced to change direction by an external factor. Furthermore, several additional
limitations are introduced. For example, not considering the orientation of the robot
when updating its velocity can limit the robot’s reactions to its surroundings. This is
because the robot needs to treat all obstacles in the same way, no matter if they are lo-
cated in front of it, behind it or beside it. Moreover, it should be noted that the original
advantage of using a global reference frame to reduce computational complexity does
not apply to robotic applications. This is because, apart from specific sensor data (e.g.
GPS data), most of the spatial data considered by a robot are calculated relative to its
current position and orientation (e.g. IMU readings, it’s current velocity, position of
surrounding objects etc.). Converting these to a global frame of reference can instead
introduce additional computational complexity into the robot controller. Considering
these limitations can therefore suggest that for the control of robotic swarms, Gener-
alised Adapted PSO should use a robot-centred reference frame (body frame) for the
description and updating of the robots’ velocity components. The rest of this chap-
ter will show how this can be achieved. Moreover, it will be shown how the use of a
robot-centred reference frame, can allow Generalised Adapted PSO to be adapted for
the control of non-holonomic robots (e.g. differential drive, traditional steering, forward
flight etc.).

5.1.1 Robot-Centred Reference Frame Generalised Adapted PSO

In a robot-centred reference frame, each robot makes use of local coordinate axes, where
the origin is located at the current position of the robot and the x-axis is parallel to

111

the orientation of the robot, as shown in Figure 5-2. Therefore, instead of the global
velocity vector u, each robot uses a relative velocity vector ũ. The first component v1

of ũ represents the robot’s forward/backward movement and the other v2 represents its
lateral movement, as shown in Figure 5-2a, such that at timestep k,

ũ[k] =

[
v1[k]

v2[k]

]
.

Alternatively, for vehicles that do not need the lateral velocity component v2 (i.e. robots
that employ differential drive, traditional steering etc.), it can be removed. Instead, for
such driving mechanisms, it is more useful to consider the angular velocity w of the
robot, as shown in Figure 5-2b. To achieve this, the relative velocity vector ũ at
timestep k is modified to

ũ[k] =

[
v[k]

w[k]

]
,

The rest of this chapter will consider this latter definition of ũ, since it is the most
common for non-holonomic robots. Therefore, the Generalised Adapted PSO velocity
update equation

u[k + 1] = ωu[k] + c1r1 ◦ sgn(y1[k]− x[k])

+ c2r2 ◦ sgn(y2[k]− x[k])

+ ...+ cnrn ◦ sgn(yn[k]− x[k]), (5.3)

changes for a robot-centred reference frame into

ũ[k + 1] = ω ◦ ũ[k] + c1 ◦ r1 ◦ sgn(ỹ1[k])

+ c2 ◦ r2 ◦ sgn(ỹ2[k])

+ ...+ cn ◦ rn ◦ sgn(ỹn[k]), (5.4)

where ỹ1, ỹ2, ..., ỹn are locations relative to the current position and orientation of
the robot. Note that the inertia weight ω and the acceleration coefficients c1, c2, ...,
cn are now vectors of length 2 instead of single parameters. The parameter tuning
guidelines presented in Chapter 3 can therefore be used to calculate the corresponding
components of ω, c1, c2, ..., cn for the linear and angular velocities independently.

With the velocity update equation defined, it remains to show how the position updat-
ing equation changes for the robot-centred reference frame controller. The process of
converting the relative velocity ũ of the robot into a change to its global position x,

112

(a) (b)

Figure 5-2: Schematics that show the separation of the velocity components for a robot-
centred frame of reference, where the green circle is the robot and the yellow arrow
indicates its orientation. In (a), the velocity components v1 and v2 represent the longi-
tudinal and lateral linear velocities of the robot respectively, while in (b), the velocity
components v and w represent the linear and angular velocities of the robot respectively.

consists of several steps. First, the relative velocity ũ is used to calculate the relative
displacement ∆̃x of the robot in the next timestep. Then the relative displacement
∆̃x is converted into global displacement ∆x, which is then used to update the robot’s
global position x. The process is described in more detail below.

The displacement of the robot at timestep k+ 1 relative to its position and orientation
at timestep k is given by

∆̃x[k + 1] = r[k]×

[
sin(w[k]×∆t)

1− cos(w[k]×∆t)

]
, (5.5)

where r[k] is the turning radius at timestep k, given by

r[k] =
v[k]

w[k]
. (5.6)

Equation (5.6) is undefined for w[k] = 0. Therefore, when this problematic case occurs,
(5.5) takes the form

∆̃x[k + 1] =

[
v[k]×∆t

0

]
, (5.7)

thereby representing a forward-backward displacement. The global displacement (i.e

113

displacement with respect to the global coordinate axes) is therefore calculated by
rotating ∆̃x[k + 1] by the orientation of the robot,

∆x[k + 1] =

[
cos(o[k]) -sin(o[k])

sin(o[k]) cos(o[k])

]
∆̃x[k + 1], (5.8)

where o[k] is the orientation of the robot at timestep k. Finally, the global position x

is given by
x[k + 1] = x[k] + ∆x[k + 1] (5.9)

Additionally, since the orientation of the robot needs to be tracked when a robot-centred
reference frame is used, an orientation update equation is also required which is given
by

o[k + 1] = o[k] + w[k]×∆t (5.10)

As it can be seen, the position updating process for the robot-centred reference frame
PSO is slightly more complex than the global reference frame PSO used in the previous
chapters. Nevertheless, the PSO position update equation is only used in simulations
where the position of the robot needs to be re-calculated at every timestep. In the
real-world or in simulation environments like Gazebo, this position updating process
will not be used as it will be carried out by the robot/environment itself. The resulting
robot-centred reference frame Generalised Adapted PSO is now capable of controlling
the linear and angular velocities of each robot at each timestep. Like the global refer-
ence frame Generalised Adapted PSO, this approach can now be adapted for any use,
depending on the different tasks that the swarm will need to carry out. The next section
will show how a swarm of non-holonomic robots with limited degrees of freedom (e.g.
differential drive) can be controlled, where the tasks of obstacle avoidance and source
localisation will be combined together.

5.2 Obstacle Avoidance and Dynamic Velocity Control

Chapter 4 described how the global frame of reference Generalised Adapted PSO can
be used to combine obstacle avoidance with source localisation, forming the Adapted
RPSO algorithm, which will be referred to as the omnidirectional PSO controller for
the rest of this chapter. This section will now show how the same result can be achieved
using the robot-centred reference frame version of Generalised Adapted PSO, described
in Section 5.1.1.

In the omnidirectional PSO controller used in Chapter 4, each task exerts a virtual force

114

on the robot, altering its linear velocity and pulling it towards a desired direction or
pushing it away from obstacles or other robots. The difference with using Equation (5.4)
is that it does not only consider the linear velocity of the robot, it also considers its
angular velocity. Therefore, for a virtual force to have an effect on the angular velocity
of the robot, it must be converted into virtual torque. To achieve this, a virtual rod is
assumed to be extended, from the centre of the robot forwards, and the virtual forces
are exerted on the edge of the rod, effectively causing the rotation of the robot. The
length of the rod does not matter, as in Equation (5.4) both virtual forces and virtual
torques pass through a sgn function, making their magnitudes irrelevant. The effect of
each virtual torque will instead be controlled by the DVC strategy.

In theory, a non-holonomic robot could be controlled, using Equation (5.4) and virtual
forces, in the same way that the holonomic robots were controlled in Chapter 4. Forces
exerted on the front or back of the robot will cause it to move longitudinally, while
lateral forces will act as torques, causing it to rotate. That said, this way of controlling
the robot would share some of the limitations of the omnidirectional PSO controller.

In Chapter 2, it was explained how the dPSO algorithm manages to allow single robot
exploration, a capability that is not shared by the original algorithm. In dPSO this re-
sult is achieved because the robots cannot always follow the PSO controller’s demanded
direction of motion and they need to execute circle manoeuvres to align themselves
properly, causing them to explore the environment further. This beneficial behaviour
occurs beyond the control of the PSO controller and therefore it cannot be predicted
or controlled properly. It is therefore desirable to try to emulate this behaviour in such
a way that the PSO controller remains in full control of the robot’s motion.

To achieve this, this chapter will present a slightly different control approach to the
one presented in Chapter 4. Here, a non-omnidirectional PSO controller will be intro-
duced that will aim to maximise the robot’s linear velocity v (i.e. continuous forward
thrust). The linear velocity v will be limited only in the presence of obstacles. In this
way, the robot is prevented from settling down at a single location and is forced to con-
stantly keep moving at maximum speed, thereby causing exploration of the surrounding
environment.

First will be described how the non-holonomic robot’s linear and angular velocities
can vary. The following motion model makes several assumptions to approximate the
behaviour of a non-holonomic robot that is only capable of forward motion, rotation
around its vertical axis, or a combination of the two. This model will then be used
to assemble an appropriate PSO velocity update equation and DVC strategy. These

115

assumptions are important because, as previously discussed, the linear and angular
velocity outputs of Equation (5.4) are decoupled from each other. Therefore, there is
always a chance that the PSO controller will request large linear and angular velocities
that when combined may exceed the maximum power output of the robot’s actuators.
The presented motion model will offer a way to detect when this happens through
the use of kinetic energies and address it by reducing the linear and angular velocities
demanded. The assumptions are:

1. The robot can only move forwards (i.e. v ≥ 0)

2. The robot rotates in perfect circular motion (i.e. no skidding). This is a valid as-
sumption considering that the motion of the vehicles can be adequately described
using a kinematic motion model.

3. The linear kinetic energy per unit mass el of the robot (Smith 2010) is given by

el =
v2

2
. (5.11)

The rotational kinetic energy per unit mass er of the robot (Smith 2010) is given
by

er =
π × w2

4
. (5.12)

Note that for simplification, Equation (5.12) assumes the moment of inertia of a
disk rotating around its centre (i.e. I = m×R2

2 , where m is the mass of the robot
and R is its radius). This simplification can result in a slight mismatch between
the desired angular velocity outputted by the controller and the maximum angular
velocity that the robot can achieve. Nevertheless, it is expected that this effect
will be relatively insignificant for most robotic applications. A more accurate
model would use a more accurate description of the moment of inertia depending
on the shape of the robot and its current turning radius.

4. The total kinetic energy per unit mass et of the robot is equal to the sum of its
linear and rotational kinetic energies (et = el + er).

5. The maximum total kinetic energy per unit mass emax is equal to the linear kinetic
energy at maximum linear velocity vmax

emax =
(vmax)2

2
,

116

6. The maximum angular velocity wmax of the robot can be therefore found using

wmax =

√(
4× emax

π

)
.

Furthermore, if the angular velocity per timestep of the robot is too large, it can
cause it to over-rotate around itself before it has the chance to re-examine its
environment. This can significantly limit the control of the robot and its reaction
to its surroundings. Therefore, if wmax > π

2×∆t , then wmax should be limited to
π

2×∆t . In this way, the robot is limited to a maximum rotation of π2 radians during
a single timestep.

If it is detected that et > emax, both the linear velocity v and the angular velocity w
can be linearly decreased until et = emax. In this way, if the PSO controller ends up
requesting large linear and angular velocities that when combined exceed the maximum
power output of the robot’s actuators, it will be possible to linearly scale them down
to match that correct power output.

5.2.1 Non-Omnidirectional PSO Velocity Update Equation

With the assumptions of the non-holonomic motion model in place, the PSO velocity
update equation that will be used to control the velocity of the robots needs to be
assembled. In Chapter 4, Adapted RPSO combined three tasks: 1) convergence to the
personal best location of each robot, 2) convergence to the global best location and 3)
obstacle avoidance. The algorithm consists of three different accelerating terms, one
dedicated to each task. Therefore, to identify the number of accelerating terms that
will be needed for the non-omnidirectional controller, the different tasks that the robot
will need to carry out need to be identified. The different tasks that are taken into
account by the equation are outlined below:

1. The angular velocity w is adjusted to rotate towards the personal best location
ỹ[k] (i.e. if ỹ[k] is on the left of the robot, then w increases. Conversely, if ỹ[k] is
on the right of the robot, then w decreases).

2. Similarly, the angular velocity w is adjusted to face the global best location ỹg[k].

3. The angular velocity w decreases when there exists an obstacle (or another robot)
on the left of the robot and the amount of decrease depends on the distance to
the obstacle.

4. On the other hand, the angular velocity increases when there exists an obstacle

117

(or another robot) on the right of the robot. The amount of increase depends on
the distance to the obstacle.

5. The linear velocity v of the robot is always increased. The amount of increase is
adjusted to prevent collision with obstacles in front of the robot. As long as the
linear velocity is limited properly, collision avoidance can be ensured no matter
what the angular velocity is. If there are no obstacles, the linear velocity v is
maximally increased.

From the outlined tasks, it can be seen that the PSO velocity update equation contains
five accelerating terms. Four of them control the value of the angular velocity w and
one controls the value of the linear velocity v. Also, notice that the last three tasks
output a constant direction (i.e. the third task always decreases the angular velocity
w, the fourth task always increases it and the fifth always increases the linear velocity
v). The magnitude of the outputs of these tasks is adjusted (by the DVC strategy) but
the direction (i.e. the output of the sgn functions in the accelerating terms) is always
constant. It is only possible to use tasks in this way because of the use of a robot-
centred reference frame, especially when it comes to the last task. If global reference
frame Generalised Adapted PSO was used instead of Equation (5.4), it would have been
impossible to command the robot to only move forwards, because the orientation of the
robot is not taken into account by the velocity update equation.

Based on the previously described tasks, the PSO velocity update Equation (5.4) takes
the following form

ũ[k+1] = ω◦ũ[k]+c1◦r1◦sgn(ỹ[k])+c2◦r2◦sgn(ỹg[k])−c3◦r3+c4◦r4+c5◦r5, (5.13)

where

c1 =

[
0

c1

]
, c2 =

[
0

c2

]
, c3 =

[
0

c3

]
, c4 =

[
0

c4

]
, c5 =

[
c5

0

]
.

The first four accelerating coefficient vectors (i.e. c1 to c4) only affect the angular veloc-
ity of the robot and therefore their first component is 0. Similarly, the last accelerating
coefficient vector c5 only controls the linear velocity of the robot and therefore its sec-
ond component is 0. The vector ỹ is the position of the personal best location relative
to the robot and ỹg is the position of the global best location relative to the robot. As
described above, the last three accelerating terms do not contain a sgn function since
their direction is always constant.

118

5.2.2 Dynamic Velocity Control Strategy for Non-Holonomic Robots

With the PSO velocity update equation assembled, it is now possible to define the
DVC strategy that will be used. In a similar manner to Chapter 4, the DVC strategy
presented here will aim to ensure that a single robot will be able, at any point, to avoid
collision with its surroundings, while still being able to converge towards its personal
best and global best locations. As long as this is true, the DVC strategy will be scalable
to any number of robots.

As in Chapter 4, the proposed DVC strategy will only make use of maximum desired ve-
locities. Therefore, instead of using a maximum desired acceleration A+ or deceleration
A− to calculate ĉ, it will be calculated using

ĉ =
β × U√

d
. (5.14)

In Chapter 4, the maximum desired velocity was constructed using two velocity dimen-
sions and therefore d = 2 was used. In this chapter, the linear velocity and angular
velocity are calculated independently and therefore d = 1 will be used in each case.

Firstly, as in Chapter 4, the surroundings of the robot are separated into six sensing
regions as shown in Figure 5-3a and only the closest body in each region is taken into
account to approximate the operation of a lidar sensor. Regions 1, 2 and 3 are always
on the right of the robot and regions 4, 5 and 6 are always on the left. Furthermore, s

is the list of distances to the nearest obstacles, sorted in order from smallest to largest,
such that s1 is the distance to the closest obstacle. Also, let sr be the sorted list of the
distances to obstacles on the right of the robot (regions 1-3), sl be the sorted list of the
distances to obstacles on the left of the robot (regions 4-6) and sf be the sorted list of
distances to the obstacles at the front of the robot (regions 2-5). These will be used to
limit the parameters c3, c4 and c5 respectively. Lastly, let

ν =
sf

∆t
, (5.15)

be a vector of speeds, such that v = ν1 is the minimum speed required for the robot to
collide with the closest obstacle in front of it in the next timestep.

Angular Velocity: The next step is to calculate the amount of angular velocity that
will be dedicated towards each term of the PSO velocity update equation. When no
obstacles are close to the robot, the values of c1 and c2 should be maximised to allow
the robot to turn towards the personal and global best locations. As an obstacle gets

119

1

2

3

4

5

6

(a) (b) (c)

Figure 5-3: Schematics that explain the DVC tuning strategy for the control of non-
holonomic vehicles. The vehicle is described by the centred circle, where the arrow
describes its orientation. The numbered areas represent the sensing regions of the vehicle
and the circular dashed line represents its maximum sensing range. The red circles
represent obstacles. In (a), the sensing regions are numbered. In (b), one obstacle is
detected on the front left of the robot. This will cause a decrease in the linear velocity
(represented by a decrease in the green region) and it will cause the robot to rotate
rightwards. Furthermore, the linear velocity of the robot will be limited. In (c), There
exist two obstacles, one on the left and one on the right, at an equal distance from the
robot. This will limit the linear velocity of the robot but it will not cause any rotation.

closer to the robot, c1 and c2 should be decreased and c3 and c4 should be increased
depending on the side where the obstacle is. This is achieved using

W1,2 =
s1

R
× wmax W3 = (1− sl1

R
)× wmax W4 = (1− sr1

R
)× wmax (5.16)

where W1,2 is the desired maximum angular velocity dedicated to the first two acceler-
ating terms of Equation (5.13), W3 is the desired maximum angular velocity dedicated
to the third accelerating term, W4 is the desired maximum angular velocity dedicated
to the fourth accelerating term and R is the maximum sensing range of the robot. Note
that if obstacles exist both on the left and right of the robot at equal distances from
it, W3 = W4 and the third and fourth accelerating terms will tend to cancel each other
out, likely causing no rotation due to obstacle avoidance. This can allow the robot to
pass through small openings. Furthermore, no angular velocity is dedicated to the fifth
accelerating term, since it is not meant to have any effect on the angular velocity of the
robot. This procedure is described in Figures 5-3b and 5-3c.

From here, the parameters c1 to c4 can be calculated using Equation (5.14), where the
corresponding desired maximum angular velocity W value will be used instead of U .
The process of calculating c1 and c2 is as follows (where ĉ = c1 + c2):

• Using (5.14), calculate ĉ = β × W1,2, where d = 1. Based on the amount of

120

Algorithm 2: Swarm Control using Non-Omnidirectional Controller
1 foreach robot do
2 robot.UpdatePersonalBestLocation(source_position);
3 if robot.f < fg then
4 fg ← robot.f ; // Update global best location fitness
5 yg ← robot.y; // Update global best location
6 end
7 end
8 foreach robot do
9 s[]← robot.GetDistanceToSurroundings(6); // 6 sensing regions

10 sr[]← s[1 : 3]; sl[]← s[4 : 6]; sf []← s[2 : 5];
11 W1,2 ← min(s[])/R; W3 ← 1−min(sl[])/R; W4 ← 1−min(sr[])/R;
12 ĉ← β ×W1,2; // ĉ = c1 + c2

13 c1 ← ĉ/2; c2 ← ĉ/2; // In this case c1/c2 = 1
14 c3 ← β ×W3; // ĉ = c3

15 c4 ← ×W4; // ĉ = c4

16 // Update angular velocity
17 robot.w ← ω ∗ robot.w + c1 ∗ rand() ∗ sgn(robot.y2 − robot.x2) + c2 ∗ rand() ∗

sgn(robot.yg2 − robot.x2)− c3 ∗ rand() + c4 ∗ rand();
18 ν[]← sf [].sort ∗∆t; // Minimum velocity to collide with forward

obstacles
19 U ← α× ν[1];
20 c5 ← β × U ;
21 robot.v ← ω ∗ robot.v + c5 ∗ rand(); // Update linear velocity
22 end

23 Function UpdatePersonalBestLocation(self, source_position) :
24 self.x← self.GetCurrentPosition();
25 f = |self.x−source_position|; // Assign distance-based cost to location
26 if d < self.g then // Update personal best location
27 self.f ← f ;
28 self.y← self.x;
29 end
30 end

121

angular velocity that has been dedicated to the first two terms (from (5.16)), the
coefficients c1 and c2 can be calculated.

• Using ĉ = c1 + c2, calculate c1 and c2 based on the desired ratio c1
c2
.

Similarly, c3 is calculated as follows (note that in this case ĉ = c3 and therefore the
previous two steps are merged):

• Using (5.14), calculate c3 = β ×W3, where d = 1.

Repeat the last step using W4 instead of W3 to calculate c4.

Linear Velocity: Finally, c5 is adjusted based on the distance to the closest obstacle
that is in front of the robot (i.e. using the list sf). The process of calculating c5 is as
follows (where ĉ = c5):

• Set the desired maximum speed U = α× ν1.

• Using (5.14), calculate c5 = β × U , where d = 1.

The adjustment of c5 is indicated in Figures 5-3b and 5-3c by the radius of the blue
regions. The overall operation of the non-omnidirectional PSO controller with the DVC
strategy described in this section is shown in Algorithm 2, where f refers to the fitness
of the personal best location of a robot and fg refers to the fitness of the global best
location.

With the DVC strategy now defined, the ability of the PSO controller to control the
motion of a swarm of differential drive robots will be tested. The following section
will describe the MATLAB simulations performed, which are similar to the simulations
presented in Chapter 4. Then the resulting behaviours of the two PSO controllers (om-
nidirectional PSO controller and non-omnidirectional PSO controller) will be compared.

5.3 Simulations and Results

To study the behaviour of a swarm when controlled by the non-omnidirectional PSO
controller, 2D simulations in MATLAB were created. These simulations, aim to vali-
date the use of the proposed non-omnidirectional PSO velocity update equation Equa-
tion (5.13) and the proposed DVC strategy. The simulation environment and setup
was identical to the one used in Chapter 4, where the robots’ velocities were directly
controlled by the Adapted PSO controller. Since this simulation setup was already vali-
dated with Gazebo simulations in Chapter 4, this chapter will assume that the presented

122

Figure 5-4: A simulated swarm of 20 robots (green circles) that are controlled by the
non-omnidirectional PSO controller. The red lines indicate the past positions of each
robot in the last 15 seconds. The robots never stop moving while no collisions occur
between them.

MATLAB simulations do not need further validation with a realistic physics engine.

Initially, a swarm of 20 robots was run in an empty-space environment, to visually
observe how the robots of a fairly large swarm interact with each other in the ab-
sence of obstacles. In the simulation, the robots appear to continuously move, while
avoiding each other. The continuous forward thrust that is applied to them by the non-
omnidirectional PSO controller, does not allow them to settle in one place and therefore
they keep roaming, even after the swarm has reached the location of the source. De-
spite this seemingly chaotic behaviour, no collisions occur between robots. An example
instance of the simulated swarm is shown in Figure 5-4.

5.3.1 Obstacle course simulations

To test the convergence rate and obstacle avoidance capabilities of the
non-omnidirectional PSO controller, the following 2D simulations were performed, using
an obstacle course. The simulation setup used, is identical to the one used in Chapter 4,
to allow direct comparison between the non-omnidirectional PSO controller and the om-
nidirectional PSO controller (Adapted RPSO). As in Chapter 4, the obstacle course is
described by Figure 4-1. The robots are assumed to be modified models of the Summit
XL Steel platform (Robotnik Automation S.L.L. n.d.) of diameter 1 m and maximum

123

0 5 10 15

0

10

20

30

40

50

60

70

Figure 5-5: Median CoM fitness over time results for the non-omnidirectional and the
omnidirectional PSO controllers. The transparent areas also show the 5th and 95th

percentile CoM fitnesses of each controller. The dotted lines represent the obstacle
layers of the obstacle course.

speed 3 m/s (the same model used in Chapter 4). Furthermore, as in Chapter 4, they
are assumed to be equipped with LiDAR sensors and their obstacle detection range is
limited to 3 m.

The parameter values used were also identical to allow direct comparison between the
algorithms, as shown in Table 5.1. Note that the non-omnidirectional PSO controller
does not have parameter γ assigned because it does not use the definition of virtual
forces presented in Chapter 4 to achieve obstacle avoidance.

Table 5.1: Table of values used for different parameters of the two PSO controllers for
the obstacle course simulations.

Controller Case α β γ ∆t

Omnidirectional PSO DVC 0.9 0.9 1 1
Non-Omnidirectional PSO DVC 0.9 0.9 - 1

124

Figure 5-5 shows the median results over 100 simulations for both the
non-omnidirectional and the omnidirectional PSO controllers (the number of simula-
tions and the number of robots in the swarm were the same as in Chapter 4 to allow
direct comparison). The results of the omnidirectional PSO controller are identical
to the results presented in Chapter 4 and they are included here for the purpose of
comparison.

The results of Figure 5-5 show that the non-omnidirectional PSO controller allows
the swarm to travel through the obstacle course faster than the omnidirectional PSO
controller. This is understood to be a result of the continuous forward thrust that
characterises the proposed non-omnidirectional PSO controller, which allows the robots
to explore faster and progress further into the obstacle course on their own, as explained
at the beginning of Section 5.2. From individual simulations, it was observed that
when a robot passes through an obstacle layer first, it can continue exploring on its
own, without having to wait for the rest of the swarm to push it through the next
layer. Furthermore, in contrast to the omnidirectional PSO controller, the results of the
non-omnidirectional PSO controller do not exhibit a clear trend of slowing down before
passing through an obstacle layer. This does not mean that the robots do not slow down
before passing through a layer (from individual simulations it was observed that they
actually slow down significantly). Instead, due to the seemingly-chaotic movement of the
robots, these trends are lost during the averaging process. Other signs of this seemingly-
chaotic behaviour are the lines of the 5th percentile, median and 95th percentile lines,
which are much noisier than the omnidirectional PSO controller, as well as the larger
variance between these lines.

5.4 Non-omnidirectional PSO Controller with Minimum
Turning Radius

There exist several different types of drives that can be characterised as
non-holonomic. The most popular ones are the differential drive and traditional (or
Ackermann) steering (Rubio et al. 2019, Bräunl 2008). The main way that traditional
steering differs from differential drive, in terms of its resulting motion, is that it has
a minimum turning radius. Therefore, control of traditional steering can be achieved
using the non-omnidirectional PSO controller, as long as the turning radius that is re-
quested by the PSO controller is not smaller than the minimum turning radius rmin of
the vehicle. The turning radius r requested by the controller can be calculated using
Equation (5.6). If the resulting r is smaller than rmin, then either v needs to be in-

125

creased or w needs to be decreased until r = rmin. That said, v is limited by the DVC
strategy to avoid collisions and increasing it may counter this measure. Therefore, the
angular velocity w needs to be decreased, until r = rmin is achieved.

At first sight, this appears to be a straightforward modification, but it introduces sig-
nificant complexity into the PSO controller. The ability of a differential drive robot
(i.e. no minimum turning radius) to rotate in place, allows it to avoid obstacles, even
when they are right in front of it, without having to move backwards. In the case
of traditional steering though, this is not possible. This problem can be avoided, by
allowing the robot enough space to rotate, by setting up a minimum distance that the
robot can have from an obstacle. For example if the minimum turning radius of a robot
is rmin = 0.5 m, the robot can be forced to maintain a minimum distance smin > 1 m

from obstacles (i.e. robot-obstacle separation), allowing it enough room to fully rotate
and move away. That said, it is not clear at this point, what the actual mathematical
relationship between smin and rmin needs to be to ensure no collisions.

The introduction of the minimum turning radius rmin can allow the non-omnidirectional
controller to approximate the motion of a large number of vehicles, like car-type land
vehicles and marine vehicles like ASVs. Additionally, Equation (5.4) can be adapted for
use in 3D environments through the introduction of an additional angular velocity term
(representing the rate of change of the pitch of the robot). This can allow the controller
to be used in underwater vehicles like AUVs and forward flight aircraft. Nonetheless,
further study needs to be performed to identify the relationship between smin and
rmin. For the rest of this thesis, unless it is otherwise specified, the non-omnidirectional
controller with no minimum turning radius, as described throughout this chapter, will
be used for the control of simulated ASVs, since it most closely approximates their
motion.

5.5 Conclusions

This section has introduced a new approach to the implementation of PSO for robotic
applications. The use of a robot-centred reference frame for the updating of the ve-
locity vector overcomes some significant problems of previous versions of PSO. Fur-
thermore, it allows the implementation of non-omnidirectional PSO controllers, other
than the traditional omnidirectional controller that PSO is typically associated with.
A non-omnidirectional PSO controller and DVC strategy are also introduced. The
non-omnidirectional controller is compared to the omnidirectional controller for the
task of navigating through an obstacle course and exhibits better performance but also

126

more seemingly chaotic motion. The non-omnidirectional controller is an important
extension of the Generalised Adapted PSO algorithm because it allows the control of
a larger number of robotic platforms, while considering the movement limitations of
each robot (beyond maximum velocity and acceleration). A further adaptation to a
non-omnidirectional PSO controller with minimum turning radius is also discussed.

127

References

Batlle, J., Nicosevici, T., Garcia, R. & Carreras, M. (2003), ‘ROV-Aided Dam Inspec-
tion: Practical Results’, IFAC Proceedings Volumes 36(21), 271–274.
URL: https://www.sciencedirect.com/science/article/pii/S1474667017378199

Bräunl, T. (2008), Embedded Robotics: Mobile Robot Design and Applications with
Embedded Systems.

Choi, J., Lee, Y., Kim, T., Jung, J. & Choi, H.-T. (2017), Development of a ROV for
visual inspection of harbor structures, in ‘2017 IEEE Underwater Technology (UT)’,
pp. 1–4.

Figueiredo, A. B., Ferreira, B. M. & Matos, A. C. (2014), Tracking of an underwater
visual target with an autonomous surface vehicle, in ‘2014 Oceans - St. John’s’, pp. 1–
5.

Janson, S. & Middendorf, M. (2007), On Trajectories of Particles in PSO, in ‘2007
IEEE Swarm Intelligence Symposium’, pp. 150–155.

Ludvigsen, M., Johnsen, G., Lagstad, P., Sørensen, A. & Odegard, O. (2013), Sci-
entific Operations Combining ROV and AUV in the Trondheim Fjord, in ‘Marine
Technology Society Journal’, Vol. 48, pp. 1–7.

Macreadie, P. I., McLean, D. L., Thomson, P. G., Partridge, J. C., Jones, D. O. B.,
Gates, A. R., Benfield, M. C., Collin, S. P., Booth, D. J., Smith, L. L., Techera, E.,
Skropeta, D., Horton, T., Pattiaratchi, C., Bond, T. & Fowler, A. M. (2018), ‘Eyes
in the sea: Unlocking the mysteries of the ocean using industrial, remotely operated
vehicles (ROVs).’, The Science of the total environment 634, 1077–1091.

Nad, D., Miskovic, N. & Mandic, F. (2015), ‘Navigation, guidance and control of an
overactuated marine surface vehicle’, Annual Reviews in Control 40, 172–181.
URL: https://www.sciencedirect.com/science/article/pii/S1367578815000474

Njaka, T., Brizzolara, S. & Ben-Tzvi, P. (2020), ‘Design and Experimental Valida-
tion of a Novel High-Speed Omnidirectional Underwater Propulsion Mechanism’,
IEEE/ASME Transactions on Mechatronics p. 1.

Robbins, I. C., Kirkpatrick, G. J., Blackwell, S. M., Hillier, J., Knight, C. A. & Moline,
M. A. (2006), ‘Improved monitoring of HABs using autonomous underwater vehicles
(AUV)’, Harmful Algae 5(6), 749–761.
URL: https://www.sciencedirect.com/science/article/pii/S1568988306000370

128

Robotnik Automation S.L.L. (n.d.), ‘SUMMIT-XL STEEL MOBILE ROBOT’.
URL: https://robotnik.eu/products/mobile-robots/summit-xl-steel-en/

Rubio, F., Valero, F. & Llopis-Albert, C. (2019), ‘A review of mobile robots: Concepts,
methods, theoretical framework, and applications’, International Journal of Advanced
Robotic Systems 16(2), 1729881419839596.
URL: https://doi.org/10.1177/1729881419839596

Smith, J. O. (2010), Physical Audio Signal Processing, W3K Publishing.

Spears, W., Green, D. & Spears, D. (2010), ‘Biases in Particle Swarm Optimization.’,
IJSIR 1, 34–57.

129

Chapter 6

Marine Acoustics and Acoustic
Signal Processing

The previous chapters have focused on the adaptation of the PSO algorithm to offer
precise motion control for robotic swarms and allow its merging with other swarm
robotic techniques. That said, the main purpose of the algorithm in this thesis, which is
the localisation of marine acoustic sources, has not been studied yet. The next chapters
will focus on this task, but first it is important to present the individual characteristics
that define underwater acoustic signals and differentiate them from other signals found
in nature. This chapter will present a review of the literature, discuss a number of
propagation models for underwater acoustic signals and present the most significant
acoustic sources that can be found in marine environments. Afterwards, the basic
principles of acoustic signal processing techniques will be introduced and it will be
described how they can be linked to swarm robotics.

6.1 Underwater Sound Propagation

Sound propagation in the sea has been studied extensively. Field measurements relative
to a large variety of parameters have been performed in different oceanic areas, enabling
the implementation of accurate modelling software (Richardson et al. 2013). However,
these types of models are usually application specific and are not easily generalised.
Instead, there exist several simpler general models that can be used to estimate the
transmission loss of a propagating underwater acoustic signal for different cases. These
models will be presented in this section.

130

The simplest model that can be used to approximate the transmission loss of an under-
water acoustic signal at a distance R, is the spherical spreading loss model (Rossing &
Fletcher 2004)

L = Ls − 20log10(R)− 60 (6.1)

where: L is the received sound pressure level (SPL) at range R (km) from the source,
in dB re 1µPa,

Ls is the source level in dB re 1µPa·m and
−60 is a conversion factor related to the change in range units from Ls at 1 m

to L at R km from the source.

The spherical spreading model can be used to approximate the transmission loss of a
signal as it propagates in deep waters (i.e. when R is smaller than the ocean depth), as
shown in Figure 6-1a. For shallow waters (i.e. when R is larger than the ocean depth),
as shown in Figure 6-1b, this model is adjusted to use cylindrical propagation, resulting
in the cylindrical spreading loss model (Rossing & Fletcher 2004)

L = Ls − 10log10(R)− 60 (6.2)

Apart from the geometric spreading loss, an additional absorption loss term can also
be included (Rossing & Fletcher 2004, Triwahyanti et al. 2018), resulting in

L = Ls − 20log10R− αR− 60 (6.3)

and
L = Ls − 10log10R− αR− 60, (6.4)

where: α is the sound absorption coefficient in dB/km.

The value of α is given by
α = α0 ω

η, (6.5)

where ω is the angular frequency of the signal and α0 and η are parameters that depend
on the propagation medium (e.g. oceanic water). For underwater acoustic signals, the
sound absorption coefficient α is usually about 0.001 dB/km at 100 Hz signal frequency
and 1 dB/km at 10 kHz (Rossing & Fletcher 2004). This is much smaller than the
corresponding sound absorption coefficient values for air, which is the reason that sound
propagates so efficiently in water.

Finally, Equations (6.3) and (6.4) can be merged together into a single equation which
employs spherical spreading up to a range R1 and cylindrical spreading beyond that

131

(a) Spherical Spreading

(b) Cylindrical Spreading

Figure 6-1: Schematics that describe the two main types of signal propagation, using a
ship-mounted SONAR as an acoustic source example.

range (Richardson et al. 2013)

L = Ls − 10logR1 − 10logR− αR−AR− 60 (6.6)

where: R1 is the range in km where the transition from spherical to cylindrical spread-
ing occurs and

A is the transmission loss anomaly in dB/km.

The transmission loss anomaly A is used to represent additional energy losses due to
reflection from the surface and the bottom of the ocean, as well as changes in the
propagation due to variations in the temperature, depth and salinity of the oceanic
water. This is an empirical term that is usually tuned based on collected data for each
scenario (Federation of American Scientists 1998).

The work described in this thesis is largely theoretical and simulation-based and the

132

presented concepts aim to be as generalised as possible to allow easy adaptation to
different scenarios. Despite the increasing accuracy of the models described by Equa-
tions (6.3), (6.4) and (6.6), they also become application specific. Therefore, the rest
of this thesis will make use of the more general spherical spreading loss model of Equa-
tion (6.1), while more accurate models can be used in future studies as the introduced
concepts are applied to specific scenarios, where the values of R, α, A etc. are defined
accordingly.

6.2 Marine Acoustic Sources

Section 6.1 described the physical characteristics of acoustic signal propagation in
oceanic environments but did not present the different types of acoustic signals that can
be encountered. This section will present the main types of sounds produced by various
marine acoustic sources (both biological and anthropogenic), outlining specific impor-
tant characteristics (e.g. intensity, frequency, etc.). There are three main categories of
marine sounds (1) marine mammal sounds, (2) anthropogenic sounds and (3) ambient
noise. Each will be described in the following sub-sections.

6.2.1 Marine Mammal Sounds

Marine mammals use underwater acoustics for the communication of information such
as the presence of food, danger or another individual of the species. Furthermore, some
species are capable of echolocation; that is the ability to acoustically locate an object
and identify characteristics such as its size, shape and movement. There has been
significant research on the sounds made by several species but there still exist many
gaps in the literature, especially due to the wide range of sounds that each species
produces and the large number of specific functions that each sound can correspond
to. Furthermore, up until now it has been difficult to study some of these animals,
primarily due to their large size and their inability to survive in captivity.

Sounds produced by marine mammals like tonal moans, pulses, songs, thumps in pairs,
up-down frequency sweeps etc. are usually in the frequency range of approximately
20 Hz to 4 kHz. Clicks and whistles on the other hand are emitted at higher frequencies,
typically between 2 and 20 kHz (Würsig et al. 1993, Cummings & Thompson 1994,
Watkins 1980, Richardson et al. 2013). The estimated source levels of all sounds are
ranging from 109 to 192 dB re 1µPa·m (Thompson et al. 1986, Cummings & Holliday
1987, Richardson et al. 2013) depending on the species.

Sounds used in echolocation are of high intensity and frequency and of short duration,

133

typically between 50-200 µs. The pulses are emitted forwards in highly directional beams
and there is usually a break between pulses to make sure that the echo from a pulse
is received before the next one is produced. The extreme directionality of the signals
allows the intensity of the signal to be higher than the signal of an omnidirectional
transmitter of the same power. For this reason, among all recorded marine mammal
sounds, echolocation signals have the highest source levels, ranging from approximately
120-230 dB re 1µPa·m. For some species the frequencies range between 20-60 kHz and
100-130 kHz in low and high ambient noise levels respectively, but they can go as low
as 25 kHz and as high as 150 kHz (Au 1993).

6.2.2 Anthropogenic Sounds

Apart from biological marine acoustic sources, in the recent era, large quantities of
anthropogenic noise have also been introduced into oceanic environments significantly
altering the ocean’s acoustic environment. Such sounds are created both purposefully
and unintentionally and are typically found along well travelled paths in the sea, par-
ticularly in coastal and continental shelf waters (Hildebrand 2005).

The most common type of sources for anthropogenic sounds is means of transportation
consisting of boats, small ships, commercial vessels and supertankers and other vehicles
and their sound characteristics typically vary with the size of the vehicle. Although small
boats are very common in coastal water, there is not much data about their acoustical
characteristics. For this type of vessels, where the engines are usually outboard, noise
level spectra contain strong tones at frequencies up to several hundred Hz (Richardson
et al. 2013).

In contrast, small ships (characterised by lengths in the range 55 m to 85 m), typically
emit sounds of fundamental frequencies around 10 Hz to 11 Hz (Greene Jr 1987). Broad-
band source levels for vessels of this category are ranging at about 170 dB re 1µPa·m
to 180 dB re 1µPa·m (Hall et al. 1994). For larger ships (commercial vessels and super-
tankers), noise levels are highest at very low frequencies, typically around
180 dB re 1µPa·m and for some, they exceed 205 dB re 1µPa·m for frequencies as low
as 2 Hz (Richardson et al. 2013).

6.2.3 Ambient Noise

Below the sea surface, noise tends to be of low intensity, compared to noise that can
exist in some areas above the surface (e.g. cities). Nevertheless, the ambient noise that
can be detected is still significant enough to require consideration during the design of

134

an underwater acoustic system. This sub-section will present the types and sources of
underwater ambient noise.

DeepWater: Deep water regions represent around 90% of the area covered by oceans.
In these areas, noise with frequency <20 Hz arises from seismic sources, turbulence,
tides and waves and sounds of ship propeller blades. This low levels of frequencies are
generally not affected by the wind and are the most difficult to measure due to the
effect that turbulence and water currents can have on the equipment used. From 20 to
300 Hz, the dominant source of noise is distant shipping, with some minor additional
effect from the wind and from 300 to 500 Hz, strong winds can produce noise that
overshadows that of distant shipping. From 500 Hz to 50 kHz, ambient noise consists
mainly of wind, waves and rain sounds. Higher frequencies are also greatly affected
by thermal agitation (Urick 1983). Probably the most famous study for underwater
ambient noise was performed by Wenz (1962) and its results are described by Figure 6-
2. Despite being carried out in 1962, the study is still considered the most descriptive
model of marine ambient noise (Rossing & Fletcher 2004).

Shallow Water: Shallow water regions are usually defined as regions that are <200 m

deep. Sources of noise in shallow waters can be separated into three categories, (1) wind
and waves (2) biological noise (3) distant shipping, industrial or seismic survey noise
In these depths, ambient noise experiences a wider range of levels. Above 500 Hz, noise
levels can be higher than deep water regions by about 5-10 dB. At he same time, below
300 Hz and especially with the lack of distant shipping and biological noise, the expected
levels are lower than in deep waters. Wind also has a big effect on noise in these regions.
At wind speeds of about 9 km/h, wind speed can predict ambient noise levels better
than most of the other noise sources (Urick 1983).

6.2.4 Signal-to-Noise Ratio Calculation

Based on the information provided in Sections 6.2.1 to 6.2.3 and using the propagation
models of Section 6.1, it is now possible to calculate the Signal-to-Noise Ratio (SNR) of
signals emitted by different sources at a given distance from the source. This can allow
the calculation of the maximum range of different source localisation systems (including
swarm robotic systems), based on the type of source that they aim to localise.

To calculate the SNR of an observed signal, it is first needed to identify the average
intensity of the noise. Figure 6-2 provides the power spectrum levels of different types of
noise that can be encountered in the deep sea. Given a range of frequencies, the average

135

Limits of Prevailing Noise

Wind-Dependent Bubble and Spray Noise

Heavy Precipitation

Heavy Traffic Noise

Thermal Noise

Extrapolations

Earth Quakes and Explosions

Low-Frequency Very-Shallow-Water Wind

Usual Traffic Noise-Deep

Usual Traffic Noise-Shallow

100,00010,0001,000100101
Frequency (Hz)

0

20

40

60

80

100

120

140

Earthquakes

and Explosions

Biologics
Precipitation

Industrial ActivityShips,

Sea Ice

Sea

State

Molecular

Agitation

Bubbles and Spray

(Surface Agitation)

Ocean Traffic

(Seismic Background)

Turbulent-Pressure Fluctuations

(Surface Waves-
Second Order

Pressure Effects)

INTERMITTENT AND LOCAL EFFECTS

PREVAILING NOISES

S
p

e
c
tr

u
m

 L
e

v
e

l
(d

B
 r

e
 1

 μ
 P

a
)

Figure 6-2: Composite of ambient-noise spectra, summarizing results and conclusions
about spectrum shape, level, and probable sources of ambient noise between 1 Hz and
100kHz (Wenz 1962). 136

intensity level N of a selected type of noise is given by the area under the corresponding
noise line in Figure 6-2. Assuming the propagation model of Equation (6.1), the SNR
of a signal of source level Ls at distance R from the source is given by

SNR = Ls − 10log10

(
N

10−6

)
− 20log10(R)− 60, (6.7)

where the value 10−6 is the reference acoustic pressure of 1 µPa, used by convention in
underwater acoustics.

Marine acoustic source localisation systems are highly dependent on the SNR of the
received signals. When the SNR is very low, localisation may be impossible, effectively
limiting the maximum localisation range of such systems. Therefore it is desirable to
employ techniques that can improve the SNR of received signals, thereby improving
the range and performance of such systems. In acoustic signals, such techniques are
possible through the use of wavefield correlation (i.e. employing signal characteristics
like frequency, bandwidth and propagation speed). The following section will describe
the basic principles of such techniques and it will be explained how swarm robotic
systems can be employed to extend their capabilities.

6.3 Wavefield Correlation

Sources in nature can be separated into two types: 1) wavefield sources (e.g. acoustic
(Kundu 2014), electromagnetic (Hao et al. 2015) etc.) and 2) non-wavefield sources (e.g.
chemical (Pomareda et al. 2017), radioactive (Gao et al. 2018) etc.). The main difference
between the two types is that wavefield sources emit periodic signals. Therefore, while
signals from non-wavefield sources are characterised mainly by their intensity, signals
from wavefield sources have additional characteristics such as frequency and propagation
speed. Due to these characteristics, wavefield signals contain additional information
about the location of the source that can be extracted by cross-correlating simultaneous
signal readings from multiple sensors. Additionally, techniques that rely solely on the
intensity of the signal are generally more sensitive to low Signal-to-Noise-Ratio (SNR)
than techniques that employ cross-correlation. This concept will be discussed in more
detail in this section.

Due to the periodic nature of underwater acoustic signals, techniques that employ cross-
correlation are applicable to a large number of marine applications such as seismography
(Rost & Thomas 2002), seafloor mapping (Makowski & Finkl 2016) and imaging of the
oceanic environment. Active SONAR systems emit acoustic signals that are reflected

137

from the surfaces of nearby objects (Stewart & Westerfield 1959, Fortmann et al. 1983)
and cross-correlation techniques are used to measure the time-of-flight of the signal,
thereby allowing imaging reconstruction of the oceanic environment. On the other hand,
passive SONAR uses only the acoustic signals emitted by sources and cross-correlation
is employed to identify their location.

A number of different techniques exist that employ cross-correlation - e.g. angle-of-
arrival (AOA), time-of-arrival (TOA), time-difference-of-arrival (TDOA) etc., and all
of them operate based on the same basic principles of cross-correlation (Munoz et al.
2009). This chapter will describe these principles, using a marine acoustic scenario and
will outline their limitations.

6.3.1 The Two-Hydrophone Receiver Model

To introduce the basic principles of cross-correlation of acoustic signals, consider the
simplest multi-hydrophone system configuration: the two-hydrophone receiver model
(Li et al. 2019), located at a far field point relative to an acoustic source, as shown in
Figure 6-3.

Figure 6-3: Schematic that describes how an incoming signal emitted by an external
wavefield source (ship) is received by a pair of hydrophones (black circles). In this
case, the signal is first received by the right-most hydrophone and after time τlag, it
is received by the left-most one. The angle α is the AOA of the signal (i.e. direction
towards the source).

Let s1(t) and s2(t) be the signal readings of the two hydrophones, which are assumed
to be separated by a distance D. If the signal arrives at the hydrophones at an angle of

138

arrival (AOA) α, by the time that it reaches the first hydrophone, it needs to propagate
an additional distance D cos(α) before reaching the second one. Therefore, if the signal
is assumed to propagate at a constant speed c, the time delay τlag between s1(t) and
s2(t) is given by

τlag =
D cos(α)

c
. (6.8)

Alternatively, if the time delay τlag is known, the whole process can be reversed, to
calculated the AOA of the signal (i.e. the direction towards the source), which can then
be used to localise the source.

The time delay τlag, can be obtained by cross-correlating the two signals s1(t) and s2(t).
Cross-correlation is the mathematical process used to describe the similarity between
two signals and it is described by

R(τ) =

∫ ∞
−∞

s1(t)s2(t+ τ)dt (6.9)

where τ is an arbitrary time delay added to s2(t). R(τ) is maximised at τ = τlag such
that

τlag = argmaxτ (R(τ)). (6.10)

From here, τlag can be used in Equation (6.8) to calculate the AOA of the received
signal and thereby the direction towards the source.

Apart from measuring the AOA of a signal, cross-correlation can also be used to enhance
the SNR of intensity measurements. The non-normalised correlation coefficient ρ is the
value of R(τ) at τ = τlag

ρ = R(τlag). (6.11)

As the average intensity of s1(t) and s2(t) increases, ρ increases too. That said, ρ is less
sensitive to noise and therefore, it can be used in place of intensity measurements to
reduce the negative effects of noise in techniques that employ intensity measurements.

6.3.2 Ambiguities

Section 6.3.1 described how a two-hydrophone receiver can be implemented for the
calculation of the AOA of a signal, through the use of cross-correlation. Despite its
advantages, this model comes with several limitations that need to be taken into ac-
count to avoid the introduction of ambiguities in the calculation of the angle α. These
ambiguities will be presented in this sub-section.

The first type of ambiguity occurs due to the use of only two hydrophones. The AOA

139

candidate direction

(result of directional

ambiguity)

candidate direction

pointing to the source

(a)

P
h
a
s
e

Distance

(b)

Figure 6-4: Schematics that describe the two problems of directional ambiguity, where
the black circles represent the pair of hydrophones. In (a), the angle α is the calculated
angle of arrival of the signal. The solid and dashed green lines are the leftward and
rightward candidate directions towards the source respectively. In (b), the green (mid-
dle) signal represents the signal emitted by the source, while the red and blue (side)
signals represent ambiguities caused by the hydrophone separation. The corresponding
red, green and blue phase profiles show how all three signals can result in the same
phase difference for the two hydrophones (arrows on the phase-distance graph).

of the signal is calculated with respect to the line formed by the two hydrophones.
However, it is impossible to know if this angle is negative or positive, resulting in a
directional ambiguity as shown in Figure 6-4a.

Additional ambiguities can be introduced due to the hydrophone separation D. The
time delay τlag is calculated based on the phase difference ∆φ of the signal readings of
the two hydrophones, which is given by

∆φ =
2πfcD cos(α)

c
=

2πD cos(α)

λc
, (6.12)

where fc is the central frequency of the signal and λc is the corresponding wavelength
of the signal.

When the received signal is narrowband, using Equation (6.9) it can be seen that the
correlation between s1(t) and s2(t) drops as |∆φ| approaches π (i.e. the signal readings
go out-of-phase). That said, when |∆φ| > π, the two signal readings start going in-
phase again and their correlation increases. This can result in the same phase difference
when the signal arrives at the hydrophones from different angles, as shown in Figure 6-
4b. Therefore, to avoid this type of ambiguity, the phase difference must be limited to

140

|∆φ| ≤ π, which can be achieved using D ≤ λc/2 in Equation (6.12). Alternatively, as
the bandwidth of the signal increases, these types of ambiguities are generally reduced,
since components of larger wavelengths are introduced (Munoz et al. 2009).

6.3.3 Extended Multi-Hydrophone Configurations

The two-hydrophone receiver model presented in this section can be extended to models
that employ three or more hydrophones in different configurations, aiming to further
increase the SNR of the signal readings and address the ambiguity problems of the
two-hydrophone configuration. Several different types of configurations exist, each with
its own advantages, which will be summarised in this sub-section.

Uniform linear n-hydrophone arrays: The two-hydrophone configuration can be
extended to any number n of colinear hydrophones. This type of configuration is well-
studied in underwater acoustics due to its relative operational simplicity (e.g. hy-
drophone arrays can be towed by single vessels (Miller & Tyack 1998, Yack et al. 2013)).
Due to the colinear placement, the second type of ambiguity (i.e. described in Figure 6-
4b) are reduced. This is shown in Figure 6-5, where the regions outside the lobes
represent the regions where ambiguities occur. For example, for the two-hydrophone
array of Figure 6-5a, ambiguities occur at −90o and 90o (i.e. when the direction of
propagation of the received signal is parallel to the hydrophone array).

The main advantage of this configuration is that it can greatly boost the SNR of the
signal readings, which in turn increases their maximum range of detection. Therefore,
even though the ten-hydrophone array of Figure 6-5b may appear to introduce more
ambiguity regions, in practice, its main lobes (i.e. 0o and 180o) correspond to greater
sensitivity, compared to the two-hydrophone array of Figure 6-5a. Finally, it should be
noted that, since the hydrophones are colinear, this configuration does not address the
first type of ambiguities (i.e. described in Figure 6-4a).

Non-linear hydrophone distributions: This type of configuration can be achieved
by adding one or more non-colinear hydrophones to the two-hydrophone receiver (Wang
et al. 2019). The direct advantage of this configuration is that the extra hydrophones
can be used to readily resolve ambiguities of the first type (Figure 6-4a). The second
type of ambiguity(Figure 6-4b) is also addressed using this configuration, through the
addition and proper placement of extra non-colinear hydrophones (Malgoezar et al.
2016) but the SNR boost may be smaller compared to the linear array configuration.
Additionally, by treating individual pairs of hydrophones as individual two-hydrophone

141

(a) Hydrophone array with 2 elements (b) Hydrophone array with 10 elements

Figure 6-5: Normalised polar sensitivity pattern for hydrophone arrays with different
number of elements. The hydrophone arrays are placed vertically (i.e. the −90o to
90o line) and consecutive hydrophones are separated by a distance of λ/2, where λ is
the wavelength of the received signal. The figures were obtained using the MATLAB
Phased Array System Toolbox.

receivers, localisation of the source can be achieved using triangulation. The effect of
proper positioning for this task is shown in Figure 6-6, where the localisation accuracy
of two different non-linear hydrophone configurations are compared (Wang et al. 2019).

The two types of hydrophone configurations can be combined together, resulting in a
variety of more complex configurations. Furthermore, recent studies have proposed the
use of autonomous distributed hydrophone nodes capable of dynamically altering their
positions in order to adaptively resolve ambiguities, based on the current needs of the
system (Jiang et al. 2019). This has led researchers to consider the use of swarm robotic
techniques for the control of such hydrophone nodes. The next chapter will describe
how the wavefield correlation techniques presented in this section can be fused with
the swarm control algorithms described in previous chapters to overcome some of their
problems while also increasing their range and source localisation speed.

6.4 Conclusion

This chapter has presented the background literature, relevant to marine acoustics and
wavefield correlation. The presented information and techniques will be used in the next
chapters for the adaptation of PSO for source localisation applications. Sections 6.1
and 6.2 introduced a number of propagation models that can be used to estimate how

142

(a) Hydrophone positions (b) Source localisation performance

(c) Hydrophone positions (d) Source localisation performance

Figure 6-6: Simulated performance results for two different hydrophone configurations,
for the task of source localisation. In (a) and (b), even though a third non-colinear
hydrophone is used, its improper placement does not fully resolve ambiguities. In
(c) and (d), a fourth hydrophone is used and the hydrophones are more uniformly
distributed and therefore ambiguities are fully resolved. The simulated signal used was
broadband with frequencies in the range 1 kHz to 10 kHz, the signal propagation speed
was 1500 m/s and the SNR of the hydrophone signal readings was 10 dB (Wang et al.
2019).

143

underwater sound propagates in marine environments. Then, a variety of the most sig-
nificant marine acoustic sources were presented, along with the specific characteristics
of the signals that they emit. This information will be used in the next chapter to
construct simulation of acoustic source localisation scenarios. Section 6.3 presented the
basic principles of wavefield correlation using the two-hydrophone receiver model and
it described how this model can be extended to more complex hydrophone configura-
tions. These techniques will be fused with the PSO in the next chapter, to enhance its
maximum range and convergence speed capabilities.

144

References

Au, W. W. (1993), ‘The Sonar of Dolphins’.

Cummings, W. C. & Holliday, D. V. (1987), ‘Sounds and source levels from bowhead
whales off Pt. Barrow, Alaska’, The Journal of the Acoustical Society of America
82(3), 814–821.

Cummings, W. C. & Thompson, P. O. (1994), ‘Characteristics and seasons of blue and
finback whale sounds along the US west coast as recorded at SOSUS stations’, The
Journal of the Acoustical Society of America 95(5), 2853.

Federation of American Scientists (1998), ‘Sonar Propagation’.
URL: https://fas.org/man/dod-101/navy/docs/es310/SNR_PROP/snr_prop.htm

Fortmann, T., Bar-Shalom, Y. & Scheffe, M. (1983), ‘Sonar tracking of multiple tar-
gets using joint probabilistic data association’, IEEE Journal of Oceanic Engineering
8(3), 173–184.

Gao, W., Wang, W., Zhu, H., Huang, G., Wu, D. & Du, Z. (2018), ‘Robust Radiation
Sources Localization Based on the Peak Suppressed Particle Filter for Mixed Multi-
Modal Environments’, Sensors (Basel, Switzerland) 18(11), 3784.
URL: https://pubmed.ncbi.nlm.nih.gov/30400670/

Greene Jr, C. R. (1987), ‘Characteristics of oil industry dredge and drilling sounds in the
Beaufort Sea’, The Journal of the Acoustical Society of America 82(4), 1315–1324.

Hall, J. D., Gallagher, M. L., Brewer, K. D., Regos, P. R. & Isert, P. E. (1994), ‘ARCO
Alaska, Inc. 1993 Kuvlum Exploration Area Site Specific Monitoring Program. Final
Report. Anchorage, AK: ARCO Alaska’, Inc. 218pp .

Hao, B., Zhu, J., Li, Z., Xiao, S. & Tong, L. (2015), Passive Radar Source Localiza-
tion Based on PSAAA Using Single Small Size Aircraft, in ‘2015 IEEE Globecom
Workshops (GC Wkshps)’, pp. 1–6.

Hildebrand, J. (2005), Impacts of Anthropogenic Sound.

Jiang, J., Liu, H., Duan, F., Wang, X., Fu, X., Li, C., Sun, Z. & Dong, X. (2019),
‘Self-Contained High-SNR Underwater Acoustic Signal Acquisition Node and Syn-
chronization Sampling Method for Multiple Distributed Nodes’, Sensors 19(21).
URL: https://www.mdpi.com/1424-8220/19/21/4749

145

Kundu, T. (2014), ‘Acoustic source localization’, Ultrasonics 54(1), 25–38.
URL: https://www.sciencedirect.com/science/article/pii/S0041624X13001819

Li, P., Zhang, X. & Zhang, W. (2019), ‘Direction of Arrival Estimation Using Two
Hydrophones: Frequency Diversity Technique for Passive Sonar’, Sensors 19(9).
URL: https://www.mdpi.com/1424-8220/19/9/2001

Makowski, C. & Finkl, C. W. (2016), History of Modern Seafloor Mapping, Springer
International Publishing, Cham, pp. 3–49.
URL: https://doi.org/10.1007/978-3-319-25121-9_1

Malgoezar, A., Snellen, M., Sijtsma, P. & Simons, D. (2016), Improving beamforming
by optimization of acoustic array microphone positions.

Miller, P. J. & Tyack, P. L. (1998), ‘A small towed beamforming array to identify vocal-
izing resident killer whales (Orcinus orca) concurrent with focal behavioral observa-
tions’, Deep Sea Research Part II: Topical Studies in Oceanography 45(7), 1389–1405.
URL: https://www.sciencedirect.com/science/article/pii/S0967064598000289

Munoz, D., Bouchereau, F., Vargas, C. & Enriquez, R. (2009), CHAPTER 2 - Signal
Parameter Estimation for the Localization Problem, Academic Press, Oxford, pp. 23–
65.
URL: https://www.sciencedirect.com/science/article/pii/B9780123743534000089

Pomareda, V., Magrans, R., Jiménez-Soto, J. M., Martínez, D., Tresánchez, M., Bur-
gués, J., Palacín, J. & Marco, S. (2017), ‘Chemical Source Localization Fusing
Concentration Information in the Presence of Chemical Background Noise’, Sensors
(Basel, Switzerland) 17(4), 904.
URL: https://pubmed.ncbi.nlm.nih.gov/28425926/

Richardson, W. J., Greene Jr, C. R., Malme, C. I. & Thomson, D. H. (2013), Marine
mammals and noise, Academic press.

Rossing, T. D. & Fletcher, N. H. (2004), Underwater Sound, Springer New York, New
York, NY, pp. 294–307.
URL: https://doi.org/10.1007/978-1-4757-3822-3_13

Rost, S. & Thomas, C. (2002), ‘ARRAY SEISMOLOGY: METHODS AND APPLI-
CATIONS’, Reviews of Geophysics 40(3), 2–27.
URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000RG000100

146

Stewart, J. L. & Westerfield, E. C. (1959), ‘A Theory of Active Sonar Detection’,
Proceedings of the IRE 47(5), 872–881.

Thompson, P. O., Cummings, W. C. & Ha, S. J. (1986), ‘Sounds, source levels, and asso-
ciated behavior of humpback whales, Southeast Alaska’, The Journal of the Acoustical
Society of America 80(3), 735–740.

Triwahyanti, L., Cyndana, A., Sefnianti, Y., Sari, R. & Amron, A. (2018), ‘Transmission
Loss Estimation of Underwater Sound Based on the Noise Intensity Emmited by MV.
Pengayoman IV in Tanjung Intan Cruise Line, Cilacap’, E3S Web of Conferences
47, 4011.

Urick, R. J. (1983), ‘The noise background of the sea: ambient noise level’, Principles
of Underwater Sound (ed. RJ Urick) pp. 202–236.

Wang, Z., Li, L., Li, G. & Wang, Y. (2019), ‘A research on blind area of random layout
units for localization’, Journal of Physics: Conference Series 1303, 12064.
URL: https://doi.org/10.1088/1742-6596/1303/1/012064

Watkins, W. A. (1980), Acoustics and the behavior of sperm whales, in ‘Animal sonar
systems’, Springer, pp. 283–290.

Wenz, G. M. (1962), ‘Acoustic Ambient Noise in the Ocean: Spectra and Sources’, The
Journal of the Acoustical Society of America 34(12), 1936–1956.
URL: https://doi.org/10.1121/1.1909155

Würsig, B., Clark, C., Montague, J. & Cowles, C. (1993), ‘Behavior’, The Bowhead
Whale pp. 157–199.

Yack, T. M., Barlow, J., Calambokidis, J., Southall, B. & Coates, S. (2013), ‘Passive
acoustic monitoring using a towed hydrophone array results in identification of a
previously unknown beaked whale habitat’, The Journal of the Acoustical Society of
America 134(3), 2589–2595.
URL: https://doi.org/10.1121/1.4816585

147

Chapter 7

Wavefield Correlation-Enhanced
Particle Swarm Optimisation

So far the focus of this thesis has been on the modification of PSO for the optimised
control of robotic swarms. In the simulations of previous chapters, PSO operated by
assigning a cost to each location based on the distance to the source. Clearly, this is
not a suitable cost-assigning method for use in real-world robotic applications, since the
position of the source is not known and the aim of the swarm is to identify it.

This chapter will address this gap by focusing on ways that the swarm can converge
to a marine source, based on information that exists in the signals emitted by it. This
will be achieved through further modifications of PSO. In contrast to previous chapters,
the proposed modifications will concentrate on the way that personal and global best
locations are selected, instead of the command outputs of the control algorithm. The
chapter will focus on acoustic signals emitted by marine sources and therefore, the
proposed modifications will aim to incorporate wavefield correlation capabilities into
PSO, as discussed in Chapter 6.

7.1 Amplitude-Particle Swarm Optimisation (A-PSO)

The simplest way that the fitness of a location can be calculated in PSO for source lo-
calisation, is using the average intensity of the observed signal. As the signal propagates
away from the source, it attenuates causing its intensity to drop. Therefore convergence
to the source can be achieved by identifying the location where the signal intensity is
maximised. The advantage of this method is that it can be used for a large variety of

148

signals, as long as they attenuate monotonically relative to the distance from the source.
Examples of PSO in robotic swarms that employ this way of fitness assignment are in
chemical source localisation using olfaction (Marques et al. 2006, Meng et al. 2011,
Feng et al. 2019). This section will describe how this method could be implemented for
acoustic signals.

Let fA be the fitness function that needs to be maximised such that, at time tk = k ∆t

where k is the current timestep and ∆t is the timestep size as defined in Chapters 3
to 5, the fitness of location x is given by

fA(tk,x) =
1

T

∫ 0

−T
|s(tk + t,x)|2dt, (7.1)

where s(tk + t,x) is the observed signal at position x and T is its duration (i.e. window
length). For the rest of this thesis, this type of PSO will be referred to as Amplitude-
PSO (A-PSO), due to the use of signal intensity (amplitude) to assign fitness to a
location.

7.1.1 Forgetting Function

As discussed in Chapter 2, a limitation of traditional PSO is that it can suffer from the
Outdated Memory Problem (Blackwell 2007) in mutable/dynamic environments. As a
reminder, in traditional PSO, each robot remembers its personal best location y until it
discovers a new location of higher fitness. When dynamic fitness functions are used (i.e.
moving source, mutable environment, noise etc.), the fitness of a location can change
over time. The Outdated Memory Problem occurs when the fitness of a personal best
location drops which should mean that it should be replaced with a new personal best
location. Instead, the robot unaware of the change in fitness, still remembers the past
fitness of the location, resulting in wrong decision and incapability of the swarm to
converge properly to the source.

To address this problem, several PSO variants introduced a forgetting property that
aims to slowly decrease the fitness of the current personal best location as remembered
by the robot (Carlisle & Dozier 2000, Fernandez-Marquez & Arcos 2009), making it
easier for it to be updated. Fusing a typical forgetting function (White 2001) with
(7.1), the remembered fitness f̂ i[k] of the personal best location yi[k] for robot i at
timestep k is given by

f̂ i[k] =

{
fA(tk,x

i[k]), for fA(tk,x
i[k]) > f̂ i[k − 1]

f̂ i[k − 1]× e−a, otherwise

}
(7.2)

149

where a is a positive scalar. This describes both the cases where a new personal best
location of higher fitness is found (i.e. fA(tk,x

i[k]) > f̂ i[k − 1]) and where the old
personal best location is maintained (i.e. forgetting function is applied). The overall
personal best and global best location selection process is described by Algorithm 3,
where yg and f̂g are the global best location and its fitness respectively and are assumed
to be global variables known by all robots at all times.

Algorithm 3: Personal and global best location selection for A-PSO
1 foreach robot do
2 robot.x← robot.GetCurrentPosition();
3 s[]← robot.ReadSignal(); // Get sensor reading
4 fA ← mean(abs(s[])2); // Assign fitness to selected intersection
5 robot.UpdatePersonalBestLocation(fA);
6 end
7 // Calculate global best location
8 f̂g ← 0; // Reset global best location fitness
9 foreach robot do

10 if robot.f̂ > f̂g then // Update global best location
11 f̂g ← robot.f̂ ;
12 yg ← robot.y;
13 end
14 end

15 Function UpdatePersonalBestLocation(self, fitness) :
16 if fitness > self.f̂ then // Update personal best location
17 self.f̂ ← fitness;
18 self.y← self.x;
19 else // Apply forgetting function
20 self.f̂ = self.f̂ × e−a;
21 end
22 end

7.1.2 A-PSO Weaknesses

Even though A-PSO offers the advantage of being generally applicable to a large variety
of source localisation problems, it is possible to identify several weaknesses that come
with it:

1. As A-PSO relies on the intensity of the received signal, its performance is affected
by the amount of noise in the signal. The use of a forgetting function allows
A-PSO to achieve convergence eventually, even in the presence of noise, but its
performance is expected to decrease as the SNR reduces. This in turn will limit

150

the maximum range of the algorithm and its ability to follow the gradient of the
fitness function.

2. Each robot can only calculate the fitness of its current position and therefore, the
exploration capabilities of the swarm depend on its span. This is referred to as the
Diversity Loss Problem (Blackwell 2007). In parameter optimisation tasks, this
is addressed by initialising the particle swarm around the area where the global
fitness extremum is expected to exist. That said, in real-world source localisation
applications, due to limited communication range, the swarm will most probably
span over a small area relative to the large areas that will need to be explored.
In this case, its exploration and convergence capabilities will be limited.

These weaknesses can be improved by incorporating wavefield correlation into the A-
PSO algorithm, and it is this idea that will be explored in the rest of this chapter.

7.2 Wavefield Correlation PSO

Instead of measuring only the signal intensity with a single sensor it is possible to
correlate the signals from a pair of sensors. In the presence of noise, the correlation of
two signals can offer ways to address the negative effects of noise, theoretically achieving
faster and over-time more consistent convergence towards the source, as described in
Chapter 6. Additionally, the information collected from two sensors can be combined
to calculate the direction to the source. In a robotic scenario, wavefield correlation can
be used to calculate the angle of arrival (AOA) (Munoz et al. 2009) of a signal at a pair
of wavefield sensors (e.g. two hydrophones) located on a robot, as shown in Figure 6-3.
This section will offer a short summary of the types of information that can be extracted
from this process, while a more detailed description is offered in Chapter 6.

Given two sensor readings s1(t) and s2(t) such that

s1(t) = s(t) + n1(t),

s2(t) = s(t+ τlag) + n2(t),
(7.3)

where s(t) is the received signal, n1(t) and n2(t) represent uncorrelated noise and τlag
is the time difference between the signal being received by each hydrophone. As dis-
cussed in Chapter 6, using cross-correlation, the time difference τlag, the non-normalised
correlation coefficient ρ and AOA α of the signal s(t) can be found using

τlag = argmaxτ{R(τ)}, (7.4)

151

ρ = R(τlag) = maxτ{R(τ)} (7.5)

and
α = cos−1

(τlag c
D

)
, (7.6)

respectively, where τ is the lag, R(τ) is the cross-correlation of the two sensor readings,
D is the sensor separation and c is the propagation speed of the signal.

The AOA of the signal is calculated with respect to the orientation of the robot. As
discussed in Chapter 6, since only two sensors are used, there always exist two candidate
directions of arrival as shown in Figure 6-4a, where they are referred to as directional
rays. The directions of the directional rays associated with α and −α are given by

r+[k] =

[
cos(α+ o[k])

sin(α+ o[k])

]
r−[k] =

[
cos(−α+ o[k])

sin(−α+ o[k])

]
, (7.7)

respectively, where o[k] is the orientation of the robot at timestep k.

Additional ambiguities can be introduced due to the sensor separation D as shown in
Figure 6-4b, when the signal is narrowband. To avoid this, the sensor separation can be
limited to D ≤ λc/2, where λc is the wavelength corresponding to the central frequency
of the signal (Munoz et al. 2009). As the bandwidth of the signal increases, these types
of ambiguities are generally reduced. The rest of this section will show how the wavefield
information obtained through cross-correlation can be used to improve the weaknesses
of A-PSO, discussed in Section 7.1.

7.2.1 Cross-Correlation Particle Swarm Optimisation (X-PSO)

The first algorithm that will be introduced in this chapter is Cross-Correlation PSO
(X-PSO) and aims to address Weakness 1 of A-PSO. Weakness 1 describes how the
range and convergence speed of A-PSO can be negatively affected by low SNRs. As
described in Chapter 6, the SNR of the signal can be improved by cross-correlating
the signals from multiple hydrophones. In this case, since two hydrophones are used,
the intensity-based fitness used in A-PSO can be replaced with the non-normalised
correlation coefficient ρ obtained using Equation (7.5), thereby reducing the negative
effects of noise. This can be achieved by replacing fA with fX given by,

fX(tk,x) = maxτ
{∫ 0

−T
s1(tk + t,x)s2(tk + t+ τ,x)dt

}
, (7.8)

152

Therefore, the fitness f̂ i[k] of the personal best location yi[k] as remembered by robot
i at timestep k is given by

f̂ i[k] =

{
fX(tk,x

i[k]), for fX(tk,x
i[k]) > f̂ i[k − 1]

f̂ i[k − 1]× e−a, otherwise

}
. (7.9)

Note that Equation (7.9) is identical to Equation (7.2) but fA(tk,x
i[k]) is replaced with

fX(tk,x
i[k]). The overall personal and global best selection process is described by

Algorithm 4.

Algorithm 4: Personal and global best location selection for X-PSO
1 foreach robot do
2 robot.CalculateCorrelation();
3 fX ← robot.ρ; // Assign fitness to current location
4 robot.UpdatePersonalBestLocation(fX); // As in Algorithm 1
5 end
6 // Calculate global best location
7 f̂g ← 0; // Reset global best location fitness
8 foreach robot do
9 if robot.f̂ > f̂g then // Update global best location

10 f̂g ← robot.f̂ ;
11 yg ← robot.y;
12 end
13 end

14 Function CalculateCorrelation(self) :
15 self.x← self.GetCurrentPosition();
16 s1[], s2[]← self.ReadSignals(); // Get sensor readings
17 R[]← xcorr(s1[],s2[]); // Cross-correlate signals
18 Ilag ← argmax(R[]);
19 self.ρ← R[Ilag]; // Calculate correlation coefficient
20 end

The advantage of X-PSO is that making use of the non-normalised correlation coefficient
ρ from two different hydrophone readings can minimise the effects of noise and therefore,
fX(tk,x

i[k]) is likely smoother than fA(tk,x
i[k]). This improves Weakness 1 of A-PSO

and should make X-PSO more robust to noise. However, like A-PSO, X-PSO assigns
fitness to the current location of each robot and therefore its exploration capabilities
are limited by the span of the swarm. Therefore X-PSO does not address Weakness 2
of A-PSO. The next algorithm will aim to address this weakness.

153

1

1

1

1

3

3

3

2

Figure 7-1: A swarm of robots (white rectangles) that uses B-PSO to estimate the
location of an acoustic source (ship). Solid rays are source rays and dashed rays are
ambiguous rays. The numbers next to each ray intersection (circles) represent the type
of intersection. The red circles indicate the intersections that would likely be selected
by at least one robot (i.e. furthest intersection from the robot). In this way, selected
intersections are more likely to be intersections of source rays.

7.2.2 Bearing Particle Swarm Optimisation (B-PSO)

Assigning fitness to the current location of the robot is a fundamental characteristic of
PSO, that leads to the problem of Diversity Loss (see Weakness 2 of A-PSO). Different
PSO versions aim to address this by preventing the PSO particles from getting too close
to each other. That said, when it comes to swarm robotic applications, this solution
is not satisfying, since driving the robots too far apart from each other may result in
communication loss between the robots. A possible alternative solution is therefore to
modify PSO so that it assigns fitness to locations that are far away from the swarm.
This can be achieved by using the directional rays of the robots (see Section 7.2) to
estimate the location of the source, as shown in Figure 7-1. This approach is called
Bearing-PSO (B-PSO).

In theory, at each timestep each robot could consider all intersections with all other
robots of the swarm to maximise information gain, but this would require communica-
tion with all other robots, greatly increasing communication delays. Instead, at each
timestep, each robot i receives the directional rays of only one other random robot j
and combines it with its own to calculate ray intersections (Schneider & Eberly 2003).
Combining each ray of robot i with each ray of robot j, can result from zero to four
intersections at any timestep. The aim of robot i is to select the intersection that more
closely approximates the location of the source.

Assuming that the SNR is significantly greater than 0 dB then on average at least one
directional ray from each robot will point towards the source. Consider a single robot

154

rotating about its central axis; one ray will remain pointing towards the source whilst
the other (the ambiguous −α ray in Figure 6-4a) will rotate throughout 360 degrees.
Extending to a swarm of robots, the ambiguous (rotating) rays will likely lead to ray
intersections that are close to the robots (distributed around the swarm), whilst the
stable source rays are likely to lead to intersections that are distant (i.e., distributed
around the source). Therefore, to increase the probability that an intersection of two
unambiguous rays (i.e., those that point towards the source) is identified, robot i selects
the furthest of its intersections from its current position.

A drawback of this process is that there is a risk that the selected intersections may be
beyond the source or behind the swarm (especially for low SNR). Therefore, the most
distal intersection (once selected) ps

i is assigned a fitness fB based on its distance from
robot i given by

fB(xi,ps
i) =

1

|xi − ps
i|
. (7.10)

where xi is the location of robot i. Thus, locations that are far away are progressively
down weighted.

As with A-PSO and X-PSO, the selected intersection replaces the personal best loca-
tion of robot i if its fitness is higher than the previous personal best location. Note
that maximising the fitness function fB does not necessarily imply convergence to the
source. Thus a forgetting function is used to ensure that the personal best location
is updated as robot i moves towards the source. In contrast to A-PSO and X-PSO,
the forgetting function is fundamental for the correct operation of B-PSO, since it en-
ables the continuous updating of the personal best locations. Therefore, the fitness
f̂ i[k] of the personal best location yi[k] of robot i at timestep k is given by (7.2) using
fB(xi[k],ps

i[k]) instead of fA(tk,x
i[k]).

The outcome of the overall process described above is that personal best locations of
high fitness are likely to be intersections of the first type which are assumed to be
distributed around the source. Therefore, the centroid of the personal best locations
best approximates the location of the source and is therefore used as the global best
location yg,

yg[k] =

∑M
i=1 yi[k]

M
, (7.11)

where M is the total number of robots. The overall personal and global best location
selection process for B-PSO is described by Algorithm 5.

The main advantage of B-PSO is that it selects personal best locations that are far

155

Algorithm 5: Personal and global best location selection for B-PSO
1 foreach robot do
2 robot.CalculateCorrelation();
3 end
4 foreach robot do // Select personal best locations
5 other ← robot.SelectRandomOtherRobot(); // Uniformly random selection
6 p[] = [];// Initialise empty arrays of intersections
7 // There can be up to 4 intersections
8 foreach ray ∈ robot.r do
9 foreach otherRay ∈ other.r do

10 p[].append(CalculateRayIntersections(robot.x, ray, other.x, otherRay));
11 end
12 end
13 d[] = |robot.x− p[]|; // Distances from robot to intersections
14 ps ← p[argmax(d[])]; // Select furthest intersection
15 fB ← 1/max(d[]); // Assign fitness to selected intersection
16 robot.UpdatePersonalBestLocation(fB,ps);
17 end
18 // Calculate global best location
19 yg ← [0, 0]; // Reset global best location
20 foreach robot do // Sum personal best locations
21 yg ← yg+robot.y;
22 end
23 yg ← yg/M ; // Calculate centroid

24 Function CalculateCorrelation(self) :
25 self.x← self.GetCurrentPosition();
26 o← self.GetCurrentOrientation();
27 s1[], s2[]← self.ReadSignals(); // Get sensor readings
28 [R[], τ []]← xcorr(s1[],s2[]); // Cross-correlate signals
29 Ilag ← argmax(R[]);
30 self.ρ← R[Ilag]; // Calculate correlation coefficient
31 τlag ← τ [Ilag]; // Calculate lag
32 α← acos(τlag ∗ c/D);
33 self.r[1]← [cos(α+ o); sin(α+ o)]; // Calculate directional rays
34 self.r[2]← [cos(−α+ o); sin(−α+ o)];
35 end

36 Function UpdatePersonalBestLocation(self, fitness, ps) :
37 if fitness > self.f̂ then // Update personal best location
38 self.f̂ ← fitness;
39 self.y← ps;
40 else // Apply forgetting function
41 self.f̂ = self.f̂ × e−a;
42 end
43 end

156

away from the swarm, thus fostering an exploration behaviour, and directly addressing
Weakness 2 (i.e. its exploration capabilities are not limited by the span of the swarm).
However, it is not clear at this point how efficiently B-PSO manages to avoid the
negative effects of ambiguous rays (i.e. how often intersections of the second and third
type are selected). If the selection process does not properly filter out such unhealthy
intersections, it could lead to personal best locations that are located in the opposite
direction from the source, reducing the overall performance of the algorithm.

7.2.3 Cross-Correlation-Bearing Particle Swarm Optimisation (XB-
PSO)

Each of the weaknesses of A-PSO outlined in Section 7.1 are improved by either X-PSO
or B-PSO. Nevertheless, both algorithms have their own weaknesses. Therefore, in an
attempt to create an algorithm that has none of the weaknesses of B-PSO and X-PSO,
both algorithms are combined to form a Cross-Correlation-Bearing PSO (XB-PSO)
approach.

In XB-PSO both correlation coefficient ρ and directional ray information is communi-
cated between robots. As outlined in Section 7.2.1, the source is likely closer to the
robot with the highest correlation coefficient ρ. Therefore, among all intersections pro-
duced by the directional rays of robots i and j, each intersection pij can be validated
using either of the two following conditions

1) |xi[k]− pij [k]| < |xj [k]− pij [k]| and ρi[k] > ρj [k]

2) |xi[k]− pij [k]| > |xj [k]− pij [k]| and ρi[k] < ρj [k]
, (7.12)

where ρi[k] and ρj [k] are the non-normalised correlation coefficients of robots i and j
respectively at timestep k. Intersections that do not satisfy either of these conditions
are invalidated and cannot be selected as ps

i. From here, the process is identical to
B-PSO, where the selected intersection ps

i is assigned a fitness using Equation (7.10).
This fitness is compared to the fitness f̂ i of the personal best location and if it is higher,
the selected intersection becomes the new personal best location.

Furthermore, in XB-PSO, the selection of the global best location is performed in the
same manner as B-PSO. The addition of the validation conditions of (7.12) aims to
address the problem of B-PSO, of considering ray intersections that are in the opposite
direction from the source, in an attempt to study how they affect the performance of
B-PSO. The overall personal and global best location selection process is described by
Algorithm 6.

157

Algorithm 6: Personal and global best location selection for XB-PSO
1 foreach robot do
2 robot.CalculateCorrelation(); // As in Algorithm 3
3 end
4 foreach robot do // Select personal best locations
5 other ← robot.SelectRandomOtherRobot(); // Uniformly random selection
6 p[] = [];// Initialise empty arrays of intersections
7 // There can be up to 4 intersections
8 foreach ray ∈ robot.r do
9 foreach otherRay ∈ other.r do

10 p[].append(CalculateRayIntersections(robot.x, ray, other.x, otherRay));
11 end
12 end
13 d[] = |robot.x− p[]|; // Distances from robot to intersections
14 other_d[] = |other.x− p[]|; // Dist from other robot to intersections

15 for q ← length(p[]) to 0 do // Remove non-valid intersections
16 if robot.ρ > other.ρ and d[q] > other_d[q] then p[].remove(q);
17 else if robot.ρ < other.ρ and d[q] < other_d[q] then p[].remove(q);
18 end

19 d[] = |robot.x− p[]|; // Distances from robot to intersections
20 ps ← p[argmax(d[])]; // Select furthest intersection
21 fB ← 1/max(d[]); // Assign fitness to selected intersection
22 robot.UpdatePersonalBestLocation(fB,ps); // As in Algorithm 3
23 end

24 // Calculate global best location
25 yg ← [0, 0]; // Reset global best location
26 foreach robot do // Sum personal best locations
27 yg ← yg+robot.y;
28 end
29 yg ← yg/M ; // Calculate centroid

158

It is clear that B-PSO and XB-PSO operate in a different way than traditional PSO.
The capability of these algorithm to assign fitness to locations far away from the swarm
can be beneficial in various ways. To identify this type of PSO variants from other
more traditional variants, they will be referred to as triangulation PSO algorithms for
the rest of this thesis.

7.3 Simulated Environment

In order to evaluate the performance of the proposed algorithms a set of simulations
were performed using MATLAB. Due to the rise of autonomous marine systems, there
has been recently an increasing interest in methods for the detection and localisation
of unmanned underwater vehicles (UUV), primarily for defence purposes (Railey 2018,
Railey et al. 2020, 2021, Open Cooperation for European mAritime awareNess 2021).
Drawing from these scenarios, in these simulations a swarm of marine unmanned surface
vehicles (USV) attempts to converge to an UUV that emits a continuous acoustic signal
in moderate sea state. To approximate such a scenario, several parameter values were
selected as shown in Table 7.1, based on a realistic scenario.

The simulated world is a 2D infinite plane. For simplicity, the presented simulations
assume a stationary source and there is assumed to be no friction and no body inertia.
Additionally, the signals are assumed to propagate at a constant speed . Each simulation
was repeated 100 times, using Monte-Carlo sampling of the initial positions of robots,
to obtain clear trends for the behaviour of each algorithm. The algorithms are assessed
in terms of maximum range and rate of convergence towards the source.

7.3.1 Robots

The simulated USVs are equipped with two hydrophones located at the bow and stern of
each USV. The swarm is initialised at random positions inside a circular area of radius
d0 around the origin, representing the area of initial deployment (e.g. a stationary ship).
The velocity of each robot is directly controlled by the PSO controller defined in (3.11),
allowing accurate control of the motion of the swarm and the maximum velocity V of the
robots using (3.29). The robots are not forced to maintain a minimum separation from
each other and collisions are ignored to test the algorithms in the extreme condition
where the swarm spans over small area. In this way, it can be studied how the proposed
algorithms address Weakness 2 of A-PSO, (i.e. since the exploration capabilities of
A-PSO are limited by the spatial span of the swarm, it is desired to study whether the
proposed algorithms can overcome this limitation).

159

Table 7.1: Selected parameter values to approximate a marine source localisation sce-
nario

Parameter Value Justification
Timestep (∆t) 1 s A typical high-level controller

timestep size for robotic applica-
tions. Marine applications may
also use larger values of ∆t depend-
ing on the method of communica-
tion used (e.g. satellite communi-
cation).

Noise PSD (PSDn) 60 dB re 1µPa2/Hz This is equivalent to a moderate
sea state (Xerandy et al. 2015).

Source PSD (PSDs) 120 dB re 1µPa2/Hz
at 1m

This is equivalent to the noise
generated by a typical unmanned
underwater vehicle (UUV) (Geb-
bie et al. 2012, Zimmerman et al.
2005).

Spatial step (∆x) 1000 m Calculated using (7.17).
Source centre fre-
quency (fc)

1 kHz The central frequency of a typi-
cal unmanned underwater vehicle
(UUV) (Gebbie et al. 2012).

Maximum velocity
(V)

2 m/s Typical unmanned surface vehicle
(USV) maximum speed range is
3 kn to 10 kn (Verfuss et al. 2019)).

Signal propagation
speed (c)

1500 m/s Speed of sound in water.

No. Robots (M) 10 A typical swarm size used in ma-
rine robotics (Griffiths Sànchez
et al. 2018).

Starting radius (d0)
and convergence ra-
dius (dc)

50 m Resulting in large enough area to
accommodate 10 robots of typical
USV size.

Forgetting function
scaling parameter (a)

1 Resulting in frequent updating of
personal best locations.

160

7.3.2 Source

A single source, representing a UUV to be localised, is positioned at a distance ds
from the origin. Convergence to the source is considered to be achieved when the
centre of mass of the swarm (CoM) reaches a distance dc from the source at time
tc. The source is assumed to emit a continuous acoustic signal of constant power
spectral density (PSDs in units of dB re 1µPa2/Hz at 1m) over a bandwidth B. This
can be associated to the noise generated by a UUV motor by considering a narrow
bandwidth B around the peak at frequency fc of the power spectral density of the
motor signal. For typical electrically propelled UUVs the power spectral density peaks
at around 120 dB re 1µPa2/Hz, occurring at frequency fc from several hundred Hz to a
few kHz (Gebbie et al. 2012, Zimmerman et al. 2005, Holmes et al. 2010). The simulated
signal is therefore modelled using a filtered Gaussian process with central frequency fc,
bandwidth B and Q-factor given by

Q =
fc
B

(7.13)

The source level intensity Is of the simulated signal is given by

Is = 10
PSDs

10 × 10−12 ×B (7.14)

For the sake of generalisation, only the Q-factor of the signals will be provided in the
results of the next section. This can allow the application of these results to different
source localisation scenarios.

The signal is assumed to attenuate depending on the distance travelled, such that the
intensity of the signal at distance r is given by

I =
Is
r2
. (7.15)

Uncorrelated noise is added to the signals, modelled as filtered Additive White Gaussian
Noise (AWGN) of constant power spectral density over the bandwidth B (PSDn in
units of dB re 1µPa2/Hz) and average intensity N , approximating the ambient noise
of a moderate sea state (Xerandy et al. 2015). The intensity N is related to PSDn in
the same way as Is is related to PSDs as described by (7.14). Therefore, the SNR at
distance r from the source is given by

SNR = 10log10

(
Is
N

)
− 10log10(r2) (7.16)

161

The SNR of the signals at the origin (i.e. the location of the initial deployment of
the swarm), can be found using r = ds in (7.16) and is described using SNR0. By
varying the value of ds, it is possible to vary the SNR experienced by the swarm at the
beginning of the simulation (SNR0). In this way, convergence of an algorithm from a
larger distance ds also implies more robustness to lower SNRs. Simulations were run
for different values of ds to test the ability of the algorithms to converge at different
SNR0 values.

7.3.3 Normalised Units and Parameter Values

In order to generalise the simulation results to a range of scenarios, normalised units of
measurement are introduced. Normalised time is described in timesteps, such that each
timestep has size ∆t seconds as defined in Section 7.1. Normalised distance is given
relative to a reference distance R, defined as the distance in metres at which I = N

(i.e. at r = R m, SNR = 0 dB). Therefore, R is given by

R =

√
Is
N

(7.17)

Varying ∆t allows the adaptation of the following results to scenarios with different
controller loop delays (i.e. different communication rate between robots), while varying
R enables the consideration of different signal intensities and noise levels.

7.4 Results

Two sets of simulations were performed to allow detailed comparison of the algorithms.
In the first set, simulations were run to identify the ability of the algorithms to converge
for different SNR0 values. In the following simulation results, Q = 1.5 (i.e. one-octave
band bandwidth). Also, the hydrophone separation for each robot is D = λc/2 and the
time-bandwidth product of the cross-correlated signals is TBP = 100. The behaviour
of the algorithms for different values of Q and D will be discussed further in the third
set of simulations, in Section 7.4.1.

Figure 7-2 shows the median and 90% percentile ranges of the distance from the source
of the CoM of the swarms as functions of time. Results are presented for each PSO
variant at different SNR0 values. The results show that A-PSO and X-PSO are only
able to converge to the source when SNR0 = 10 dB, where A-PSO takes on average
4500 timesteps to reach convergence, while X-PSO takes on average 3400 timesteps.
Therefore, X-PSO improves Weakness 1 of A-PSO. In contrast, both B-PSO and XB-

162

0 1000 2000 3000 4000 5000 6000

Timesteps

0

0.5

1

1.5

2

S
p

a
ti
a

l-
S

te
p

s
 t

o
 T

a
rg

e
t

(a) A-PSO

0 1000 2000 3000 4000 5000 6000

Timesteps

0

0.5

1

1.5

2

S
p

a
ti
a

l-
S

te
p

s
 t

o
 T

a
rg

e
t

(b) X-PSO

0 1000 2000 3000 4000 5000 6000

Timesteps

0

0.5

1

1.5

2

S
p

a
ti
a

l-
S

te
p

s
 t

o
 T

a
rg

e
t

(c) B-PSO

0 1000 2000 3000 4000 5000 6000

Timesteps

0

0.5

1

1.5

2

S
p

a
ti
a

l-
S

te
p

s
 t

o
 T

a
rg

e
t

(d) XB-PSO

-5dB -3dB 0dB 4dB 10dB

SNR0

Figure 7-2: Distances of CoM to source at different initial SNR values (SNR0) for the
tested algorithms. The solid lines represent the median distance from source over 100
simulations and the transparent areas the 90% percentile range.

163

-0.04

0

0.04 0

0.1

0.2

0.3

6000

3000

0

Spatial-ste
ps X

S
p
atial-step

s Y

T
im

es
te

p
s

(a) A-PSO

-0.04

0

0.04 0

0.1

0.2

0.3

6000

3000

0

Spatial-ste
ps X

S
p
atial-step

s Y

T
im

es
te

p
s

(b) X-PSO

-0.04

0

0.04 0

0.1

0.2

0.3

6000

3000

0

S
p
atial-step

s Y
Spatial-ste

ps X

T
im

es
te

p
s

(c) B-PSO

-0.04

0

0.04 0

0.1

0.2

0.3

6000

3000

0

Spatial-ste
ps X

S
p
atial-step

s Y

T
im

es
te

p
s

(d) XB-PSO

Number of CoM

Figure 7-3: Graphical representation of the routes followed by the CoM of 100 swarms
for each method. The image at the bottom plane of each graph shows contours of the
number of swarms (CoM) that passed from different locations. The red, green and blue
lines represent the routes followed by three randomly selected swarms with respect to
time. The corresponding dashed lines represent the 2D projections of these routes on
the Timesteps vs Spatial-steps vertical plane.

164

PSO are able to begin converging for all tested SNR0 values, while exhibiting very
similar convergence behaviours. B-PSO takes on average 1200, 2700 and 4400 timesteps
to achieve convergence for SNR0 = 10, 4 and 0 dB respectively. On the other hand,
XB-PSO takes on average 1100, 2600 and 4400 timesteps to achieve convergence for the
same SNR0 values.

Since both B-PSO and XB-PSO employ personal best locations that are far away from
the swarm, it is concluded that this results in a different behaviour that allows the
algorithms to converge from further away. The next subsection will study how the
spatial behaviour varies for each algorithm in an attempt to explain why B-PSO and
XB-PSO have increased maximum range compared to the other two algorithms.

To better understand the features observed in Figure 7-2, the spatial routes followed by
the simulated swarms are presented and analysed. Since all of the algorithms converge
at SNR0 = 10 dB, only this case is studied in these results, presented in Figure 7-3.
The results show that the two different ways of selecting personal best locations (near
vs far away from the swarm), result in significantly different behaviours. A-PSO and
X-PSO, which both select personal best locations near the swarm, appear to move in
zig-zagging patterns, as shown by the behaviours of the randomly selected individual
swarms. This can be interpreted as the algorithms finding it difficult to find their way
to the source, (see Weakness 2 of A-PSO). On the other hand, B-PSO and XB-PSO,
which can select personal best locations that are far away from the swarm result in
fairly straight routes towards the source.

The contours of the graphs on the spatial axes (bottom of graphs) show similar results.
A-PSO and X-PSO appear to spread more in the area and high probabilities (> 50%)
that a swarm will pass from a certain location only appear around 0.25 spatial-steps.
On the other hand, B-PSO and XB-PSO exhibit less spreading and high probabilities
that a swarm will pass from a certain location begin to appear early, at 0.1 spatial-steps.
These results explain the results of Figure 7-2. At 10 dB SNR0, B-PSO and XB-PSO
are much less affected by noise than A-PSO and X-PSO (i.e. their behaviour is more
predictable and they appear to find it easier to move towards the source). Therefore,
it makes sense that they appear to have such increased range in Figure 7-2 and it can
be concluded that these algorithms address Weakness 2 of A-PSO.

7.4.1 Generalised Results

The results shown so far are presented in normalised time and distance in order to allow
adjustment to different scenarios. However, the value of Q changes for different sources

165

(e.g. supertankers typically have much lower fc than UUVs (Hildebrand 2005)) making
it difficult to adjust the results. Additionally, the sensor separation D can also affect the
performance of the algorithms. Lastly, changing the maximum velocity U of the robots
can affected the convergence capabilities of the swarm, since robots will overshoot upon
reaching their personal or global best location, resulting in better exploration of new
locations. The rest of this section will present the results of simulations that were
carried out using different values of Q, sensor separation D and maximum velocity U ,
for SNR0 = 10 dB. In this way, it is possible to predict how the results of Figure 7-2
and 7-3 can be altered to fit other scenarios.

Figure 7-4 shows the normalised median time to convergence over 100 repeats (to obtain
an approximation of the behaviour of an average swarm), for all algorithms, for different
values of Q and D, where D is normalised using the wavelength of the signal λc. The
results show that the performance of B-PSO and XB-PSO decreases as Q increases. In
contrast, A-PSO and X-PSO are not affected by Q changes. This is an expected result
because as Q increases, the signal approaches a sinusoid (narrowband signal). This can
result in ambiguities in the lag output of the cross-correlation function, as discussed in
Section 7.2. Since only B-PSO and XB-PSO make use of the lag output, they are the
only ones affected by this. Despite the decrease in performance, XB-PSO still appears
to converge slightly faster than B-PSO for all Q values.

Furthermore, X-PSO is also unaffected by changes to the sensor separation D (A-
PSO is also unaffected but this is because it only uses a single hydrophone). B-PSO
and XB-PSO on the other hand exhibit poorer performance as the sensor separation
approaches λ for large values of Q. This is expected because as the sensor separation
increases beyond λ/2, it results in ambiguities in the lag calculation. Regardless, as the
separation approaches 10λ, the convergence time is reduced again. This is interpreted to
be the result of swarm intelligence. Even though more ambiguities are introduced, they
are more evenly distributed around the robot. Therefore, since the robots constantly
change orientation, the errors caused by ambiguities for some robots are averaged out by
the correct predictions of others. Furthermore, it should be noted that the algorithms
are unaffected by changes in sensor separation for small values of Q (i.e. broadband
signals).

Figure 7-5 shows the normalised median time to convergence over 100 repeats (as in
Figure 7-4) for all algorithms, for different values of U and Q. The maximum value
of U used is 12 m/s, corresponding to the maximum speed that a typical USV can
achieve (Verfuss et al. 2019). In these simulations the sensor separation is D/λc as in
the simulations of Figure 7-2. Both A-PSO and X-PSO appear to perform better as

166

10
-1

10
0

10
1

10
0

10
1

Q-Factor

0

1000

2000

3000

4000

5000

6000

T
im
e
s
te
p
s

(a) A-PSO

10
-1

10
0

10
1

10
0

10
1

Q-Factor

0

1000

2000

3000

4000

5000

6000

T
im
e
s
te
p
s

(b) X-PSO

10
-1

10
0

10
1

10
0

10
1

Q-Factor

0

1000

2000

3000

4000

5000

6000

T
im
e
s
te
p
s

(c) B-PSO

10
-1

10
0

10
1

10
0

10
1

Q-Factor

0

1000

2000

3000

4000

5000

6000
T
im
e
s
te
p
s

(d) XB-PSO

Figure 7-4: Normalised time needed for the CoM of a swarm to reach convergence
(distance dc from the source) for each algorithm, for different values of Q and D/λc .
Each point represents the median performance over 100 swarms. The red lines represent
the locations where the Q-factor is 1 and 10. The vertical blue solid line represents the
simulations of Figure 7-2. The vertical black dashed and cyan dashed-dotted lines
represent the Q-factors of the sound generated by two electrically-propelled UUVs,
REMUS-100 and Odyssey IIb respectively (Gebbie et al. 2012, Zimmerman et al. 2005,
Holmes et al. 2010). Note that although a D/λc axis is included for A-PSO, it does not
affect the position of the hydrophone, since only one is used for that algorithm, located
in the middle of the robot.

U increases. These results are intuitive, since the time required to achieve convergence
seems to be reduced in an inversely proportional manner to the increase of U , implying
that the algorithms exhibit similar but faster behaviour to Figure 7-2 (i.e. the time to
convergence is proportional to ds

U). In agreement with Figure 7-4, both performances
of A-PSO and X-PSO are independent of the value of Q. B-PSO and XB-PSO perform
worse asQ increases, as suggested by Figure 7-4 and better as U increases. Furthermore,

167

0

1000

10
1

0.002

2000

0.004

3000

0.006

4000

0.008

5000

10
00.01

6000

0.012

(a) A-PSO

0

1000

10
1

0.002

2000

0.004

3000

0.006

4000

0.008

5000

10
00.01

6000

0.012

(b) X-PSO

0

1000

10
1

0.002

2000

0.004

3000

0.006

4000

0.008

5000

10
00.01

6000

0.012

(c) B-PSO

0

1000

10
1

0.002

2000

0.004

3000

0.006

4000

0.008

5000

10
00.01

6000

0.012

(d) XB-PSO

Figure 7-5: Normalised time needed for the CoM of a swarm to reach convergence
(distance dc from the source) for each algorithm, for different values of U and Q. Each
point represents the median performance over 100 swarms. The red lines represent
the locations where the Q-factor is 1 and 10. The vertical blue solid line represents
the simulations of Figure 7-2. The vertical black dashed and cyan dashed-dotted lines
represent the Q-factors of the sound generated by two electrically-propelled UUVs,
REMUS-100 and Odyssey IIb respectively (Gebbie et al. 2012, Zimmerman et al. 2005,
Holmes et al. 2010).

like A-PSO and X-PSO, their time to convergence also appears to reduce inversely
proportionally to the increase of U . That said, a large difference in the performance
of the two algorithms can be seen in the area where large values of both U and Q are
used. Here, B-PSO is unable to achieve convergence no matter how much U increases.
In contrast, XB-PSO’s performance becomes better as U increases. This is the largest
difference in performance between the two algorithms that is observed throughout all
of the results of this section (i.e. in all other figures, XB-PSO performs better than
B-PSO but the differences are small). This difference suggests that XB-PSO may offer

168

the capability to invalidate intersections that occur from ambiguities caused by high Q
(i.e. as seen in Figure 6-4b). This is an interesting capability that could be explored in
the future to improve XB-PSO further.

It can be therefore concluded from the presented results of this section that for most
applications XB-PSO offers a good choice of control algorithm for robotic swarms,
especially when the sensor separation can be selected or broadband signals are used.
On the other hand, for specific applications where narrowband signals are used and
the sensor separation is limited, X-PSO may provide a more robust alternative. As
examples, Figures 7-4 and 7-5 include the cases of REMUS-100 and Odyssey IIb, two
typical, electrically-propelled UUVs (vertical black dashed and cyan dashed-dotted lines
respectively). It can be seen that the fast convergence and low SNR requirements of
XB-PSO can make it an ideal choice for the detection of relatively silent vehicles that
emit such low Q-factor signals, using robotic swarms.

7.5 Conclusions

This chapter discussed different ways that PSO can be used to identify the location of a
source, by assigning fitness to locations using the signals emitted by the source. A-PSO,
which can be already found in olfaction applications, uses the average intensity of the
received signal to assign fitness to locations. In the presence of noise, this approach
limits the maximum range and convergence speed of the algorithm as well as its explo-
ration capabilities. This chapter introduced three new PSO variants (X-PSO, B-PSO
and XB-PSO) that make use of correlation information that exist in acoustic wavefields,
to improve these weaknesses of A-PSO. The results presented show that X-PSO is less
sensitive to noise than A-PSO, resulting in faster convergence. B-PSO and XB-PSO are
modified versions of PSO that make use of personal best locations far away from the
swarm, greatly increasing their maximum range by more than 5 times and convergence
speed by more than 4 times compared to A-PSO. XB-PSO is considered to be the best
performing algorithm proposed in this chapter, for the presented application of acoustic
source localisation.

169

References

Blackwell, T. (2007), Particle Swarm Optimization in Dynamic Environments, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 29–49.
URL: https://doi.org/10.1007/978-3-540-49774-5_2

Carlisle, A. & Dozier, G. (2000), ‘Adapting Particle Swarm Optimization to Dynamic
Environments’, Proc of Int Conf on Artificial Intelligence .

Feng, Q., Zhang, C., Lu, J., Cai, H., Chen, Z., Yang, Y., Li, F. & Li, X. (2019), ‘Source
localization in dynamic indoor environments with natural ventilation: An experi-
mental study of a particle swarm optimization-based multi-robot olfaction method’,
Building and Environment 161, 106228.
URL: https://www.sciencedirect.com/science/article/pii/S036013231930438X

Fernandez-Marquez, J. L. & Arcos, J. L. (2009), An Evaporation Mechanism for Dy-
namic and Noisy Multimodal Optimization, in ‘Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation’, GECCO ’09, Association for
Computing Machinery, New York, NY, USA, pp. 17–24.
URL: https://doi.org/10.1145/1569901.1569905

Gebbie, J., Siderius, M. & Allen, J. S. r. (2012), ‘Aspect-dependent radiated noise anal-
ysis of an underway autonomous underwater vehicle.’, The Journal of the Acoustical
Society of America 132(5), EL351–7.

Griffiths Sànchez, N. D., Vargas, P. A. & Couceiro, M. S. (2018), A Darwinian Swarm
Robotics Strategy Applied to Underwater Exploration, in ‘2018 IEEE Congress on
Evolutionary Computation (CEC)’, pp. 1–6.

Hildebrand, J. (2005), Impacts of Anthropogenic Sound.

Holmes, J. D., Carey, W. M. & Lynch, J. F. (2010), ‘An overview of unmanned under-
water vehicle noise in the low to mid frequencies bands’, Proceedings of Meetings on
Acoustics 9(1), 65007.
URL: https://asa.scitation.org/doi/abs/10.1121/1.3492795

Marques, L., Nunes, U. & de Almeida, A. T. (2006), ‘Particle swarm-based olfactory
guided search’, Autonomous Robots 20(3), 277–287.
URL: https://doi.org/10.1007/s10514-006-7567-0

Meng, Q.-H., Yang, W.-X., Wang, Y. & Zeng, M. (2011), ‘Collective Odor Source
Estimation and Search in Time-Variant Airflow Environments Using Mobile Robots’,

170

Sensors 11(11), 10415–10443.
URL: https://www.mdpi.com/1424-8220/11/11/10415

Munoz, D., Bouchereau, F., Vargas, C. & Enriquez, R. (2009), CHAPTER 2 - Signal
Parameter Estimation for the Localization Problem, Academic Press, Oxford, pp. 23–
65.
URL: https://www.sciencedirect.com/science/article/pii/B9780123743534000089

Open Cooperation for European mAritime awareNess (2021), ‘Ocean2020 Mediter-
ranean Sea Trials’.
URL: https://ocean2020.eu/mediterranean-sea/about-the-aim/

Railey, K. (2018), ‘Demonstration of passive acoustic detection and tracking of un-
manned underwater vehicles’.

Railey, K., DiBiaso, D. & Schmidt, H. (2020), ‘An acoustic remote sensing method
for high-precision propeller rotation and speed estimation of unmanned underwater
vehicles’, The Journal of the Acoustical Society of America 148(6), 3942–3950.
URL: https://doi.org/10.1121/10.0002954

Railey, K., Dibiaso, D. & Schmidt, H. (2021), ‘Passive acoustic detection and tracking
of an unmanned underwater vehicle from motor noise’, The Journal of the Acoustical
Society of America 149(4), A34–A35.
URL: https://doi.org/10.1121/10.0004444

Schneider, P. J. & Eberly, D. H. (2003), CHAPTER 7 - INTERSECTION IN 2D, in P. J.
SCHNEIDER & D. H. EBERLY, eds, ‘Geometric Tools for Computer Graphics’, The
Morgan Kaufmann Series in Computer Graphics, Morgan Kaufmann, San Francisco,
pp. 241–284.
URL: https://www.sciencedirect.com/science/article/pii/B9781558605947500102

Verfuss, U. K., Aniceto, A. S., Harris, D. V., Gillespie, D., Fielding, S., Jiménez, G.,
Johnston, P., Sinclair, R. R., Sivertsen, A., Solbø, S. A., Storvold, R., Biuw, M. &
Wyatt, R. (2019), ‘A review of unmanned vehicles for the detection and monitoring
of marine fauna’, Marine Pollution Bulletin 140, 17–29.
URL: https://www.sciencedirect.com/science/article/pii/S0025326X19300098

White, K. G. (2001), ‘Forgetting functions’, Animal Learning & Behavior 29(3), 193–
207.
URL: https://doi.org/10.3758/BF03192887

Xerandy, X., Znati, T. & K, L. (2015), ‘Cost-Effective, Cognitive Undersea Network

171

for Timely and Reliable Near-Field Tsunami Warning’, International Journal of Ad-
vanced Computer Science and Applications 6.

Zimmerman, R., D’Spain, G. L. & Chadwell, C. D. (2005), ‘Decreasing the radiated
acoustic and vibration noise of a mid-size AUV’, IEEE Journal of Oceanic Engineer-
ing 30(1), 179–187.

172

Chapter 8

Generalised Triangulation PSO and
Source Entrapment/Escorting

So far this thesis has addressed several problems and limitations that prevented PSO
from being used for the control of robotic swarms, as discussed in Chapter 2. Further-
more, Chapter 7 has addressed several weaknesses that were inherent to PSO due to the
way that personal best locations are selected. This was achieved through the introduc-
tion of triangulation PSO algorithms that enable the swarm to consider personal best
locations that are far away from the swarm. Nevertheless, there remains one limitation
that prevents PSO from being used in source localisation applications. As discussed
in Chapter 2, it is impossible for the swarm to know the location of a source before a
robot has passed directly over it, which in turn prevents the swarm from interacting
with the source (e.g. avoid it or maintain a constant distance from it).

Triangulation PSO algorithms may offer the ability to overcome this limitation. Instead
of "remembering" the fitness/cost of a location, these algorithms estimate the location
of the source using directional ray intersections, allowing the swarm to predict the
source’s location from far away and therefore interact with it. Furthermore, they make
use of a forgetting function (White 2001), that forces them to consider new personal
best locations, as time passes. This enables the robots to discard outdated information
and, in Chapter 7 it was shown how this can be used to deal with a noisy fitness function
(e.g. noise in the hydrophone readings) for a stationary source. Beyond this, the use
of a forgetting function may allow triangulation PSO to also deal with dynamic fitness
functions due to a moving source or mutable environments.

This chapter will explore how a triangulation PSO algorithm can be implemented, for

173

use in non-wavefield sources (i.e. using only signal intensity information). In marine
applications, this can enable the localisation of heat sources, regions of high salinity,
regions of high concentration of phytoplankton etc. Afterwards, the algorithm will be
tested in MATLAB simulations, to confirm that it does indeed permit localisation of a
moving source and interaction with it.

8.1 Generalised Triangulation PSO

The main requirement for the implementation of a triangulation PSO algorithm is for
the robots to be able to calculate directional rays that point towards the source. It is
impossible for a single robot to calculate directional rays on its own using only signal
intensity information. Therefore, to calculate directional rays, the information from
multiple sensors (i.e. multiple robots) needs to be combined. The rest of this section
will show how this can be achieved for a 2D environment. A 3D approach can be also
achieved using the proposed method, with minor modifications.

Since the robots make use of signal intensity information, the signal intensity at location
x at time tk = k ∆t can be calculated using

I(tk,x) =
1

T

∫ 0

−T
|s(tk + t,x)|2dt, (8.1)

where k is the current timestep, s(tk + t,x) is the observed signal at position x and
T is its duration. Note that Equation (8.1) is equivalent to the fitness function used
by A-PSO in Chapter 7. In this case though, the signal intensity will not be used for
the selection of personal best locations and it will instead be used for the calculation of
directional rays.

Each independent signal intensity measurement allows the recovery of one directional
constraint. To uniquely identify the direction to the source in an n-dimensional space,
one needs n+1 independent signal intensity measurements, where the n+1th is typically
used to resolve ambiguities (Zhao & Guibas 2004). Therefore, to calculate a directional
ray in a 2-dimensional environment, the signal intensity information from three different
robots at the same timestep needs to be combined. This can allow the robots to estimate
the gradient ∇I at the CoM of the three robots and use it to produce a directional ray.

Due to possible curvature of I (i.e. curvature of the wavefront of the signal), the
estimation of ∇I is more accurate the closer the robots are to each other. Therefore,
at each timestep, robot i receives the current position and signal intensity of its two
closest robots j and h. The current position and signal intensity of each robot are

174

0 20 40 60 80
Distance (m)

0

20

40

60

80

Distance (m)

F
it
n

e
s
s

In
te

n
si

ty
 (

P
a2

)

(a)

0 20 40 60 80
Distance (m)

0

20

40

60

80

Distance (m)

F
it
n

e
s
s

In
te

n
si

ty
 (

P
a2

)

(b)

Figure 8-1: Schematics that explain the operation of Generalised Triangulation PSO.
The red spheres represent the locations of robots and the green sphere represents the
location of the source. The height of each robot’s position-intensity (black spheres)
represents the average intensity of the sensor readings of the corresponding robot. The
blue triangle is the position-intensity plane and the red arrow represents its normal.
The dashed red arrow is the projection of the normal on the xy-plane and it is collinear
with the source. In (a), the z-component of the normal is negative and therefore its
projection points towards the source. In (b), the z-component of the normal is positive
and therefore its projection points away from the source.

combined into a single vector, called the position-intensity point of each robot, such
that the position-intensity points qi[k], qj [k] and qh[k] of robots i, j and h at timestep
k are given by

qi[k] =

 xi1[k]

xi2[k]

I(xi[k])

 , qj [k] =

 xj1[k]

xj2[k]

I(xj [k])

 and qh[k] =

 xh1 [k]

xh2 [k]

I(xh[k])

 , (8.2)

where xi1[k] and xi2[k] are the first and second components of the position xi[k] of robot
i at timestep k, and I(xi[k]) is the intensity of its sensor readings at xi[k]. For the sake
of visualisation, in Figure 8-1, each black point describes the position-intensity point of
each corresponding robot (red spheres).

The position-intensity points of robots i, j and h can now be combined to identify a
plane, called the position-intensity plane, that passes through all three position-intensity
points. The position-intensity plane is represented in Figure 8-1 by the blue triangle.
Furthermore, let mi,j,h be the midpoint of the positions xi[k], xj [k] and xh[k], given by

mi,j,h[k] =
xi[k] + xj [k] + xh[k]

3
, (8.3)

175

As the distance between the robots becomes smaller, the gradient of the position-
intensity plane approaches ∇I(mi,j,h).

The position-intensity plane can be used to identify the direction to the source. The
normal ni,j,h to the position-intensity plane at timestep k, represented by the red solid
arrow in Figure 8-1, is given by

ni,j,h[k] = (qi[k]− qj [k])× (qi[k]− qh[k]), (8.4)

where × is the cross-product. Theoretically, if I is convex-shaped and if the robots
are close to each other, the projection of ni,j,h on the xy-plane (i.e. the red dashed
arrow on the horizontal plane in Figure 8-1) is parallel to the line formed by mi,j,h and
the source. Therefore, a directional ray can start from mi,j,h and be parallel to the
projection of ni,j,h on the xy-plane.

Finally, depending on the positions of the three robots, the normal ni,j,h can face either
towards the source or away from it. These two cases are individually showcased by
Figure 8-1a and Figure 8-1b respectively. The sign of the z-component of the normal
can be used to identify which is the case. In other words, if ni,j,h points downwards (i.e.
its z-component ni,j,hz < 0), its projection will point towards the source. Therefore, in
this case, the directional ray will start from mi,j,h and it will have the same direction
as the projection of ni,j,h. Conversely, if ni,j,h points upwards (i.e. its z-component
ni,j,hz > 0), its projection will point away from the source. Therefore, in this case,
the directional ray will start from mi,j,h and it will have the opposite direction to the
projection of the normal. Note that if I is a cost function, the direction of the ray, as
defined by the sign of ni,j,hz will be inverted.

Each robot can calculate a single directional ray, using the process described above.
Therefore, the directional rays from two different robots can now be combined to calcu-
late personal best locations for each robot, in a similar manner to B-PSO, as described
in Chapter 7. Note that there is always a chance that robots i, j and h will share the
same directional ray. Therefore, when robot i selects a random robot to compare di-
rectional rays, robots j and h should be excluded from the selection, in order to ensure
that a single intersection can be derived from the comparison of the directional rays.
Furthermore, since each robot only has a single directional ray, when two robots com-
pare directional rays with each other, a maximum of only one intersection can occur
(in contrast to B-PSO and XB-PSO where there could be up to four intersections).
Therefore, that single intersection is directly selected as a candidate new personal best
location. Like B-PSO and XB-PSO, a fitness fB is applied on the selected intersection

176

ps
i based on its distance from robot i such that

fB(xi,ps
i) =

1

|xi − ps
i|
. (8.5)

Note that Equation (8.5) is equivalent to the fitness function used by B-PSO and XB-
PSO in Chapter 7. The selected intersection will replace the personal best location yi of
robot i if its fitness is higher than the fitness f̂ i of yi. Lastly, like B-PSO and XB-PSO,
a forgetting function is applied to the fitness of yi. Therefore, the fitness f̂ i[k] of the
personal best location yi[k] of robot i at timestep k is given by

f̂ i[k] =

{
fB(tk,x

i[k]), for fB(tk,x
i[k]) > f̂ i[k − 1]

f̂ i[k − 1]× e−a, otherwise

}
(8.6)

The global best location is calculated in the same way as in B-PSO and XB-PSO, using
the centroid of the personal best locations of all robots. The overall personal and global
best location selection process is described by Algorithm 7. The resulting algorithm,
is capable of convergence towards the source, in a similar manner to B-PSO and XB-
PSO (see Chapter 7), but it operates using signal intensity measurements (or any other
type of positional information). Despite their similarities, there can be identified two
limitations in the Generalised Triangulation PSO that do not exist in B-PSO and XB-
PSO:

1. The calculation of the directional rays in Generalised Triangulation PSO is more
accurate the closer the robots are to each other. This limitation is less important
when the robots are far away from the source (i.e. far-field, when the wavefront
of the signal is flat), but it becomes more important as the robots get closer to
the source (i.e. near-field). This is because, when close to the source, due to the
curvature of the wavefront of the signal, it becomes more difficult to approximate
the gradient ∇I using the gradient of the position-intensity plane.

2. Additionally, the rule that the calculation of the directional rays is more accurate
the closer the robots are to each other, holds in an idealised scenario where there is
no noise. In the presence of uncorrelated noise in the signal readings, the gradient
of the position-intensity plane may vary randomly. When the robots are directly
above each other (i.e. no collision), the difference in signal intensity is minimised
and therefore the gradient of the position-intensity plane is more affected by the
noise in the signal readings. Therefore, to prevent the robots from getting too
close to each other, Generalised Triangulation PSO needs to be combined with

177

Algorithm 7: Personal and global best location selection for Generalised Triangu-
lation PSO

1 foreach robot do
2 robot.GetIntensityInfo();
3 end
4 foreach robot do
5 [close_robot_1,close_robot_2] ← robot.SelectTwoClosestRobots();
6 robot.m← (robot.x + close_robot_1.x + close_robot_2.x)/3;
7 n← cross((robot.q− close_robot_1.q), (robot.q− close_robot_2.q));
8 robot.r← −sgn(n[3]) ∗ n[1 : 2];
9 // Save closest robots for use in next loop

10 robot.cr1 = close_robot_1; robot.cr2 = close_robot_2;
11 end
12 foreach robot do // Select personal best locations
13 other_robot ← robot.SelectRandomOtherRobotExcept(robot.cr1,robot.cr2);
14 // There can be up to 1 intersection
15 ps ← CalcRayIntersections(robot.m, robot.r, other_robot.m, other_robot.r);
16 robot.UpdatePersonalBestLocation(ps);
17 end
18 // Calculate global best location
19 yg ← [0, 0]; // Reset global best location
20 foreach robot do // Sum personal best locations
21 yg ← yg+robot.y;
22 end
23 yg ← yg/M ; // Calculate centroid

24 Function GetIntensityInfo(self) :
25 self.x← self.GetCurrentPosition();
26 s[]← self.ReadSignal(); // Get hydrophone reading
27 I ← mean(abs(s[])2);
28 self.q = [self.x[1], self.x[2], I]; // Assemble Position-Intensity point
29 end
30 Function UpdatePersonalBestLocation(self, ps) :
31 d = |self.x− ps|; // Distance from robot to intersection
32 fB ← 1/d; // Assign fitness to selected intersection
33 if fB > self.f̂ then // Update personal best location
34 self.f̂ ← fB;
35 self.y← ps;
36 else // Apply forgetting function
37 self.f̂ = self.f̂ × e−a;
38 end
39 end

178

aggregation.

Therefore, in real-world scenarios, there exists a trade-off between how close the robots
need to be to each other, to avoid the negative effects of the curvature of the signal
wavefront, and how far away they have to be from each other to avoid the negative
effects of noise. In the following subsection, the algorithm will be tested in 2D MAT-
LAB simulations to test its convergence capabilities, which will be compared to the
convergence capabilities of XB-PSO.

8.1.1 Comparison with XB-PSO

To test the ability of Generalised Triangulation PSO to converge to a source, simulations
similar these of Chapter 7 were used. The algorithm’s performance is compared to the
convergence performance of XB-PSO. Since Generalised Triangulation PSO requires
the inclusion of aggregation to operate properly, both algorithms were merged with the
non-omnidirectional PSO controller, described in Chapter 5, to include aggregation and
allow equal comparison.

Since the non-omnidirectional PSO controller deals with the control of the motion of the
robots, while triangulation PSO algorithms deal with the calculation of the personal and
global best locations, the two can be easily combined. In other words, in the following
algorithms, the personal best location ỹ and global best location ỹg obtained using
Generalised Triangulation PSO and XB-PSO will be used to form the first and second
accelerating terms of the non-omnidirectional PSO velocity update equation as shown
below

ũ[k+1] = ω◦ũ[k]+c1◦r1◦sgn(ỹ[k])+c2◦r2◦sgn(ỹg[k])−c3◦r3+c4◦r4+c5◦r5, (8.7)

where ũ[k] is the relative velocity vector of the robot at timestep k, ỹ and ỹg are the
positions of the personal best location and global best location relative to the robot and

c1 =

[
0

c1

]
, c2 =

[
0

c2

]
, c3 =

[
0

c3

]
, c4 =

[
0

c4

]
, c5 =

[
c5

0

]

In a similar manner to Chapter 7, the simulations are calibrated to approximate a
marine robotic scenario. Furthermore, the non-omnidirectional PSO controller makes
use of the same parameters (α and β) as in Chapter 5. The selected parameter values
with justifications can be seen in Table 8.1.

The algorithm performance shown in Figure 8-2b, is the result of simulations carried

179

Table 8.1: Selected parameter values to approximate a marine source localisation sce-
nario

Parameter Value Justification
Timestep (∆t) 1 s

Noise PSD (PSDn) 60 dB re 1µPa2/Hz This is equivalent to a moderate
sea state (Xerandy et al. 2015)

Source PSD (PSDs) 120 dB re 1µPa2/Hz
at 1m

This is equivalent to the noise gen-
erated by a typical autonomous un-
derwater vehicle (AUV) (Gebbie
et al. 2012, Zimmerman et al. 2005)

Spatial step (∆x) 1000 m Calculated based on the values of
PSDs and PSDn.

Source centre fre-
quency (fc)

1 kHz The central frequency of a typi-
cal autonomous underwater vehicle
(AUV) (Gebbie et al. 2012)

Maximum velocity
(U)

2 m/s Typical autonomous surface vehi-
cle (ASV) maximum speed range is
3 kn to 10 kn (Verfuss et al. 2019))

Signal propagation
speed

1500 m/s Speed of sound in water.

No. Robots 10 A typical swarm size used in ma-
rine robotics

Starting radius (d0)
and convergence ra-
dius (dc)

50 m Resulting in large enough area to
accommodate 10 robots of typical
ASV size

Forgetting function
scaling parameter (a)

1

Sensor separation (D) 0.75 m Satisfies D ≤ λc/2. This applies
only to XB-PSO. Since Generalised
Triangulation PSO only makes use
of the average intensity of the sig-
nal, it only needs a single sensor at
the middle of the robot

Non-Omnidirectional
PSO parameter α

0.9 Slightly smaller than 1 to prevent
collisions with other robots

Non-Omnidirectional
PSO parameter β

0.9 A large value to ensure accurate
control of the robots

Robot size 2× 1m A typical size for marine robotic
platforms (Naval Technology
2021a,b)

180

0 500 1000 1500 2000

Timesteps

0

0.5

1

1.5

2

S
p

a
ti
a

l-
S

te
p

s
 t

o
 S

o
u

rc
e

(a) XB-PSO

0 500 1000 1500 2000

Timesteps

0

0.5

1

1.5

2

S
p

a
ti
a

l-
S

te
p

s
 t

o
 S

o
u

rc
e

(b) Generalised Triangulation PSO

-5dB -3dB 0dB 4dB 10dB

Figure 8-2: Percentile Distances of CoM to source at different SNR0 for the tested
algorithms. The solid lines represent the median route over 100 simulations, the 50%
transparent areas represent the 50% percentile range and the 90% transparent areas the
90% percentile range.

out for 2000 timesteps (2000 seconds). This amount of simulation time is less than the
simulation time used for the simulations of Chapter 7 (6000 timesteps) - this is because
in these simulations the swarms make use of collision avoidance which improves the
convergence performance of all PSO algorithms by keeping the robots far away from
each other (i.e. it improves the Diversity Loss Problem found in all PSO algorithms),
thereby needing less time to converge to the source. Each algorithm was run for 100
repetitions (the amount of repetitions needed to result in clear behavioural trends for
both algorithms) and the results of Figure 8-2b show the median distance from the
source, as well as the 50% and 90% percentile ranges at each timestep. The results
show that Generalised Triangulation PSO is indeed capable of converging to the source.
That said, in 2000 timesteps, it only manages to converge at 10 dB and 6 dB SNR0,
in contrast to XB-PSO which is capable of fast convergence at all SNR0 values. This
shows that Generalised Triangulation PSO suffers from the same range limitations as
A-PSO; a result of using the intensity of the signal instead of higher-order statistics like
B-PSO and XB-PSO. Therefore, it can be concluded that B-PSO and XB-PSO should
still be used when it comes to wavefield sources and Generalised Triangulation PSO
should only be used for the localisation of non-wavefield sources.

181

8.2 Source Entrapment/Escorting

With the definition of Generalised Triangulation PSO and the understanding of its
limitations, it is now possible to study whether it is capable of allowing interaction with
the source and localisation of a moving source.

In contrast to PSO, a robot in triangulation PSO does not remember the fitness/cost
of its previous locations. Instead, the intersections of directional rays (and therefore
the personal best locations) can be thought of as estimations of the location of the
source based on information collected by the whole swarm and the best estimation is
given by the global best location yg. Therefore, it may be possible for the swarm to
interact with the source (e.g. avoid it), by interacting with the global best location.
Furthermore, the algorithm makes use of a forgetting function that forces the robots to
update their personal best locations as time passes. Therefore, if the swarm estimates
correctly the location of the source and then the source moves, the swarm will estimate
the new location of the source in the following timesteps, thereby keeping track of the
source’s movements.

Tasks that require such interaction with the source are the tasks of source entrap-
ment/escorting, which are currently gaining a lot of attention in the research commu-
nity (Antonelli et al. 2007, Kawakami & Namerikawa 2009, Zhang et al. 2018, 2020,
2021). In these tasks, the swarm is required to place itself around the source, each for
different purposes (e.g. to prevent the source from escaping, to protect it from external
intruders etc.). The main disadvantage of these methods is that they either assume
that the swarm has prior knowledge of the location of the source, or they employ a
very simplistic way of localising it. The inability of PSO (and other similar source
localisation algorithms) to know the location of the source without passing on top of it
has been the main reason why it has not been possible so far to merge collective source
localisation and source entrapment/escorting algorithms.

In the next sections, it will be argued that this gap in the literature may be bridged us-
ing triangulation PSO. In their simplest form, source entrapment/escorting algorithms
require the swarm to maintain a constant distance r from the source and to follow its
movements. This can be simply achieved, by treating the source (or in the case of
triangulation PSO, the global best location yg) as a large obstacle with radius r and
using simple collision avoidance to maintain a constant distance from it. As long as this
can be achieved, more complicated methodologies of source entrapment/escorting can
also be used. To demonstrate these capabilities, further 2D simulations were performed
in MATLAB. These will be discussed in the next sub-section.

182

8.2.1 Simulations

As in previous simulations, the source is assumed to emit a signal of constant power
spectral density (PSDs). The robots of the swarm make use of the average intensity of
the received signal from a single sensor and Generalised Triangulation PSO is used to
update the personal and global best locations of the swarm. The swarm’s movement
is once again controlled by the non-omnidirectional PSO controller, as described by
Equation (8.7).

The following simulations will aim to demonstrate the capability of Generalised Trian-
gulation PSO to interact with the source and study how this capability can be affected
by several primary variables. The simulations are initially run for a stationary source
and the swarm is tasked to maintain a distance r around it, by treating the global best
location ỹg as an obstacle with radius r. Simulations are run for different values of r
to study how the performance of the algorithm changes as the robots get closer to the
source (i.e. in the near-field, where there exists larger curvature in the wavefront of the
signal).

Furthermore, different simulations were performed for different numbers of robots in
the swarm. Increasing the number of robots, increases the density of robots in a given
area when the swarm is spread around the source, which can reduce the negative effects
of wavefront curvature in the calculation of directional rays. Figure 8-3a, shows a single
instance of the simulations where the source is stationary. The robots are spread around
the source. The red ring represents the distance r around the source and whenever the
robots get close to the ring, they "bounce off" of it.

Furthermore, simulations were performed for a moving source. In these simulations,
the ability of the swarm to maintain a close distance from the source is tested. The
velocity of the source is normalised with respect to the maximum velocity of the robots
using

vn =
vs
vmax

(8.8)

where vn is the normalised velocity of the source, and vs and vmax are the actual
velocity of the source and the maximum velocity of the robots in units of m/s. Different
simulations were performed for different values of vn and r. Moreover, simulations were
also performed for different values of signal intensities at source level to examine whether
a change in the SNR of the received signals can affect the performance of the swarm.
Figure 8-3b, shows a single instance of the simulations where the source is moving
towards the right. The robots are shown to chase after the source, but they never get
closer to it than distance r. Instead, they either slow down or they move towards the

183

(a) Stationary source (b) Source moving towards the right

Figure 8-3: Instances of the simulations carried out for the task of source entrap-
ment/escorting. In the simulations, a swarm of robots (white rectangles) is tasked to
maintain a minimum distance r, represented by the red ring, from the source (red tar-
get). In (a), the source is stationary while in (b), the source is moving towards the
right with normalised velocity vn = 0.25. In both simulations, the number of robots
in the swarm is 40 and the power spectral density of the emitted signal at source level
is 120 dB re 1µPa2/Hz. The blue lines represent the path of each robot in the last 15
timesteps.

sides. The following sub-section presents the results of both the stationary source and
moving source simulations.

8.2.2 Results

The following simulations were designed to replicate a marine robotics scenario. There-
fore, the parameter values used will be identical to the ones shown in Table 8.1.

Stationary Source

Figure 8-4 shows the results obtained from simulations where the source is stationary.
The number of robots N that form the swarm is 10 and 40 for different simulations
(here N = 40 was selected because it clearly demonstrates significant differences in
performance when compared to N = 10). The distance r that the swarm needs to
maintain from the source varies (25 m, 50 m and 75 m), represented by the red ring.
Each sub-figure shows the probability that a robot will occupy different regions of size
5 × 5 m at any given point, indicated by the shaded areas. The black outline around
the shaded areas indicates the locations where there exists a 0.1% probability that a

184

(a) r = 25m, N = 10 (b) r = 50m, N = 10 (c) r = 75m, N = 10

P
ro
b
ab
ility

(d) r = 25m, N = 40 (e) r = 50m, N = 40 (f) r = 75m, N = 40

P
ro
b
ab
ility

Figure 8-4: Probabilistic distribution of the swarm relative to a stationary source (red
dot). The source emits a signal with constant power spectral density PSDs that the
robots can detect. The swarm consists of N robots that are required to maintain
a specific distance r (red ring) from the source. The shaded regions represent the
probability that a robot will be found in a specific location at any given point. The
black outline represents the locations where, there exists a 0.1% probability that a robot
will be found there at any point.

185

robot will be found in that area at any given point. This outline shows how individual
robots may behave differently than the rest of the swarm and it is used to identify
how often a robot may get closer to the source than the desired distance r. Each sub-
figure is the result of 20 simulations, which was the minimum number of simulations
required to obtain statistical significance for the behaviour of the swarms. The resulting
behavioural trends will be discussed below.

From the figures, it can be seen that when the number of robots in the swarm is
small (N = 10), the swarm finds it hard to maintain the desired distance from the
source. This can be seen by the 0.1% probability outline, which shows that robots can
occasionally enter the restricted area indicated by the red ring. This is because the
robots are spread around the source and therefore they are far away from each other.
This results in incorrect calculation of the directional rays of the robots, which in turn
can result in a noisy global best location ỹg.

In contrast, a swarm of N = 40 robots is shown to be able to maintain well its distance
from the source when r = 50 m and r = 75 m. Nevertheless, at r = 25 m, the swarm
appears to not be able to maintain its distance properly. Since this happens only when
the swarm is allowed to get close to the source, it is understood to be a result of
Generalised Triangulation PSO being affected by the curvature of the wavefront of the
signal (which is more intense the closer to the source).

Therefore, the ability of the algorithm to maintain its distance from the source at all
times is affected by the number of robots in the swarm and the desired distance that it
needs to maintain. Note that other triangulation PSO algorithms that do not require
the collaboration of robots for the calculation of directional rays (e.g. B-PSO and
XB-PSO) should not be affected by changes to these parameters.

Moving Source

Figure 8-5 shows the results obtained from simulations where the source is moving.
The number of robots N that form the swarm is 40 for all simulations and the distance
r that the swarm needs to maintain from the source is 25 m and 50 m for different
simulations. As in Figure 8-4, each sub-figure is the result of 20 simulations and it shows
the probability that a robot will occupy a region of 5 × 5 m, indicated by the shaded
areas. The black outline around the shaded areas indicates the locations where there
exists a 1% probability that a robot will be found in that area at any given point. The
reason why the outline in Figure 8-5 represents a different probability than in Figure 8-
4 (1% instead of 0.1%), is that the simulations are initialised with the swarm spread

186

(a) vn = 0.1, r = 25m, PSDs = 120dB (b) vn = 0.25, r = 25m, PSDs = 120dB

P
ro
b
ab
ility

(c) vn = 0.1, r = 50m, PSDs = 120dB (d) vn = 0.25, r = 50m, PSDs = 120dB

P
ro
b
ab
ility

(e) vn = 0.1, r = 50m, PSDs = 180dB (f) vn = 0.25, r = 50m, PSDs = 180dB

P
ro
b
ab
ility

Figure 8-5: Probabilistic distribution of the swarm relative to a source (red dot). The
source is moving with normalised velocity vn towards the right and it emits a signal
with constant power spectral density PSDs that the robots can detect. The robots are
required to maintain a specific distance r (red ring) from the source. The shaded regions
represent the probability that a robot will be found in a specific location at any given
point. The black outline represents the locations where, there exists a 1% probability
that a robot will be found there.

187

around the source. If a 0.1% probability was used, the swarms would appear to be able
to move in front of the source which would be misleading. Furthermore, the purpose
of these simulations is not to identify whether individual robots may occasionally enter
the restricted area of the red ring but to show the general capability of the swarm to
stay close to a moving source.

From the results it can be seen that when the normalised velocity of the source with
respect to the maximum velocity of the robots is vn = 0.1 (Figures 8-5a, 8-5c and 8-5e),
the swarm is always capable of staying close and surrounding the source. This is the
case, irrespective of the value of r or the SNR experienced by the robots. In contrast,
when the normalised velocity of the source is set to 0.25, the swarm is shown to lag
behind the source and it is not capable of encircling it any more.

The most interesting result is the case of Figure 8-5d, where r = 50 m and PSDs =

120 dB re 1µPa2/Hz. In this case, the swarm is shown to lag significantly behind the
source. Individual simulations showed that as the swarm begins to lag behind the
source, the lower SNR experienced by the robots causes the global best location ỹg

to lag as well. This in turn pushes the swarm backwards, since the swarm avoids the
global best location. Thus the swarm lags behind even more, reducing the SNR further
and therefore causing a chain reaction that leads to the swarm losing contact with
the source. Figures 8-5b and 8-5f show that the effect of this chain reaction can be
eliminated by reducing the required distance that the swarm needs to maintain from
the global best location or by increasing the signal intensity and therefore the SNR.

Generalised Triangulation PSO’s ability to follow and surround a source, depends largely
on the distance that the robots need to maintain from the source, the velocity of the
source and the SNR of the received signal. Beyond these dependencies, it is highly
probable that the dynamics of the non-omnidirectional PSO controller may introduce
additional complexity to the system, making it difficult for the robots to travel towards
the source at maximum speed. Future studies of this task could be performed with
other types of controllers to study how the controller’s dynamics affect the performance
of the swarm. Furthermore, future studies could also include tasks like flocking and
velocity consensus. Such tasks are meant to allow the swarm to travel collectively
towards a specific direction, making it easier for it to build up speed and catch up with
the source. It should finally be noted that the negative performance of Figure 8-5d
could be minimised by using B-PSO or XB-PSO instead of Generalised Triangulation
PSO, since they have much larger range and therefore are more robust to lower SNRs.

188

8.3 Conclusions

Triangulation PSO algorithms appear to offer significant advantages over PSO. Their
ability to estimate the location of the source over distance allows them to interact with
it. Furthermore, they are not limited to immutable environments and therefore they
can be used to track moving sources. This chapter has introduced a variant of the
triangulation PSO family that can be used for the localisation of non-wavefield sources.
The algorithm’s capabilities are demonstrated in simulations, where it is used for the
task of source entrapment/escorting and it was shown that the swarms were capable of
following and surrounding sources that are both stationary and moving. The algorithm’s
performance on these tasks seems to be affected by the distance required for the robots
to maintain from the source, as well as the number of robots in the swarm, the velocity
of the source and the SNR of the received signals.

189

References

Antonelli, G., Arrichiello, F. & Chiaverini, S. (2007), The entrapment/escorting mission
for a multi-robot system: Theory and experiments, in ‘2007 IEEE/ASME interna-
tional conference on advanced intelligent mechatronics’, pp. 1–6.

Gebbie, J., Siderius, M. & Allen, J. S. r. (2012), ‘Aspect-dependent radiated noise anal-
ysis of an underway autonomous underwater vehicle.’, The Journal of the Acoustical
Society of America 132(5), EL351–7.

Kawakami, H. & Namerikawa, T. (2009), Cooperative target-capturing strategy for
multi-vehicle systems with dynamic network topology, in ‘2009 American Control
Conference’, pp. 635–640.

Naval Technology (2021a), ‘C-Enduro Autonomous Surface Vehicle’.
URL: https://www.naval-technology.com/projects/c-enduro-autonomous-surface-
vehicle/

Naval Technology (2021b), ‘REMUS-100 Automatic Underwater Vehicles’.
URL: https://www.naval-technology.com/projects/remus-100-automatic-
underwater-vehicle/

Verfuss, U. K., Aniceto, A. S., Harris, D. V., Gillespie, D., Fielding, S., Jiménez, G.,
Johnston, P., Sinclair, R. R., Sivertsen, A., Solbø, S. A., Storvold, R., Biuw, M. &
Wyatt, R. (2019), ‘A review of unmanned vehicles for the detection and monitoring
of marine fauna’, Marine Pollution Bulletin 140, 17–29.
URL: https://www.sciencedirect.com/science/article/pii/S0025326X19300098

White, K. G. (2001), ‘Forgetting functions’, Animal Learning & Behavior 29(3), 193–
207.
URL: https://doi.org/10.3758/BF03192887

Xerandy, X., Znati, T. & K, L. (2015), ‘Cost-Effective, Cognitive Undersea Network
for Timely and Reliable Near-Field Tsunami Warning’, International Journal of Ad-
vanced Computer Science and Applications 6.

Zhang, S., Liu, M., Lei, X., Huang, Y. & Zhang, F. (2018), ‘Multi-target trapping
with swarm robots based on pattern formation’, Robotics and Autonomous Systems
106, 1–13.
URL: http://www.sciencedirect.com/science/article/pii/S0921889017306024

Zhang, S., Liu, M., Lei, X., Yang, P., Huang, Y. & Clark, R. (2021), ‘Synchronous inter-

190

cept strategies for a robotic defense-intrusion game with two defenders’, Autonomous
Robots 45(1), 15–30.
URL: https://doi.org/10.1007/s10514-020-09945-6

Zhang, T., Liu, Z., Wu, S., Pu, Z. & Yi, J. (2020), Multi-Robot Cooperative Target En-
circlement through Learning Distributed Transferable Policy, in ‘2020 International
Joint Conference on Neural Networks (IJCNN)’, pp. 1–8.

Zhao, F. & Guibas, L. J. (2004), 2 - Canonical Problem: Localization and Tracking,
in F. Zhao & L. J. Guibas, eds, ‘Wireless Sensor Networks’, The Morgan Kaufmann
Series in Networking, Morgan Kaufmann, San Francisco, pp. 23–62.
URL: https://www.sciencedirect.com/science/article/pii/B978155860914350002X

Zimmerman, R., D’Spain, G. L. & Chadwell, C. D. (2005), ‘Decreasing the radiated
acoustic and vibration noise of a mid-size AUV’, IEEE Journal of Oceanic Engineer-
ing 30(1), 179–187.

191

Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis introduced the swarm control algorithms that would be required for the
implementation of a swarm of marine robotic platforms with passive acoustic capabili-
ties, for the localisation and monitoring of underwater acoustic sources. The presented
algorithms achieve the following results:

• Accurate low-level motion control of the robotic platforms using Generalised
Adapted PSO, by taking into consideration their movement limitations, such as
maximum velocity, maximum acceleration, omnidirectional motion capabilities,
turning radius etc. This allows the algorithm to be used directly for the control
of the velocity of robots, instead of as a high-level trajectory planning algorithm
like most current swarm intelligence algorithms.

• Proper synchronisation of the motion controller with the physical platform, by
taking into consideration the loop delay of the controller (i.e. timestep size ∆t). In
this way, the controller consider delays introduced by high processing demanding
tasks and inter-robot communications, thereby softening the limitations that exist
on this areas and making the implementation of a real-world robotic swarm easier.

• Generalised Adapted PSO allows easy merging of a large number of off-the-shelf
algorithms for different swarm robotic tasks and can be adapted to approximate
different behaviours. This is demonstrated through the implementation of two
PSO controllers (the omnidirectional and non-omnidirectional PSO controllers
presented in Chapters 4 and 5, where the tasks of source localisation and obstacle

192

avoidance are combined.

• When it comes to signal processing, by incorporating wavefield correlation into
PSO, its source localisation range and convergence speed towards the source were
improved by a factor of 4 (compared to A-PSO).

• Additionally, the introduction of triangulation PSO allows the swarm to localise
the source from far away. This capability removes the need for the swarm to be
spread around the area where the source is expected to be found (a practice that is
typically expected when using the original PSO algorithm), thereby making PSO
more applicable to real-world scenarios, where large areas need to be explored.

• Finally, the ability to localise the source from far away, allows the swarm to
interact with it, by avoiding, encircling and following it. This is a very important
property of triangulation PSO algorithms that is crucial for the implementation of
systems capable of source monitoring that is not found in other swarm intelligence
algorithms that can be currently found in the literature.

Figure 9-1 shows which of the key resulting algorithms proposed in this thesis would be
more appropriate for use in a robotic swarm, based on the robots’ motion capabilities
and the characteristics of the acoustic source that needs to be localised. All of the
algorithms were demonstrated in MATLAB simulations, while the Omnidirectional PSO
controller was also validated using more realistic Gazebo simulations. Since the rest of
the algorithms were based on the Omnidirectional PSO controller, their validation using
Gazebo was not required.

The resulting swarm behaviours that are achieved by the algorithms presented in this
thesis consist the core behaviours required to be exhibited by a real-world robotic swarm
for the tasks of source localisation and monitoring. This thesis therefore validates the
possibility that such a real-world robotic system can exist from the control perspective,
thereby opening the way for future attempts towards its physical implementation.

9.2 Future Work

Despite the validation of the core behaviours of the swarm using simulations, future work
will aim to validate all proposed algorithms using real-world experiments, to further
ensure their correct operation and applicability to physical swarms. Apart from the
presented behaviours, several other derivative concepts will also need to be tested and
validated in the future, to ensure that the proposed algorithms are capable of satisfying
the control requirements of a robotic swarm for source localisation and monitoring.

193

Figure 9-1: Flow chart that explains which of algorithms proposed in this thesis could
be used for the control of a robotic swarm, based on the motion characteristic of the
robots in the swarm and the source that needs to be localised.

Some of the most important concepts are outlined below in order of priority:

• The omnidirectional and non-omnidirectional PSO controllers offer a glimpse of
how Generalised Adapted PSO could be used to merge different swarm robotic
tasks and approximate different robot behaviours (i.e. omnidirectional and non-
omnidirectional motion). That said, the possibilities offered by Generalised
Adapted PSO are not limited to the tasks and behaviours used in this thesis. Tasks
such as flocking and collaborative multi-target tracking can be of great benefit in
source localisation and monitoring scenarios. Therefore, it is desirable to show
how such tasks could be incorporated into Generalised Adapted PSO through the
use of alternative Dynamic Velocity Control strategies. Additionally, showing how
Generalised Adapted PSO could be used to control non-omnidirectional motion
with minimum turning radius (as discussed in Chapter 5) can greatly extend the
applicability of the algorithm to a larger variety of robotic platforms.

194

• With regards to the work presented in Chapter 8, the results are used to demon-
strate the potential of using triangulation PSO algorithms to fuse collaborative
source localisation and target entrapment techniques. The resulting behaviours
validated the possibility of achieving such a fusion but the simulations did not
actually use a target entrapment algorithm borrowed from the literature (instead
the swarm interacted with the source by avoiding it like an obstacle). Therefore,
future work on this area should study the swarm behaviours that emerge from
the combination of triangulation PSO (either Generalised Triangulation PSO or
another variant like XB-PSO) with other existing target entrapment techniques
(e.g. the ones discussed in Chapter 2).

• The wavefield correlation enhanced PSO variants presented in Chapter 7 (i.e.
X-PSO, B-PSO and XB-PSO) only make use of the non-normalised correlation
coefficient ρ and time lag τlag, obtained from the cross-correlation of signals from
two sensors. Apart from these basic signal processing techniques, wavefield corre-
lation systems (e.g. multi-hydrophone linear arrays and multi-element antennas)
employ a variety of more complex, derivative techniques (e.g. beamsteering tech-
niques and more exotic alternatives of the cross-correlation function) that could be
used to further enhance the performance of the proposed algorithms or introduce
new modified variants.

• Lastly, the Dynamic Velocity Control strategies used for the omnidirectional and
non-omnidirectional PSO controllers presented in Chapters 4 and 5, assume a
constant timestep size ∆t. Nevertheless, it is possible that a dynamic ∆t could
also be considered in the future. In cases where the robots are far apart from
each other, a large ∆t value could be used, implying less frequent communication
between the robots, but also higher possible maximum velocities. As the robots
come closer to each other (while converging towards the source), the value of
∆t can be reduced, resulting in more frequent communications, lower maximum
velocities and more accurate motion control of the swarm. Therefore, considering a
dynamic timestep size can introduce additional functionality into the Generalised
Adapted PSO controller.

195

Appendices

196

Appendix A

Adapted PSO Order-1 and Order-2
Stability

Like the original PSO, there is no interdependency between dimension in Adapted PSO.
Therefore, if it can be shown that Adapted PSO is order-1 and order-2 stability for an
single, it will imply order-1 and order-2 stability in all dimensions. Therefore, only a
single arbitrary dimension j will be considered here.

Due to the use of the sgn function, the stability analysis for Adapted PSO is greatly
simplified. It is possible to show that Adapted PSO is order-1 stable for certain values
of c1 and c2. Equation (3.11) can be described using expected value terms as

E(uj [k + 1]) = ωE(uj [k]) + c1e + c2e, (A.1)

where E(uj [k]) is the expected value of the jth component of the velocity at timestep
[k], c1e is the expected value of the cognitive term with constant magnitude |c1e| = c1

2

and c2e is the expected value of the social term with constant magnitude |c2e| = c2
2 .

When c1 > 0 and c2 > 0, the corresponding expected values c1e and c2e always point
towards the personal best location yj and global best location yg,j respectively.

When both the personal best location and the global best location are located towards
the same general direction relative to the particle such that yj , yg,j > xj or yj , yg,j < xj ,
the effects of c1e and c2e are added together resulting in the combine magnitude

|c1e + c2e| =
c1 + c2

2
=
ĉ

2
. (A.2)

197

This will eventually cause the particle to move towards yj and yg,j . On the other hand
when the particle is located in-between the personal best location and the global best
location, such that yj > xj > yg,j or yj < xj < yg,j , the combined magnitude of c1e and
c2e becomes

|c1e + c2e| =
|c1 − c2|

2
. (A.3)

Therefore, when c1 = c2, the combined magnitude of c1e and c2e is 0. In this case, the
expected position of the particle xj [k] as [k] → ∞ is given by the midpoint of yj and
yg,j

lim
k→∞

E[xj [k]] =
yj + yg,j

2
. (A.4)

As c1 becomes larger than c2, the expected position moves towards yj . Similarly, as c2

becomes larger than c1, the expected position moves towards yg,j .

The above conclusions can be extended to the case where either c1 < 0 or c2 < 0.
In this case, when the magnitude of the positive accelerating coefficient is larger than
the magnitude of the negative accelerating coefficient, such that ĉ > 0, the effects of
Equations (A.2) and (A.3) remain the same. Therefore order-1 stability can be ensured
for any ĉ > 0.

As long as order-1 stability is guranteed (i.e. ĉ > 0), the particle oscillates in-between
yj and yg,j with varying amplitude of oscillations. For order-2 stability, it is necessary
to show that the amplitude of oscillation does not exceed a constant value.

In Appendix D, it is shown that Adapted PSO has a maximum velocity limit Uj .
Assume that the particle passes above one of the best locations (yj or yg,j) with velocity
uj = Uj , such that Equation (A.2) holds. Furthermore, assume that ĉ = 0, such that
the decelerating effect of c1e and c2e is nullified. In this case, Equation (A.1) becomes

uj [k + 1] = ωuj [k]. (A.5)

The total distance d∞ that the particle overshoots as [k]→∞ is given by

d∞ = ∆t× (Uj + ωUj + ω2Uj + ω3Uj + ...) (A.6)

The geometric series shown in the parenthesis is known to converge at Uj

1−ω for |ω| < 1

(Maor, 1987). Therefore, the maximum distance that the particle can overshoot is
d∞ =

∆t×Uj

1−ω for |ω| < 1. As ĉ increases, the expected deceleration of the particle during
overshooting increases, reducing this maximum overshooting distance d∞. Therefore,
it can be ensured that Adapted PSO is order-2 stable for |ω| < 1 and ĉ > 0.

198

A.1 References

Maor E. The Geometric Series. In: To Infinity and Beyond. Birkhäuser Boston. 1987.
https://doi.org/10.1007/978-1-4612-5394-5_5

199

Appendix B

Lemma 1

Lemma 1. For all ẑj [k] ∈ R2, M̂ẑj [k] will always lie on the line given by:

a1(u, ω,∆t) =
ω − 1

ω∆t
u (B.1)

Proof. The matrix M̂ has eigenvectors

v+ = a

[
0

1

]
, v− = b

[
1
ω−1
ω∆t

]
, a, b ∈ R

and respective eigenvalues
λ+ = 0, λ− = ω

Matrix M̂ is diagonalisable, since it is of size 2 × 2 and has 2 distinct eigenvalues.
Therefore, the column space of M̂ is fully described by the span of the eigenvectors
that are associated with non-zero eigenvalues as shown below

C(M̂) = span({v−}) for 0 ≤ ω < 1

This implies that C(M̂) is a line and its characteristic equation is given by

a =
ω − 1

ω∆t
u (B.2)

and the vector M̂ẑj [k] will always lie on it.

200

Appendix C

Lemma 2

Lemma 2. For all ẑj [k] ∈ R2, the vector ẑj [k+ 1] will always be located in-between the
lines

a2(u, ω,∆t, ĉ) = a1(u− ĉ, ω,∆t) +
ĉ

∆t

a3(u, ω,∆t, ĉ) = a1(u+ ĉ, ω,∆t)−
ĉ

∆t

(C.1)

Proof. The vector b̂j [k] is a vector of random magnitude and is always parallel to the
line

a(u,∆t) =
u

∆t

It has maximum length when

r̂j = 1, sgn(ŷj [k]− xj [k]) = ±1 =⇒ b̂j [k] =

[
±ĉ
± ĉ/∆t

]
(C.2)

Lemma 1 says that M̂ẑj [k] always lies on the line a1 of Equation (3.24). When b̂j [k] =[
ĉ

ĉ/∆t

]
as shown in Equation (C.2), the vector ẑj [k + 1] must lie on the line

a2 =
ω − 1

ω∆t
(u− ĉ) +

ĉ

∆t

Conversely, when b̂j [k] =

[
−ĉ
−ĉ/∆t

]
, the vector ẑj [k + 1] must lie on the line

a3 =
ω − 1

ω∆t
(u+ ĉ)− ĉ

∆t

201

Therefore, in all other cases, the vector ẑj [k + 1] must always be located between the
lines a2 and a3.

202

Appendix D

Theorem 1

Theorem 1. For all ω, 0 ≤ ω < 1 and ĉ > 0, there will always exist a maximum
velocity Uj ≥ 0 such that |uj [k]| ≤ Uj

Proof. To find the value of Uj , let a robot accelerate in a single direction so that,

uj [k + 1] = ωuj [k]± ĉ (D.1)

In this case, Equation (D.1) represents a non-homogeneous first-order linear recurrence
relation. Assuming that 0 ≤ ω < 1 and ĉ > 0, the maximum velocity Uj is given by

Uj = lim
[k]→∞

|uj [k]| = ĉ

1− ω
(D.2)

Therefore, if a robot is allowed to accelerate as much as possible towards a specific
direction, its velocity will asymptotically approach Uj resulting in |uj [k]| ≤ Uj for any
value of [k].

203

Appendix E

Theorem 2

Theorem 2. For all ω, 0 ≤ ω < 1 and ĉ > 0, there will always exist a maximum
acceleration A+

j ≥ 0 and a maximum deceleration A−j ≤ 0.

Proof. The maximum acceleration can be found by setting uj [k] = 0 in Equation (3.22)
and assuming that the sgn function is positive, resulting in

A+
j =

ĉ

∆t
(E.1)

Conversely, the maximum deceleration can be found by setting uj [k] = Uj in Equa-
tion (3.22) and assuming that the sgn function is negative, resulting in

A−j =
(ω − 1)Uj − ĉ

∆t
(E.2)

Substituting Equation (D.2) in Equation (E.2) results in the relationship between A+
j

and A−j

A−j =
−2ĉ
√
d

∆t
= −2A+

j (E.3)

Equations Equation (3.27) and Equation (E.3) are well-defined expressions of A+
j and

A−j in terms of ω, ĉ and ∆t, under the only conditions that 0 ≤ ω < 1 and ĉ > 0.
Therefore, under these conditions, A+

j ≥ 0 and A−j ≤ 0.

204

